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Abstract

Multi-drug resistance (MDR) remains a major health challenge in the cancer treatment, leading to
treatment failure and disease recurrence. Recent advancements in nanomedicine have introduced
innovative approaches to treat MDR by improving drug delivery, reducing systemic toxicity, and re-
sensitizing resistant cancer cells. This review provides a comprehensive summary of various
nanocarrier systems that have been developed to bypass drug efflux mechanisms, promote
intracellular drug accumulation, and permit controlled release. These nanocarrier systems include
liposomes, polymeric nanoparticles, metal-based nanoparticles, and supramolecular constructs.
Additionally, we discuss approaches targeting the tumor microenvironment, such as reprogramming
tumor-associated macrophages (TAMs), reversing immunosuppression, and manipulating cancer
stem cell differentiation. Special attention is paid to co-delivery systems that combine
chemotherapeutics with gene therapies, redox-active compounds, autophagy inhibitors, and nitric
oxide donors to produce synergistic anticancer effects. Novel strategies such as ferroptosis-inducing
nanodrugs, stimuli-responsive platforms, and ultrasonic or photothermic based improved therapies
are emphasized for their ability to evade typical resistance pathways. We also go over the important
examples where nanotechnology has been utilized to counter MDR specifically in colorectal, ovarian,
glioblastoma, and non-small cell lung cancer, targeting mechanisms such as P-glycoprotein
overexpression, MRP2 transport, MGMT-mediated repair, and EGFR-TKI resistance. While
promising preclinical results highlight the translational potential of nanomedicine for overcoming
MDR, clinical integration remains a challenge. Key obstacles include scalable manufacturing,
regulatory alignment, and thorough safety validation. This review aims to inform the rational design
and clinical translation of nanotechnology-enabled therapeutics for drug-resistant cancers by
integrating mechanistic insights with nanoplatform innovation.

Keywords: nanomedicine; multidrug resistance; co-delivery systems; tumor microenvironment
(TME); drug efflux inhibition; stimuli-responsive nanoparticles; cancer immunotherapy; siRNA
delivery; ferroptosis; targeted drug delivery
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Graphical Abstract

1. Introduction

Cancer is a leading cause of global mortality, with ~20 million new cases and 9.7 million deaths
in 2022 [1-3]. A major obstacle in effective cancer therapy is multidrug resistance (MDR), where
tumors become refractory to chemotherapy, targeted agents, or radiation. In fact, up to ~90% of
chemotherapy failures are attributed to acquired resistance mechanisms [4,5]. MDR arises from
complex biochemical and cellular adaptations that allow cancer cells to evade drug-induced
cytotoxicity. These include upregulated drug efflux pumps (e.g. P-glycoprotein), enhanced DNA
repair, apoptosis suppression, and influences from the tumor microenvironment (TME) [6-8].
Overcoming MDR is critical to improve patient outcomes. In recent years, nanomedicine has emerged
as a transformative approach to counter MDR by improving drug delivery and enabling novel
combination therapies. The clinical shift toward precision, low-toxicity interventions —such as HPV-
HR DNA testing for posttreatment cancer monitoring [9,10] parallels the rise of nanomedicine
strategies for overcoming treatment resistance. Engineered nanoparticles (NPs) can preferentially
accumulate in tumors via the enhanced permeability and retention (EPR) effect, be surface modified
with targeting ligands, and co-encapsulate multiple agents (e.g. a chemotherapeutic plus an MDR
modulator or gene therapy) for synergistic action [11,12]. Nanocarriers can also be designed to release
cargo in response to tumor-specific stimuli (pH, enzymes, light, ultrasound), and to modulate the
TME (e.g. reprogramming macrophages or degrading stroma) [11,13,14]. These properties help to
evade efflux pumps, bring back drug sensitivity, and improve antitumor immunity. These
capabilities uniquely position nanomedicine as a multifaceted tool to counteract resistance at the
molecular, cellular, and microenvironmental levels.

This review provides a comprehensive, up-to-date analysis of the molecular mechanisms
underlying MDR in cancer alongside emerging nano-strategies to address them. We begin by
discussing the cellular and molecular and biochemical foundation of MDR, including drug efflux
transporters, apoptotic evasion, and tumor heterogeneity. We then explore a range of advanced
nanocarrier platforms, targeted delivery tactics, co-delivery systems, and stimuli-responsive
therapies that jointly overcome resistance. Throughout, we emphasize molecular mechanisms and
translational potential, highlighting biochemical targets (e.g. ABC transporters, apoptosis regulators)
and preclinical/clinical innovations in nanomedicine for MDR [6,15,16]. Emerging modalities such as
ferroptosis-inducing  nanoparticles, nitric oxide (NO) releasing platforms, and
photothermal/ultrasound-triggered nanotherapies are also examined. Finally, we outline the key
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translational challenges and propose future directions to facilitate the clinical adoption of
nanomedicine in the therapy of MDR cancers.

2. Mechanisms of MDR in Cancer

Tumor cells evade therapy through multiple, often overlapping mechanisms, as detailed in
recent comprehensive reviews [6]. The principal categories are:

2.1. Drug Efflux Transporters

Upregulation of ATP-binding cassette (ABC) pumps is a hallmark of MDR. P-glycoprotein (P-
gp/ABCB1) is the most studied efflux pump [6]. Cryo-EM studies reveal conformational changes
during substrate transport that underline its broad specificity [6,17]. Other ABC proteins such as
MRP1/ABCC1 and BCRP/ABCG2 contribute to resistance against chemotherapies and targeted drugs
[6,16]. For example, MRP1 can export kinase inhibitor metabolites, and BCRP confers resistance to
several targeted agents [17,18]. Notably, cells can dynamically regulate transporter levels: recent data
show that resistant cells reprogram ABC expression profiles under drug stress [6]. Stromal signals
also impact efflux: cancer-associated fibroblasts (CAFs) can induce tumor cell ABC expression via
paracrine pathways, creating a protective niche [6,19]. High efflux activity prevents intracellular drug
accumulation, so inhibiting or bypassing these pumps is key to overcoming MDR. However, most
platforms remain in the early translational phase, with few having progressed to clinical trials.

2.2. Apoptosis Evasion

Cancer cells often disable programmed cell death to survive therapy [6,20,21]. Overexpression
of anti-apoptotic BCL-2 family proteins (BCL-2, BCL-XL, MCL-1) is commonly observed in resistant
tumors [22]. Advanced proteomics show these proteins are post-translationally stabilized in MDR
cells, strengthening survival [23]. Similarly, the IAP family (e.g. XIAP, cIAP1) inhibits caspases;
elevated XIAP correlates with poor response to platinum chemo in ovarian cancer [24]. Tumors also
inactivate p53: beyond gene mutations, recent studies identified novel posttranslational
modifications of p53 that impair its apoptotic function [25]. Tumor cells can further rewire
mitochondrial dynamics (increasing fusion, reducing cytochrome c release) to block intrinsic
apoptosis [26,27]. They may also downregulate death receptors (FAS, TRAIL receptors) on the cell
surface, evading extrinsic apoptosis [28,29]. Importantly, the TME enforces survival: CAFs and other
stromal cells secrete cytokines (e.g. IL-6, IGFs) that upregulate anti-apoptotic proteins in cancer cells
[30,31]. Together, these adaptations mean drugs that rely on apoptosis (most chemotherapies)
become ineffective.

2.3. Enhanced DNA Repair

Many cytotoxic agents work by inducing DNA damage; resistant tumors often boost repair
pathways. For instance, repeated genotoxic stress selects for cancer cells with upregulated
homologous recombination and non-homologous end joining (NHE]) repair proteins [32]. Single-cell
analyses reveal plasticity: subclones with heightened DNA damage response (DDR) survive therapy,
leading to radio- and chemo-resistant populations [33,34]. Cancer stem-like cells, often drug-resistant,
inherently exhibit superior DNA repair and antioxidant defenses [33]. Enhanced nucleotide excision
repair or base-excision repair can remove drug-induced lesions before apoptosis is triggered. Thus,
inhibiting key repair enzymes (e.g. PARP, ATR) is explored to sensitize MDR tumors.

2.4. Tumor Microenvironment (TME)-Induced Resistance

The TME comprises stromal fibroblasts, immune cells (macrophages, myeloid cells),
extracellular matrix (ECM), and factors like hypoxia and acidity, all of which influence drug response
[35,36]. Hypoxic regions in tumors stabilize HIF-1a, which promotes cell survival pathways and
selection of aggressive, stem-like cells [37]. Hypoxia also impairs drug penetration and immune
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function [38]. CAFs secrete ECM components (collagen, fibronectin) that increase tissue stiffness and
form a physical barrier, limiting drug diffusion. They also release growth factors (TGF-f3, IL-6) that
activate pro-survival signaling in cancer cells [39]. Similarly, tumor-associated macrophages (TAMs)
often polarize to an M2-like phenotype under TME cues, releasing IL-10, VEGF and proteases that
support tumor growth, angiogenesis, and matrix remodeling [40]. MDSCs and regulatory T cells in
the TME suppress anti-tumor immunity and can secrete metabolites (e.g. arginase, IDO) that reduce
drug efficacy. Metabolic competition (e.g. for glucose) in the TME also stresses effector immune cells
while tumor cells adapt [41]. These TME factors effectively create a fortress around tumor cells,
promoting quiescence and resistance.

2.5. Epigenetic Reprogramming

Reversible changes in gene expression contribute to MDR. For example, alterations in DNA
methylation or histone modification can silence tumor suppressors or activate survival genes. Recent
findings show that epigenetic changes can swiftly reprogram cells to use bypass pathways under
therapy [42]. Cancer cells undergoing drug tolerance states display unique chromatin landscapes that
prime them for resistance. For instance, histone methylation changes may activate drug efflux or
DNA repair genes. MicroRNAs and long noncoding RNAs also modulate MDR by targeting ABC
transporters or apoptotic genes. Such epigenetic plasticity enables tumors to adapt transiently to
drugs and later re-sensitize after drug withdrawal, complicating therapy [43,44].

In summary, MDR arises from the interplay of intrinsic tumor cell adaptations and extrinsic
TME factors, enabling tumors to escape multiple therapies. Effective strategies must therefore
multitask; suppress efflux, restore apoptosis, block repair, and re-engineer the TME. Nanomedicine
is uniquely suited to this challenge.

3. Strategies to Overcome Multidrug Resistance

3.1. Nanocarriers Inhibiting Drug Efflux Pumps (P-gp, MRP2, etc.)

One fundamental approach to overcoming multidrug resistance (MDR) is to inhibit or evade the
ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein (P-gp/ABCB1), MRP1/MRP2,
and BCRP. Recent nanocarrier systems have been designed to co-deliver chemotherapeutics with
efflux pump inhibitors or siRNAs to suppress these transporters’ function or expression [45-47].
Encapsulating drugs in nanoparticles can bypass recognition by efflux pumps and even target the
cell nucleus, thereby increasing intracellular drug retention. For example, polymeric micelles
carrying doxorubicin (DOX) together with a P-gp siRNA showed effective P-gp gene silencing and
restored drug sensitivity in resistant cancer cells [48,49]. Another strategy is using nanocarriers that
disrupt cancer cell energy supply: a mitochondria-targeted hybrid nanoparticle was shown to
generate ROS and consume ATP under near-infrared (NIR) light, transiently impairing P-gp function
and creating a therapeutic window for chemotherapy [50,51]. Such multifaceted nano-formulations
significantly increase drug accumulation in MDR tumor cells by inhibiting efflux pump activity at
the protein or gene level.

3.2. Modulating the Tumor Microenvironment (TME)

The tumor microenvironment plays a critical role in MDR, contributing factors like hypoxia,
dense extracellular matrix, and immunosuppressive cells (e.g. M2 tumor-associated macrophages,
TAMs) [52]. Nanomedicine strategies increasingly target these components to reverse the supportive
niche that fosters drug resistance. One approach is re-educating TAMs: delivering Toll-like receptor
agonists or small interfering RNAs via nanoparticles can polarize macrophages from an M2 (pro-
tumor, repair) phenotype to an M1 (pro-inflammatory, anti-tumor) phenotype [53]. This
immunomodulation can heighten the tumor’s response to therapy and reduce MDR, as M2-like
TAMs are known to promote tumor growth and drug resistance [52]. Another strategy involves
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extracellular matrix (ECM) remodeling to improve drug penetration. Nanocarriers functionalized
with enzymes like collagenase or hyaluronidase have been used to locally degrade collagen and
hyaluronic acid in tumors. For instance, collagenase-decorated nanoparticles carrying DOX showed
enhanced tissue penetration and reduced tumor fibrosis, thereby overcoming the ECM barrier to
drug delivery [54]. As TME-driven immune evasions such as T and NK cell suppression in non-small
cell lung cancer, contributes significantly to therapeutic failure[55], nanomedicine strategies that
reprogram immunosuppressive niches offer a promising route to overcome such resistance. By
modulating TME factors, normalizing abnormal vasculature, reducing interstitial pressure, re-
polarizing macrophages, and enzymatically softening the stroma, nanotherapies can significantly
improve the efficacy of chemotherapy in otherwise resistant tumors [52,56].

As summarized in Figure 1, multiple nanomedicine strategies have been developed to target key
components of the tumor microenvironment, including TAM reprogramming, ECM remodeling,
hypoxia-triggered drug release, and cytokine suppression.

TAM Reprogramming

\J\_" \

oo
/T)) M1 /L
?f;“dﬁw‘g\
Hypoxia-Targeted
Drug Release

,
\

Cancer Cell Cytokine Suppression

Figure 1. TME modulation via Nanoparticles.

3.3. Dual and Multi-Drug Co-Delivery Nanosystems

Co-delivery of multiple therapeutic agents in a single nanocarrier has emerged as a powerful
method to tackle MDR. Advanced nanoparticles (liposomes, polymeric nanoparticles, dendrimers,
etc.) can be engineered to carry two or more drugs simultaneously, allowing synergistic action and
synchronized release. By incorporating a chemotherapeutic together with a chemosensitizer or a
second drug, these nanosystems can attack cancer cells on multiple fronts. Key examples include:

3.3.1. Chemotherapy-chemosensitizer combination

Nanoparticles co-loaded with a conventional anticancer drug and an efflux pump inhibitor (e.g.,
DOX + tariquidar) or a reversal agent like verapamil have shown increased intracellular drug
retention and cytotoxicity in resistant cell lines [57]. Similarly, the rational design of small-molecule
chemotherapeutics, including benzofuran-piperazine derivatives with demonstrated cytotoxic
activity, can complement nanocarrier-based delivery strategies by providing mechanistically potent
payloads [58].
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3.3.2. Dual chemotherapies

Co-encapsulation of two chemotherapeutics that act via different mechanisms can produce
synergistic killing. For instance, a cRGD-targeted lipid nanoparticle was developed to deliver
gemcitabine and paclitaxel together, achieving enhanced breast cancer cell kill rates compared to
either drug alone [59]. Such co-delivery ensures both drugs are present at the tumor in the optimal
ratio and timing.

3.3.3. Drug-gene combinations

Nano-carriers can concurrently deliver a drug and a genetic therapy. Quantum-dot
nanoconjugates have been reported that adsorb DOX together with siRNA targeting MDR genes; this
approach successfully downregulated P-gp expression and resensitized cervical cancer cells (HeLa)
to chemotherapy [60,61]. Similarly, mesoporous silica nanoparticles carrying DOX plus an siRNA
against MDR1 gene achieved higher tumor inhibition in an MDR breast cancer model by blocking
drug efflux at the gene level. Similarly, nanocarriers co-loaded with chemotherapeutics and
immunostimulatory agents, such as IL-2, represent a promising strategy to simultaneously debulk
tumors and enhance immune surveillance. Previous viral vector-based studies have demonstrated
the feasibility and antitumor efficacy of IL-2-mediated immunotherapy in solid tumors [62].

Table 1. Examples of nano co-delivery systems overcoming MDR.

Nanoformulation Drugs/Agents Cancer Model = Key Outcomes (synergy)
Enhanced uptake and
ROS; =50% higher
apoptosis vs. single drug

Polymeric NP (PEG-  SN-38 (prodrug) + Kol43 BCRP-overexpressing Reversed irinotecan
coated) (BCRP inhibitor) CRC xenograft  resistance; ~10-fold | ICsg

Polymeric NP (mPEG- Paclitaxel dimer prodrug+ MDR HeLa cells
PLGA) Tetrandrine (cervical)

Re-sensitized to gefitinib;
suppressed EMT
(increased E-cadherin)
Inhibited P-gp/MRP2, 1
DNA damage; overcame

Gefitinib (EGFR-TKI) + Gefitinib-resistant

Transferrin-PLGA NP Thymogquinone NSCLC (A549/GR)

solati . isplatin-resi
¢RGD-Heparin NP Cisplatin + Olaparib (PARP Cisplatin-resistant

inhibitor) ovarian . . .
cisplatin resistance
L . . Restored apoptosis;
Doxorubicin liposome Doxorubicin + DOX-resistant breast .
. polarized TAMs to M1
+HCQ* Hydroxychloroquine cancer

(1TNFa, IL-12)

By tailoring nanocarrier release profiles and surface chemistry, dual-drug nanoparticles can
ensure spatial and temporal co-localization of therapeutic agents in tumor cells, effectively bypassing
mechanisms of resistance and yielding greater cytotoxic effect than single-drug treatments.

3.4. Tumor-Specific Targeting and Active Delivery Systems

To maximize drug delivery to cancer cells while sparing normal tissue, researchers are
functionalizing nanocarriers with tumor-targeting ligands [63]. Such active targeting helps overcome
MDR by strengthening the effective drug concentration at the tumor site. Common targeting moieties
include transferrin (targets transferrin receptors often overexpressed in cancers), folic acid (targets
folate receptors), antibodies or fragments (against tumor antigens), and peptides like cyclic RGD
(cRGD) which bind integrin a_v{3_3 on tumor endothelium and cells [64,65].

Transferrin-conjugated nanoparticles are a prominent example: in one study, Tf-decorated
PLGA nanoparticles loaded with an experimental organoselenium drug were tested against drug-
resistant tumor cells. The Tf-NPs showed significantly higher cytotoxicity in P-gp overexpressing
cancer cell lines compared to non-targeted NPs, indicating enhanced uptake via Tf receptor-mediated
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endocytosis [66,67]. In 3D tumor spheroid models of an MDR ovarian cancer line (NCI/ADR-RES),
the Tf-NPs likewise penetrated better and reduced spheroid growth more effectively [68,69].
Similarly, cRGD functionalization of liposomes or polymeric NPs improves their accumulation in
tumors by targeting neovasculature and invasive tumor cells. cRGD-modified nanoparticles were
observed to undergo receptor-mediated endocytosis into a_v[3_3-expressing cancer cells, achieving
higher intracellular drug delivery than untargeted particles [70,71]. In vivo imaging confirmed that
cRGD-NPs concentrate preferentially in tumors, with reduced off-target distribution to liver and
lungs [70].

Other ligand-targeted nanocarriers include folate-NPs (effective in folate receptor—positive
ovarian and breast cancers), EGFR-targeted immunoliposomes, HER2-targeted nanoparticles for
resistant breast cancer, and aptamer-guided NPs. By actively homing to tumor cells or the tumor
microenvironment, these systems increase drug efficacy against MDR tumors and mitigate systemic
toxicity [70,72]. The result is a higher therapeutic index and the ability to kill resistant cancer
subpopulations that might evade passive delivery. Additionally, receptor-mediated delivery
strategies are increasingly leveraged in nanoparticle design to enhance tumor targeting while
minimizing off-target toxicity. For instance, receptor-based frameworks have been applied to bypass
efflux-mediated resistance and improve intracellular drug retention [73].

3.5. Nanotechnology in Specific Cancers: Colorectal, Breast, Ovarian, and Kidney

Multi-drug resistance manifests differently across cancer types, and nanomedicine strategies
have been tailored accordingly in colorectal, breast, ovarian, and kidney cancers:

3.5.1. Colorectal Cancer (CRC)

MDR in CRC (e.g., resistance to 5-fluorouracil or oxaliplatin) is often linked to efflux pumps and
cancer stem cells. Nanocarriers have been explored to deliver combination therapies and siRNAs to
overcome these mechanisms [74]. For instance, lipid nanoparticles co-loading 5-FU with curcumin (a
natural chemosensitizer) have shown the ability to reverse 5-FU resistance in CRC cells [74,75].
Polymeric nanosystems targeting colon cancer stem cell markers are also under investigation to
prevent recurrence and MDR. Early results demonstrate that nano-delivery can enhance drug uptake
in CRC and downregulate survival pathways, improving chemosensitivity [74,75]. Additionally,
preclinical studies such as those using CF10 polymer formulations have shown remarkable efficacy
against colorectal cancer liver metastasis model, highlighting the translational potential of optimized
nanopolymers[76-78] .

3.5.2. Breast Cancer

Breast tumors (especially triple-negative or recurrent tumors) commonly develop MDR through
P-gp overexpression. Many studies use the doxorubicin-resistant MCF-7/ADR cell model to evaluate
nano-therapies. Successful approaches include PEGylated liposomes carrying DOX plus P-gp
inhibitors, and pH-responsive micelles delivering dual drugs [79,80]. A notable example combining
DOX with siRNA against MDR1 in a pH-sensitive chitosan-based micelle, achieving dramatically
higher tumor suppression in an MCF-7/ADR mouse model (87% tumor inhibition) compared to free
DOX (~50%) [81,82]. Another approach used a hyaluronic-acid modified MoS, nanosheet to deliver
DOX and perform photothermal therapy; under NIR laser, the nano-system generated heat and
downregulated P-gp expression, leading to near-complete tumor ablation in an MDR breast cancer
model [83-85]. These examples highlight that in breast cancer, nanomedicines can restore drug
potency by both chemical and physical mechanisms (gene silencing, heat, etc.).

3.5.3. Ovarian Cancer

Ovarian tumors often exhibit MDR to platinum drugs and taxanes. Nanocarriers are being
designed for intraperitoneal delivery in ovarian cancer to achieve high local drug levels. As
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mentioned, transferrin-targeted nanoparticles have shown promise in sensitizing ovarian cancer cells
(like NCI/ADR-RES) to drugs [86]. Another strategy is delivering small molecule inhibitors of anti-
apoptotic pathways (e.g., BCL-2 or PI3K/Akt) alongside chemo in a single nanoplatform [87-89]. In
preclinical studies, dual-loaded NPs (e.g., paclitaxel + Akt siRNA) demonstrated the ability to
overcome paclitaxel resistance in ovarian cancer xenografts by inducing apoptosis in otherwise
refractory tumors [90-93]. Ongoing translational research in ovarian cancer focuses on nano-
formulations of platinum drugs, PARP inhibitors, and gene therapies to bypass resistance and reduce
systemic toxicity [94-96].

3.5.4. Kidney (Renal Cell) Cancer

Metastatic renal cell carcinoma (RCC) can develop resistance to targeted therapies like tyrosine
kinase inhibitors (TKIs) [97]. Nanomedicine efforts here aim to deliver novel therapeutics or re-
sensitize tumors to TKIs. One innovative example is the use of cuprous oxide (Cu,O) nanoparticles
to overcome resistance to sunitinib (a common RCC TKI) [98]. It is reported that Cu,O NPs induce
endoplasmic reticulum stress and ROS-mediated apoptosis in renal cancer cells, thereby restoring
their sensitivity to sunitinib [99]. This nanoparticle effectively modulated copper trafficking inside
tumor cells, pointing to a unique ferroptosis-like mechanism to kill drug-resistant RCC cells [100].
Additionally, dual-ligand liposomes targeting both RCC cells and angiogenic endothelium have
shown promise in drug-resistant kidney tumors, by concentrating drugs in the tumor
microvasculature and tumor tissue simultaneously [101]. While nanotherapy in kidney cancer is still
nascent, these approaches suggest that overcoming resistance to targeted agents (like TKIs) is feasible
with nanoparticle delivery that triggers alternative cell-death pathways or improved drug
localization.

3.6. Emerging Strategies: Ferroptosis, Autophagy Modulation, Nitric Oxide, and Gene Therapy

Beyond conventional chemo, several cutting-edge approaches leverage nanotechnology to
induce non-traditional cell death pathways or to modulate cellular survival mechanisms in MDR
cancers:

3.6.1. Ferroptosis Induction

Ferroptosis is an iron-dependent form of programmed cell death characterized by lipid
peroxidation. Recent studies highlight that inducing ferroptosis can help kill drug-resistant cancer
cells that evade apoptosis [102]. Nanomedicines are being engineered as “ferroptosis nanoinducers”
for example, ultrasmall iron oxide or magnetite nanoparticles that release Fe?* to catalyze lipid ROS
generation, or nanocarriers delivering ferroptosis-triggering drugs (like erastin or RSL3) [103]. The
versatile ferroptosis-targeted nanotherapies have shown broad potential in reversing therapy
resistance by directly triggering this pathway and by feedback regulation of cellular redox state [104].
In practice, combining ferroptosis inducers with chemo or immunotherapy (via co-loaded NPs) has
yielded synergistic anti-tumor effects in refractory tumors, and is a hot area of preclinical research
[105,106]. Additionally, targeting DNA repair checkpoints, such as CHK1 or PARP, offers another
avenue to overcome resistance. CHKI1 inhibition has been shown to potentiate DNA damage and
sensitize chemoresistant ovarian tumors by modulating PARPylation and metabolic stress [107,108].

3.6.2. Autophagy Inhibition

Autophagy, a cellular recycling process, is a double-edged sword in cancer; in established
tumors, moderate autophagy often promotes survival under therapeutic stress, contributing to MDR
[109]. Thus, blocking cytoprotective autophagy can re-sensitize cancer cells to treatment. However,
systemic autophagy inhibitors (like chloroquine derivatives) have off-target effects. Nanocarriers
offer a way to target autophagy inhibitors to tumors. Researchers have loaded agents such as
hydroxychloroquine (HCQ) or novel autophagy blockers into tumor-targeted nanoparticles to
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concentrate their action in tumor cells [110-112]. For example, Wuliji et al. formulated amphiphilic
polymer micelles co-encapsulating HCQ and DOX; these NPs preferentially accumulated in tumors
and effectively overcame DOX resistance by inhibiting autophagy flux in cancer cells [112]. Such
nano-formulations ensure that autophagy is sufficiently inhibited in the tumor (preventing cancer
cells from “recycling” damaged organelles and drugs) while minimizing toxicity elsewhere. Notably,
some teams are also exploring autophagy activation in certain contexts (since excessive autophagy
can induce cell death); both inhibition and promotion of autophagy via nanomedicines are being
tested as strategies to collapse the defenses of MDR tumors [112-114].

3.6.3. Nitric Oxide (NO) Delivery

Nitric oxide is a gaseous signaling molecule that, at high concentrations, can kill cancer cells and
modulate MDR pathways. NO has been found to downregulate P-glycoprotein expression and
sensitize tumors to drugs. To exploit this, researchers have developed NO-releasing nanocarriers
[115,116]. One innovative system is a supramolecular peptide hydrogel loaded with a NO prodrug
and DOX: when injected into a tumor, the hydrogel slowly releases NO (especially in the presence of
high glutathione levels in the TME) alongside DOX [117,118]. The burst of NO not only directly
damages tumor cells via oxidative stress, but also reverses P-gp-mediated MDR, making cancer cells
more susceptible to DOX [119]. In vivo studies in MDR breast cancer models showed that this NO-
releasing co-delivery platform significantly enhanced tumor shrinkage compared to DOX alone [120].
Another study encapsulated an NO donor and camptothecin in a PLGA nanoparticle; under the
acidic conditions of the tumor, NO was generated, which destabilized the NP and triggered drug
release in situ. The released NO reduced P-gp levels by ~45%, thereby permitting a much higher
intracellular concentration of camptothecin [121]. These results underscore NO’s potential as a
chemosensitizing agent when delivered via a controlled nanocarrier.

3.6.4. Gene Therapy and RNA Interference

Nanotechnology enables gene-based therapies to overcome MDR, such as siRNA, shRNA,
mRNA or CRISPR/Cas9 systems directed against resistance-related genes [122]. Because nucleic acids
alone have poor stability and delivery, nano-formulations (lipid nanoparticles, polymeric polyplexes,
etc.) are essential for their clinical use [123,124]. Numerous studies have shown that siRNA against
MDR1 (ABCB1) delivered by nanoparticles can knock down P-gp expression and restore drug
sensitivity in vitro and in vivo [125-127]. For example, a hierarchical mesoporous silica nanocarrier
was used to co-deliver DOX plus an anti-Pgp siRNA: the MSN protected the siRNA from degradation
and released both payloads inside multidrug-resistant breast cancer cells, leading to P-gp silencing
and significantly higher chemotherapy efficacy [128]. Beyond P-gp, researchers are targeting other
resistance genes (BCL-2, Akt, MYC, etc.) using siRNA or even CRISPR delivered by viral-mimicking
nanoparticles [129]. Similarly, modulation of oncogenic miRNAs like miR-221-5p has been implicated
in chemoresistance, further justifying nanoparticle-mediated miRNA therapies in resistant ovarian
cancers [130]. The upregulation of lymphoblastic leukemia-derived sequence-1 (LYL1) has been
implicated in the progression and metastatic potential of ovarian cancer, highlighting it as a potential
target for gene-silencing approaches. Sah et al. demonstrated the oncogenic role of LYL1 in ovarian
cancer models, supporting the rationale for RN Ai-loaded nanocarriers designed to reverse oncogene-
driven drug resistance [131]. Early results are promising, showing that silencing or editing genes can
directly reverse MDR phenotypes. However, gene therapy approaches must surmount delivery
challenges and potential off-target effects and thus are often combined with nanoparticle strategies
for tumor-specific, controlled delivery [132,133].

In summary, these emerging nano-strategies aim to attack MDR cancer cells via novel
mechanisms inducing ferroptotic cell death, shutting down autophagy survival pathways, using
bioactive gases like NO, or reprogramming gene expression — thereby supplementing conventional
cytotoxic drugs and overcoming resistance that arises from classic mechanisms.
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3.7. Stimuli-Responsive Nanotherapies: Ultrasound, Photothermal, and Sonodynamic Approaches

Stimuli-responsive nanomedicine adds another layer of innovation to combat MDR by using
external triggers (such as light or sound) to activate drug delivery or kill tumor cells by non-chemical
means [134,135]. These approaches can bypass drug efflux and damage resistant cells through
physical mechanisms:

3.7.1. Photothermal Therapy (PTT)

This involves nanoparticles that absorb NIR laser light and convert it to heat, selectively killing
cancer cells or disrupting their membranes. Photothermal agents (gold nanoshells, nanorods, carbon
nanomaterials, graphene oxide, etc.) can be loaded with chemotherapeutics for a combined effect.
Under NIR irradiation, the localized heating can enhance drug release from the nanocarrier and also
sensitize tumor cells (e.g., by causing protein denaturation or ATP depletion) [136—138]. PTT has been
shown to downregulate efflux pumps: for example, mild hyperthermia (=52°C) generated by MoS,
nanosheets caused a significant reduction in P-gp levels in MDR breast cancer cells [139,140]. In one
study, PLGA nanoparticles co-loaded with DOX and indocyanine green (ICG, an FDA-approved NIR
dye) were used to treat MCF-7/ADR tumors. NIR laser exposure of these NP in tumors led to heat
generation (from ICG) and triggered DOX release; the combination of chemotherapy + PTT effectively
destroyed drug-resistant breast cancer cells in vitro and in vivo [141]. Photothermal nano-therapy
thus provides a way to physically eradicate cancer cells that might survive chemical therapy, and
when integrated with drug delivery, it produces a synergistic anti-MDR effect.

3.7.2. Ultrasound and Sonodynamic Therapy (SDT)

Ultrasound can penetrate deep into tissues and be focused on tumor sites, making it a valuable
trigger for drug release or activation of sonosensitizers [142,143]. In SDT, a sonosensitizer compound
(often a porphyrin, IR780, or other ROS-generating molecule) is delivered by a nanoparticle and
produces cytotoxic reactive oxygen species when exposed to low-intensity ultrasound. This strategy
is particularly useful against hypoxic or deep-seated MDR tumors [144,145]. A recent breakthrough
involved cRGD-targeted gold nanoparticles loaded with the EGFR inhibitor gefitinib and the
sonosensitizer IR780 [146]. The gold shell provided a photothermal effect (for on-demand drug
release) and IR780 generated ROS under ultrasound; together, this low-temperature PTT + SDT
combination was able to overcome acquired TKI resistance in an EGFR-mutant NSCLC model [146].
The ultrasound-triggered ROS helped kill cancer cells independent of drug action, while also
impairing cellular defense mechanisms, and the mild heating facilitated drug uptake [147,148].
Beyond this, ultrasound is also used to trigger drug release from acoustically responsive nanocarriers
(like liposomes or microbubbles) at the tumor site, ensuring a high local drug concentration that can
overwhelm efflux pumps [149,150]. Sonodynamic and ultrasound-triggered therapies are still in
translational stages, but they exhibit tremendous potential to non-invasively eliminate MDR cancer
cells and can be repeated or spatially controlled with imaging guidance (many ultrasound-sensitive
NPs also serve as contrast agents) [151].

3.7.3. Other External Triggers

Magnetic field-responsive nanoparticles (e.g., iron oxide NP for magnetic hyperthermia or drug
targeting), photodynamic therapy (light-activated generation of singlet oxygen using NP-delivered
photosensitizers), and radiation-triggered nanoparticle release are additional modalities under
exploration [152,153]. For instance, magnetically heated nanoparticles or X-ray-activated liposomes
could help in circumventing resistance by causing direct tumor cell damage or by releasing drugs in
a burst when the tumor vasculature is most permeable. These methods, often termed “externally
responsive nanotherapies,” can be combined with chemotherapy to potentiate treatment effects [154].
By carefully tuning the stimulus (laser wavelength, ultrasound frequency, magnetic field strength),
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clinicians can activate the nanoparticle only at the tumor site, thereby achieving high precision
[154,155].

In summary, stimuli-responsive nanotherapies offer a way to attack MDR tumors using physical
forces (heat, sound, light) that cancer cells are less equipped to resist. When coupled with smart
nanocarriers, these approaches release drugs at the optimal time or bypass biochemical resistance
entirely, and they have demonstrated impressive results in preclinical MDR cancer models [156]. To
illustrate the diversity and mechanisms of nanocarrier-based co-delivery systems that successfully
circumvent MDR in different cancers, a schematic representation of selected strategies is shown in
Figure 2, corresponding to the formulations detailed in Table 2.

Table 2. Stimuli-responsive nanotherapy modalities for MDR cancer.

Representative Cancer

Stimulus Mechanism (effects) Model/Type
Ultrasound (US)/SDT Cavitation increasc.es. drug uptake; triggérs Pancreati.c Canf:er, breast
ROS from sonosensitizers (deep penetration) cancer, brain (glioblastoma)
NIR light — nanoparticle heats tumor (45— Skin, head/neck, breast
Photothermal (PTT)  60°C), causing protein denaturation and cell tumors (where NIR
death (efflux-independent) penetrates)
Chemophotodynamic  Light activates photosensitizer — ROS (singlet Superficial tumors, MDR
(PDT) O»); synergizes with chemo melanoma models
Sonodynamic (US+  Ultrasound activates sensitizer — ROS; deep- Deep tumors (brain,
sensitizer) tissue effect pancreas)
Elevated temperature triggers drug release
Hyperthermia (thermosensitive liposomes) and tumor cell Liver (HCC), prostate
death
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Figure 2. Mechanistic Pathways of Nanomedicine Co-Delivery Platforms Targeting Multidrug Resistance Across

Diverse Cancer Types.
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3.8. Innovative and Underexplored Nanomedicine Strategies for MDR Cancers

While significant attention has been given to co-delivery systems, tumor microenvironment
modulation, and stimuli-responsive release strategies, recent studies have spotlighted a new wave of
highly promising nanomedicine innovations. These approaches, while underrepresented in earlier
clinical trials, are gaining traction for their ability to circumvent traditional resistance mechanisms
through novel physicochemical properties and delivery modalities.

3.8.1. Magnetic Nanoparticles for Theranostics and Targeted Therapy

Magnetic nanoparticles (MNPs), particularly superparamagnetic iron oxide nanoparticles
(SPIONSs), offer dual functionality as both therapeutic and diagnostic agents [157]. When guided by
an external magnetic field, MNPs can accumulate at the tumor site with high specificity, allowing for
concentrated drug delivery [158]. Moreover, magnetic hyperthermia where MNPs generate localized
heat in response to an alternating magnetic field has demonstrated synergy with chemotherapeutics
and the capacity to downregulate drug efflux pumps like P-gp [159]. This form of image-guided,
magnetically targeted therapy is especially promising for difficult-to-treat or deep-seated tumors.

3.8.2. Intratumoral Administration of Nano Drug Delivery Systems

Intratumoral injection of nano-formulations bypasses systemic pharmacokinetic barriers and
delivers high drug concentrations directly into tumor tissue [160]. This strategy enhances local
therapeutic efficacy while reducing off-target toxicity. Various delivery systems such as hydrogels,
polymeric micelles, and dendritic nanogels have been engineered for sustained and localized drug
release following intratumoral injections. This modality is particularly effective in poorly
vascularized or desmoplastic tumors, where systemic delivery fails to achieve adequate penetration
[161,162].

3.8.3. Polydopamine (PDA) Nanoparticles in Drug Delivery and Immune Modulation

Polydopamine-based nanoparticles exhibit excellent biocompatibility, surface adhesion, and
responsiveness to oxidative environments [163]. PDA nanocarriers have been to provide immune
modulation, photothermal effect and chemotherapeutic effect simultaneously. [164]. These
nanoparticles generate heat when exposed to near-infrared light which can damage cancer cell
membranes or sensitize resistant cells to chemotherapy [165]. Additionally, PDA systems have shown
promise in modulating immune responses by carrying Toll-like receptor agonists or checkpoint
inhibitors, thus bridging drug delivery with tumor immunotherapy [166].

3.8.4. Inorganic Nanoparticles in Overcoming Resistance

Inorganic nanomaterials, including gold nanoparticles, mesoporous silica, and quantum dots
offer unique optical, electrical, and structural features [167]. These carriers are not only effective in
delivering therapeutics but also enhance imaging and diagnosis. Several studies have demonstrated
that inorganic NPs can induce ROS generation, promote apoptosis, and even directly interfere with
intracellular resistance pathways [168-170]. Quantum-dot conjugates, for instance, allow real-time
tracking while co-delivering siRNA and chemotherapeutic agents to downregulate MDR-associated
genes [171,172].

3.8.5. Oral Nanoformulations for Colorectal Cancer

Oral administration of nanomedicine is particularly valuable in colorectal cancer therapy [173].
Engineered nanoparticles with pH-sensitive or mucoadhesive properties can bypass gastric
degradation and release drugs specifically in the colon [174,175]. Co-formulations combining 5-FU
with natural chemosensitizers like curcumin have shown enhanced drug retention and MDR reversal
[176]. These systems offer improved patient compliance and the potential to deliver both cytotoxic
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and immunomodulatory agents directly to the tumor site, which is crucial in colorectal tumors with
localized resistance profiles [177].

Together, these underexplored strategies highlight the evolving landscape of nanomedicine for
drug-resistant cancers. Their distinct mechanisms ranging from magnetic targeting and localized
hyperthermia to oxidative disruption and site-specific oral delivery complement established
approaches and provide new opportunities to overcome therapeutic resistance in challenging cancer

subtypes.
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Figure 3. The Historical development of nanomedicine platforms aimed at reversing MDR, highlighting the

evolution from conventional liposomal drugs to gene-editing and ferroptosis-inducing nanocarriers.

4. Clinical Translation: Limitations and Challenges

Despite the plethora of promising nanomedicine strategies in preclinical studies, translating
these innovations into clinical use faces significant challenges. The first consideration is the
complexity of regulatory approval for nanodrugs. Nanomedicines often don't fit neatly into existing
regulatory categories, they may be classified as drugs, biologics, devices, or combination products,
which complicates the approval pathway [178]. Regulatory agencies like the FDA and EMA have
been cautious, requiring extensive characterization of nanoparticle physicochemical properties,
manufacturing consistency, and toxicity profiles. Key hurdles include:

4.1. Sandardization and Characterization:

There is a lack of standardized guidelines specific to nanomedicines [178]. Small variations in
formulation (particle size, surface charge, etc.) can dramatically alter a nanoparticle’s behavior in vivo
[179]. Thus, companies must implement advanced analytical techniques and strict quality controls to
ensure batch-to-batch consistency and well-characterized products [178,180]. Demonstrating
reproducibility and stability of complex nanoparticle formulations (which may comprise multiple
components like polymers, lipids, targeting ligands, and drugs) is much more involved than for
small-molecule drugs. This also affects the development of “nanosimilars” (generic versions of
nanodrugs), where establishing equivalence is non-trivial [180,181].
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4.2. Safety and Toxicity Concerns

While nanocarriers can reduce the systemic toxicity of potent drugs, the long-term fate of
nanoparticles in the body is not fully understood. Issues such as accumulation in the
reticuloendothelial system (liver, spleen), unforeseen immunogenic reactions, or off-target effects of
the nanoparticle components must be addressed [182]. Extensive preclinical studies are needed to
evaluate biocompatibility, for example, whether the NP triggers complement activation or how it is
excreted or metabolized [183]. Some high-profile nanodrugs have failed in trials due to toxicity or
immune-related adverse events not predicted by animal models [184,185]. Rare but severe immune-
mediated reactions to pharmacological agents, such as sulfasalazine-induced DRESS syndrome,
underscore the importance of vigilant safety profiling and post-marketing surveillance in both
traditional and nanomedicine therapies [186]. In addition to manufacturing and scalability, successful
integration of nanomedicine into real-world clinical settings requires alignment with hospital
practices, prescriber behaviors, and resource availability. System-level challenges, such as
noncompliance with prescription-writing standards, delayed IV-to-oral transitions, and inconsistent
infection management protocols highlight the barriers to adopting complex therapeutic innovations
like nanomedicine in routine care [187-189]. Moreover, including pharmacists in clinical audit
workflows has shown to improve adherence to treatment protocols and could support future
implementation of nanomedicine [190]. Overcoming MDR in a tumor is controversial if nanotherapy
cannot be used safely in patients, so ensuring safety profiles and conducting rigorous toxicity studies
(including looking at chronic exposure) is essential [191,192].

4.3. Manufacturing and Scalability

Producing nanomedicines at a commercial scale with uniform quality is challenging [193].
Techniques used in the lab (like microfluidic mixing or small-batch emulsification) may not easily
translate to industrial scale. Additionally, sterile filtering or validating complex nanoconjugates can
be difficult [194]. Scaling up often requires significant engineering and process development, and any
process changes might alter the NP properties, sending developers back to perform comparability
studies [195]. For example, standardized methods for the growth, purification, and titration of virus-
based therapies, such as oncolytic herpes simplex viruses, have been developed to improve process
reproducibility and safety, offering insights applicable to viral and gene-based nanocarriers [196].
Scaling up contributes to the high cost of bringing nanodrugs to the market [197]. Manufacturing
complexities also tie into regulatory hurdles, as changes in a nanomedicine’s production may trigger
the need for new safety evaluations [198,199].

4.4. Efficacy in Human Tumors

A well-known challenge in cancer nanomedicine is the gap between preclinical efficacy (often
in mouse xenograft models) and clinical efficacy in human patients [200]. The enhanced permeability
and retention (EPR) effect, which allows nanoparticles to accumulate in tumors due to leaky
vasculature, is variable in humans — many human tumors have irregular blood supply or higher
interstitial pressure that limits nanoparticle penetration [201,202]. Consequently, some nanoparticles
that work in mice don’t achieve sufficient tumor delivery in patients [203]. Heterogeneity among
patients and tumor types means that nanomedicines might benefit some patients more than others
[204]. For clinical translation, better methods to image and verify NP delivery in human tumors are
needed (e.g., PET or MRI-labeled nanoparticles) to select patients most likely to benefit [204].

4.5. Economic and Practical Considerations

The cost of developing and producing nanomedicines can be substantially higher than for
traditional drugs [205]. This includes the cost of specialized facilities and analytical assays. These
costs can make nanodrugs expensive, potentially limiting patient access or insurance acceptance
[206]. Additionally, regulatory approval times can be longer due to the need for expert consultations
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on nanotech aspects [207]. From a practical standpoint, the shelf-life and storage conditions of
nanomedicines (some may require cold storage or have shorter stability) can be a logistical challenge
for distribution [208,209]. Real-world implementation of nanomedicine must also account for
disparities in patient comprehension, as limited health literacy has been shown to hinder cancer care
engagement and decision-making in vulnerable populations [210].
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Figure 4. Key challenges in the clinical translation of nanomedicine for multidrug-resistant (MDR) cancers. The
schematic summarizes five major hurdles: (1) regulatory complexity due to overlapping classification and lack
of standardization; (2) safety and toxicity concerns including unpredictable biodistribution and immune
responses; (3) manufacturing and scalability issues affecting reproducibility and cost; (4) limited clinical efficacy
stemming from tumor heterogeneity and variable nanoparticle delivery; and (5) economic and logistical barriers
related to high production costs, cold chain requirements, and limited accessibility. Addressing these

interconnected limitations is essential for successful bench-to-bedside translation.

Despite these challenges, progress is being made. A growing number of nanomedicines have
achieved clinical approval (including many liposomal drugs, polymer-drug conjugates, and
nanoparticle-albumin-bound drugs), proving that regulatory and manufacturing hurdles are
surmountable [211]. As of mid-2025, over 100 nanotechnology-based therapeutics or diagnostics have
been approved for clinical use [212], though most are reformulations of existing drugs rather than
novel MDR-targeting systems [213]. Importantly, lessons from these successes are informing next-
generation designs: for instance, using biodegradable materials to improve safety, simplifying
nanoparticle compositions to ease manufacturing, and developing clear regulatory standards [214].
Collaborations between academia, industry, and regulatory bodies are ongoing to refine guidelines
specific to nanomedicine [215]. In parallel, clinical trial designs are adapting, sometimes
incorporating patient stratification (e.g., selecting patients with leaky tumors or certain biomarkers
for nanoparticle uptake) to demonstrate benefit [216,217].

5. Conclusions

In conclusion, while nanomedicine offers innovative solutions to overcome cancer MDR —
through targeted delivery, co-therapy, microenvironment modulation, and externally-triggered
release — the journey from bench to bedside requires careful navigation of regulatory, safety, and
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production challenges. Ongoing innovations and a better understanding of how nanoparticles
behave in patients will help ensure that the most promising laboratory breakthroughs can be
translated into real-world cancer therapies [218]. The continued success of nanomedicine in the clinic
will pave the way for these multi-modal MDR-reversing strategies to become part of standard cancer
care in the future.
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