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Abstract 

Multi-drug resistance (MDR) remains a major health challenge in the cancer treatment, leading to 

treatment failure and disease recurrence. Recent advancements in nanomedicine have introduced 

innovative approaches to treat MDR by improving drug delivery, reducing systemic toxicity, and re-

sensitizing resistant cancer cells. This review provides a comprehensive summary of various 

nanocarrier systems that have been developed to bypass drug efflux mechanisms, promote 

intracellular drug accumulation, and permit controlled release. These nanocarrier systems include 

liposomes, polymeric nanoparticles, metal-based nanoparticles, and supramolecular constructs. 

Additionally, we discuss approaches targeting the tumor microenvironment, such as reprogramming 

tumor-associated macrophages (TAMs), reversing immunosuppression, and manipulating cancer 

stem cell differentiation. Special attention is paid to co-delivery systems that combine 

chemotherapeutics with gene therapies, redox-active compounds, autophagy inhibitors, and nitric 

oxide donors to produce synergistic anticancer effects. Novel strategies such as ferroptosis-inducing 

nanodrugs, stimuli-responsive platforms, and ultrasonic or photothermic based improved therapies 

are emphasized for their ability to evade typical resistance pathways. We also go over the important 

examples where nanotechnology has been utilized to counter MDR specifically in colorectal, ovarian, 

glioblastoma, and non-small cell lung cancer, targeting mechanisms such as P-glycoprotein 

overexpression, MRP2 transport, MGMT-mediated repair, and EGFR-TKI resistance. While 

promising preclinical results highlight the translational potential of nanomedicine for overcoming 

MDR, clinical integration remains a challenge. Key obstacles include scalable manufacturing, 

regulatory alignment, and thorough safety validation. This review aims to inform the rational design 

and clinical translation of nanotechnology-enabled therapeutics for drug-resistant cancers by 

integrating mechanistic insights with nanoplatform innovation. 

Keywords: nanomedicine; multidrug resistance; co-delivery systems; tumor microenvironment 

(TME); drug efflux inhibition; stimuli-responsive nanoparticles; cancer immunotherapy; siRNA 

delivery; ferroptosis; targeted drug delivery 
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Graphical Abstract 

1. Introduction 

Cancer is a leading cause of global mortality, with ~20 million new cases and 9.7 million deaths 

in 2022 [1–3]. A major obstacle in effective cancer therapy is multidrug resistance (MDR), where 

tumors become refractory to chemotherapy, targeted agents, or radiation. In fact, up to ~90% of 

chemotherapy failures are attributed to acquired resistance mechanisms [4,5]. MDR arises from 

complex biochemical and cellular adaptations that allow cancer cells to evade drug-induced 

cytotoxicity. These include upregulated drug efflux pumps (e.g. P-glycoprotein), enhanced DNA 

repair, apoptosis suppression, and influences from the tumor microenvironment (TME) [6–8]. 

Overcoming MDR is critical to improve patient outcomes. In recent years, nanomedicine has emerged 

as a transformative approach to counter MDR by improving drug delivery and enabling novel 

combination therapies. The clinical shift toward precision, low-toxicity interventions—such as HPV-

HR DNA testing for posttreatment cancer monitoring [9,10] parallels the rise of nanomedicine 

strategies for overcoming treatment resistance. Engineered nanoparticles (NPs) can preferentially 

accumulate in tumors via the enhanced permeability and retention (EPR) effect, be surface modified 

with targeting ligands, and co-encapsulate multiple agents (e.g. a chemotherapeutic plus an MDR 

modulator or gene therapy) for synergistic action [11,12]. Nanocarriers can also be designed to release 

cargo in response to tumor-specific stimuli (pH, enzymes, light, ultrasound), and to modulate the 

TME (e.g. reprogramming macrophages or degrading stroma) [11,13,14]. These properties help to 

evade efflux pumps, bring back drug sensitivity, and improve antitumor immunity.  These 

capabilities uniquely position nanomedicine as a multifaceted tool to counteract resistance at the 

molecular, cellular, and microenvironmental levels. 

This review provides a comprehensive, up-to-date analysis of the molecular mechanisms 

underlying MDR in cancer alongside emerging nano-strategies to address them. We begin by 

discussing the cellular and molecular and biochemical foundation of MDR, including drug efflux 

transporters, apoptotic evasion, and tumor heterogeneity. We then explore a range of advanced 

nanocarrier platforms, targeted delivery tactics, co-delivery systems, and stimuli-responsive 

therapies that jointly overcome resistance. Throughout, we emphasize molecular mechanisms and 

translational potential, highlighting biochemical targets (e.g. ABC transporters, apoptosis regulators) 

and preclinical/clinical innovations in nanomedicine for MDR [6,15,16]. Emerging modalities such as 

ferroptosis-inducing nanoparticles, nitric oxide (NO) releasing platforms, and 

photothermal/ultrasound-triggered nanotherapies are also examined. Finally, we outline the key 
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translational challenges and propose future directions to facilitate the clinical adoption of 

nanomedicine in the therapy of MDR cancers. 

2. Mechanisms of MDR in Cancer 

Tumor cells evade therapy through multiple, often overlapping mechanisms, as detailed in 

recent comprehensive reviews [6]. The principal categories are: 

2.1. Drug Efflux Transporters 

Upregulation of ATP-binding cassette (ABC) pumps is a hallmark of MDR. P-glycoprotein (P-

gp/ABCB1) is the most studied efflux pump [6]. Cryo-EM studies reveal conformational changes 

during substrate transport that underline its broad specificity [6,17]. Other ABC proteins such as 

MRP1/ABCC1 and BCRP/ABCG2 contribute to resistance against chemotherapies and targeted drugs 

[6,16]. For example, MRP1 can export kinase inhibitor metabolites, and BCRP confers resistance to 

several targeted agents [17,18]. Notably, cells can dynamically regulate transporter levels: recent data 

show that resistant cells reprogram ABC expression profiles under drug stress [6]. Stromal signals 

also impact efflux: cancer-associated fibroblasts (CAFs) can induce tumor cell ABC expression via 

paracrine pathways, creating a protective niche [6,19]. High efflux activity prevents intracellular drug 

accumulation, so inhibiting or bypassing these pumps is key to overcoming MDR. However, most 

platforms remain in the early translational phase, with few having progressed to clinical trials. 

2.2. Apoptosis Evasion 

Cancer cells often disable programmed cell death to survive therapy [6,20,21]. Overexpression 

of anti-apoptotic BCL-2 family proteins (BCL-2, BCL-XL, MCL-1) is commonly observed in resistant 

tumors [22]. Advanced proteomics show these proteins are post-translationally stabilized in MDR 

cells, strengthening survival [23]. Similarly, the IAP family (e.g. XIAP, cIAP1) inhibits caspases; 

elevated XIAP correlates with poor response to platinum chemo in ovarian cancer [24]. Tumors also 

inactivate p53: beyond gene mutations, recent studies identified novel posttranslational 

modifications of p53 that impair its apoptotic function [25]. Tumor cells can further rewire 

mitochondrial dynamics (increasing fusion, reducing cytochrome c release) to block intrinsic 

apoptosis [26,27]. They may also downregulate death receptors (FAS, TRAIL receptors) on the cell 

surface, evading extrinsic apoptosis [28,29]. Importantly, the TME enforces survival: CAFs and other 

stromal cells secrete cytokines (e.g. IL-6, IGFs) that upregulate anti-apoptotic proteins in cancer cells 

[30,31]. Together, these adaptations mean drugs that rely on apoptosis (most chemotherapies) 

become ineffective. 

2.3. Enhanced DNA Repair  

Many cytotoxic agents work by inducing DNA damage; resistant tumors often boost repair 

pathways. For instance, repeated genotoxic stress selects for cancer cells with upregulated 

homologous recombination and non-homologous end joining (NHEJ) repair proteins [32]. Single-cell 

analyses reveal plasticity: subclones with heightened DNA damage response (DDR) survive therapy, 

leading to radio- and chemo-resistant populations [33,34]. Cancer stem-like cells, often drug-resistant, 

inherently exhibit superior DNA repair and antioxidant defenses [33]. Enhanced nucleotide excision 

repair or base-excision repair can remove drug-induced lesions before apoptosis is triggered. Thus, 

inhibiting key repair enzymes (e.g. PARP, ATR) is explored to sensitize MDR tumors. 

2.4. Tumor Microenvironment (TME)-Induced Resistance 

The TME comprises stromal fibroblasts, immune cells (macrophages, myeloid cells), 

extracellular matrix (ECM), and factors like hypoxia and acidity, all of which influence drug response 

[35,36]. Hypoxic regions in tumors stabilize HIF-1α, which promotes cell survival pathways and 

selection of aggressive, stem-like cells [37]. Hypoxia also impairs drug penetration and immune 
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function [38]. CAFs secrete ECM components (collagen, fibronectin) that increase tissue stiffness and 

form a physical barrier, limiting drug diffusion. They also release growth factors (TGF-β, IL-6) that 

activate pro-survival signaling in cancer cells [39]. Similarly, tumor-associated macrophages (TAMs) 

often polarize to an M2-like phenotype under TME cues, releasing IL-10, VEGF and proteases that 

support tumor growth, angiogenesis, and matrix remodeling [40]. MDSCs and regulatory T cells in 

the TME suppress anti-tumor immunity and can secrete metabolites (e.g. arginase, IDO) that reduce 

drug efficacy. Metabolic competition (e.g. for glucose) in the TME also stresses effector immune cells 

while tumor cells adapt [41]. These TME factors effectively create a fortress around tumor cells, 

promoting quiescence and resistance. 

2.5. Epigenetic Reprogramming 

Reversible changes in gene expression contribute to MDR. For example, alterations in DNA 

methylation or histone modification can silence tumor suppressors or activate survival genes. Recent 

findings show that epigenetic changes can swiftly reprogram cells to use bypass pathways under 

therapy [42]. Cancer cells undergoing drug tolerance states display unique chromatin landscapes that 

prime them for resistance. For instance, histone methylation changes may activate drug efflux or 

DNA repair genes. MicroRNAs and long noncoding RNAs also modulate MDR by targeting ABC 

transporters or apoptotic genes. Such epigenetic plasticity enables tumors to adapt transiently to 

drugs and later re-sensitize after drug withdrawal, complicating therapy [43,44]. 

In summary, MDR arises from the interplay of intrinsic tumor cell adaptations and extrinsic 

TME factors, enabling tumors to escape multiple therapies. Effective strategies must therefore 

multitask; suppress efflux, restore apoptosis, block repair, and re-engineer the TME. Nanomedicine 

is uniquely suited to this challenge. 

3. Strategies to Overcome Multidrug Resistance 

3.1. Nanocarriers Inhibiting Drug Efflux Pumps (P-gp, MRP2, etc.) 

One fundamental approach to overcoming multidrug resistance (MDR) is to inhibit or evade the 

ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein (P-gp/ABCB1), MRP1/MRP2, 

and BCRP. Recent nanocarrier systems have been designed to co-deliver chemotherapeutics with 

efflux pump inhibitors or siRNAs to suppress these transporters’ function or expression [45–47]. 

Encapsulating drugs in nanoparticles can bypass recognition by efflux pumps and even target the 

cell nucleus, thereby increasing intracellular drug retention. For example, polymeric micelles 

carrying doxorubicin (DOX) together with a P-gp siRNA showed effective P-gp gene silencing and 

restored drug sensitivity in resistant cancer cells [48,49]. Another strategy is using nanocarriers that 

disrupt cancer cell energy supply: a mitochondria-targeted hybrid nanoparticle was shown to 

generate ROS and consume ATP under near-infrared (NIR) light, transiently impairing P-gp function 

and creating a therapeutic window for chemotherapy [50,51]. Such multifaceted nano-formulations 

significantly increase drug accumulation in MDR tumor cells by inhibiting efflux pump activity at 

the protein or gene level. 

3.2. Modulating the Tumor Microenvironment (TME) 

The tumor microenvironment plays a critical role in MDR, contributing factors like hypoxia, 

dense extracellular matrix, and immunosuppressive cells (e.g. M2 tumor-associated macrophages, 

TAMs) [52]. Nanomedicine strategies increasingly target these components to reverse the supportive 

niche that fosters drug resistance. One approach is re-educating TAMs: delivering Toll-like receptor 

agonists or small interfering RNAs via nanoparticles can polarize macrophages from an M2 (pro-

tumor, repair) phenotype to an M1 (pro-inflammatory, anti-tumor) phenotype [53]. This 

immunomodulation can heighten the tumor’s response to therapy and reduce MDR, as M2-like 

TAMs are known to promote tumor growth and drug resistance [52]. Another strategy involves 
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extracellular matrix (ECM) remodeling to improve drug penetration. Nanocarriers functionalized 

with enzymes like collagenase or hyaluronidase have been used to locally degrade collagen and 

hyaluronic acid in tumors. For instance, collagenase-decorated nanoparticles carrying DOX showed 

enhanced tissue penetration and reduced tumor fibrosis, thereby overcoming the ECM barrier to 

drug delivery [54]. As TME-driven immune evasions such as T and NK cell suppression in non-small 

cell lung cancer, contributes significantly to therapeutic failure[55], nanomedicine strategies that 

reprogram immunosuppressive niches offer a promising route to overcome such resistance. By 

modulating TME factors, normalizing abnormal vasculature, reducing interstitial pressure, re-

polarizing macrophages, and enzymatically softening the stroma, nanotherapies can significantly 

improve the efficacy of chemotherapy in otherwise resistant tumors [52,56]. 

As summarized in Figure 1, multiple nanomedicine strategies have been developed to target key 

components of the tumor microenvironment, including TAM reprogramming, ECM remodeling, 

hypoxia-triggered drug release, and cytokine suppression. 

 

Figure 1. TME modulation via Nanoparticles. 

3.3. Dual and Multi-Drug Co-Delivery Nanosystems 

Co-delivery of multiple therapeutic agents in a single nanocarrier has emerged as a powerful 

method to tackle MDR. Advanced nanoparticles (liposomes, polymeric nanoparticles, dendrimers, 

etc.) can be engineered to carry two or more drugs simultaneously, allowing synergistic action and 

synchronized release. By incorporating a chemotherapeutic together with a chemosensitizer or a 

second drug, these nanosystems can attack cancer cells on multiple fronts. Key examples include: 

3.3.1. Chemotherapy–chemosensitizer combination 

Nanoparticles co-loaded with a conventional anticancer drug and an efflux pump inhibitor (e.g., 

DOX + tariquidar) or a reversal agent like verapamil have shown increased intracellular drug 

retention and cytotoxicity in resistant cell lines [57]. Similarly, the rational design of small-molecule 

chemotherapeutics, including benzofuran–piperazine derivatives with demonstrated cytotoxic 

activity, can complement nanocarrier-based delivery strategies by providing mechanistically potent 

payloads [58]. 
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3.3.2. Dual chemotherapies 

Co-encapsulation of two chemotherapeutics that act via different mechanisms can produce 

synergistic killing. For instance, a cRGD-targeted lipid nanoparticle was developed to deliver 

gemcitabine and paclitaxel together, achieving enhanced breast cancer cell kill rates compared to 

either drug alone [59]. Such co-delivery ensures both drugs are present at the tumor in the optimal 

ratio and timing. 

3.3.3. Drug–gene combinations 

Nano-carriers can concurrently deliver a drug and a genetic therapy. Quantum-dot 

nanoconjugates have been reported that adsorb DOX together with siRNA targeting MDR genes; this 

approach successfully downregulated P-gp expression and resensitized cervical cancer cells (HeLa) 

to chemotherapy [60,61]. Similarly, mesoporous silica nanoparticles carrying DOX plus an siRNA 

against MDR1 gene achieved higher tumor inhibition in an MDR breast cancer model by blocking 

drug efflux at the gene level. Similarly, nanocarriers co-loaded with chemotherapeutics and 

immunostimulatory agents, such as IL-2, represent a promising strategy to simultaneously debulk 

tumors and enhance immune surveillance. Previous viral vector-based studies have demonstrated 

the feasibility and antitumor efficacy of IL-2-mediated immunotherapy in solid tumors [62]. 

Table 1. Examples of nano co-delivery systems overcoming MDR. 

Nanoformulation Drugs/Agents Cancer Model Key Outcomes (synergy) 

Polymeric NP (mPEG-

PLGA) 

Paclitaxel dimer prodrug + 

Tetrandrine 

MDR HeLa cells 

(cervical) 

Enhanced uptake and 

ROS; ≈50% higher 

apoptosis vs. single drug 

Polymeric NP (PEG-

coated) 

SN-38 (prodrug) + Ko143 

(BCRP inhibitor) 

BCRP-overexpressing 

CRC xenograft 

Reversed irinotecan 

resistance; ~10-fold ↓ IC₅₀ 

Transferrin-PLGA NP 
Gefitinib (EGFR-TKI) + 

Thymoquinone 

Gefitinib-resistant 

NSCLC (A549/GR) 

Re-sensitized to gefitinib; 

suppressed EMT 

(increased E-cadherin) 

cRGD–Heparin NP 
Cisplatin + Olaparib (PARP 

inhibitor) 

Cisplatin-resistant 

ovarian 

Inhibited P-gp/MRP2, ↑ 

DNA damage; overcame 

cisplatin resistance 

Doxorubicin liposome 

+ HCQ* 

Doxorubicin + 

Hydroxychloroquine 

DOX-resistant breast 

cancer 

Restored apoptosis; 

polarized TAMs to M1 

(↑TNFα, IL-12)  

By tailoring nanocarrier release profiles and surface chemistry, dual-drug nanoparticles can 

ensure spatial and temporal co-localization of therapeutic agents in tumor cells, effectively bypassing 

mechanisms of resistance and yielding greater cytotoxic effect than single-drug treatments. 

3.4. Tumor-Specific Targeting and Active Delivery Systems 

To maximize drug delivery to cancer cells while sparing normal tissue, researchers are 

functionalizing nanocarriers with tumor-targeting ligands [63]. Such active targeting helps overcome 

MDR by strengthening the effective drug concentration at the tumor site. Common targeting moieties 

include transferrin (targets transferrin receptors often overexpressed in cancers), folic acid (targets 

folate receptors), antibodies or fragments (against tumor antigens), and peptides like cyclic RGD 

(cRGD) which bind integrin α_vβ_3 on tumor endothelium and cells [64,65].  

Transferrin-conjugated nanoparticles are a prominent example: in one study, Tf-decorated 

PLGA nanoparticles loaded with an experimental organoselenium drug were tested against drug-

resistant tumor cells. The Tf-NPs showed significantly higher cytotoxicity in P-gp overexpressing 

cancer cell lines compared to non-targeted NPs, indicating enhanced uptake via Tf receptor-mediated 
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endocytosis [66,67]. In 3D tumor spheroid models of an MDR ovarian cancer line (NCI/ADR-RES), 

the Tf-NPs likewise penetrated better and reduced spheroid growth more effectively [68,69]. 

Similarly, cRGD functionalization of liposomes or polymeric NPs improves their accumulation in 

tumors by targeting neovasculature and invasive tumor cells. cRGD-modified nanoparticles were 

observed to undergo receptor-mediated endocytosis into α_vβ_3-expressing cancer cells, achieving 

higher intracellular drug delivery than untargeted particles [70,71]. In vivo imaging confirmed that 

cRGD-NPs concentrate preferentially in tumors, with reduced off-target distribution to liver and 

lungs [70]. 

Other ligand-targeted nanocarriers include folate-NPs (effective in folate receptor–positive 

ovarian and breast cancers), EGFR-targeted immunoliposomes, HER2-targeted nanoparticles for 

resistant breast cancer, and aptamer-guided NPs. By actively homing to tumor cells or the tumor 

microenvironment, these systems increase drug efficacy against MDR tumors and mitigate systemic 

toxicity [70,72]. The result is a higher therapeutic index and the ability to kill resistant cancer 

subpopulations that might evade passive delivery. Additionally, receptor-mediated delivery 

strategies are increasingly leveraged in nanoparticle design to enhance tumor targeting while 

minimizing off-target toxicity. For instance, receptor-based frameworks have been applied to bypass 

efflux-mediated resistance and improve intracellular drug retention [73]. 

3.5. Nanotechnology in Specific Cancers: Colorectal, Breast, Ovarian, and Kidney 

Multi-drug resistance manifests differently across cancer types, and nanomedicine strategies 

have been tailored accordingly in colorectal, breast, ovarian, and kidney cancers: 

3.5.1. Colorectal Cancer (CRC) 

MDR in CRC (e.g., resistance to 5-fluorouracil or oxaliplatin) is often linked to efflux pumps and 

cancer stem cells. Nanocarriers have been explored to deliver combination therapies and siRNAs to 

overcome these mechanisms [74]. For instance, lipid nanoparticles co-loading 5-FU with curcumin (a 

natural chemosensitizer) have shown the ability to reverse 5-FU resistance in CRC cells [74,75]. 

Polymeric nanosystems targeting colon cancer stem cell markers are also under investigation to 

prevent recurrence and MDR. Early results demonstrate that nano-delivery can enhance drug uptake 

in CRC and downregulate survival pathways, improving chemosensitivity [74,75]. Additionally, 

preclinical studies such as those using CF10 polymer formulations have shown remarkable efficacy 

against colorectal cancer liver metastasis model, highlighting the translational potential of optimized 

nanopolymers[76–78] . 

3.5.2. Breast Cancer 

Breast tumors (especially triple-negative or recurrent tumors) commonly develop MDR through 

P-gp overexpression. Many studies use the doxorubicin-resistant MCF-7/ADR cell model to evaluate 

nano-therapies. Successful approaches include PEGylated liposomes carrying DOX plus P-gp 

inhibitors, and pH-responsive micelles delivering dual drugs [79,80]. A notable example combining 

DOX with siRNA against MDR1 in a pH-sensitive chitosan-based micelle, achieving dramatically 

higher tumor suppression in an MCF-7/ADR mouse model (87% tumor inhibition) compared to free 

DOX (~50%) [81,82]. Another approach used a hyaluronic-acid modified MoS₂ nanosheet to deliver 

DOX and perform photothermal therapy; under NIR laser, the nano-system generated heat and 

downregulated P-gp expression, leading to near-complete tumor ablation in an MDR breast cancer 

model [83–85]. These examples highlight that in breast cancer, nanomedicines can restore drug 

potency by both chemical and physical mechanisms (gene silencing, heat, etc.). 

3.5.3. Ovarian Cancer 

Ovarian tumors often exhibit MDR to platinum drugs and taxanes. Nanocarriers are being 

designed for intraperitoneal delivery in ovarian cancer to achieve high local drug levels. As 
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mentioned, transferrin-targeted nanoparticles have shown promise in sensitizing ovarian cancer cells 

(like NCI/ADR-RES) to drugs [86]. Another strategy is delivering small molecule inhibitors of anti-

apoptotic pathways (e.g., BCL-2 or PI3K/Akt) alongside chemo in a single nanoplatform [87–89]. In 

preclinical studies, dual-loaded NPs (e.g., paclitaxel + Akt siRNA) demonstrated the ability to 

overcome paclitaxel resistance in ovarian cancer xenografts by inducing apoptosis in otherwise 

refractory tumors [90–93]. Ongoing translational research in ovarian cancer focuses on nano-

formulations of platinum drugs, PARP inhibitors, and gene therapies to bypass resistance and reduce 

systemic toxicity [94–96]. 

3.5.4. Kidney (Renal Cell) Cancer 

Metastatic renal cell carcinoma (RCC) can develop resistance to targeted therapies like tyrosine 

kinase inhibitors (TKIs) [97]. Nanomedicine efforts here aim to deliver novel therapeutics or re-

sensitize tumors to TKIs. One innovative example is the use of cuprous oxide (Cu₂O) nanoparticles 

to overcome resistance to sunitinib (a common RCC TKI) [98]. It is reported that Cu₂O NPs induce 

endoplasmic reticulum stress and ROS-mediated apoptosis in renal cancer cells, thereby restoring 

their sensitivity to sunitinib [99]. This nanoparticle effectively modulated copper trafficking inside 

tumor cells, pointing to a unique ferroptosis-like mechanism to kill drug-resistant RCC cells [100]. 

Additionally, dual-ligand liposomes targeting both RCC cells and angiogenic endothelium have 

shown promise in drug-resistant kidney tumors, by concentrating drugs in the tumor 

microvasculature and tumor tissue simultaneously [101]. While nanotherapy in kidney cancer is still 

nascent, these approaches suggest that overcoming resistance to targeted agents (like TKIs) is feasible 

with nanoparticle delivery that triggers alternative cell-death pathways or improved drug 

localization. 

3.6. Emerging Strategies: Ferroptosis, Autophagy Modulation, Nitric Oxide, and Gene Therapy 

Beyond conventional chemo, several cutting-edge approaches leverage nanotechnology to 

induce non-traditional cell death pathways or to modulate cellular survival mechanisms in MDR 

cancers: 

3.6.1. Ferroptosis Induction 

Ferroptosis is an iron-dependent form of programmed cell death characterized by lipid 

peroxidation. Recent studies highlight that inducing ferroptosis can help kill drug-resistant cancer 

cells that evade apoptosis [102]. Nanomedicines are being engineered as “ferroptosis nanoinducers” 

for example, ultrasmall iron oxide or magnetite nanoparticles that release Fe²⁺ to catalyze lipid ROS 

generation, or nanocarriers delivering ferroptosis-triggering drugs (like erastin or RSL3) [103]. The 

versatile ferroptosis-targeted nanotherapies have shown broad potential in reversing therapy 

resistance by directly triggering this pathway and by feedback regulation of cellular redox state [104]. 

In practice, combining ferroptosis inducers with chemo or immunotherapy (via co-loaded NPs) has 

yielded synergistic anti-tumor effects in refractory tumors, and is a hot area of preclinical research 

[105,106]. Additionally, targeting DNA repair checkpoints, such as CHK1 or PARP, offers another 

avenue to overcome resistance. CHK1 inhibition has been shown to potentiate DNA damage and 

sensitize chemoresistant ovarian tumors by modulating PARPylation and metabolic stress [107,108]. 

3.6.2. Autophagy Inhibition 

Autophagy, a cellular recycling process, is a double-edged sword in cancer; in established 

tumors, moderate autophagy often promotes survival under therapeutic stress, contributing to MDR 

[109]. Thus, blocking cytoprotective autophagy can re-sensitize cancer cells to treatment. However, 

systemic autophagy inhibitors (like chloroquine derivatives) have off-target effects. Nanocarriers 

offer a way to target autophagy inhibitors to tumors. Researchers have loaded agents such as 

hydroxychloroquine (HCQ) or novel autophagy blockers into tumor-targeted nanoparticles to 
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concentrate their action in tumor cells [110–112]. For example, Wuliji et al. formulated amphiphilic 

polymer micelles co-encapsulating HCQ and DOX; these NPs preferentially accumulated in tumors 

and effectively overcame DOX resistance by inhibiting autophagy flux in cancer cells [112]. Such 

nano-formulations ensure that autophagy is sufficiently inhibited in the tumor (preventing cancer 

cells from “recycling” damaged organelles and drugs) while minimizing toxicity elsewhere. Notably, 

some teams are also exploring autophagy activation in certain contexts (since excessive autophagy 

can induce cell death); both inhibition and promotion of autophagy via nanomedicines are being 

tested as strategies to collapse the defenses of MDR tumors [112–114]. 

3.6.3. Nitric Oxide (NO) Delivery 

Nitric oxide is a gaseous signaling molecule that, at high concentrations, can kill cancer cells and 

modulate MDR pathways. NO has been found to downregulate P-glycoprotein expression and 

sensitize tumors to drugs. To exploit this, researchers have developed NO-releasing nanocarriers 

[115,116]. One innovative system is a supramolecular peptide hydrogel loaded with a NO prodrug 

and DOX: when injected into a tumor, the hydrogel slowly releases NO (especially in the presence of 

high glutathione levels in the TME) alongside DOX [117,118]. The burst of NO not only directly 

damages tumor cells via oxidative stress, but also reverses P-gp–mediated MDR, making cancer cells 

more susceptible to DOX [119]. In vivo studies in MDR breast cancer models showed that this NO-

releasing co-delivery platform significantly enhanced tumor shrinkage compared to DOX alone [120]. 

Another study encapsulated an NO donor and camptothecin in a PLGA nanoparticle; under the 

acidic conditions of the tumor, NO was generated, which destabilized the NP and triggered drug 

release in situ. The released NO reduced P-gp levels by ~45%, thereby permitting a much higher 

intracellular concentration of camptothecin [121]. These results underscore NO’s potential as a 

chemosensitizing agent when delivered via a controlled nanocarrier. 

3.6.4. Gene Therapy and RNA Interference 

Nanotechnology enables gene-based therapies to overcome MDR, such as siRNA, shRNA, 

mRNA or CRISPR/Cas9 systems directed against resistance-related genes [122]. Because nucleic acids 

alone have poor stability and delivery, nano-formulations (lipid nanoparticles, polymeric polyplexes, 

etc.) are essential for their clinical use [123,124].  Numerous studies have shown that siRNA against 

MDR1 (ABCB1) delivered by nanoparticles can knock down P-gp expression and restore drug 

sensitivity in vitro and in vivo [125–127]. For example, a hierarchical mesoporous silica nanocarrier 

was used to co-deliver DOX plus an anti-Pgp siRNA: the MSN protected the siRNA from degradation 

and released both payloads inside multidrug-resistant breast cancer cells, leading to P-gp silencing 

and significantly higher chemotherapy efficacy [128]. Beyond P-gp, researchers are targeting other 

resistance genes (BCL-2, Akt, MYC, etc.) using siRNA or even CRISPR delivered by viral-mimicking 

nanoparticles [129]. Similarly, modulation of oncogenic miRNAs like miR-221-5p has been implicated 

in chemoresistance, further justifying nanoparticle-mediated miRNA therapies in resistant ovarian 

cancers [130]. The upregulation of lymphoblastic leukemia-derived sequence-1 (LYL1) has been 

implicated in the progression and metastatic potential of ovarian cancer, highlighting it as a potential 

target for gene-silencing approaches. Sah et al. demonstrated the oncogenic role of LYL1 in ovarian 

cancer models, supporting the rationale for RNAi-loaded nanocarriers designed to reverse oncogene-

driven drug resistance [131]. Early results are promising, showing that silencing or editing genes can 

directly reverse MDR phenotypes. However, gene therapy approaches must surmount delivery 

challenges and potential off-target effects and thus are often combined with nanoparticle strategies 

for tumor-specific, controlled delivery [132,133]. 

In summary, these emerging nano-strategies aim to attack MDR cancer cells via novel 

mechanisms inducing ferroptotic cell death, shutting down autophagy survival pathways, using 

bioactive gases like NO, or reprogramming gene expression – thereby supplementing conventional 

cytotoxic drugs and overcoming resistance that arises from classic mechanisms. 
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3.7. Stimuli-Responsive Nanotherapies: Ultrasound, Photothermal, and Sonodynamic Approaches 

Stimuli-responsive nanomedicine adds another layer of innovation to combat MDR by using 

external triggers (such as light or sound) to activate drug delivery or kill tumor cells by non-chemical 

means [134,135]. These approaches can bypass drug efflux and damage resistant cells through 

physical mechanisms: 

3.7.1. Photothermal Therapy (PTT) 

This involves nanoparticles that absorb NIR laser light and convert it to heat, selectively killing 

cancer cells or disrupting their membranes. Photothermal agents (gold nanoshells, nanorods, carbon 

nanomaterials, graphene oxide, etc.) can be loaded with chemotherapeutics for a combined effect. 

Under NIR irradiation, the localized heating can enhance drug release from the nanocarrier and also 

sensitize tumor cells (e.g., by causing protein denaturation or ATP depletion) [136–138]. PTT has been 

shown to downregulate efflux pumps: for example, mild hyperthermia (≈52°C) generated by MoS₂ 

nanosheets caused a significant reduction in P-gp levels in MDR breast cancer cells [139,140]. In one 

study, PLGA nanoparticles co-loaded with DOX and indocyanine green (ICG, an FDA-approved NIR 

dye) were used to treat MCF-7/ADR tumors. NIR laser exposure of these NP in tumors led to heat 

generation (from ICG) and triggered DOX release; the combination of chemotherapy + PTT effectively 

destroyed drug-resistant breast cancer cells in vitro and in vivo [141]. Photothermal nano-therapy 

thus provides a way to physically eradicate cancer cells that might survive chemical therapy, and 

when integrated with drug delivery, it produces a synergistic anti-MDR effect. 

3.7.2. Ultrasound and Sonodynamic Therapy (SDT) 

Ultrasound can penetrate deep into tissues and be focused on tumor sites, making it a valuable 

trigger for drug release or activation of sonosensitizers [142,143]. In SDT, a sonosensitizer compound 

(often a porphyrin, IR780, or other ROS-generating molecule) is delivered by a nanoparticle and 

produces cytotoxic reactive oxygen species when exposed to low-intensity ultrasound. This strategy 

is particularly useful against hypoxic or deep-seated MDR tumors [144,145]. A recent breakthrough 

involved cRGD-targeted gold nanoparticles loaded with the EGFR inhibitor gefitinib and the 

sonosensitizer IR780 [146]. The gold shell provided a photothermal effect (for on-demand drug 

release) and IR780 generated ROS under ultrasound; together, this low-temperature PTT + SDT 

combination was able to overcome acquired TKI resistance in an EGFR-mutant NSCLC model [146]. 

The ultrasound-triggered ROS helped kill cancer cells independent of drug action, while also 

impairing cellular defense mechanisms, and the mild heating facilitated drug uptake [147,148]. 

Beyond this, ultrasound is also used to trigger drug release from acoustically responsive nanocarriers 

(like liposomes or microbubbles) at the tumor site, ensuring a high local drug concentration that can 

overwhelm efflux pumps [149,150]. Sonodynamic and ultrasound-triggered therapies are still in 

translational stages, but they exhibit tremendous potential to non-invasively eliminate MDR cancer 

cells and can be repeated or spatially controlled with imaging guidance (many ultrasound-sensitive 

NPs also serve as contrast agents) [151]. 

3.7.3. Other External Triggers 

Magnetic field–responsive nanoparticles (e.g., iron oxide NP for magnetic hyperthermia or drug 

targeting), photodynamic therapy (light-activated generation of singlet oxygen using NP-delivered 

photosensitizers), and radiation-triggered nanoparticle release are additional modalities under 

exploration [152,153]. For instance, magnetically heated nanoparticles or X-ray-activated liposomes 

could help in circumventing resistance by causing direct tumor cell damage or by releasing drugs in 

a burst when the tumor vasculature is most permeable. These methods, often termed “externally 

responsive nanotherapies,” can be combined with chemotherapy to potentiate treatment effects [154]. 

By carefully tuning the stimulus (laser wavelength, ultrasound frequency, magnetic field strength), 
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clinicians can activate the nanoparticle only at the tumor site, thereby achieving high precision 

[154,155]. 

In summary, stimuli-responsive nanotherapies offer a way to attack MDR tumors using physical 

forces (heat, sound, light) that cancer cells are less equipped to resist. When coupled with smart 

nanocarriers, these approaches release drugs at the optimal time or bypass biochemical resistance 

entirely, and they have demonstrated impressive results in preclinical MDR cancer models [156]. To 

illustrate the diversity and mechanisms of nanocarrier-based co-delivery systems that successfully 

circumvent MDR in different cancers, a schematic representation of selected strategies is shown in 

Figure 2, corresponding to the formulations detailed in Table 2. 

Table 2. Stimuli-responsive nanotherapy modalities for MDR cancer. 

Stimulus Mechanism (effects) 
Representative Cancer 

Model/Type 

Ultrasound (US)/SDT 
Cavitation increases drug uptake; triggers 

ROS from sonosensitizers (deep penetration) 

Pancreatic cancer, breast 

cancer, brain (glioblastoma) 

Photothermal (PTT) 

NIR light → nanoparticle heats tumor (45–

60°C), causing protein denaturation and cell 

death (efflux-independent) 

Skin, head/neck, breast 

tumors (where NIR 

penetrates) 

Chemophotodynamic 

(PDT) 

Light activates photosensitizer → ROS (singlet 

O₂); synergizes with chemo 

Superficial tumors, MDR 

melanoma models 

Sonodynamic (US + 

sensitizer) 

Ultrasound activates sensitizer → ROS; deep-

tissue effect 

Deep tumors (brain, 

pancreas) 

Hyperthermia 

Elevated temperature triggers drug release 

(thermosensitive liposomes) and tumor cell 

death 

Liver (HCC), prostate 

 

Figure 2. Mechanistic Pathways of Nanomedicine Co-Delivery Platforms Targeting Multidrug Resistance Across 

Diverse Cancer Types. 
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3.8. Innovative and Underexplored Nanomedicine Strategies for MDR Cancers 

While significant attention has been given to co-delivery systems, tumor microenvironment 

modulation, and stimuli-responsive release strategies, recent studies have spotlighted a new wave of 

highly promising nanomedicine innovations. These approaches, while underrepresented in earlier 

clinical trials, are gaining traction for their ability to circumvent traditional resistance mechanisms 

through novel physicochemical properties and delivery modalities. 

3.8.1. Magnetic Nanoparticles for Theranostics and Targeted Therapy 

Magnetic nanoparticles (MNPs), particularly superparamagnetic iron oxide nanoparticles 

(SPIONs), offer dual functionality as both therapeutic and diagnostic agents [157]. When guided by 

an external magnetic field, MNPs can accumulate at the tumor site with high specificity, allowing for 

concentrated drug delivery [158]. Moreover, magnetic hyperthermia where MNPs generate localized 

heat in response to an alternating magnetic field has demonstrated synergy with chemotherapeutics 

and the capacity to downregulate drug efflux pumps like P-gp [159]. This form of image-guided, 

magnetically targeted therapy is especially promising for difficult-to-treat or deep-seated tumors. 

3.8.2. Intratumoral Administration of Nano Drug Delivery Systems 

Intratumoral injection of nano-formulations bypasses systemic pharmacokinetic barriers and 

delivers high drug concentrations directly into tumor tissue [160]. This strategy enhances local 

therapeutic efficacy while reducing off-target toxicity. Various delivery systems such as hydrogels, 

polymeric micelles, and dendritic nanogels have been engineered for sustained and localized drug 

release following intratumoral injections. This modality is particularly effective in poorly 

vascularized or desmoplastic tumors, where systemic delivery fails to achieve adequate penetration 

[161,162]. 

3.8.3. Polydopamine (PDA) Nanoparticles in Drug Delivery and Immune Modulation 

Polydopamine-based nanoparticles exhibit excellent biocompatibility, surface adhesion, and 

responsiveness to oxidative environments [163]. PDA nanocarriers have been to provide immune 

modulation, photothermal effect and chemotherapeutic effect simultaneously. [164]. These 

nanoparticles generate heat when exposed to near-infrared light which can damage cancer cell 

membranes or sensitize resistant cells to chemotherapy [165]. Additionally, PDA systems have shown 

promise in modulating immune responses by carrying Toll-like receptor agonists or checkpoint 

inhibitors, thus bridging drug delivery with tumor immunotherapy [166]. 

3.8.4. Inorganic Nanoparticles in Overcoming Resistance 

Inorganic nanomaterials, including gold nanoparticles, mesoporous silica, and quantum dots 

offer unique optical, electrical, and structural features [167]. These carriers are not only effective in 

delivering therapeutics but also enhance imaging and diagnosis. Several studies have demonstrated 

that inorganic NPs can induce ROS generation, promote apoptosis, and even directly interfere with 

intracellular resistance pathways [168–170]. Quantum-dot conjugates, for instance, allow real-time 

tracking while co-delivering siRNA and chemotherapeutic agents to downregulate MDR-associated 

genes [171,172]. 

3.8.5. Oral Nanoformulations for Colorectal Cancer 

Oral administration of nanomedicine is particularly valuable in colorectal cancer therapy [173]. 

Engineered nanoparticles with pH-sensitive or mucoadhesive properties can bypass gastric 

degradation and release drugs specifically in the colon [174,175]. Co-formulations combining 5-FU 

with natural chemosensitizers like curcumin have shown enhanced drug retention and MDR reversal 

[176]. These systems offer improved patient compliance and the potential to deliver both cytotoxic 
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and immunomodulatory agents directly to the tumor site, which is crucial in colorectal tumors with 

localized resistance profiles [177]. 

Together, these underexplored strategies highlight the evolving landscape of nanomedicine for 

drug-resistant cancers. Their distinct mechanisms ranging from magnetic targeting and localized 

hyperthermia to oxidative disruption and site-specific oral delivery complement established 

approaches and provide new opportunities to overcome therapeutic resistance in challenging cancer 

subtypes. 

 

Figure 3. The Historical development of nanomedicine platforms aimed at reversing MDR, highlighting the 

evolution from conventional liposomal drugs to gene-editing and ferroptosis-inducing nanocarriers. 

4. Clinical Translation: Limitations and Challenges 

Despite the plethora of promising nanomedicine strategies in preclinical studies, translating 

these innovations into clinical use faces significant challenges. The first consideration is the 

complexity of regulatory approval for nanodrugs. Nanomedicines often don’t fit neatly into existing 

regulatory categories, they may be classified as drugs, biologics, devices, or combination products, 

which complicates the approval pathway [178]. Regulatory agencies like the FDA and EMA have 

been cautious, requiring extensive characterization of nanoparticle physicochemical properties, 

manufacturing consistency, and toxicity profiles. Key hurdles include: 

4.1. Sandardization and Characterization:  

There is a lack of standardized guidelines specific to nanomedicines [178]. Small variations in 

formulation (particle size, surface charge, etc.) can dramatically alter a nanoparticle’s behavior in vivo 

[179]. Thus, companies must implement advanced analytical techniques and strict quality controls to 

ensure batch-to-batch consistency and well-characterized products [178,180]. Demonstrating 

reproducibility and stability of complex nanoparticle formulations (which may comprise multiple 

components like polymers, lipids, targeting ligands, and drugs) is much more involved than for 

small-molecule drugs. This also affects the development of “nanosimilars” (generic versions of 

nanodrugs), where establishing equivalence is non-trivial [180,181]. 
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4.2. Safety and Toxicity Concerns 

While nanocarriers can reduce the systemic toxicity of potent drugs, the long-term fate of 

nanoparticles in the body is not fully understood. Issues such as accumulation in the 

reticuloendothelial system (liver, spleen), unforeseen immunogenic reactions, or off-target effects of 

the nanoparticle components must be addressed [182]. Extensive preclinical studies are needed to 

evaluate biocompatibility, for example, whether the NP triggers complement activation or how it is 

excreted or metabolized [183]. Some high-profile nanodrugs have failed in trials due to toxicity or 

immune-related adverse events not predicted by animal models [184,185]. Rare but severe immune-

mediated reactions to pharmacological agents, such as sulfasalazine-induced DRESS syndrome, 

underscore the importance of vigilant safety profiling and post-marketing surveillance in both 

traditional and nanomedicine therapies [186]. In addition to manufacturing and scalability, successful 

integration of nanomedicine into real-world clinical settings requires alignment with hospital 

practices, prescriber behaviors, and resource availability. System-level challenges, such as 

noncompliance with prescription-writing standards, delayed IV-to-oral transitions, and inconsistent 

infection management protocols highlight the barriers to adopting complex therapeutic innovations 

like nanomedicine in routine care [187–189]. Moreover, including pharmacists in clinical audit 

workflows has shown to improve adherence to treatment protocols and could support future 

implementation of nanomedicine [190]. Overcoming MDR in a tumor is controversial if nanotherapy 

cannot be used safely in patients, so ensuring safety profiles and conducting rigorous toxicity studies 

(including looking at chronic exposure) is essential [191,192].  

4.3. Manufacturing and Scalability 

Producing nanomedicines at a commercial scale with uniform quality is challenging [193]. 

Techniques used in the lab (like microfluidic mixing or small-batch emulsification) may not easily 

translate to industrial scale. Additionally, sterile filtering or validating complex nanoconjugates can 

be difficult [194]. Scaling up often requires significant engineering and process development, and any 

process changes might alter the NP properties, sending developers back to perform comparability 

studies [195]. For example, standardized methods for the growth, purification, and titration of virus-

based therapies, such as oncolytic herpes simplex viruses, have been developed to improve process 

reproducibility and safety, offering insights applicable to viral and gene-based nanocarriers [196]. 

Scaling up contributes to the high cost of bringing nanodrugs to the market [197]. Manufacturing 

complexities also tie into regulatory hurdles, as changes in a nanomedicine’s production may trigger 

the need for new safety evaluations [198,199]. 

4.4. Efficacy in Human Tumors 

A well-known challenge in cancer nanomedicine is the gap between preclinical efficacy (often 

in mouse xenograft models) and clinical efficacy in human patients [200]. The enhanced permeability 

and retention (EPR) effect, which allows nanoparticles to accumulate in tumors due to leaky 

vasculature, is variable in humans – many human tumors have irregular blood supply or higher 

interstitial pressure that limits nanoparticle penetration [201,202]. Consequently, some nanoparticles 

that work in mice don’t achieve sufficient tumor delivery in patients [203]. Heterogeneity among 

patients and tumor types means that nanomedicines might benefit some patients more than others 

[204]. For clinical translation, better methods to image and verify NP delivery in human tumors are 

needed (e.g., PET or MRI-labeled nanoparticles) to select patients most likely to benefit [204]. 

4.5. Economic and Practical Considerations 

The cost of developing and producing nanomedicines can be substantially higher than for 

traditional drugs [205]. This includes the cost of specialized facilities and analytical assays. These 

costs can make nanodrugs expensive, potentially limiting patient access or insurance acceptance 

[206]. Additionally, regulatory approval times can be longer due to the need for expert consultations 
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on nanotech aspects [207]. From a practical standpoint, the shelf-life and storage conditions of 

nanomedicines (some may require cold storage or have shorter stability) can be a logistical challenge 

for distribution [208,209]. Real-world implementation of nanomedicine must also account for 

disparities in patient comprehension, as limited health literacy has been shown to hinder cancer care 

engagement and decision-making in vulnerable populations [210]. 

 

Figure 4. Key challenges in the clinical translation of nanomedicine for multidrug-resistant (MDR) cancers. The 

schematic summarizes five major hurdles: (1) regulatory complexity due to overlapping classification and lack 

of standardization; (2) safety and toxicity concerns including unpredictable biodistribution and immune 

responses; (3) manufacturing and scalability issues affecting reproducibility and cost; (4) limited clinical efficacy 

stemming from tumor heterogeneity and variable nanoparticle delivery; and (5) economic and logistical barriers 

related to high production costs, cold chain requirements, and limited accessibility. Addressing these 

interconnected limitations is essential for successful bench-to-bedside translation. 

Despite these challenges, progress is being made. A growing number of nanomedicines have 

achieved clinical approval (including many liposomal drugs, polymer–drug conjugates, and 

nanoparticle-albumin-bound drugs), proving that regulatory and manufacturing hurdles are 

surmountable [211]. As of mid-2025, over 100 nanotechnology-based therapeutics or diagnostics have 

been approved for clinical use [212], though most are reformulations of existing drugs rather than 

novel MDR-targeting systems [213]. Importantly, lessons from these successes are informing next-

generation designs: for instance, using biodegradable materials to improve safety, simplifying 

nanoparticle compositions to ease manufacturing, and developing clear regulatory standards [214]. 

Collaborations between academia, industry, and regulatory bodies are ongoing to refine guidelines 

specific to nanomedicine [215]. In parallel, clinical trial designs are adapting, sometimes 

incorporating patient stratification (e.g., selecting patients with leaky tumors or certain biomarkers 

for nanoparticle uptake) to demonstrate benefit [216,217]. 

5. Conclusions 

In conclusion, while nanomedicine offers innovative solutions to overcome cancer MDR – 

through targeted delivery, co-therapy, microenvironment modulation, and externally-triggered 

release – the journey from bench to bedside requires careful navigation of regulatory, safety, and 
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production challenges. Ongoing innovations and a better understanding of how nanoparticles 

behave in patients will help ensure that the most promising laboratory breakthroughs can be 

translated into real-world cancer therapies [218]. The continued success of nanomedicine in the clinic 

will pave the way for these multi-modal MDR-reversing strategies to become part of standard cancer 

care in the future. 
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