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Abstract: Turbulence, by definition, arises from the interplay between fluid viscosity and velocity
gradients. This insight prompted a re-examination of the foundational equations of fluid motion.
The analysis reveals that the only arbitrary aspect in formulating these equations lies in the choice
of the fluid’s constitutive equation. The paper argues that, in turbulent flow, the substantial velocity
gradients necessitate retaining second-order terms related to the deformation rate in the constitutive
equation, which are often neglected. This retention leads to a more accurate constitutive equation for
viscous fluids, enabling the derivation of hydrodynamic equations tailored for turbulent motion, free
of adjustable parameters, and offering a refined modification of the Navier-Stokes equations.
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1. Introduction

The mention of turbulence immediately brings to mind a saying: turbulence is one of the most
challenging problems in physics and is known as an "unsolved problem in the classic physics."
Historically, some renowned physicists and mathematicians, such as Werner Heisenberg, Richard
Feynman, and Andrei Kolmogorov, dedicated their wonderful lives to the problem of turbulence
without solving it. It is even said that the famous physicist Horace Lamb hoped to ask God about
turbulence after reaching heaven [1,2]. From the perspective of quantitative analysis, the daunting
scientific problem of turbulence began in 1895 with Reynolds [3] attempting to study the Navier-Stokes
equations for viscous fluids using average statistical methods, namely Reynolds averaged Navier-
Stokes (RANS) equations, which has been ongoing for 130 years. Over these 130 years, it can be said that
all available mathematical tools and computational resources have been employed to study the Navier-
Stokes equations for viscous fluids, yet no fundamental progress or breakthrough has been made [4-8].
Since the establishment of the Reynolds averaged Navier-Stokes (RANS) equations, due to the needs
of numerous engineering applications, a variety of approximation methods have been employed to
close the Reynolds averaged Navier-Stokes (RANS) equation set. Various models have been proposed
for the Reynolds stresses [9-18]. Is it possible to establish a universal closure turbulence model theory
that can predict turbulent motion across various scales? Unfortunately, after 130 years of collective
effort, such a theory has yet to be established. On the contrary, the numerous models proposed to date
have all relied on non-rigorous hypotheses usually based on experimental observations and have their
own limitations [17-19].

Although direct numerical simulation (DNS) has made gratifying progress [20-24], and in recent
years, the use of big data and Al to study turbulence has emerged, the essence of turbulent motion has
not yet been revealed. Standing at the dawn of the Al era and looking to the future, we want to loudly
ask, where is the path to solving turbulence? Is it only possible to unravel the mysteries of turbulence
through large-scale numerical simulations when quantum computers are developed? Over the past
130 years of numerical simulations, regardless of the computational strategy, a fundamental fact is
that all simulations are based on the Navier-Stokes equations, as it is believed that they encompass all
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the information of turbulent motion [2,8,15,17,18,25,26]. Now, we are faced with two lines of thought:
one is to continue on the path based on the Navier-Stokes equations, and the other is to return to
the origin, to re-examine the equations of fluid motion from the starting point of their establishment,
that is, to reflect on whether the Navier-Stokes equations need to be further refined and improved
to encompass both turbulent and laminar motion without using the Reynolds statistical averaging
methods [3].

To cast aside the clouds and see the sun, let us take a general look back at the establishment
of the equations of fluid motion. Euler played a crucial role in conceptualizing the mathematical
description of fluid flow. He described the flow using a three-dimensional pressure and velocity
field that varies in space, modeling the flow as a collection of continuous, infinitesimally small fluid
elements. By applying the basic principles of conservation of mass and Newton’s second law, Euler
arrived at two coupled nonlinear partial differential equations involving the flow fields of pressure and
velocity. Although these Euler equations represent a significant intellectual breakthrough in theoretical
fluid dynamics, obtaining their general solutions is a difficult task. Euler did not consider the effect
of frictional forces on the movement of fluid elements; in other words, he ignored viscosity, and the
Euler equations are not suitable for solving real flow problems. It was only a century after Euler
that his equations were modified to account for the influence of frictional forces within the flow field.
The resulting set of equations is a more complex system of nonlinear partial differential equations now
known as the Navier-Stokes equations, initially derived by Navier in 1822 [27] and later independently
by Stokes in 1845 [28]. That is, the Navier-Stokes Equations (system): the momentum conservation
equation: v;; +vjv;; = — %p,i + v0; ik, and the incompressible mass conservation equation: v;; = 0,
where v; is the flow velocity field, p is the flow pressure, t is time, p is the constant mass density, and v is
the kinematic viscosity, (:); = £, (:); = a% and x; is spatial coordinates. To this day, the Navier-Stokes
equations remain the gold standard for the mathematical description of fluid flow. Unfortunately, their
general analytical solutions have not yet been found [29-31].

In 1895, Reynolds studied turbulent motion using statistical averaging methods, decomposing
the fluid velocity into the sum of mean velocity ¢; and fluctuating velocity v;, thatis, v; = 7; + 7; .
By time-averaging the Navier-Stokes equations, he obtained the Reynolds-Averaged Navier-Stokes
(RANS) equations, which are expressed as 0;; + 0;0;; = —%ﬁ,i + V0 — Tﬁ] , with the hope of
obtaining the average values of important parameters in fluid motion. However, due to the appearance
of the fluctuating velocity correlation term 3;3; (termed Reynolds stress but is not a stress at all! [19])
in the Reynolds-Averaged Navier-Stokes (RANS) equations, which are not closed in themselves.

It is not difficult to notice that various turbulence models are all based on the Reynolds-Averaged
Navier-Stokes (RANS) equations, with the aim of guessing the relationship between the turbulent
viscosity coefficient v; and the mean velocity field from different perspectives using the Boussinesq
hypothesis 7;7; = %k&ij — (z?i,j + 0 ), where k is the turbulent kinetic energy density. In other words,
the Boussinesq hypothesis essentially treats 0,0; as a kind of stress and, by mimicking the linear
constitutive relationship of Newtonian viscous fluids, artificially constructs a possible relationship
between 3;7; and the mean flow velocity. The reason why people propose various models for 7;7; is
that they believe turbulence is caused by ;7; , which is actually a misconception.

In fact, Tﬁ] originates from the convective term in the fluid motion acceleration, which is Vv,

and is produced by the Reynolds averaging process. Thatis, v;; + v;v;; = (0;; + ) + (3; + 0;)(6;; + ;) =
it + 0;0;;. Using the mass conservation relationship v;; = 0, the Reynolds average of the fluid
motion acceleration can be rewritten as v;; + v;v;; = 0;; + (;0;) ;. This means that the generation

of 0;0; has nothing to do with fluid viscosity; it is merely the projection of fluid velocity onto its velocity
gradient. In fact, the inviscid Euler equation v;; +vjv;; = —p;/p (vv;;; is omitted for inviscid flow)

will also produce 7;0; after Reynolds averaging. Therefore, George [18] stated that 0;0; is not a stress

at all, but simply a re-worked version of the fluctuation contribution to the nonlinear acceleration
terms. And we know that inviscid fluids cannot generate turbulent motion, so it can be said that Tﬁj

is not the cause of turbulence.
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So what is the cause of turbulence? This is a core issue in fluid mechanics. Although we are
not yet able to predict the occurrence of turbulence with complete accuracy, we do know under
what circumstances turbulence will definitely not occur, and that is in the flow of inviscid fluids,
which cannot be turbulent. Currently, our understanding of turbulent flow can be macroscopically
stated as follows: the interaction between fluid viscosity and velocity gradients is the main cause of
turbulence. Viscosity causes the flow with non-zero velocity gradients to produce vorticity, leading to
fluid rotation. Due to mass conservation, the fluid must replenish the mass that flows out. Additionally,
the nonlinear modulation of the convection term makes the motion pattern very complex. When the
velocity gradient is very small, the flow is mainly laminar; when the velocity gradient is very large,
the flow is mainly turbulent.

Within the current framework of the Navier-Stokes equations, only one term, vv;y , in the
Navier-Stokes equation v;; + vjv;; = —p,i/p + Vv contains the viscosity coefficient v and the
derivative of the velocity gradient v;; , which is the divergence v; yx. Unfortunately, because ;= 0,
after Reynolds averaging, the divergence v,y only retains the mean field 7;; , without including
the fluctuating components. This may imply that the Navier-Stokes equations established based on
VOikk , Vit + 00 j = — % pi+vvir and v;; = 0, may not include the complete information of viscous
fluid motion and are imperfect, necessitating a modification. Since vv; . is derived from the linear
constitutive relation of viscous fluids combined with the mass conservation condition v;; =0, that
is, v(v;j+vj;)j = Vv , it is necessary to re-examine the constitutive relation of fluids in order to
include the complete information of fluid motion.

To obtain the governing equations for turbulent flow, let’s derive the momentum conservation
equation in fluid mechanics from the "first principles.” The term "first principles" originates from
ancient Greek philosophy, where Aristotle first introduced this concept in his work "Metaphysics." He
believed that first principles are "the most basic propositions or assumptions that cannot be further
derived," serving as the ultimate foundation for all knowledge and reasoning. That is, by returning to
the essence of things, analyzing the most fundamental principles and assumptions, we can construct
new cognitive frameworks or solutions. Elon Musk [32] is a key figure who popularized this term.
In an interview, he expressed high praise for the "first principles" thinking approach: "By using first
principles, I distill the essence of things and derive from the most fundamental level..." "It is crucial
to think from the perspective of first principles rather than relying on comparative thinking. We
often fall into the habit of comparing and doing what others have done or are doing, which only
leads to incremental improvements. The first principles thinking is to examine the world from a
physicist’s perspective, stripping away the external appearance of things layer by layer to insights into
their inner essence, and then building from the essence step by step." This is how Musk understands
the "first principles thinking model" - tracing the roots of things and rethinking the way of action.
The Navier-Stokes equations have been established for over 200 years since 1822, if we want to make
breakthroughs, we must start thinking from scratch with the mindset of first principles.

2. General Equations of Motion for an Incompressible Viscous Fluid

We know that before introducing the fluid constitutive relation, the mass conservation equation for
incompressible fluids is v;; = 0, and the momentum conservation equation is: p(v;; +v;v; ;) = 0jj,; -
The momentum conservation equation can also be rewritten in the form of tensor total quantity as
follows:

p[gzt]+vo(Vv)]:cr~V, (1)

where ¢ = 0jje; ® e; is the stress tensor, 0j; are the components of the stress tensor, e; are the unit
base vectors in the Cartesian coordinate system, and V = e;0; is the gradient operator and o - V
is right gradient of the stress tensor ¢, whose computational rule is ¢ - V = (0jje; @ e;) - (exdx) =
ijxei(ej - ex) = ojjxeidy = 0j;e;, in general o - V # V - ¢. Equation (1) is the most general form
of the momentum balance equation for a continuum and can be applied to describe the motion of
any continuum.
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To obtain a closed set of governing equations, we need to introduce the fluid’s constitutive
relation, which is the relationship between the stress tensor ¢ and the rate-of-strain tensor S, namely
o =0(S),where § = %(Vv +vV) = S;je; @ e; is the rate-of-strain tensor, and its components are
Sii = 3(vij +vj;).

It should be noted that in the process of introducing the fluid’s constitutive relation, there is
an element of human interpretation involved in understanding the physical properties of the fluid,
which is the most subjective part in establishing the equations of fluid motion. From Navier to Stokes,
it is assumed that the fluid is isotropic and incompressible, and a linear constitutive relationship
between the stress tensor ¢ and the rate-of-strain tensor S is hypothesized: o = —pI +2uS, where
u is the viscosity coefficient. This constitutive relation was proposed in an era when there was no
understanding of tensors and has been adopted by all subsequent literature. In the modern era,
equipped with knowledge of tensors, we must ask whether the constitutive relationship between the
stress tensor ¢ and the rate-of-strain tensor S can be rationally expressed, and if so, what form it
should take.

Assuming the fluid’s physical properties are isotropic, since both the stress tensor ¢ and the
rate-of-strain tensor S are second-order tensors, according to the tensor representation theory [33-37],
the most general expression for the constitutive relation of an incompressible fluid ¢ = ¢(S) can
always be written as follows:

—pI +2uS + 4AS?
= —pl+u(Vo+oV)+A(Vo+0V)>2 )

o

= [—P% + u(vij + ;) + AMoig + oxi) (0 + Uj,k)} e ®e;

where 2 =§-§ = (Sikei ® ek) . (Sl]-el & E]) = SikSZj(ek . e,)ei ®ej = SikSljcSklei ®ej = SilSl]’ei ®ej =
[(vik +oxi)ei @ ex] - [(vj +vj1)er @ ej] = (Vi + Oki) (Ok,j + vk )e; @ ej; the term A is not referred to
by name in the literature; in this text, it is termed the second-order viscosity coefficient. From the
thermodynamic entropy inequality, the inequality can be obtained as cited in [33-37]: utrS? + 2AtrS3 >
0. By utilizing the Cayley-Hamilton theorem, this inequality can be further simplified to: utrS? +
6Adet(S) > 0.

The fluid viscosity leads to the dissipation of energy, which is ultimately converted into heat.
The energy dissipation per unit time for an incompressible viscous fluid is given by

By —— / (218 +4AS2) : Sdx, 3)
Q

where () represents the volume configuration of the fluid control body, A : B is double dot product
of two tensor A = Ajje; ® ej and B = Bjje; ® e; with computational rule: A : B = (Ajje; ®¢)) :
(Briex ® e1) = A;jByi(ei - ex) ® (e - e)) = AijBrdidy = AjjByj

It is particularly worth noting that there is an issue that does not need to be hidden, which is the
data problem of the physical parameter k. Currently, there are no data available for the parameter x,
and it is a research topic that needs to be measured in the future.

In the literature of fluid mechanics, from Navier and Stokes to the present, fluids have been re-
garded as Newtonian fluids, using the linear constitutive relation o = —pI 4 2uS, without considering
the second-order term AS?. As for why the second-order term AS? is not considered, there may be two
reasons. The first is that during the time of Newton, Navier, and Stokes, the nonlinear effects were not
observable, and there were no tools for tensor analysis, let alone tensor representation theory and the
Cayley-Hamilton theorem [38], which was published after formulation of the Naver-Stokes equations.
The second reason is that even if one could obtain the expression Equation (2), it was considered that
the second-order term AS? is small enough to be negligible.

This paper argues that neglecting the second-order term AS? is a significant oversight in the
establishment of fluid mechanics equations. Because the spatial variation of velocity, such as the
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velocity gradient near a wall, is very large, neither the first nor the second power of the velocity
gradient can be omitted. This is analogous to the situation in the boundary layer. Prandtl [39] stated
when proposing the boundary layer theory that the Reynolds number Re in %Vzv cannot be omitted,
no matter how large Re (or how small %) is, because the velocity gradient is so large that the entire
term %Vzv cannot be neglected.

Bringing Equation (2) into Equation (1) allows us to derive the fluid motion equation that considers
second-order viscosity:

g—;’+v-(VzJ) = ;Vp+2v(S-V)+4K(SZ~V), (4)
wherein, the kinematic viscosity is v = u/p, and the kinematic second-order viscosity is k = A/p.
Equation (4) represents the most general equation of motion for viscous fluids. The viscosity coefficients
v,k are generally functions of pressure p and temperature T, and they cannot be factored out of the
gradient operator.

In most cases, the viscosity coefficients v, x do not vary significantly within the fluid and can be
considered as constants. Under the incompressible condition V - v = 0, Equation (4) can be simplified
to:

g—f—!—v(VU) = —;Vp+vvzv+x[(Vv+vV)2]-V, (5)
where the Laplacian V? = V . V. In this way, we have improved the Navier-Stokes equation
to Equation (5), which is the most general equation of motion for incompressible viscous fluids.
The term «[(Vv + vV )?] - V includes the nonlinear combination of the fluid’s second-order viscosity
and velocity gradients, which is the main cause of complex flow phenomena. Since Equation (5)
already includes higher-order terms of the velocity gradient, it can be directly used to simulate
turbulence without the need to employ Reynolds’ statistical averaging method, which is the statistical
decomposition of the fluid velocity.

Equation (5) can be written in component form as follows:
1
Vit + 00 = P + V0 kK [(Ui,k + 0k,i) (Ox + Uj,k)] p (6)

It should be particularly noted that for problems with specific characteristic length L and charac-
teristic velocity V, the dimensionless process of Equation (5) not only yields the Reynolds number
Re = % , but Equation (5) also generates a new dimensionless parameter, denoted as K = L?Z
The parameter K arises due to the consideration of second-order viscosity. For a fluid with a given «,
this parameter K is independent of the characteristic velocity and only related to the characteristic
length L, or in other words, for flow problems of a given length scale, the parameter K affects the
fluid motion for all characteristic velocity scale. Therefore, it is necessary to retain the second-order
viscosity coefficient.

The tensorial Equation (6) can be further expanded in conventional form, in the Cartesian rect-
angular coordinate system, denoting U] =U, V) =0,03 =W, X] =X,X2 =VY,X3 =2, ( :),x = %
E Dy = a;%, V2= % + 98722 + %, the three-dimensional fluid momentum equation can be read as

ollows:

1

Wi+ Uy +oUy +wu, =— Ep,x + vV2u + KMy, (7)
1

U+ Uy + 00y + WO, = — Ep,y +vV20 + KMy, 8

1
Wi+ uwy +owy +ww, =— Ep,z + V2w + KM, 9)
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where

M, = [4(u,x)2 + (v + u,y)z + (wy+ urz)z],x
+2(ux +vy)(uy +ox) + (Wy +0z) (W +uz)ly (10)
2y +wz)(ty + W) + (v +wy) (Vx +Uy)l 2

My = 2(ux+vy)(uy +0x) +(Wx +uz)(Wy +02)]

[y +00)2 +4(0,)% + (wy +02)%], (11)
F(uz+wa)(uy +ox) +2vy +wz) (v +wy) 2,

and

M, =2ux+w,)(uz+wy) + (v + uy)(vz + w,y)],x
F(uy+ox)(u +wy) +2(0y +we) (v +wy)ly (12)
+ (s + w,x)2 + (v, + w,y)z + 4(wlz)2],z.

The difference from the Navier-Stokes equations can be seen from the above equations, namely, each
equation includes higher-order terms of the velocity gradient.

After using the continuity equation u x + vy = 0, the two-dimensional momentum equation is
expressed as follows:

1
gty oy = = o pt v(tetityy) + K[4(ux) + (1y + 0,27, (13)
1
U+ Uy + V0, = — P FV(0x + V) +K[4(0y)2 + (y +0,4)%] (14)
For heat conduction problems, it is assumed that there is a heat flux density g = —xV T, where T

is the temperature and y is the thermal conductivity. The general equation of heat transfer is given by

pT%H.VS) =V (XVT)+2uS:S+4A8%: S, (15)

where s is the entropy density per mass [7].

3. Boundary Layer Theory and Application to Wedge Flow

In 1904, Ludwig Prandtl [39] introduced the concept of the boundary layer at the third Interna-
tional Congress of Mathematicians, suggesting that the influence of frictional forces is confined to a
thin boundary layer near the surface of an object. Within the boundary layer, the velocity gradient
is large, as is the shear stress, leading to frictional resistance that cannot be neglected. The boundary
layer equations are much simpler than the Navier-Stokes equations and can be solved numerically [40].
In particular, Prandtl discovered that the flow within the boundary layer is also turbulent [41,42],
and in 1925, Prandtl proposed the concept of the mixing length to characterize the turbulent viscos-
ity [43], which can be used to derive the logarithmic law for the wall in turbulent boundary layers.
This was a significant attempt to close the Reynolds-Averaged Navier-Stokes (RANS) equations.

In 1908, Prandtl’s student Blasius [40] studied the problem of steady flat-plate boundary layers.
A thin flat plate is immersed at zero incidence in a uniform stream with speed U(x) = const. and
is assumed not to be affected by the presence of the plate, except in the boundary layer. The fluid
is supposed unlimited in extent, and the origin of coordinates is taken at the leading edge, with x
measured downstream along the plate and y perpendicular to it. Blasius [40] performed a similarity
transformation on Prandtl’s equations wu y +ovuy,y = UUx +vu,y and uy + 0, = 0 and successfully
obtained a numerical solution for the problem. In 2024, Sun [44] studied unsteady laminar boundary
layers and applied a similarity transformation to the equations u + uu x +ouy = UUx + vu y, and
ux+ vy = 0, successfully obtaining an exact solution for the unsteady flat-plate laminar boundary
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layer. This solution is primarily expressed in terms of Kummer functions, and other flow problems
were also investigated.

Table 1. Prandtl magnitude order in boundary layer

Variable | | Magnitude order
e=46/L \ < | o)
X, U, 12,0y, U, Uy | ~ | O(1)
Y,0, 05, Upex | ~ | O(e)
Wy, Uy, Uy | ~ | O(1/€)
Ly | ~ | 0(1/¢€%)

Based on the Prandtl’s magnitude analysis and approximations as shown in Table 1, we can obtain
the boundary layer equations as follows:

Ut 4 Uty 4 viy = Uy + vidyy + 2K1d 41 xy, (16)
ux+ovy =0, (17)

in which, the underlined segment represents the manifestation of the second-order theory proposed
in this paper, which is where it differs from Prandtl’s boundary layer equations. The exact solu-
tion of partial differential equation systems in Equation (16) and Equation (17) can be easily solved
by using Maple, the solutions of velocity components #, and v are mainly expressed in terms of
Lambert function [46]: LambertW=W|(z), which satisfies: W(z)exp(W(z)) = z. As the equation
W (z) exp(W(z)) = zhas an infinite number of solutions y for each (non-zero) value of z, LambertW
has an infinite number of branches. Exactly one of these branches is analytic at 0.

Note U(x) = const. and U, = 0, the Maple code of solving above partial differential equations is
provided in Appendix A. Hence, denoting F = In[c; (—x +y) + cof + c3], we have the general solutions
of Equation (16) and Equation (17) for U(x) = Uy = const. as below:

F 2
w=cit [ exple - W( -2 expl 2 (e - eh) ) + Fea et )
and
B F 2C1K Co z (5 ;
v=_[ exp|E—W —Texp[?(oj—e)] +;(c3—e) ag
Co Cc1C2
+C4*a*1+w(_h%exp(_w)) (19)
. 2KC%C2 exp[W(—ZK%eXp(—CZ(Cl(ijy)“zt))) + *Cz[cszv(x*y)fﬂ]

v 14 W(_ZK% exp[— 6261(—x3-y)+62f)])

Although we have obtained the solution, it is regrettable that the integral in Equation (18)
cannot be calculated explicitly at the moment, making this solution less applicable. Let us try other
methods below.

Introducing a stream function ¢(x,y, ) and express the velocity components as follows: u =
3—5 =1y, v = —5; = —.x, the mass conservation Equation (17) is satisfied, and the momentum
conservation Equation (16) becomes

Yy +PyPay — PPy = UlLx + vy + 2K9,y 1 2yy (20)

and corresponding boundary conditions.
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Applying Sun’s similarity transformations [44]: ¢ = U(x)d(x)f(y,7), 1 = (S(yT)' T = xt,. De-
of

noting ¢ y = 3% and f, = 5, and noting the 77, = —16715y and Ty = —27671J 4, and by the chain
rule for derivatives, we can obtain some useful relations as follows: ¢ = (Ud)f — Undrfy —

WTofe, py = Uy Yy = Unfy = qUS 8ufyyy = 2UT6 o fye, Yy = U fryy, hyyy =
U2 fypy, Y1y = Uv6~%f ). Thus the velocity components become

u = Uf,, 1)
v=—[(Ub)xf —Unbyfy —2UTéxf]. (22)

Substituting Equation (21) and Equation (22) into Equation (20), we have a single partial differential
equation as follows

Fon +of fan + BlL— ()]
2 Us Us,
+ 71( S | Ui — =5~ fom — =5~ ﬁnw] (23)

= fon + vt (ffyy — fnfan),

where the coefficients are & = %%, B= % %CI, and v = % %2 and their relation v = 2(a — ). ”
If the coefficient &, f and 7 were constants, then we have: U(x) = Cx™, §(x) = {v‘ % ] ,

where the exponent m = ﬁ It is clear, for arbitrary U(x) = Cx™, that the Equation (23) explicitly
contains the coordinate x, which cann’t be solved easily for arbitrary exponent m.

In the case of wedge flow with velocity field: U(x) = Cx, so that m = 1, then « =  and
7 = 0, and leads to a constant boundary thickness § = [vax/(Cx)]'/? = (av/C)V/2. If we seta = 1,
the Equation (23) becomes

Fon + Ffan + 1= (F0)* + Afy)* = frons (24)

and boundary conditions: 7 = 0: f = f, = 0,57 — 0 : f, = Land f(7,0) = 0, where A = 2C

constant for given a problem. Equation (24) has get rid of coordinate x, can be solved numerically.

is a

A full Maple code of solving Equation (24) is provided in Appendix B.
For its corresponding steady problem, the function f is only a function of #, the Equation (24) can
be simplified into:

Fomn + fhan + 1= (F)* + A(fy)* =0, (25)

and boundary conditions: 7 =0: f = f, =0and 5 — oo : f,; = 1. Equation (25) not only facilitates
solving the equation but also allows us to express the obtained results as a single profile in terms of
the similar variable #. A full Maple code of solving Equation (25) is provided in Appendix C.
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Turbulent flow ...... Laminar flow
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Figure 1. A thin flat plate is immersed at zero incidence in a uniform stream flows with velocity U(x) = Cx and
constant boundary layer thickness (x) = v/v/C. The parameter A = % is used in this showcase: A = 0.95 for
turbulent flow, and A = 0 for laminar flow.

Although we do not yet have specific data for x, we can still assume A = 0 for the laminar
boundary layer and A = 0.95 for the turbulent boundary layer. Using the program provided above,
it is easy to calculate the corresponding f, f, f,; for both laminar and turbulent flow. The specific
results are shown in Figure 1. From the profile of f ;, it can be seen that the velocity profile in turbulent
flow is blunter than that in laminar flow; from the profile of f;, it can be observed that the friction in
turbulent flow is much greater than that in laminar flow.

To demonstrate the difference in frictional resistance between turbulent and laminar flow, let’s
calculate the shear stress 7o, = p(uy +vx) +2A(ux +vy)(1y +vx) = p(uy +vy). Considering

N———

=0
the order of magnitude approximation estimates of the Prandtl boundary layer theory in Table 1,
the shear stress can be approximated as: Tyy ~ pu,,. Therefore, the local wall shear stress 7, is given

by Tw = Txy‘y:O = KU yly=0 = V%f,m](’?”rzzoi

1.233xpVvC3, Laminar flow : A =0,
Tw = xpVvC3f,,(0) = { P (26)

1.923xpVvC3, Turbulent flow : A = 0.95,

This expression reveals that the resistance of turbulent flow is much greater than that of laminar flow.
Table 2 lists the different A corresponding to different f,;(0); the larger the A, the greater the f,(0).

Table 2. f,M(O) vs. A = %

A | 0O | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 095 | 097
fW (0) ‘ 1.233 ‘ 1.285 ‘ 1.341 ‘ 1.401 ‘ 1.466 ‘ 1.535 ‘ 1.611 ‘ 1.692 ‘ 1.799 ‘ 1.873 ‘ 1.923 ‘ 1.944
Note: Laminar flow: A = 0, Turbulent flow: 0 < A < 1.

4. Discussions and Conclusions

Based on the above theoretical derivation and application examples, the quadratic term xS?
plays a fundamental role in characterizing turbulent motion. It can be said that the Navier-Stokes
equations without the quadratic term xS are actually equations that primarily describe laminar flow
and cannot be used to describe turbulent motion. Due to the high velocity gradients in turbulent
motion, the quadratic term xS? cannot be omitted and must be retained; only then can the derived
equations be used to describe turbulent motion.

Although the context of this paper is directed towards turbulence, the equations Equation (5) or
Equation (6) established here are indeed general equations of motion for viscous fluids. The derivation
of these equations is based on rationality at every step, without any artificial introduction of approxi-
mations. These equations can be applied to various movements of incompressible viscous fluids, such
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as gas aerodynamics and sound generated by turbulence. Using the constitutive equation Equation (2),
the motion equations for compressible viscous fluids can be established by the same method. The only
regret is that the data for the physical parameter x has not been found in the current literature, and it
seems that its determination will be a subject for future research.

Data Availability Statement: The data supporting the findings of this study are available from the corresponding
author upon reasonable request.
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Appendix A

with(student); with(PDEtools); layer:= diff(u(x, y, t), x) + diff(v(x, y, t), y) =
0, diff(u(x, y, t), t) + u(x, y, t)*xdiff(u(x, y, t), x) + v(x, y, t)*diff(ulx, y, t), y)
= nuxdiff(u(x, y, t), y, y) + kappa*xdiff (diff(u(x, y, t), y)*diff(ulx, y, t), y), x);
pdsolve(layer); SimilaritySolutions(layer).

Appendix B

restart; with(student); with(plots);with(PDEtools);alpha := 1;beta := 1;Gamma := 2*(alpha
- beta);B:= 0.95; sun := diff(f(eta, tau), eta, eta, eta) + alphaxf(eta, tau)*diff(f(eta,
tau), eta, eta) + betax(1l - diff(f(eta, tau), eta)*diff(f(eta, tau), eta)) + Bxdiff(f(eta,
tau), eta, eta)*xdiff(f(eta, tau), eta, eta) = diff(f(eta, tau), tau, eta); ibc := (O,
tau) = 0, f(eta, 0) = 0, D[1]1(£)(0, tau) = 0, D[1]1(£)(8, tau) = 1; sol := pdsolve(sun,
ibc, numeric, spacestep = 0.025); F := subs(sol:-value(output = listprocedure), f(eta,
tau)); FF := (eta, tau) -> F(eta, tau); FFX := (a, b) -> fdiff(FF(eta, tau), [etal, eta
= a, tau = b); FFtau := (a, b) -> fdiff(FF(eta, tau), [tau], eta = a, tau = b); FFXX :=
(a, b) -> fdiff(FF(eta, tau), [eta, etal], eta = a, tau = b); FFXXX := (a, b) -> fdiff (FF(eta,
tau), [eta, eta, eta], eta = a, tau = b); FFXtau := (a, b) -> fdiff(FF(eta, tau), [eta,
taul], eta = a, tau = b); Fx := proc(eta, tau) if not type([eta, taul, list(numeric)) then
return ’procname(args)’; end if; fdiff(F, [1], [eta, taul); end proc; Ftau := proc(eta,
tau) if not type([eta, taul, list(numeric)) then return ’procname(args)’; end if; fdiff(F,
[2], [eta, taul); end proc; Fxx := proc(eta, tau) if not type([eta, taul, list(numeric))
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then return ’procname(args))’; end if; fdiff(F, [1, 1], [eta, taul); end proc; Fxtau :=
proc(eta, tau) if not type(leta, taul], list(numeric)) then return ’procname(args)’; end
if; fdiff(F, [1, 2], [eta, taul); end proc; Fxxx := proc(eta, tau) if not type([eta, taul,
list(numeric)) then return ’procname(args)’; end if; fdiff(F, [1, 1, 1], [eta, taul);

end proc; plots:-animate(plot, [F(eta, tau), eta =0 .. 8], tau =0 .. 10, color = red,
thickness = 3, axes = boxed); plots:-animate(plot, [Fx(eta, tau), eta =0 .. 8], tau

=0 .. 40, color = red, thickness = 3, axes = boxed); plots:-animate(plot, [Fxx(eta, tau),
eta =0 .. 8], tau =0 .. 20, color = red, thickness = 3, axes = boxed);

Appendix C

restart: with(student); with(plots); alpha := 1; beta := 1; Gamma := 2x(alpha - beta);
B := 0.95; turb := diff(f(eta), eta, eta, eta) + alphax*f(eta)*diff(f(eta), eta, eta) +
betax(1 - diff(f(eta), eta)*diff(f(eta), eta)) + Bxdiff(f(eta), eta, eta)*diff(f(eta),
eta, eta) = 0; solution := dsolve(turb, £(0) = 0, D(£f)(0) = 0, D(f)(4) = 1, numeric);
ft := odeplot(solution, [eta, f(eta)], eta = 0 .. 4, color = black, thickness = 3, axes
boxed); ftprime := odeplot(solution, [eta, diff(f(eta), eta)], eta = 0 .. 4, color
blue, thickness = 3, axes = boxed); ftpprime := odeplot(solution, [eta, diff(f(eta),

eta, eta)], eta = 0 .. 4, color = red, thickness = 3, axes = boxed); A := 0; laminar

:= diff(f(eta), eta, eta, eta) + alphaxf(eta)*diff(f(eta), eta, eta) + betax(l - diff(f(eta),
eta)*diff (f(eta), eta)) + Axdiff(f(eta), eta, eta)*diff(f(eta), eta, eta) = 0; sol :=
dsolve(laminar, £(0) = 0, D(£)(0) = 0, D(£)(4) = 1, numeric); fl := odeplot(sol, [eta,
f(eta)], eta = 0 .. 4, color = black, thickness = 3, linestyle = dot, axes = boxed);

flprime := odeplot(sol, [eta, diff(f(eta), eta)], eta = 0 .. 4, color = blue, linestyle

= dash, thickness = 3, axes = boxed); flpprime := odeplot(sol, [eta, diff(f(eta), eta,

eta)], eta =0 .. 4, color = red, linestyle = dashdot, thickness = 3, axes = boxed);
display(ft, ftprime, ftpprime, fl, flprime, flpprime, legend = [f, f[etal, f[etaxetal],

f, fletal, fletaxetal], linestyle = [solid, solid, solid, dot, dash, dashdot]);
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