
Article Not peer-reviewed version

Machine Learning Introduces

Electrophysiology Assessment as the

Best Predictor for the Recovery

Prognosis of Spinal Cord Injury Patients

for Personalized Rehabilitation

Approaches

Dionysia Chrysanthakopoulou , Charalampos Matzaroglou , Eftychia Trachani , Constantinos Koutsojannis *

Posted Date: 11 March 2025

doi: 10.20944/preprints202503.0703.v1

Keywords: machine learning; spinal cord injury; rehabilitation; electrophysiology

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4300001
https://sciprofiles.com/profile/820173


 

 

Article 

Machine Learning Introduces Electrophysiology 
Assessment as the Best Predictor for the Recovery 
Prognosis of Spinal Cord Injury Patients for 
Personalized Rehabilitation Approaches 
Dionysia Chrysanthakopoulou 1, Charalampos Matzaroglou 1, Eftychia Trachani 1  
and Constantinos Koutsojannis 2,* 

1 Physiotherapy Department, School of Health Rehabilitation Sciences, University of Patras, Patras, Greece 
2 Health Physics & Computational Intelligence Laboratory, Physiotherapy Department, School of Health 

Rehabilitation Sciences, University of Patras, Patras, Greece 
* Correspondence: ckoutsog@upatras.gr 

Abstract: The pronounced association between Evoked Potentials (EPs) and American Spinal Injury 
Association (ASIA) scores in individuals with Spinal Cord Injury (SCI) indicates that EPs may serve 
as dependable predictive markers for the progression of rehabilitation. Numerous studies have 
confirmed that variations in Somatosensory Evoked Potentials (SSEPs) demonstrate a relationship 
with ASIA scores, particularly during the early stages of the disease. Machine learning has witnessed 
a notable increase in significance within the medical field, primarily due to the increasing availability 
of health-related data and progressive enhancements in machine learning algorithms. It can be 
utilized to formulate predictive models that aid in disease diagnosis, anticipate disease progression, 
tailor treatment to fulfill individual patient needs, and improve the operational efficiency of 
healthcare systems. The strategic utilization of data can considerably elevate the quality of patient 
care, reduce healthcare costs, and promote the formulation of personalized and effective medical 
interventions. The healthcare industry reaps considerable benefits from the meticulous analysis of 
medical data, as it plays an integral role in promptly identifying patient diseases. Timely detection of 
a disease could contribute to effective symptom management and guarantee that appropriate 
treatment is provided. The present study aims to apply artificial intelligence techniques to identify 
predictors linked to the progression of SCI as assessed by the disability index, ASIA Impairment Scale 
(AIS), and final motor recovery. It is essential to clarify the role of Electrophysiological testing 
including SSEPs, MEPs and Nerve Conduction Studies (NCSs) in the prognostication of SCI. We 
analyzed empirical data obtained from a medical database consisting of 123 records. We developed 
an intelligent system that predicts the recovery of SCI utilizing machine learning algorithms, based 
on ensemble algorithms. More specifically it convolutes Decision Trees and Neural Network 
approaches usually resulting in better prediction accuracy. Throughout our experimental evaluation, 
SEPs achieved accuracies of 90%, which are comparable to full electrophysiology evaluation that 
obtained accuracies of 93%, and mostly better than MEPs and NCSs results for motor recovery 
prediction. Additionally, SEPs achieved an accuracy of 80%, which is close to the full 
electrophysiology evaluation that obtained an accuracy of 89%, and mostly better than MEPs and 
NCSs results for AIS scale determination. According to the previous results EPs could be established 
as the best predictors comparable to global electrophysiology assessment of SCI, resulting in more 
accurate efficacy than other diagnostic findings. Consequently, electrophysiology assessment should 
always be included, when available, as it elevates the total accuracy from only clinical investigation 
up to 93% (from at most 75%) for final motor recovery prediction, even for ASIA score determination, 
and consequently disease follow-up, up to 89% (from at most 66%). More data is needed to certify 
the above results. Further investigation is necessary to validate sensory electrophysiology 
assessment, which is significantly less expensive, portable, and simpler to administer than other 
prognostic tests, and more effective than clinical assessment methods such as AIS, in functioning as 
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biomarkers for SCI scaling and prediction of recovery possibility as well as personalized 
rehabilitation planning. According to such findings, a Decision Support system can be developed as 
the objective alternative to the ASIA scale, using only sensory electrophysiology assessment. 

Keywords: keyword 1; keyword 2; keyword 3  
 

1. Introduction 

A Spinal Cord Injury (SCI) refers to damage affecting the bundle of nerves and nerve fibers that 
transmit signals between the brain and the rest of the body. The spinal cord, an extension of the 
central nervous system (CNS), begins at the medulla oblongata and ends in the lower back at the 
conus medullaris, followed by the cauda equina. The brain serves as the command center, while the 
spinal cord facilitates communication between the brain and the body. These messages control 
muscle movement, sensation, and essential autonomic functions like breathing and heart rate (Witiw 
& Fehlings, 2015). 

SCI may result from direct trauma to the spinal cord or damage to surrounding tissues and 
vertebrae. These injuries can lead to temporary or permanent impairment of sensation, movement, 
and bodily functions below the injury site (Ditunno et al., 1994). Symptoms vary based on injury 
location and severity. Higher spinal cord injuries may result in tetraplegia, affecting all four limbs, 
while lower injuries can cause paraplegia. Paralysis may occur immediately (primary damage) or 
progressively due to secondary damage from bleeding, swelling, or cell death. The extent of nerve 
fiber damage influences recovery potential, ranging from minor impairment to complete loss of 
function. Symptoms include numbness, pain, weakness, difficulty walking, and loss of bladder or 
bowel control. Breathing difficulties and altered sexual function may also occur (Rupp et al., 2021). 

1.1. Pathophysiology and Diagnosis of SCI 

Following an SCI, key pathological changes occur that impact recovery. The initial phase 
includes vascular disruption, leading to hypoperfusion and ischemia, which can cause neuronal cell 
death. Inflammatory responses, oxidative stress, and apoptotic pathways further contribute to tissue 
damage. Neurogenic shock, marked by hypotension and bradycardia, may occur due to autonomic 
dysfunction. Over time, tissue loss results in cavity formation at the injury site, complicating recovery 
(Anjum et al., 2020). 

Diagnosing SCI requires a combination of clinical assessments and imaging techniques. 
Emergency evaluation includes testing movement, sensation and breathing, responsiveness, and 
muscle strength. Magnetic resonance imaging (MRI) is used to detect spinal trauma, herniated discs, 
vascular abnormalities, and ligament damage (Freund et al., 2019). Computerized tomography (CT) 
scans identify fractures, bleeding, and spinal stenosis (Goldberg & Kershah, 2010). X-rays provide 
rapid insights into vertebral misalignment or fractures, assisting in immediate decision-making 
(Pinchi et al., 2019). 

1.2. Classification & Assessment of SCI 

SCI classification is based on anatomical and functional criteria. The spine is divided into five 
sections: Cervical (C1-C7), Thoracic (T1-T12), Lumbar (L1-L5), Sacral (S1-S5), and Coccyx (Cx3-Cx5). 
The neurological level of injury is the lowest spinal segment with intact motor and sensory function. 
Injuries are classified as complete or incomplete based on preserved neurological function below the 
injury level (Nas et al., 2015). A complete injury results in total loss of motor and sensory function, 
whereas an incomplete injury allows some level of function and sensation (S. C. Kirshblum et al., 
2011; S. Kirshblum & Waring, 2014; Rupp et al., 2021). Neurological function alone does not define 
disability, as motor and sensory impairments also influence clinical outcomes (Krawetz & Nance, 
1996; Rekand et al., 2012). 
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Standardized assessment tools evaluate SCI severity and recovery potential. The American 
Spinal Injuries Association (ASIA) Impairment Scale (AIS) is the most widely used tool for assessing 
SCI severity. It classifies injuries from Grade A, (complete injury with no function) to Grade E (normal 
function) based on motor and sensory assessments (Waters et al., 2000). ASIA evaluates key muscles 
and dermatomes on both sides of the body, providing a standardized score to determine injury 
severity and recovery potential. The Lower Extremity Motor Score (LEMS), a component of ASIA, 
helps predict walking ability, with a score of 30 or higher indicating a good chance of regaining 
mobility (Waters et al., 1994). 

1.3. Emergency and Acute Treatment of SCI 

At the scene of an accident where a spinal cord injury (SCI) is suspected, emergency responders 
prioritize immobilization to prevent further damage. A rigid collar is placed around the neck, and 
the patient is carefully positioned on a backboard (Eli et al., 2021). If necessary, sedatives may be 
administered to minimize movement, and a breathing tube may be inserted in cases of respiratory 
distress. Upon arrival at a trauma center, immediate interventions include spinal realignment using 
a rigid brace or mechanical force. Surgery is often required to remove fractured vertebrae, bone 
fragments, or herniated discs compressing the spinal cord. Early spinal decompression surgery has 
been shown to improve functional recovery. 

SCI often leads to complications requiring targeted treatment (Sterner & Sterner, 2023). 
Respiratory issues are common, with one-third of SCI patients needing temporary or permanent 
breathing assistance. Injuries at the C1-C4 levels can impair diaphragm function, requiring 
mechanical ventilation. Pneumonia is a leading cause of death in SCI patients, particularly those on 
ventilators. Circulatory complications, such as unstable blood pressure, blood clots, and abnormal 
heart rhythms, necessitate the use of anticoagulants and compression stockings. SCI can also lead to 
muscle tone changes, including spasticity and atrophy. Autonomic dysreflexia, a life-threatening 
condition in individuals with upper spinal injuries, can cause sudden hypertension, headaches, 
sweating, and vision disturbances. Positioning the patient upright can help reduce blood pressure. 
Other complications include pressure ulcers, neurogenic pain, bladder and bowel dysfunction, and 
sexual health issues, all of which require specialized treatment. Additionally, SCI often has a 
psychological impact, with many individuals experiencing depression. Therapy and medication can 
help manage these mental health challenges (Safdarian et al., 2023). 

1.4. Rehabilitation and Prognosis in SCI 

Rehabilitation programs aim to restore independence and improve quality of life. These 
programs integrate physical therapies, skill-building activities, and psychological support. A 
multidisciplinary team consisting of rehabilitation specialists, therapists, nurses, and psychologists 
tailors treatment to each patient’s needs (Hu et al., 2023). Assistive devices such as braces, 
wheelchairs, electronic stimulators, and neural prosthetics can enhance mobility. 

Predicting recovery from SCI remains challenging. Clinical assessments alone often fall short in 
forecasting outcomes (Cadotte & Fehlings, 2014). Neurophysiological techniques, including 
somatosensory evoked potentials (SSEPs), nerve conduction studies, and motor evoked potentials 
(MEPs), provide objective measures of neural function (Hubli et al., 2019). These techniques 
distinguish nerve damage types and offer prognostic value, particularly in clinical trials. SSEPs are 
especially useful in evaluating sensory recovery by assessing the conduction of sensory signals along 
the spinal cord. Intact or improved SSEP responses suggest better prognosis, while absent or 
diminished responses indicate severe injury (Nardone et al., 2016). SSEPs are valuable for assessing 
injury level, guiding treatment plans, and predicting long-term sensory and motor outcomes. 
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1.5. Electrophysiology and Artificial Intelligence in SCI 

Electrophysiology plays a critical role in SCI diagnosis, classification, and prognosis (Korupolu 
et al., 2019). Among the widely used evoked potential (EP) techniques, SSEPs, MEPs, and nerve 
conduction studies assess neural pathway integrity (Curt & Ellaway, 2012; Kakulas, 2004). EPs 
provide objective insights into neurological dysfunction, even in cases where clinical evaluations are 
challenging due to patient unresponsiveness (Fustes et al., 2021; Li et al., 2021). Studies show that 
SSEPs correlate strongly with SCI outcomes, including walking ability, hand function, and bladder 
control (Singh et al., 2020). Combining clinical assessments (e.g., ASIA scores) with 
electrophysiological tests enhances diagnostic accuracy and informs treatment strategies. 

Recent technological advancements have introduced Artificial Intelligence (AI) and Machine 
Learning (ML) into SCI research. AI leverages large datasets to enhance disease prediction, 
classification, and treatment planning (Lawal & Kwon, 2021). ML algorithms utilize statistical 
techniques like regression analysis and Bayesian inference to analyze patient data, improving 
diagnostic precision. Neural networks have been successfully applied in SCI prognosis, medical 
imaging, and treatment optimization (Hongmei et al., 2006). By integrating AI-driven models with 
neurophysiological assessments, researchers aim to predict SCI progression and optimize 
rehabilitation strategies, leading to better patient outcomes. 

2. Materials and Methods 

The patient data that were used in this study is a dataset, which is available as source data of a 
recent investigation of the muscle-specific recovery after cervical spinal cord injury in a retrospective 
analysis of 748 individuals from the European Multicenter Study about Spinal Cord Injury 
(NCT01571531) showing associations between corticospinal tract (CST) sparing and upper extremity 
recovery in SCI, which improves the prediction of hand muscle strength recover (Balbinot et al., 2023). 
The findings suggest that assessment strategies for muscle-specific motor recovery in acute spinal 
cord injury are improved by accounting for CST sparing, and complement person-level predictions. 
In the Dataset are included 11 input parameters including clinical, full electrophysiological 
assessment findings, (SEPs, MEPs and NCVs) and one output final Recovery result of SCI 
progression:  

1. MS: Motor score 
2. DST: Distance from the motor level of injury 
3. LT: Light Touch sensation 
4. PP: Pin Prick sensation 
5. SSEP_Amp diff_uln: Somatosensory Evoked Potential amplitude difference ulnar nerve 
6. Hupp_score_SEP: SEP score 
7. MEP_Amplitude_abd: Motor Evoked Potential amplitude recorded from abductor muscle 
8. Hupp_score_MEP: MEP score 
9. F-wave persistance uln: F-wave persistance ulnar nerve 
10. Hupp score - NCS: Nerve Conduction Studies score 
11. REC: muscle strength final recovery {Recovery Class, no Recovery Class}  
12. AIS: ASIA score {A, B, C, D, E} 

Some of the technical/medical tests are defined as: 

• SSEP: Somatosensory evoked potentials (SSEP) are recorded from the central nervous system 
following electric stimulation of peripheral nerves (upper limb SSEP),  

• ASIA: The Expanded Disability Status Scale (ASIA) is a method of quantifying disability in SCI 
and monitoring changes in the level of disability over time. It is widely used in clinical trials 
and in the assessment of people with SCI (Cadavid et al, 2017) 

• MEP: Motor Evoked Potentials recorded from the peripheral nerves following magnetic 
stimulation of central nervous system 
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• NCS: Nerve conduction studies using F-wave or Compound Muscle Action Potential from 
ulnar nerve 
The purpose of the study was to identify what symptoms - SCI/factors are better predictors of 

SCI recovery using Machine Learning approaches. In our work the importance of EP recordings was 
examined among all other input parameters for ASIA scores determination. 

3. Results 

As main approach was used the Ensemble Learning, a machine learning technique, that 
combines multiple models—such as regression models, neural networks, and decision trees—to 
enhance predictive accuracy. This approach, sometimes referred to as committee-based learning, 
integrates several individual models to achieve better results than a single model alone (Zhou, 2012). 
Research has validated the effectiveness of ensemble learning in machine learning and convolutional 
neural networks (CNNs). Each machine learning model is influenced by various factors, including 
training data, hyperparameters, and other parameters, all of which impact the total error of the 
resulting model. Consequently, even when using the same training algorithm, different models may 
emerge, each characterized by distinct levels of bias, variance, and irreducible error. By merging 
multiple diverse models, ensemble methods can minimize the overall error while preserving the 
unique strengths and complexities of each model, such as a lower bias for specific data subsets. 
Studies indicate that ensembles with greater diversity among their component models generally yield 
more accurate predictions. Furthermore, ensemble learning can effectively mitigate overfitting 
without significantly increasing model bias. Research suggests that ensembles composed of diverse, 
under-regularized models (which tend to overfit their training data) can outperform individual 
regularized models (Zhou, 2019). Additionally, ensemble techniques can address challenges related 
to high-dimensional data, offering an alternative to traditional dimensionality reduction approaches. 

In this study, ensemble algorithms were employed like Vote, which integrates three models: 
Decision Trees (J48), Artificial Neural Networks (Multilayer Perceptron), and Bayes (Naïve Bayes). 
Additionally, the Random Forest algorithm was utilized. All models were implemented using the 
Waikato Environment for Knowledge Analysis (WEKA) platform (Holmes et al., 1994). WEKA is a 
widely used machine learning software suite, developed in Java at the University of Waikato, New 
Zealand. Distributed as open-source software under the GNU General Public License, WEKA version 
3.7.8 provides an extensive range of visualization tools and machine learning algorithms for data 
analysis and predictive modeling. It features graphical user interfaces that enhance accessibility, as 
well as data preprocessing functions implemented in C. Moreover, it employs a Make file-based 
system for conducting machine learning experiments. WEKA integrates various artificial intelligence 
techniques and statistical methods, supporting core data mining processes such as preprocessing, 
classification, regression, clustering, visualization, and rule selection. The platform operates on the 
principle that data is presented in a structured format, where each instance consists of a defined set 
of attributes, whether numerical, nominal, or other supported types. Many of WEKA’s standard 
machine learning algorithms generate decision trees for classification tasks. 

The first machine learning approach applied in this study was Decision Trees using the J48 
algorithm. Decision trees facilitate the extraction of valuable insights, enabling the development of 
predictive models. A decision tree is structured like a flowchart, systematically dividing data into 
branches without information loss while guiding a series of decisions based on input data. It serves 
as a hierarchical sorting mechanism, predicting outcomes based on sequential decision-making steps. 
The tree construction process follows a structured methodology: each node represents a decision 
point based on a specific parameter, determining the progression to the next branch. This iterative 
process continues until a leaf node is reached, representing the final predicted outcome (ASIA 
prediction). To assess the accuracy of the constructed decision tree, the Random Tree algorithm was 
used to generate the model based on the dataset. 

As for the second machine learning approach, WEKA’s Neural Network was utilized to 
construct an Artificial Neural Network (ANN), a widely recognized method under Supervised 
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Machine Learning, particularly prevalent in the medical field. This intelligent system was 
implemented using WEKA’s Multi-Layer Perceptron, which includes a hidden layer. The training 
process was conducted using the Error Back-Propagation algorithm. Specifically, the structure of the 
Neural Network followed an I-H-O (Input - Hidden layers - Output layers) format. The training of 
the Neural Network was initiated by gradually increasing the number of neurons (H) in the hidden 
layer while also incrementally extending the number of training epochs. By keeping the learning rate 
constant, a consistent reduction in error per training epoch was observed, along with a steady 
improvement in classification performance. The optimal results were obtained with seven hidden 
neurons and 15,000 training epochs, after which the performance of the Neural Network remained 
stable. 

Bayesian classifiers were also employed, representing a family of classification algorithms based 
on Bayes’ Theorem. Rather than a single method, Bayesian classification consists of multiple 
algorithms that share a common principle: each feature used in classification is assumed to be 
independent of the others. Among these algorithms, the Naïve Bayes classifier is one of the simplest 
yet highly effective models, allowing for the rapid development of machine learning models with 
fast prediction capabilities. Naïve Bayes is primarily used for classification tasks and is particularly 
well-suited for text classification problems. Since text classification involves high-dimensional data, 
where each word corresponds to a unique feature, the Naïve Bayes algorithm proves useful in 
applications such as spam detection, sentiment analysis, and rating classification. One of its key 
advantages is its computational efficiency, enabling swift processing and simplified predictions even 
in cases involving high-dimensional data (WEKA Machine Learning Group at the University of 
Waikato). This model estimates the probability that a given instance (e.g., different types of EPs) 
belongs to a specific class based on a predefined set of features (final ASIA). It functions as a 
probabilistic classifier, assuming that the presence of one feature does not influence the presence of 
any other feature. Although this assumption rarely holds in real-world scenarios, the model still 
delivers effective classification results. The algorithm relies on Bayes’ Theorem for both training and 
prediction. The dataset was randomly divided, with 66% allocated for training the machine learning 
models, while the remaining portion was used for testing and evaluating the WEKA-generated 
models. 

Lastly, the Random Forest algorithm was implemented, which builds upon the well-established 
bagging method by incorporating both bagging and feature randomness to create an ensemble of 
uncorrelated decision trees. Feature randomness, also known as feature bagging or the “random 
subspace method,” ensures low correlation among decision trees by generating a random subset of 
features. This distinguishes Random Forest from traditional decision trees, where all potential feature 
splits are considered, whereas Random Forest selects only a subset of features for splitting. The 
Random Forest algorithm requires three primary hyperparameters to be set before training: node 
size, the number of trees, and the number of features sampled. Once configured, the classifier can be 
used for both regression and classification tasks. The model consists of multiple decision trees, each 
built from a bootstrap sample- a randomly selected dataset drawn from the training set with 
replacement. Approximately one-third of this sample is reserved as test data, known as the out-of-
bag (OOB) sample, which is later used for validation. Another layer of randomness is introduced 
through feature bagging, enhancing dataset diversity and reducing correlation among decision trees. 
The prediction process varies based on the type of problem: for regression tasks, individual decision 
tree outputs are averaged, while for classification tasks, the final class is determined through majority 
voting—i.e., selecting the most frequently predicted categorical variable. Finally, the OOB sample 
serves as a form of cross-validation, ensuring a reliable prediction outcome. 

The performance of the machine learning models was evaluated using accuracy, precision, 
recall, F1-score, and area under the receiver operating characteristic (ROC) curve (AUC-ROC) in test 
set (randomly selected the rest 34% of total). Part of the results of the models on the testing set are 
shown in Figure 1 and Table 1. We calculated the prediction accuracy of motor recovery, after disease 
progression as well as current ASIA score, according to all input parameters of clinical and 
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electrophysiological assessment. Possible electrophysiology biomarkers were divided into SEPs, 
MEPs and all NCSs data compared with clinical evaluation results.  

(a) (b) 

Figure 1. Decision Trees examples resulted from J48 algorithm for SSEPs Motor recovery (a) and ASIA score (b), 
predictions. 

Table 1. Accuracy results for different electrophysiological approaches prediction. 

a. Ensemble Algorithm (Vote) 
Biomarker 
accuracy (%) 

All together SSEPs MEPs NCS Clinical 
Assessment 

Motor Recovery 89,8 85,4 81,3 82,9 75,6 
AIS index 84,1 74,9 72,7 74,4 63,4 

b. Randomforest 
Biomarker 
accuracy (%) 

All together SSEPs MEPs NCS Clinical 
Assessment 

Motor Recovery 93,1 91,9 86,6 85,4 75,6 
AIS index 89,0 80,1 75,2 81,3 66,3 

c. Decision Trees (J48) 
Biomarker 
accuracy (%) 

All together SSEPs MEPs NCS Clinical 
Assessment 

Recovery 81,3 78,2 77,9 67,1 73,5 
AIS index 71,9 76,0 67,0 67,1 59,8 

d. Neural Networks (Multilayer Perceptron) 
Biomarker 
accuracy (%) 

All together SSEPs MEPs NCS Clinical 
Assessment 

Motor Recovery 90,2 82,5 75,2 79,2 71,5 
AIS index 78,0 68,7 69,5 65,4 57,7 

e. Bayes (Naive Bayes) 
Biomarker 
accuracy (%) All together SSEPs MEPs NCS Clinical 

Assessment 
Motor Recovery 76,0 73,9 75,6 71,9 69,5 
AIS index 62,6 58,9 58,1 61,4 56,1 

All above results reveal the importance of SEPs as predictors of motor recovery of SCI patients 
according to their accuracy performance. According to Table 1 the Vote, Decision Trees 
(randomforest and J48), Neural Network and Bayes for SSEPs attained accuracies of 85,4%, 91,9%, 
78,2%, 82,5% and 73,9% respectively that are better than MEPs that attained accuracies of 81,3%, 
86,6%, 77,9%, 75,2% and 75,6%, better or comparable to NCVs that attained accuracies of 82,9 %, 
85,4%, 67,1%, 79,2% and 71,9%. The SSEPs could be demonstrated as the best motor recovery 
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predictors after SCI with comparable efficacy to that of MEP of NCV findings mostly depending on 
the classification algorithm (Figure 2).  

Additionally the above results reveal the importance of SEPs as biomarkers for ASIA score 
calculation of SCI patients according to their accuracy performance. According to Table 3 the Vote, 
Decision Trees (randomforest and J48), Neural Network and Bayes for SSEPs attained accuracies of 
74,9 %, 80,1%, 76,0%, 68,7% and 58,9% respectively that are better than MEPs that attained accuracies 
of 72,7%, 75,2%, 67,0%, 69,5% and 58,1%, better or comparable to NCVs that attained accuracies of 
74,4%, 81,3%, 67,1%, 65,4% and 61,4%. The SSEPs could be demonstrated as the best motor recovery 
predictors after SCI with comparable efficacy to that NCV findings most commonly used in clinical 
practice worldwide (Figure 2).  

Figure 2. Machine Learning prediction accuracy for different biomarkers. SEPs as well as the NCS are the most 
succesfull predictors for SCI patients with comparable performances. 

Nevertheless, electrophysiology assessment should always be included, when available, as it 
elevates the total accuracy from only clinical investigation to the level of 93,1% (from at most 75,6%) 
for final motor recovery prediction, ASIA score determination and consequently disease follow up to 
the level of 89% (from at most 66,3%). More data are needed to certify the above results (Table 1). 

 
Figure 3. Decision support system resulted from J48 algorithm for and ASIA score prediction with the use only 
sensory electrophysiology assessment. 
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Finally, we suggest sensory electrophysiology assessment (including SEP and NCV data), which 
is significantly faster, less expensive, portable, and simpler to administer than other prognostic tests 
as MRI or even surgery data, and more effective than clinical assessment methods such as AIS, in 
functioning as biomarkers for SCI scaling and prediction of recovery possibility. By integrating 
individualized electrophysiological data, we can move toward a precision-medicine approach, 
tailoring treatment strategies and rehabilitation plans to each patient’s unique neurological profile, 
ultimately improving functional outcomes. 

4. Discussion 

Patients with spinal cord injury (SCI) frequently undergo electrophysiological assessments, such 
as motor evoked potentials (MEPs) and nerve conduction studies (NCSs), to evaluate neurological 
deficits and predict recovery potential. Empirical studies have established significant correlations 
between electrodiagnostic findings and ASIA (American Spinal Injury Association) scores, 
demonstrating that lower ASIA scores are associated with more severe neurological impairments 
(Singh et al., 2020). Furthermore, specific electrophysiological parameters, including nerve 
conduction velocity and motor unit potential recruitment, have been shown to enhance the predictive 
accuracy of ASIA assessments regarding recovery outcomes. By identifying preserved neural 
pathways, electrophysiological evaluations can provide critical insights that inform rehabilitation 
strategies and contribute to improved functional recovery (Huang et al., 2022). However, relying 
solely on ASIA scores might overlook the subtler nuances of potential recovery, suggesting the need 
for a more integrated evaluation approach. 

Our research has demonstrated that somatosensory evoked potentials (SSEPs) hold significant 
prognostic value in predicting motor recovery in SCI patients. Specifically, our findings indicate a 
positive correlation between SSEP latencies and motor recovery, further substantiated by their 
association with the ASIA Impairment Scale (AIS). These findings align with existing literature 
suggesting that SSEPs and MEPs exhibit greater sensitivity in detecting disease progression than 
conventional clinical assessments, while also offering cost-effective and time-efficient advantages 
(Margaritella et al., 2012). 

Additionally, the integration of machine learning algorithms into SCI prognostic modeling 
presents an opportunity to further refine predictive accuracy. By analyzing large-scale datasets, these 
algorithms can identify complex patterns that may not be immediately discernible to clinicians. Such 
advancements not only optimize the decision-making process but also enable healthcare 
professionals to make evidence-based decisions informed by real-time data analysis. The application 
of predictive analytics facilitates early intervention strategies, allowing for timely modifications in 
treatment plans that align with patients' evolving clinical needs. As these technological innovations 
continue to progress, they hold the potential to transform the management of chronic neurological 
conditions, paving the way for more personalized, precise, and effective treatment pathways. 

Further research is required to establish evoked potentials (EPs) as reliable biomarkers for SCI, 
particularly given their substantial advantages over traditional imaging and biochemical 
methodologies. EPs are considerably more cost-effective, portable, and straightforward to administer 
than magnetic resonance imaging (MRI), making them a promising alternative for widespread 
clinical application. Establishing their efficacy as diagnostic and prognostic tools could enhance 
accessibility to advanced neurological assessments in diverse healthcare settings. 

5. Conclusions 

The findings presented in this article show the significant potential of Evoked Potentials (EPs) 
as reliable predictors of recovery in spinal cord injury (SCI) patients. By demonstrating a pronounced 
correlation between EPs and American Spinal Injury Association (ASIA) scores, the research points 
out the role of electrophysiological assessments in enhancing clinical prognostication and 
rehabilitation strategies. The integration of machine learning algorithms not only reinforces the 
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predictive capabilities of EPs but also paves the way for personalized patient care. The 
implementation of artificial intelligence in analyzing medical data introduces an innovative 
framework for tailoring treatment plans that can significantly improve patient outcomes. The study's 
high accuracy rates for predicting recovery outcomes further validate the utility of EPs over 
traditional assessment methods, emphasizing their cost-effectiveness, portability, and ease of 
administration. 

In conclusion, this research not only advances our understanding of the prognostic value of 
electrophysiological testing in SCI but also invites a paradigm shift, in how healthcare systems can 
leverage advanced analytics to optimize recovery trajectories for patients. The implications of these 
findings are profound, suggesting a future where enhanced accessibility to reliable diagnostic tools 
can lead to improved rehabilitation and quality of life for spinal cord injury patients across varied 
healthcare settings. The call for further investigation into sensory electrophysiology assessments is 
crucial and timely, as it aims to solidify these preliminary findings and encourage broader clinical 
adoption. 
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