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Abstract: One challenging problem is the representation of three-dimensional datasets that vary 
with time. These datasets can be though as a cloud of points that gradually deforms. But point-wise 
variations lack of information about the overall deformation pattern, and more importantly, about 
the extreme deformation locations inside the cloud. The present article applies a technique in 
computational mechanics to derive the strain-rate state of a time-dependent and three-dimensional 
data distribution, by which one can characterize its main trends of shift. Indeed, the tensorial analysis 
methodology is able to determine the global deformation rates in the entire dataset. With the use of 
this technique, one can characterize the significant fluctuations in a reduced multivariate description 
of an urban system and identify the possible causes of those changes: calculating the strain-rate state 
of a PCA-based multivariate description of an urban system, we are able to describe the clustering 
and divergence patterns between the districts of the city and to characterize the temporal rate in 
which those variations happen.

Keywords: dimensionality reduction; pattern identification; three-dimensional data-cloud; 
strain-rate; Finite Element Method (FEM); trajectory visualization

14

1. Introduction15

One challenging problem in the data analysis is the representation of three-dimensional discrete16

data [1]. This analysis becomes harder when a time-dependent change of the data takes place,17

introducing a new temporal dimension. In the present article, we explore formal approaches to18

quantify the temporal change of discrete three-dimensional data. Specifically, we build a methodology19

to assess the transformation of a data cloud that is derived from a Principal Component Analysis(PCA): a20

13-years span multivariate description in [2] that provides a reduced description of an urban system21

given only by the first three principal components. Since the points represent an abstraction of an22

urban system, one main goal is to understand the temporal variation of the multivariate description of23

the districts in order to analyze the behavior of the overall city in the time-span. Our main hypothesis24

is that these three-dimensional datasets can be though as a cloud of points that gradually deforms.25

Still, the challenging issue is that deformation between consecutive times cannot be visualized26

straightforwardly. There are some methods to overcome this difficulty. One is the vector plot27

of three-dimensional displacements or velocities, that is typically used to visualize results in28

Computational Mechanics applications [3–5]. In example, these are used in the Kinematic Visualization29

of Motion in [6–10], but they are restricted to display relative motion among the data, and are not able30

to identify the most dynamic regions of the dataset. Another is the Parallel Coordinate Technique that31

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2019                   doi:10.20944/preprints201906.0114.v1

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Appl. Sci. 2019, 9, 2920; doi:10.3390/app9142920

http://www.mdpi.com
https://doi.org/10.20944/preprints201906.0114.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app9142920


successfully exhibits the temporal change of highly-dimensional statistical and information datasets32

[11]. Yet, multi-dimensional data is typically segmented in two-dimensional subsets, like the Computer33

Tomographic scans of medical imaging [1,12,13]. Furthermore, the previously mentioned methods are34

not suitable when one aim to understand the patterns of diversification or conformation, which are35

closely related to the temporal change of the differences between join data values: the maximum and36

minimum magnitudes of variation and the evaluation of their direction can be significantly helpful37

when one aims to identify differentiation patterns in the data [14]. Or the opposite, when one aims to38

locate uniformity for a dataset which was previously differentiated.39

The field of continuum mechanics provides a measure of the temporal variation of the distance40

in between points: the Strain-Rate tensor (see, for instance, [15]). The continuum mechanics theory41

-which arises from the classical Newtonian mechanics- analyzes the causes and effects of motion42

for a deformable media composed by an infinite group of particles. When a continuous media is43

being deformed in various directions at different rates, the strain-rate of a certain position in the44

medium cannot be expressed by a scalar value solely. It cannot even be expressed by using a single45

vector. Instead, the rate of deformation must be expressed by the rank-two strain-rate tensor with46

its components determined by the positional derivatives along each spatial dimension. Hence, the47

mathematical framework of tensors can determine exactly the deformation that is accumulated in a48

certain position inside the medium -that is typically subjected to the imposition of displacements or49

loads-. This tensor is commonly used to detail the amount of elastic energy in the physical descriptions50

of multiple materials, like solids or fluids. See [16] for a complete mathematical exposition. Most of51

those models are formulated as the product of a constitutive tensor and the strain-rate tensor, giving52

the stress condition of the material that is balanced in the kinetic equations. In the present study, the53

calculation of the strain-rate tensor is not related to the kinetics of any material, and thus, it can only54

be a mathematical tool that supports the examination of the deformation rates given by the discrete55

statistical data.56

But the strain-rate tensor arises from the continuum assumption, and discrete displacements of57

points rather than continuous distributions take place in the deformation of the data cloud. Typically,58

the issue of applying derivatives to discrete displacements of points is solved by using several59

approaches. Some statistical techniques use co-variance functions to represent directly the strain-rate60

field (see e.g. [17]). But the common approach is to compute a continuous version of the displacement61

-or velocity- field, so that, derivatives can be applied to the continuous displacements. Some methods,62

in this line, have interpolated the discrete displacements by minimizing the residual -or distance-63

between the continuous interpolation and the discrete version [18]. Other interpolation techniques64

weight the distance between an interpolated piece-wise continuous field and the discrete displacement65

field, as in [19]. This method results in a minimization technique where a continuous strain-rate field66

can be derived. In example, the piece-wise continuous field can be defined as to be splines, or as the67

widely used linear polynomials in variational formulations [20]. These techniques have been applied68

in earth science and medical imaging works [21–23], but also in the strain-rate calculation of geodetic69

observations in [24,25].70

Another fundamental issue is the representation of the strain-rate state. One of the possible71

techniques that can help to visualize the deformation rate of the dataset is to plot the main72

components of the tensor using Strain-rate diagrams, where concentrations of strain-rate patterns73

can be displayed as vector fields (see for example the ones in geodetical observations of the earth’s74

mantle [26–28]). The main drawback of strain-rate diagrams is that the strain-rate components are75

visualized as the projection of three-dimensional vector fields into the two-dimensional framework,76

and therefore, the third-dimension component is necessarily neglected. Another method, more suitable77

to two-dimensional plots, is the contour graph of principal stresses, where the stress patterns in78

structural elements [29,30] and tectonics [31] are visualized with continuous lines depending on the79

stress magnitude. That method overcome the three-dimensional issue, but it does not give insights80

about the orientation of the principal stresses. Hence, a dual form of the contour plots is to calculate the81
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trajectories of the stress principal components in separated plots, where the stress magnitude can be82

colored in each trajectory line such that stress patterns are exhibited in a two-dimensional framework.83

This last technique has been our preferred approach in order to visualize the principal strain-rate84

patterns of the three-dimensional data cloud.85

Since a robust methodology that describes the temporal change of the urban system -represented86

by a multivariate dataset- has not been carried out before, we choose to perform a quantitative analysis87

by including the strain-rate tensor as the fundamental metric. In this work, we calculate the strain-rate88

state of the discrete dataset without a priori assuming the mechanisms by which the system experiences89

transformation. In order to apply the continuum mechanics principles into the discrete dataset, we90

use interpolation methods, such as the ones applied in discrete variational formulations (i.e. Finite91

Element Methods (FEM), Particle Methods, Collocation Methods, Mesh-less methods, etc.). Specifically,92

we derive the three-dimensional strain-rate tensor from a FEM interpolation of the discrete velocity93

field, as demonstrated in previous works such as [32–34]. We include a methodology for visualizing94

the main patterns of change in any time-dependent data cloud that can be used in a computational95

(two-dimensional) framework. It is based on the family of curves that are instantaneously tangent to96

the extension and contraction components of the strain-rate tensor: the so-called trajectory curves of the97

continuum mechanics field [15]. These help to overcome the three-dimensional representation problem,98

since separated in several plots -one for each principal component-, demonstrate the magnitude and99

orientations of the strain-rate patterns in a two-dimensional plot.100

The remaining parts of this document are organized as follows. In Section 2 the methodology to101

compute the discrete version of the strain-rate tensor is presented. Since the main problem involves102

the calculation of the derivatives of discontinuous -discrete- velocities, we extensively review the103

numerical techniques that are adopted to overcome this difficulty and the ones which are used for104

visualizing the strain-rate patterns. Next, in Section 3, we present the application of the methodology105

to the case study -the urban system of Barcelona- by deriving its strain-rate state and visualizing its106

main strain-rate patterns, meaning the city’s environmental, social and economic change. Finally, in107

Section 4 some conclusions of the proposed methodology close this article.108

2. Methods109

We begin this section with a review of the strain-rate tensor calculation provided a discrete110

three-dimensional data cloud. For doing so, the formal problem of the time-dependent dataset is111

introduced first. Then, we explain the numerical techniques that transform the discrete dataset into112

a mathematical framework by which the strain-rate tensor can be computed. Most of the ideas rely113

on the geometrical analysis of the discrete dataset by computing the spatial discretization of the114

dataset into geometric elements through a Delaunay Triangulation. After doing that, the computation115

of the strain-rate is performed with a FEM interpolation of the velocity field. Finally, we address the116

eigen-problem for the strain-rate tensor, such that the solution of the eigenvalues, and the corresponding117

eigenvectors, gives the extrema strain-rates at each finite element. The flow chart diagram of this118

methodology is represented in Fig. 1, including the main outputs that result at each step. The extended119

explanation is developed along this section.120

2.1. Time-dependent three-dimensional dataset121

Since the main objective of this work is to reveal the temporal transformation of a122

three-dimensional and time-dependent dataset, let us first introduce some notation in order to clarify123

the mathematical ideas to be used. Let us define the discrete time-dependent data to be the set of points124

P = {pi}, with i = 1, 2, . . . , m, being m the total data. The values in each one of the three dimensions125

can be seen as scalar coefficients for a set of basis vectors. These tuple of components compose the126

vector that we call the position or coordinate xi = [xi,1 xi,2 xi,3]
>, with the superscript > denoting the127

transpose operation, the first subscript referring to the point i and the second to the dimension. Hence,128

we call P the set of points and Xn (t) = {x1 (t) , x2 (t) , . . . , xi (t) , . . . , xn (t)} ∈ R3 the positions of the129
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points in a certain time t. Let us consider a uniform partition of the time interval in which the dataset130

Xn (t) is defined t ∈ [td, tg] in a sequence of discrete time-steps td = t0 < t1 < . . . < tn < . . . < tN = tg,131

with δt > 0 the time-step-size defining tn+1 = tn + δt for n = 0, 1, 2, ..., N. Thereby, we use the132

superscripts to denote the discrete time-steps, with the only exception of denoting the transpose133

operation with the superscript >.134

Since the time-dependent dataset of the case study comes from a PCA reduction of a135

higher-dimensional multivariate dataset Yn (t) = {y1 (t) , y2 (t) , . . . , yi (t) , . . . , yn (t)} ∈ Rk, with136

k >> 3 and t ∈ [td, tg], into a lower-dimensional one Xn (t), t ∈ [td, tg], that possesses only three137

independent dimensions: Principal Component 1 (PC1), Principal Component 2 (PC2), and Principal138

Component 3 (PC3), we use the Cartesian coordinate system straightforwardly with each principal139

component being a dimension. This is, xi (tn) = [xi,PC1 (tn) xi,PC2 (tn) xi,PC3 (tn)]>. Hence, the140

discrete time-dependent data-set can be thought as a cloud of points in the three-dimensional space141

that deforms gradually throughout time.142

2.2. Finite Element Method interpolation143

The main idea of the present approach is to transform the discrete cloud of points into a144

mathematical framework -similar to a deformable medium- by which the strain-rate tensor can145

be computed. To do so, we generate a mesh Th(t) = {K} from the set of points P that is composed by146

non-overlapping and conforming geometrical elements K of diameter h. There are several methods to147

generate a mesh from a set of points, all which are studied in the computational geometry field. Here,148

we apply the Delaunay Triangulation DT (P) because of several reasons. The first is that the aspect149

ratio of the triangulated elements produce a high-quality mesh. The second is because fast Delaunay150

triangulation algorithms have been developed recently (see for example the one in [35]).151

The result of applying the Delaunay triangulation over the set of points is a discrete mesh152

Th := DT (P) which possess the following characteristics: it covers exactly the convex hull Ω of153

the point set, no point pi is isolated from the triangulation, and all the elements {K} are 4-points154

tetrahedron, which are completely defined by the position of their four corner points K :=
{

xj
}

, with155

j = 1, 2, 3, 4. The generated mesh Th = DT (P) can be seen as a -material- domain Ω that suffers156

deformations from the displacements of the points between consecutive time-steps. Since only discrete157

displacements between consecutive time-steps are known for the set of points, we now explain how158

the continuous velocity field inside the mesh is calculated.159

Even though the FEM has been used to perform interpolation using the point-wise data (see, for
instance, [33,34]), in this work we apply this well-known method in a three-dimensional setting. In
FEM, the finite interpolating space Vh is defined as made of continuous piece-wise polynomials N(x)
in the mesh Th, where the discrete approximation Fh(x, t) ∈ Vh of any multi-dimensional function
F(x, t), x ∈ Ω, can be written as

F(x, t) ≈Fh(x, t) :=
n

∑
i=1

N(xi)F i(t), x ∈ Ω. (1)

We use the simplest finite element: the tetrahedron with linear polynomials and four nodes. Let
us first introduce some notation in order to define the polynomials inside the element. The set
of normalized coordinates χ1, χ2, χ3, χ4 in each tetrahedron K are such that the value of χi is one
at the point pi ∈ K, zero at the other three corner points, and varies linearly from that point to
the opposite edges. This set of coordinates has the property that the sum of the four coordinates
(each belonging to one tetrahedron point) in any location inside the tetrahedron is identically one:
χ1(xi) + χ2(xi) + χ3(xi) + χ4(xi) = 1, with xi ∈ K. Hence, the shape functions inside each linear
tetrahedron are defined to be these coordinates: Ni(xi) = χi(xi), with i = 1, 2, 3, 4 denoting the corner
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points. The FEM interpolation (1) of a three-dimensional vector function, say F (x, t), can be defined
inside each linear tetrahedron K as

F (x, t) = χ1 (x) F1 (t) + χ2 (x) F2 (t) + χ3 (x) F3 (t) + χ4 (x) F4 (t) =
4

∑
j=1

χj (x) F j (t) , x ∈ K, (2)

by denoting F i (t) = F (xi, t), for i = 1, 2, 3, 4, nodes of the tetrahedron.160

The way the tetrahedral coordinates χi, i = 1, 2, 3, 4, are defined is by means of the previous
interpolating relation together with the summation constraint. This is, when one aims to define
the tetrahedron geometry and calculate any position inside the tetrahedron x = [x1 x2 x3]

>, we
compute

1
x1

x2

x3

 =


1 1 1 1

x1,1 x2,1 x3,1 x4,1

x1,2 x2,2 x3,2 x4,2

x1,3 x2,3 x3,3 x4,3




χ1 (x)
χ2 (x)
χ3 (x)
χ4 (x)

 ∴


χ1 (x)
χ2 (x)
χ3 (x)
χ4 (x)

 =
1

6υ


6υ a1 b1 c1

6υ a2 b2 c2

6υ a3 b3 c3

6υ a4 b1 c4




1
x1

x2

x3

 (3)

in order to obtain the tetrahedral coordinates system where the coefficients of the inverted matrix are
given by

a1 = x2,2x43,3 − x3,2x42,3 + x4,2x32,3, b1 = −x2,1x43,3 + x3,1x42,3 − x4,1x32,3, c1 = x2,1x43,2 − x3,1x42,2 + x4,1x32,2,

a2 = −x1,2x43,3 + x3,2x41,3 − x4,2x31,3, b2 = x1,1x43,3 − x3,1x41,3 + x4,1x31,3, c1 = −x1,1x43,2 + x3,1x41,2 − x4,1x31,2,

a3 = x1,2x42,3 − x2,2x41,3 + x4,2x21,3, b3 = −x1,1x42,3 + x2,1x41,3 − x4,1x21,3, c3 = x1,1x42,2 − x2,1x41,2 + x4,1x21,2,

a4 = −x1,2x32,3 + x2,2x31,3 − x3,2x21,3, b4 = x1,1x32,3 − x2,1x31,3 + x3,1x21,3, c4 = −x1,1x32,2 + x2,1x31,2 − x3,1x21,2.

Here, the abbreviation xij = xi − xj has been used, and the volume υ can be calculated with the
expression

6υ =x21,1 (x31,2x41,3 − x41,2x31,3) + x21,2 (x41,1x31,3 − x31,1x41,3) + x21,3 (x31,1x41,2 − x41,1x31,2) .

At this point, it is possible to calculate the spatial derivatives of any interpolated function ∂
∂x F (x, t)

in terms of the tetrahedral coordinates as

∂F (x, t)
∂x

=


∂F(x,t)

∂x1
∂F(x,t)

∂x2
∂F(x,t)

∂x3

 =
4

∑
j=1


∂F(x,t)

∂χj

∂χj
∂x1

∂F(x,t)
∂χj

∂χj
∂x2

∂F(x,t)
∂χj

∂χj
∂x3

 =
4

∑
j=1


1

6υ
∂F(x,t)

∂χj
aj

1
6υ

∂F(x,t)
∂χj

bj

1
6υ

∂F(x,t)
∂χj

cj

 , x ∈ K. (4)

The way to calculate the continuous stress-rate tensor field is through the derivation of a
continuous version of the velocities. Hence, we calculate the continuous velocity field by means
of the FEM, in which linear piece-wise polynomials are used to interpolate the velocity at any spatial
position inside the mesh. Let us explain how to calculate the discrete velocities of points. We suppose
that the displacement si of point pi in the time interval

(
tn, tn+1) can be defined -without loss of

accuracy- as infinitesimal, in the sense of si (tn) ≈ xi
(
tn+1)− xi (tn). We rely on the Taylor expansion:

xi (t) =
∞

∑
k=1

δtk

k!
dkxi

dtk

∣∣∣∣∣
t=to

= xi (t0) +
dxi
dt

∣∣∣∣
t=to

δt +
d2xi
dt2

∣∣∣∣
t=to

δt2

2
+ · · · , (5)

in order to calculate the discrete velocity vi of point pi as

vi (tn) =
dxi
dt

∣∣∣∣
t=tn
≈

xi
(
tn+1)− xi (tn)

δt
=

xi
(
tn+1)− xi (tn)

(tn+1 − tn)
, (6)

where the second (and higher) order terms are neglected.161
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With the previous result in hand, we then generate a continuous version of (6) by replacing it in162

(2).163

2.3. Elemental strain-rate calculation164

Having defined the continuous space of velocities, we can calculate the derivatives along each165

one of the spatial directions and derive the strain-rate tensor field.166

Following the continuum mechanics concepts in [15] and assuming small deformations, the
strain-rate tensor is calculated as

E (x, tn) :=
1
2

(
∇v (x, tn) + (∇v (x, tn))>

)
,

with ∇v the gradient of velocity. Each component of the 3× 3−tensor is developed in Cartesian
coordiantes as

E11 E12 E13

E21 E22 E23

E31 E32 E33

 =


∂v1(x,tn)

∂x1
1
2

(
∂v1(x,tn)

∂x2
+ ∂v2(x,tn)

∂x1

)
1
2

(
∂v1(x,tn)

∂x3
+ ∂v3(x,tn)

∂x1

)
1
2

(
∂v2(x,tn)

∂x1
+ ∂v1(x,tn)

∂x2

)
∂v2(x,tn)

∂x2
1
2

(
∂v2(x,tn)

∂x3
+ ∂v3(x,tn)

∂x2

)
1
2

(
∂v3(x,tn)

∂x1
+ ∂v1(x,tn)

∂x3

)
1
2

(
∂v3(x,tn)

∂x2
+ ∂v2(x,tn)

∂x3

)
∂v3(x,tn)

∂x3

 .

The six independent components of the strain-rate tensor can be arranged using Voigt’s notation
into a 6-component strain-rate vector as follows:

E (x, tn) =
[

E11 (x, tn) E22 (x, tn) E33 (x, tn) γ12 (x, tn) γ23 (x, tn) γ31 (x, tn)
]>

(7)

where γ12 (x, t) = 2E12 (x, t) , γ23 (x, t) = 2E23 (x, t) and γ13 (x, t) = 2E13 (x, t) are the Shear-Rate
Strains. With this notation in hand, the strain-rate tensor can be calculated as

E (x, tn) =



E11 (x, tn)

E22 (x, tn)

E33 (x, tn)

γ12 (x, tn)

γ23 (x, tn)

γ31 (x, tn)


=



∂
∂x1

0 0
0 ∂

∂x2
0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0
0 ∂

∂x3
∂

∂x2
∂

∂x3
0 ∂

∂x1


v1 (x, tn)

v2 (x, tn)

v3 (x, tn)

 , (8)

by defining the matrix operator of derivatives over the velocity field. In the case of the right hand side
velocities, we can arrange a node-wise vector of discrete velocities in the tetrahedron K, as

V (K, tn) =
[
v1,1 (tn) v1,2 (tn) v1,3 (tn) v2,1 (tn) v2,2 (tn) . . . v4,2 (tn) v4,3 (tn)

]>
.

Using the definition of the finite element interpolation of any function (2) together with its partial167

derivatives (4), and replacing those in (8), we obtain168

E (x, tn) =
1

6υ

4

∑
j=1



aj
∂

∂χj
0 0

0 bj
∂

∂χj
0

0 0 cj
∂

∂χj

bj
∂

∂χj
aj

∂
∂χj

0

0 cj
∂

∂χj
bj

∂
∂χj

cj
∂

∂χj
0 aj

∂
∂χj



χj (x)Vj,1 (tn)

χj (x)Vj,2 (tn)

χj (x)Vj,3 (tn)

 . (9)
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Now, the operation ∂χi
∂χj

Fj = Fi since ∂χi
∂χj

= δij, with δij the Kronecker delta. Hence, E (K, tn) can be

calculated as the product of the matrix S (K) and the vector V (K, tn). This is,

E (K, tn) = S (K, tn)V (K, tn) , (10)

with x ∈ K and the discrete matrix S (K, tn) defined as

S (K, tn) =
1

6υ



a1 0 0 a2 0 0 a3 0 0 a4 0 0
0 b1 0 0 b2 0 0 b3 0 0 b4 0
0 0 c1 0 0 c2 0 0 c3 0 0 c4

b1 a1 0 b2 a2 0 b3 a3 0 b4 a4 0
0 c1 b1 0 c2 b2 0 c3 b3 0 c4 b4

c1 0 a1 c2 0 a2 c3 0 a3 c4 0 a4


. (11)

Thus, this last matrix can be computed solely in terms of the coordinates of the nodes.169

Up to this point, we have demonstrated how to calculate the elemental strain-rate. Now, our
purpose is to identify the data cloud transformation throughout the visualization of the strain-rate
patterns. This is, we need to identify the extrema strain-rates and their orientations. In a formal
sense, this is the well-known Eigenvalues and Eigenvectors problem, which is stated as: if T is a linear
transformation from a vector space V over a field F into itself, and v is a vector in V that is not the zero
vector, then v is an eigenvector of T if T(v) is a scalar multiple of v. Knowing that by definition the
second order strain-rate tensor is a linear operator from a vector field into another first-order tensor
field, the previous definition applied to the strain-rate tensor leads to:

[E (K, tn)− Iλ (K, tn)] n (K, tn) =0, (12)

where I is the 3× 3 identity tensor, n (K, tn) ∈ R3 is a normalized (non zero), i.e. unit, vector called170

eigenvector, and λ (K, tn) ∈ R is the eigenvalue associated with the eigenvector. In other words, an171

eigenvector is a vector that changes by only a scalar factor when the strain-rate tensor is applied172

to it, resulting in a vector parallel to itself. By solving (12) one obtains three different eigenvalues173

λ1 (K, tn) , λ2 (K, tn) , λ3 (K, tn) , and three eigenvectors n1 (K, tn) , n2 (K, tn) , n3 (K, tn) , associated with174

each eigenvalue.175

The eigenvalues and eigenvectors describe the principal magnitudes and orientations of the176

strain-rate tensor: since the diagonal components of the strain-rate tensor E11 (K, tn) , E22 (K, tn) , and177

E33 (K, tn) have different values in different reference systems, one finds with the set of eigenvalues the178

extreme -maximum and minimum- possible values that any of these components may take. Indeed,179

the maximum and minimum stress-rates -and their orientations- are related with the maximum and180

minimum eigenvalues. In this work, we follow the notation in which positive values for the eigenvalues181

represent the extension-rate and negative values represent contraction-rate. Hence, λ1 (K, tn) is the182

maximum and positive eigenvalue meaning extension-rate, λ3 (K, tn) is the minimum and negative183

eigenvalue meaning contraction-rate, and λ2 (K, tn) is either extension or contraction rate, but in184

smaller magnitude.185

Hence, with the extrema strain-rates at the elemental level we can reveal the deformation186

trend of the data cloud, and above all, locating which regions suffer the most abrupt change in187

the time-span. We also propose to draw the family of curves -trajectories- that are instantaneously188

tangent to λ1n1 (K, tn) , λ2n2 (K, tn) , and λ3n3 (K, tn) in the complete mesh Ω, and thus, illustrate the189

main patterns of change inside the data cloud. Note that λn (K, tn) is a composition of a vector using190

tensor components. Those differ in formal definition, but we use this concept merely for visualization191

purposes.192
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Table 1. Tetrahedral elements derived from the Delaunay Triangulation of the set of points.

Element (id) First Vertex Second Vertex Third Vertex Fourth Vertex
1 Eixample LesCorts Gracia Sarria
2 SantAndreu Horta SantMarti NouBarris
3 Sants SantAndreu SantMarti NouBarris
4 LesCorts Eixample Sants CiutatVella
5 Gracia SantMarti Horta Sarria
6 Gracia SantMarti Sarria LesCorts
7 Eixample Gracia Sants CiutatVella
8 CiutatVella SantAndreu Sants NouBarris
9 Sarria SantMarti Horta LesCorts
10 Gracia SantAndreu Sants CiutatVella
11 Gracia SantAndreu CiutatVella NouBarris
12 Sarria Eixample LesCorts CiutatVella
13 Horta SantAndreu Gracia NouBarris
14 SantAndreu SantMarti Horta Gracia
15 LesCorts Eixample Gracia Sants
16 LesCorts Gracia SantMarti Sants
17 Gracia SantAndreu SantMarti Sants

3. Results193

In the present section, we demonstrate the application of this methodology to quantify the194

temporal change of an urban multivariate system (see Figure 3). First, we cite the case study195

that includes the multivariate description of the ten districts of Barcelona, and whose reduced196

three-dimensional data-set is used as the starting point. Then, we derive the strain-rate state of197

the data-set, pursuing the extension and contraction patterns visualization. Finally, we close this198

section with insights about the city transformation implied in the strain-rate state of the data cloud.199

3.1. Time-dependent data cloud from an urban multivariate description200

The time-dependent data cloud comes from the PCA output of a multivariate description of the201

city of Barcelona. Since 1987, the city has been divided into 10 administrative districts, which are the202

largest territorial units of the city and can be compared with neighborhoods in a common metropolitan203

area: Ciutat Vella, Eixample, Gràcia, Les Corts, Sarria, Sant Andreu, Sant Marti, Horta, Sants, and Nou204

Barris. Barcelona has a population of approximately 1.6 million inhabitants living in 10216 ha. The205

inclusion of all the 10 districts in the multivariate description has been aimed to represent the city at its206

overall scale and to allow comparisons between them.207

The raw multivariate description -from which the PCA is calculated- comprises the data of 40208

environmental, economic, and social indicators for the ten districts in the time span of t0 = 2003 ≤209

tn ≤ 2015 = tN , n = 0, 1, .., 12. Hence, the case study data cloud comes from a PCA reduction of the210

higher-dimensional multivariate data-set Yn (tn) ∈ R40, into a lower-dimensional one Xn (tn) ∈ R3
211

that possesses only three independent dimensions: PC1, PC2, and PC3. The dimensionally-reduced212

data-set from the application of the PCA is presented in Appendix A. Hence, the three-dimensional213

and time-dependent data cloud is composed by the coordinates Xn (tn) of the n = 10 total number of214

points pi defined in the sequence of N = 12 time-steps from 2003 to 2015, with the time-step size of215

δt = 1 year. These points are displayed in Figure 2, where all the observations -districts each year- in216

the time-span are included.217

As the first step of our methodology, we apply the Delaunay Triangulation (DT) to the data218

cloud. Specifically, we calculate the DT to the set of coordinates at each time-step Xn (tn). This219

results in a mesh Th(tn) composed by nel = |K| non-overlapping tetrahedron. Table 1 expands the220

resulting triangulation for year 2003, with the vertices information for the nel = 17 tetrahedron.221

Since the position xi (tn) of a given point pi at a later time-step can surpass the initial tetrahedron’s222

circumscribed sphere, we recalculate the mesh triangulation at each time step tn, n = 1, .., 11.223
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Figure 2. Three-dimensional and time-dependent data cloud from the case study.
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Table 2. Principal strain-rate components. Eigenvalues and Eigenvectors of the strain-rate tensor at the
year 2003. The extension is denoted by the maximum eigenvalue λ1, and contraction is denoted by the
minimum eigenvalue λ3.

Element (id) λ1 (year−1) λ2 (year−1) λ3 (year−1) n>1 n>2 n>3
1 0,53152326 0,03372761 -0,5035305 [-0.4030 -0.7620 0.5069] [-0.8521 0.1104 -0.5116] [0.3339 -0.6381 -0.6938]
2 0,82703046 -0,07233917 -3,26208499 [0.0599 0.4379 0.8970] [0.9979 -0.0488 -0.0428] [0.0250 0.8977 -0.4399]
3 1,86537595 0,0239402 -1,26311701 [-0.2846 -0.7630 0.5804] [0.8705 0.0479 0.4898] [-0.4015 0.6447 0.6505]
4 0,13368209 0,03257601 -0,09645259 [0.3448 0.0267 0.9383] [0.6847 -0.6909 -0.2320] [0.6421 0.7225 -0.2565]
5 0,49758344 0,15637449 -0,04820077 [-0.2529 0.9667 0.0396] [-0.3025 -0.1179 0.9458] [0.9190 0.2272 0.3223]
6 0,95472589 0,0373597 -0,54006708 [-0.0595 -0.8341 0.5484] [0.9779 0.0616 0.1998] [-0.2005 0.5482 0.8120]
7 0,24389104 -0,02462416 -0,21220276 [0.9802 -0.0490 -0.1918] [0.0873 0.9766 0.1964] [0.1777 -0.2093 0.9616]
8 0,04516871 -0,00558049 -0,29509916 [-0.5143 -0.5503 -0.6578] [0.7221 -0.6916 0.0139] [0.4626 0.4679 -0.7531]
9 0,83841605 0,06226881 -0,72504166 [-0.4963 0.7789 0.3834] [0.7282 0.1330 0.6723] [-0.4727 -0.6128 0.6332]
10 0,08250367 -0,007911 -0,1849469 [-0.9511 0.1145 -0.2870] [0.0253 -0.8969 -0.4415] [-0.3079 -0.4272 0.8501]
11 0,1403248 -0,00962214 -0,34760551 [0.1721 -0.7223 -0.6698] [0.9327 -0.0992 0.3467] [0.3169 0.6844 -0.6566]
12 0,28802797 -0,02754418 -0,54411227 [-0.1025 -0.4296 -0.8972] [0.6308 -0.7255 0.2753] [0.7692 0.5377 -0.3453]
13 5,25376147 -0,1612729 -2,63828711 [-0.2599 -0.7733 0.5783] [0.9210 -0.0187 0.3890] [-0.2900 0.6338 0.7171]
14 2,58304682 0,22953554 -2,02948589 [-0.4920 0.6994 0.5184] [0.7802 0.0900 0.6190] [-0.3863 -0.7091 0.5900]
15 0,28104681 0,05995401 -0,17975011 [-0.6611 -0.5949 0.4572] [-0.7488 0.4850 -0.4518] [-0.0470 0.6410 0.7661]
16 0,12268815 0,06554156 -0,16290843 [-0.0458 0.8952 -0.4432] [0.9468 0.1805 0.2666] [-0.3187 0.4074 0.8559]
17 0,17492291 0,11156825 -0,27224695 [0.5895 -0.1016 0.8014] [-0.2177 0.9354 0.2788] [-0.7779 -0.3388 0.5292]

3.2. Principal strain-rates224

We compute the strain-rate tensor of each tetrahedron with the interpolated version of the225

velocities for the case study, such that linear piece-wise polynomial functions defined inside each226

tetrahedron are used in the FEM interpolation. Certainly, we suppose that the velocities come from an227

infinitesimal analysis in which the higher order terms of the displacement are neglected. The gradients228

inside each tetrahedron are also considered to be constant since the polynomial functions are of first229

order. Applying (10), we compute the strain-rate tensor of every tetrahedron, E(K, tn) for time-steps230

n = 0, . . . , 11, since displacements cannot be calculated for the last year t12 = 2015. Note that the231

strain-rate tensor units are year−1 (for the case study).232

We are interested in the magnitude and orientations of the principal strain-rates -extension and233

contraction- at the elemental level. Hence, the next step is to solve (12) and obtain the eigenspace234

components (eigenvalues and eigenvectors) of the strain-rate tensor. For the sake of conciseness, we235

list in Table 2 the results of the principal strain-rates for the year 2003 solely.236

The application of this methodology to the case study is displayed graphically in Fig. 3, beginning237

with the map of the ten districts of Barcelona as the abstraction of the multivariate and time-dependent238

dataset. The three-dimensional coordinates arising from the PCA output are displayed next. We239

also present next the triangulated mesh at the initial year 2003, where kinematic depictions of the240

point-wise displacements following (6) are plot as velocity vectors. It is clear from the visual inspection241

that the quantitative analysis of the temporal transformation is greatly justified, so that we calculate242

the strain-rate tensor over the FEM interpolation of discrete velocities and compute its principal243

components.244

3.2.1. Trajectory patterns of the principal strain-rates245

In favor of the analysis, we display the principal strain-rate components in a graphical way.246

One first approach is to illustrate the patterns of extension-rate and contraction-rate using a vector247

representation, to what is referred as the Strain-rate diagrams [21]. In that approach, the centroid of the248

tetrahedron serves as the location from which the principal components of the strain-rate tensor give249

a representative result inside the element. We draw the strain-rate diagram of the year 2003 in the250

sixth step of Fig. 3, where extension-rate is represented by symmetric blue vectors λ1n1 pointing out251

the centroid, and contraction-rate is represented by the red vectors λ3n3 pointing in. But, it is hard to252
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Figure 4. The trajectory patterns of the principal strain-rates at the year 2003. First principal strain-rate
(top), second principal strain-rate (middle), and third principal strain-rate (bottom).
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visualize the distribution of the principal strain-rates and their three-dimensional orientations using253

this type of illustration.254

Our approach to ease the visualization and understanding of the strain-rate state is to draw255

the trajectories of the principal strain-rate components, as used for displaying stresses in beams and256

columns in [36]. In the following we demonstrate our findings of the strain-rate state at the year257

2003 using the trajectories visualization. In Figure 4 we display the principal components trajectories,258

where the lines are colored by the magnitude of the principal strain-rate and those are parallel to259

its orientation. From these representations, we can understand the magnitude and orientation of260

each principal component of the strain-rate tensor. And more importantly, the trajectory patterns261

overlapped with the coordinates of the districts (in Figure 2) provide information about local regions262

of extension and contraction rates inside the urban description, where extension-rate patterns means263

differentiation and contraction-rate patterns means clustering -or homogenization-.264

In the case of the first strain-rate component which is shown at the top of Fig 4, we observe that265

the larger magnitude of extension-rate is localized in between Nou Barris Sant Andreu, Sant Marti,266

Horta and Sants, and that it decreases near Eixample, Les Corts, and Ciutat Vella. Therefore, the main267

transformation is located at the first cluster of districts: Nou Barris, Sant Andreu, Sant Marti, and268

Horta. The extension-rate patterns are oriented from this cluster apart to Ciutat Vella, suggesting that269

there is a divergence of Ciutat Vella from the clustered districts. Indeed, the main extension pattern270

is oriented along the PC3 dimension and covers the clustered districts. It is of lesser importance the271

pattern which comprises the districts of Nou Barris, Sant Marti, and Sants and ends at Gracia and272

Eixample.273

Contraction-rate, on the other hand, is expressed by the third principal strain-rate component,274

which by definition is orthogonal to the first and second principal strain-rates. The third principal275

strain-rate component is shown at the bottom of Fig. 4, where we can appreciate this orthogonality by276

noticing that the trajectories of the third principal strain-rate are perpendicular to the extension-rate277

pattern. We observe that the contraction-rate trajectories are mostly homogeneous, with a minor278

importance between Sant Marti, Sant Andreu, Nou Barris and Horta districts, and completely279

declining at Sants and Gracia. This direct relation between extension and contraction is found in solids280

deformations, where it is ruled by the conservation of mass -or Poisson ratio- [15].281

Apart from the extension and contraction patterns of the mesh, locations of smaller strain-rates282

are represented by the second principal component. Considering the middle plots of Fig. 4, we283

recognize that the orientation of this strain-rate component is concentrated in between Les Corts,284

Sarria, Horta and Nou Barris, and that it is directed towards Eixample, fading at Ciutat Vella. This285

principal strain-rate component is certainly orthogonal to the first and second components, but it286

implies a strain-rate pattern that is two orders of magnitude smaller.287

In the previous lines we have demonstrated the application of the trajectories diagrams of the288

principal strain-rate components as a powerful visualization technique of the three-dimensional289

strain-rate state of a data cloud. The strain-rate patterns can be used to analyze the system’s290

development, in example, with the identification of regions with a special behavior: although there are291

some clustered districts in the case study, all of those are separating at a high rate in dimensions 1 and292

3. Hence, those are differentiating themselves in the PC1 and PC3 description. On the contrary, low293

strain-rates can be an indication of stagnation, and thus, an expression of inactivity where an abrupt294

change is not probably to occur. That is specially the case of the Ciutat Vella district, which is separated295

from the clustered nodes but it is neither diverging nor converging to them.296

One final remark to the visualization of strain-rate patterns is that the principal strain-rate297

trajectory plots are mesh independent: different triangulations will produce different positions,298

magnitudes and orientations of the principal strain-rate components, nevertheless, trajectory lines299

coincide for all of them.300
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Table 3. Time-averaged eigenspace components.

Element(id) λ1 (year−1) λ2 (year−1) λ3 (year−1) n>1 =⇒ λ1 n>2 =⇒ λ2 n>3 =⇒ λ3

1 0,1157 -0,0086 -0,0687 [-0.4941 -0.4365 0.7519] [0.1770 0.1339 -0.9751] [0.1682 0.8390 0.5175]
2 0,5087 -0,0085 -0,8859 [-0.5777 0.5570 0.5966] [-0.4259 -0.1592 -0.8907] [-0.0636 -0.9309 0.3596]
3 0,3919 -0,0440 -0,1662 [-0.3746 -0.7054 0.6017] [-0.9963 0.0335 0.0789] [0.3127 -0.7926 -0.5234]
4 0,0868 0,0041 -0,0193 [0.4684 0.8217 0.3247] [-0.0619 0.3756 -0.9247] [-0.7437 -0.4144 -0.5246]
5 0,0435 -0,0326 -0,0659 [-0.2319 0.8799 0.4148] [-0.0891 -0.1728 0.9809] [0.2229 -0.2816 -0.9333]
6 0,1834 0,0096 -0,0536 [-0.2271 -0.8440 0.4859] [-0.6281 0.2260 -0.7446] [-0.4216 0.8544 0.3038]
7 0,0647 -0,0059 -0,0485 [0.5157 -0.6416 0.5678] [0.0741 -0.9932 0.0893] [0.2985 -0.4332 -0.8504]
8 0,1436 -0,0198 -0,0174 [-0.3994 -0.4110 0.8194] [-0.1094 0.9614 -0.2525] [0.3984 -0.8684 -0.2952]
9 0,6311 0,0178 -0,1144 [-0.2472 -0.6917 0.6785] [0.2277 0.2955 0.9278] [0.1771 0.8523 0.4921]

10 0,0355 0,0098 -0,0745 [0.4275 0.8923 -0.1449] [0.8566 -0.5130 -0.0551] [-0.5198 0.2220 -0.8249]
11 0,0452 -0,0239 -0,1039 [0.4742 -0.0948 0.8753] [-0.7018 -0.6930 0.1650] [-0.3132 -0.9345 -0.1693]
12 0,2054 0,0336 -0,0703 [-0.5086 -0.8385 -0.1954] [0.1867 0.6566 0.7307] [0.0460 -0.4726 -0.8801]
13 1,1642 -0,0218 -0,3192 [-0.4080 -0.6299 0.6609] [-0.9632 0.2605 0.0654] [-0.5136 0.5798 -0.6325]
14 0,1923 0,0415 -0,2640 [-0.4758 0.8168 0.3264] [0.9570 0.2693 -0.1076] [0.4308 -0.2715 -0.8606]
15 0,0552 0,0085 -0,0363 [-0.2364 0.6160 0.7514] [0.7518 0.2783 -0.5978] [0.6817 0.6544 -0.3270]
16 0,0438 0,0175 -0,0059 [0.2794 0.9257 -0.2549] [0.8449 -0.2441 0.4760] [-0.5430 -0.2892 -0.7883]
17 0,2113 -0,0196 -0,3129 [-0.0062 0.9656 0.2599] [0.0760 0.2441 0.9668] [0.0666 -0.9959 -0.0609]

Table 4. Maximum and minimum eigenspace components in the time span.

Element(id) L∞(λ1) Year n>1 =⇒ L∞(λ1) L−∞(λ3) Year n>3 =⇒ L−∞(λ3)

1 0,5315 2003 [-0.4030 -0.7620 0.5069] -0,5035 2003 [0.3339 -0.6381 -0.6938]
2 2,0893 2010 [-0.5094 0.8338 0.2130] -3,2621 2003 [0.0250 0.8977 -0.4399]
3 3,0249 2009 [-0.0766 -0.8956 0.4383] -1,2631 2003 [-0.4015 0.6447 0.6505]
4 0,4860 2010 [0.5309 0.8024 0.2724] -0,1901 2005 [0.8017 0.5583 -0.2134]
5 0,6321 2014 [0.0691 0.9893 -0.1286] -0,3019 2010 [-0.3219 0.5283 0.7857]
6 1,1842 2006 [0.1651 -0.9360 0.3110] -0,9833 2005 [0.2453 -0.7335 -0.6338]
7 0,2772 2010 [0.0108 -0.9360 0.3518] -0,2122 2003 [0.1777 -0.2093 0.9616]
8 0,5104 2010 [-0.4614 -0.6584 0.5946] -0,5374 2009 [-0.2484 -0.6025 0.7585]
9 4,3858 2010 [-0.2509 -0.6991 0.6696] -2,4530 2010 [0.4203 -0.7018 -0.5752]

10 0,3753 2010 [-0.4800 0.8570 -0.1874] -0,3477 2009 [0.4401 -0.6943 0.5695]
11 0,5210 2009 [-0.0542 0.3205 0.9457] -0,5164 2009 [0.3738 0.8847 -0.2784]
12 1,5272 2008 [-0.6804 -0.7328 0.0027] -0,7379 2007 [0.4304 0.8624 -0.2666]
13 5,2538 2003 [-0.2599 -0.7733 0.5783] -4,6094 2008 [0.2022 -0.9445 0.2588]
14 2,5830 2003 [-0.4920 0.6994 0.5184] -2,0295 2003 [-0.3863 -0.7091 0.5900]
15 0,2810 2003 [-0.6611 -0.5949 0.4572] -0,4221 2010 [0.0927 -0.9519 -0.2919]
16 0,2659 2009 [0.4571 0.7618 -0.4591] -0,1636 2012 [-0.5501 0.7352 0.3961]
17 1,4269 2009 [-0.0935 0.9952 0.0288] -1,1715 2010 [0.1262 0.9888 0.0798]
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Figure 5. The trajectory patterns of the time-averaged principal strain-rates. Averaged first principal
strain-rate (top), averaged second principal strain-rate (middle), and averaged third principal strain-rate
(bottom).
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3.3. Temporal statistics of the principal strain-rates301

Plots of the principal strain-rate components trajectories can be completed for the remaining years302

of the time span, tn, n = 1, 2, ..., 11, and those are attached as meta-data in the electronic version of303

the present article. Readings of the strain-rate streamline patterns for those years can be completed304

straightforwardly as discussed in the paragraphs above. Nevertheless, we perform some temporal305

statistics of the strain-rate states, where the principal strain-rates calculated for each time-step are306

accounted as the temporal events: each strain-rate state is accounted as a single observation.307

The first statistics that we perform is the time-average of the principal strain-rate components,308

separated as the first, second, and third principal strain-rates. Table 3 presents the time-averaged309

results of the principal strain-rates. Also, in the last schematic of Fig. 3, we plot the strain-rate diagram310

of the time-averaged principal strain-rates at the time-averaged centroid of tetrahedron elements. This311

figure gives insights about the orientation and magnitude of the first and third principal strain-rates,312

again by plotting the symmetric arrows pointing out for extension and pointing in for contraction. We313

complete our analysis by drawing the trajectory curves of those time-averaged strain-rate diagrams in314

Fig. 5.315

With the aid of Figures 2 and 5 we analyze the trajectory patterns of the time-averaged strain-rate316

state of the data cloud. In the case of the first and third strain-rate components, those are comparable317

to the ones described in the previous paragraphs for the year 2003. We observe a high extension-rate318

behavior between Nou Barris, Sant Andreu and Horta in the PC1 dimension. The contraction-rate,319

on the other side, is oriented in the PC2 dimension and it is mostly located in between Gracia and320

Eixample and decreases near Sants. In the case of the contraction-rate in the PC3 dimension, it is321

mostly present between Nou Barris and Horta, and in smaller magnitude between Horta and Sant322

Andreu. The contraction-rate between the remaining districts is negligible in all dimensions. Both the323

extension and contraction rates demonstrate trajectory patterns which are directed from the clustered324

districts towards the separated district of Ciutat Vella. However, the magnitude of the time-averaged325

strain-rates is much smaller than the ones obtained for year 2003. In the case of the time-averaged326

second strain-rate, its magnitude is greater for Eixample, Les Corts, and Sarria nodes than for the327

clustered nodes. The orientation of the trajectories involving this second strain-rate component is328

parallel to the one linking Eixample and Les Corts to the clustered nodes.329

The second temporal statistics that we perform is to calculate L∞−norm of the temporal strain-rate330

distribution. That is, to calculate the year where the maximum extension and contraction rates occur331

within each tetrahedron. The results of the application of the L∞−norm to the case study are presented332

in Table 4. We observe that the maximum strain-rates occur at year 2003: either expansion or contraction.333

Also, that important contraction-rate magnitudes take place between the years 2003 and 2010. This is334

not the case of the extension-rate magnitudes, which are more prevalent after year 2008.335

4. Conclusions336

In the present article, we have quantified the temporal change of a time-dependent and337

three-dimensional dataset. Contrary to other approaches [1], we have calculated the three-dimensional338

strain-rate state of the dataset based on the interpolation of discrete point-wise displacements -or339

data variations-. We have applied a technique in continuum mechanics using a FEM interpolation of340

non-overlapping linear tetrahedral elements that spans the three-dimensional dataset.341

The methodology has demonstrated to exhibit regions of major deformation-rate. Departing from342

the calculation of the numerical strain-rate values, we have introduced some data-visualization343

techniques that help to locate the magnitudes and orientations of the strain-rate state in the344

three-dimensional framework. This is the case of the principal strain-rate trajectories, whose have345

demonstrated to be more detailed than other possible visualization techniques, e.g. strain-rate diagrams346

in [24,28]. The main difference with strain-rate diagrams is the ability of the former to visualize a347

continuum version of the strain-rate inside the dataset, and to separate the analysis into each principal348

component of the strain-rate state, while being mesh independent.349

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2019                   doi:10.20944/preprints201906.0114.v1

Peer-reviewed version available at Appl. Sci. 2019, 9, 2920; doi:10.3390/app9142920

https://doi.org/10.20944/preprints201906.0114.v1
https://doi.org/10.3390/app9142920


The calculation of the strain-rate state shows that the methodology is suitable for quantifying350

the temporal change of a reduced three-dimensional dataset describing the social, economic and351

environmental state of the city of Barcelona. In particular, high strain-rates are associated with the352

localized deformation of regions that represent the districts of the city in the time span of 13 years. It is353

similar to Cluster Analysis [37–39] or Distance measures [40], in the sense that the method portrays the354

similarities and differences between the districts of the city. The distinctive attribute of the present355

work is the feasibility to quantify the districts’ differentiation with time: the strain-rate tensor provides356

quantitative information about local regions of extension and contraction, where extension-rate patterns357

means differentiation and contraction-rate patterns means clustering -or homogenization-. Conclusions358

about the divergence or clustering of districts in time can therefore be stated. For example, it reveals359

the time, location, and orientation of pressures affecting the inhabitants of certain districts of the city,360

essentially those which are rapidly diverging from the rest (e.g. the case of Ciutat Vella for the case361

study). This methodology locates regions where detailed action is necessary, as well as the foretelling362

of possible ruptures in the system.363

Finally, we would like to say that this method is not limited to the study of the data change,364

but can also be applied to other descriptions: a natural sequel to the present article is the study of365

the time-dependent data cloud as a deforming elastic solid under equilibrium. Solving the inverse366

problem, namely the identification of the constitutive moduli of the deforming material emerges as the367

first step for predicting the system’s future state given its historical data.368
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9. Kohler, M.; Krzyżak, A. Nonparametric estimation of non-stationary velocity fields from 3D particle392

tracking velocimetry data. Computational Statistics & Data Analysis 2012, 56, 1566–1580.393

10. Aguirre-Pablo, A.; Aljedaani, A.B.; Xiong, J.; Idoughi, R.; Heidrich, W.; Thoroddsen, S.T. Single-camera 3D394

PTV using particle intensities and structured light. Experiments in Fluids 2019, 60, 25.395

11. Keim, D.A. Information visualization and visual data mining. IEEE transactions on Visualization and396

Computer Graphics 2002, 8, 1–8.397

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2019                   doi:10.20944/preprints201906.0114.v1

Peer-reviewed version available at Appl. Sci. 2019, 9, 2920; doi:10.3390/app9142920

https://doi.org/10.20944/preprints201906.0114.v1
https://doi.org/10.3390/app9142920


Table A1. Coordinates (seen as the component loadings of the PCA analysis) for the ten districts in the
temporal span.

Ciutat Vella Eixample Gracia
Year PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3
2003 -0,8063 9,0563 -0,8014 4,2613 1,8666 -4,832 1,05 0,6006 -5,1456
2004 -1,2263 8,749 0,0207 4,444 1,7361 -4,6018 0,4589 0,4104 -3,8634
2005 -1,1214 8,1463 -0,5941 4,538 1,4541 -4,6755 1,105 0,0923 -4,7119
2006 -1,5671 7,6138 -0,1879 4,2079 1,6011 -4,3598 0,7275 -0,1042 -4,0577
2007 -1,1198 7,2281 0,0579 4,1476 1,0994 -3,7909 0,4875 -0,305 -3,1769
2008 -1,5106 6,9424 0,4942 3,9782 1,0165 -3,4243 0,1741 -0,8197 -2,7533
2009 -1,3956 7,5225 0,9368 3,685 0,7901 -3,3483 0,2523 -0,6319 -3,1446
2010 -0,9735 7,7025 1,6649 3,7625 0,4337 -2,9882 0,0594 -0,7371 -2,9213
2011 -1,2043 7,9648 1,9629 3,3624 0,6786 -2,9333 0,0113 -0,6152 -2,9398
2012 -1,195 7,8653 1,7417 3,0545 0,9032 -2,8587 -0,1365 -0,5935 -2,8493
2013 -1,5913 7,9264 1,9916 2,9124 0,8291 -2,6614 -0,5758 -0,3804 -2,6808
2014 -1,3629 8,3386 2,2818 3,1193 0,867 -2,4646 -0,4876 -0,7186 -2,4188
2015 -1,2049 8,9012 2,4749 3,5172 0,8941 -2,8168 -0,3677 -0,3717 -2,4571

Horta Les Corts Nou Barris
Year PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3
2003 -2,1138 -1,2904 -1,4894 4,1613 -0,1746 2,4413 -3,9792 -0,6683 -2,2832
2004 -1,9348 -1,6926 -1,2007 4,2907 -0,4407 3,246 -4,3116 -0,8449 -1,6886
2005 -1,9037 -1,9865 -1,2151 4,72 -0,9836 3,0771 -4,1319 -1,0375 -1,7496
2006 -2,0135 -2,068 -0,7788 4,2483 -1,1456 4,3327 -4,5379 -1,1949 -1,1161
2007 -2,0524 -2,4994 -0,2639 4,9414 -1,5988 4,5201 -4,4199 -1,6649 -0,5806
2008 -2,2745 -2,6368 -0,0178 4,6463 -2,081 4,7669 -4,5522 -2,0702 -0,4074
2009 -2,203 -2,4633 -0,2194 4,3805 -2,0041 4,7494 -4,3531 -1,8088 -0,7178
2010 -2,3921 -2,5868 -0,1021 3,9936 -1,4523 4,6517 -4,4486 -2,0712 -0,3091
2011 -2,751 -2,4149 0,1039 3,6955 -1,41 4,9955 -4,9566 -1,9717 -0,0125
2012 -2,94 -2,4159 0,1586 3,8331 -1,4371 4,5223 -5,0669 -1,7986 -0,0275
2013 -3,1722 -2,3885 0,2543 3,6767 -1,4507 4,9202 -5,5219 -1,7744 0,214
2014 -3,4071 -2,5664 0,5601 3,7339 -1,6226 5,1188 -5,4769 -1,9184 0,3528
2015 -3,4105 -3,0084 0,8318 3,6617 -1,6611 5,1225 -5,5952 -2,3473 0,6067

Sant Andreu Sant Marti Sants
Year PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3
2003 -1,9206 -0,7244 -2,038 -1,6692 -0,6515 -0,759 -0,4118 2,8214 1,4929
2004 -2,3282 -0,8237 -1,2921 -2,0666 -0,9143 0,1126 -0,4382 2,7054 1,9119
2005 -2,2532 -1,0002 -1,5723 -1,8884 -1,2945 -0,2293 -0,2215 2,1389 1,7699
2006 -2,5938 -1,0519 -1,0073 -2,1435 -1,0797 0,6638 -0,321 2,0008 2,104
2007 -2,5244 -1,4196 -0,5319 -2,2487 -1,4918 1,1851 0,1661 1,5314 2,1307
2008 -2,5551 -1,8275 -0,6822 -2,2779 -1,9199 1,2394 -0,3843 0,6045 2,3897
2009 -2,772 -1,4689 -0,812 -2,2868 -1,6089 0,9544 -0,7046 0,5952 2,4362
2010 -3,0476 -1,8197 -0,1474 -2,4825 -2,1435 1,8678 -0,7341 1,5812 2,6913
2011 -3,2915 -1,7145 -0,1452 -2,4366 -1,9662 1,5397 -1,0958 0,1433 2,3358
2012 -3,3955 -1,8174 -0,1092 -2,5843 -1,9311 1,5931 -1,0935 0,5496 2,3024
2013 -3,7081 -1,7173 0,0948 -3,0101 -1,7819 1,6588 -0,961 0,3743 2,6883
2014 -3,5488 -1,8093 0,0797 -2,732 -1,9099 1,6373 -0,9836 0,4766 2,9893
2015 -3,4406 -1,5402 -0,0642 -2,6473 -1,8349 1,4236 -0,9148 0,4841 2,9255

Sarria
Year PC1 PC2 PC3
2003 6,9446 -0,3658 -2,1205
2004 6,6038 -0,6365 -0,9552
2005 7,2135 -0,9469 -1,7803
2006 6,6584 -1,2802 -0,9586
2007 6,5343 -1,7212 -0,0213
2008 6,3394 -2,261 0,3627
2009 6,4824 -2,2093 -0,0221
2010 5,9119 -2,0589 0,2891
2011 5,7193 -1,7978 -0,0559
2012 5,716 -2,0188 0,2245
2013 5,3182 -2,1666 0,5166
2014 5,4857 -2,3904 0,6632
2015 5,4919 -2,1922 0,4949
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central anatolia: GPS implications. Journal of Geodynamics 2013, 67, 78–96.435

32. Grafarend, E. Criterion matrices for deforming networks. In Optimization and design of geodetic networks;436

Springer, 1985; pp. 363–428.437

33. Grafarend, E.W. Three-dimensional deformation analysis: Global vector spherical harmonic and local438

finite element representation. Tectonophysics 1986, 130, 337–359.439

34. Dermanis, A.; Grafarend, E. The finite element approach to the geodetic computation of two-and440

three-dimensional deformation parameters: A study of frame invariance and parameter estimability.441

International Conference “Cartography-Geodesy”, Maracaibo, Venezuela, 1992.442

35. Marot, C.; Pellerin, J.; Remacle, J.F. One machine, one minute, three billion tetrahedra. International Journal443

for Numerical Methods in Engineering, 0, [https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.5987].444

doi:10.1002/nme.5987.445

36. Gere, J.M.; Goodno, B.J. Mechanics of Materials, Brief Edition. Cengage Learning 2012.446

37. Clemants, S.; Moore, G. Patterns of species diversity in eight northeastern United States cities. Urban447

habitats 2003, 1.448

38. Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in449

diverse landscapes. Proceedings of the National Academy of Sciences 2010, 107, 5242–5247.450

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2019                   doi:10.20944/preprints201906.0114.v1

Peer-reviewed version available at Appl. Sci. 2019, 9, 2920; doi:10.3390/app9142920

http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.5987
https://doi.org/10.1002/nme.5987
https://doi.org/10.20944/preprints201906.0114.v1
https://doi.org/10.3390/app9142920


39. Dossa, L.H.; Abdulkadir, A.; Amadou, H.; Sangare, S.; Schlecht, E. Exploring the diversity of urban and451

peri-urban agricultural systems in Sudano-Sahelian West Africa: An attempt towards a regional typology.452

Landscape and urban planning 2011, 102, 197–206.453

40. Laliberté, E.; Legendre, P. A distance-based framework for measuring functional diversity from multiple454

traits. Ecology 2010, 91, 299–305.455

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2019                   doi:10.20944/preprints201906.0114.v1

Peer-reviewed version available at Appl. Sci. 2019, 9, 2920; doi:10.3390/app9142920

https://doi.org/10.20944/preprints201906.0114.v1
https://doi.org/10.3390/app9142920

	Introduction
	Methods
	Time-dependent three-dimensional dataset
	Finite Element Method interpolation
	Elemental strain-rate calculation

	Results
	Time-dependent data cloud from an urban multivariate description
	Principal strain-rates
	Trajectory patterns of the principal strain-rates

	Temporal statistics of the principal strain-rates

	Conclusions
	
	References



