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Abstract: One challenging problem is the representation of three-dimensional datasets that vary
with time. These datasets can be though as a cloud of points that gradually deforms. But point-wise
variations lack of information about the overall deformation pattern, and more importantly, about
the extreme deformation locations inside the cloud. The present article applies a technique in
computational mechanics to derive the strain-rate state of a time-dependent and three-dimensional
data distribution, by which one can characterize its main trends of shift. Indeed, the tensorial analysis
methodology is able to determine the global deformation rates in the entire dataset. With the use of
this technique, one can characterize the significant fluctuations in a reduced multivariate description
of an urban system and identify the possible causes of those changes: calculating the strain-rate state
of a PCA-based multivariate description of an urban system, we are able to describe the clustering
and divergence patterns between the districts of the city and to characterize the temporal rate in
which those variations happen.
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s 1. Introduction

-

16 One challenging problem in the data analysis is the representation of three-dimensional discrete
1z data [1]. This analysis becomes harder when a time-dependent change of the data takes place,
e introducing a new temporal dimension. In the present article, we explore formal approaches to
1»  quantify the temporal change of discrete three-dimensional data. Specifically, we build a methodology
20 to assess the transformation of a data cloud that is derived from a Principal Component Analysis(PCA): a
zn 13-years span multivariate description in [2] that provides a reduced description of an urban system
22 given only by the first three principal components. Since the points represent an abstraction of an
23 urban system, one main goal is to understand the temporal variation of the multivariate description of
2o the districts in order to analyze the behavior of the overall city in the time-span. Our main hypothesis
= is that these three-dimensional datasets can be though as a cloud of points that gradually deforms.

26 Still, the challenging issue is that deformation between consecutive times cannot be visualized
2 straightforwardly. There are some methods to overcome this difficulty. One is the vector plot
2s  of three-dimensional displacements or velocities, that is typically used to visualize results in
20 Computational Mechanics applications [3-5]. In example, these are used in the Kinematic Visualization
30 of Motion in [6-10], but they are restricted to display relative motion among the data, and are not able
a1 to identify the most dynamic regions of the dataset. Another is the Parallel Coordinate Technique that
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sz successfully exhibits the temporal change of highly-dimensional statistical and information datasets
33 [11]. Yet, multi-dimensional data is typically segmented in two-dimensional subsets, like the Computer
s Tomographic scans of medical imaging [1,12,13]. Furthermore, the previously mentioned methods are
s not suitable when one aim to understand the patterns of diversification or conformation, which are
36 closely related to the temporal change of the differences between join data values: the maximum and
sz minimum magnitudes of variation and the evaluation of their direction can be significantly helpful
ss  when one aims to identify differentiation patterns in the data [14]. Or the opposite, when one aims to
3o locate uniformity for a dataset which was previously differentiated.

a0 The field of continuum mechanics provides a measure of the temporal variation of the distance
a1 in between points: the Strain-Rate tensor (see, for instance, [15]). The continuum mechanics theory
«2 -which arises from the classical Newtonian mechanics- analyzes the causes and effects of motion
a3 for a deformable media composed by an infinite group of particles. When a continuous media is
4 being deformed in various directions at different rates, the strain-rate of a certain position in the
« medium cannot be expressed by a scalar value solely. It cannot even be expressed by using a single
s vector. Instead, the rate of deformation must be expressed by the rank-two strain-rate tensor with
4z its components determined by the positional derivatives along each spatial dimension. Hence, the
«  mathematical framework of tensors can determine exactly the deformation that is accumulated in a
+ certain position inside the medium -that is typically subjected to the imposition of displacements or
so loads-. This tensor is commonly used to detail the amount of elastic energy in the physical descriptions
s:  of multiple materials, like solids or fluids. See [16] for a complete mathematical exposition. Most of
s= those models are formulated as the product of a constitutive tensor and the strain-rate tensor, giving
ss the stress condition of the material that is balanced in the kinetic equations. In the present study, the
sa calculation of the strain-rate tensor is not related to the kinetics of any material, and thus, it can only
ss be a mathematical tool that supports the examination of the deformation rates given by the discrete
ss statistical data.

57 But the strain-rate tensor arises from the continuum assumption, and discrete displacements of
ss points rather than continuous distributions take place in the deformation of the data cloud. Typically,
so the issue of applying derivatives to discrete displacements of points is solved by using several
e approaches. Some statistical techniques use co-variance functions to represent directly the strain-rate
o1 field (see e.g. [17]). But the common approach is to compute a continuous version of the displacement
ez -or velocity- field, so that, derivatives can be applied to the continuous displacements. Some methods,
es in this line, have interpolated the discrete displacements by minimizing the residual -or distance-
e between the continuous interpolation and the discrete version [18]. Other interpolation techniques
es weight the distance between an interpolated piece-wise continuous field and the discrete displacement
s field, as in [19]. This method results in a minimization technique where a continuous strain-rate field
ez can be derived. In example, the piece-wise continuous field can be defined as to be splines, or as the
e widely used linear polynomials in variational formulations [20]. These techniques have been applied
eo in earth science and medical imaging works [21-23], but also in the strain-rate calculation of geodetic
70 Observations in [24,25].

7 Another fundamental issue is the representation of the strain-rate state. One of the possible
72 techniques that can help to visualize the deformation rate of the dataset is to plot the main
73 components of the tensor using Strain-rate diagrams, where concentrations of strain-rate patterns
za can be displayed as vector fields (see for example the ones in geodetical observations of the earth’s
75 mantle [26-28]). The main drawback of strain-rate diagrams is that the strain-rate components are
76 visualized as the projection of three-dimensional vector fields into the two-dimensional framework,
7z and therefore, the third-dimension component is necessarily neglected. Another method, more suitable
7e  to two-dimensional plots, is the contour graph of principal stresses, where the stress patterns in
70 structural elements [29,30] and tectonics [31] are visualized with continuous lines depending on the
s stress magnitude. That method overcome the three-dimensional issue, but it does not give insights
a1 about the orientation of the principal stresses. Hence, a dual form of the contour plots is to calculate the
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.2 trajectories of the stress principal components in separated plots, where the stress magnitude can be
es colored in each trajectory line such that stress patterns are exhibited in a two-dimensional framework.
e« This last technique has been our preferred approach in order to visualize the principal strain-rate
es patterns of the three-dimensional data cloud.
86 Since a robust methodology that describes the temporal change of the urban system -represented
ez by a multivariate dataset- has not been carried out before, we choose to perform a quantitative analysis
ss by including the strain-rate tensor as the fundamental metric. In this work, we calculate the strain-rate
s state of the discrete dataset without a priori assuming the mechanisms by which the system experiences
%o transformation. In order to apply the continuum mechanics principles into the discrete dataset, we
o1 use interpolation methods, such as the ones applied in discrete variational formulations (i.e. Finite
o2 Element Methods (FEM), Particle Methods, Collocation Methods, Mesh-less methods, etc.). Specifically,
»s  we derive the three-dimensional strain-rate tensor from a FEM interpolation of the discrete velocity
oa field, as demonstrated in previous works such as [32-34]. We include a methodology for visualizing
os the main patterns of change in any time-dependent data cloud that can be used in a computational
96 (two-dimensional) framework. It is based on the family of curves that are instantaneously tangent to
oz the extension and contraction components of the strain-rate tensor: the so-called trajectory curves of the
s continuum mechanics field [15]. These help to overcome the three-dimensional representation problem,
9 since separated in several plots -one for each principal component-, demonstrate the magnitude and
w0 Orientations of the strain-rate patterns in a two-dimensional plot.
101 The remaining parts of this document are organized as follows. In Section 2 the methodology to
102 compute the discrete version of the strain-rate tensor is presented. Since the main problem involves
103 the calculation of the derivatives of discontinuous -discrete- velocities, we extensively review the
10s  numerical techniques that are adopted to overcome this difficulty and the ones which are used for
15 visualizing the strain-rate patterns. Next, in Section 3, we present the application of the methodology
106 to the case study -the urban system of Barcelona- by deriving its strain-rate state and visualizing its
1z main strain-rate patterns, meaning the city’s environmental, social and economic change. Finally, in
108 Section 4 some conclusions of the proposed methodology close this article.

100 2. Methods

110 We begin this section with a review of the strain-rate tensor calculation provided a discrete
11 three-dimensional data cloud. For doing so, the formal problem of the time-dependent dataset is
1z introduced first. Then, we explain the numerical techniques that transform the discrete dataset into
13 a mathematical framework by which the strain-rate tensor can be computed. Most of the ideas rely
us on the geometrical analysis of the discrete dataset by computing the spatial discretization of the
us dataset into geometric elements through a Delaunay Triangulation. After doing that, the computation
ue Of the strain-rate is performed with a FEM interpolation of the velocity field. Finally, we address the
ur  eigen-problem for the strain-rate tensor, such that the solution of the eigenvalues, and the corresponding
ue eigenvectors, gives the extrema strain-rates at each finite element. The flow chart diagram of this
us  methodology is represented in Fig. 1, including the main outputs that result at each step. The extended
120 explanation is developed along this section.

i 2.1. Time-dependent three-dimensional dataset

122 Since the main objective of this work is to reveal the temporal transformation of a
123 three-dimensional and time-dependent dataset, let us first introduce some notation in order to clarify
12 the mathematical ideas to be used. Let us define the discrete time-dependent data to be the set of points
s P ={p;}, withi =1,2,...,m, being m the total data. The values in each one of the three dimensions
126 can be seen as scalar coefficients for a set of basis vectors. These tuple of components compose the
127 vector that we call the position or coordinate x; = [x;1 X xi,g,]T, with the superscript T denoting the
126 transpose operation, the first subscript referring to the point i and the second to the dimension. Hence,
120 we call P the set of points and Xy, (t) = {x1 (t),x2(t),...,x: (t),..., %, (£)} € R3 the positions of the
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130 points in a certain time f. Let us consider a uniform partition of the time interval in which the dataset
w1 Xy (t) is defined t € [t9, 18] in a sequence of discrete time-steps t? = 19 < t! < ... <" < ... <N =13,
132 with 6t > 0 the time-step-size defining = ¢ 4 S5t forn = 0,1,2,...,N. Thereby, we use the
133 superscripts to denote the discrete time-steps, with the only exception of denoting the transpose
134 operation with the superscript T.

135 Since the time-dependent dataset of the case study comes from a PCA reduction of a
s higher-dimensional multivariate dataset Y, (t) = {y; (t),y, (t),...,y; (),...,y, ()} € R, with
w k>>3andt € [t, 8], into a lower-dimensional one X, (t), t € [t7, 3], that possesses only three
13s independent dimensions: Principal Component 1 (PC1), Principal Component 2 (PC2), and Principal
13 Component 3 (PC3), we use the Cartesian coordinate system straightforwardly with each principal
10 component being a dimension. This is, x; (") = [x;pc1 (") Xipc2 (") Xipc3 (t”)]T. Hence, the
11 discrete time-dependent data-set can be thought as a cloud of points in the three-dimensional space
12 that deforms gradually throughout time.

13 2.2. Finite Element Method interpolation

148 The main idea of the present approach is to transform the discrete cloud of points into a
145 mathematical framework -similar to a deformable medium- by which the strain-rate tensor can
s be computed. To do so, we generate a mesh 7, () = {K} from the set of points P that is composed by
1z non-overlapping and conforming geometrical elements K of diameter k. There are several methods to
s generate a mesh from a set of points, all which are studied in the computational geometry field. Here,
s we apply the Delaunay Triangulation DT (P) because of several reasons. The first is that the aspect
10 ratio of the triangulated elements produce a high-quality mesh. The second is because fast Delaunay
11 triangulation algorithms have been developed recently (see for example the one in [35]).

152 The result of applying the Delaunay triangulation over the set of points is a discrete mesh
1z T := DT (P) which possess the following characteristics: it covers exactly the convex hull ) of
1« the point set, no point p; is isolated from the triangulation, and all the elements {K} are 4-points
s tetrahedron, which are completely defined by the position of their four corner points K := {x;}, with
s j = 1,2,3,4. The generated mesh 7, = DT (P) can be seen as a -material- domain () that suffers
15z deformations from the displacements of the points between consecutive time-steps. Since only discrete
1ss  displacements between consecutive time-steps are known for the set of points, we now explain how
10 the continuous velocity field inside the mesh is calculated.

Even though the FEM has been used to perform interpolation using the point-wise data (see, for
instance, [33,34]), in this work we apply this well-known method in a three-dimensional setting. In
FEM, the finite interpolating space V), is defined as made of continuous piece-wise polynomials N (x)
in the mesh 7}, where the discrete approximation F,(x, ) € V), of any multi-dimensional function
F(x,t), x € Q, can be written as

F(x,t) ~F(x,t) := iN(xi)Fi(t), x €. 1)
i—1

We use the simplest finite element: the tetrahedron with linear polynomials and four nodes. Let
us first introduce some notation in order to define the polynomials inside the element. The set
of normalized coordinates X1, x2, X3, X4 in each tetrahedron K are such that the value of x; is one
at the point p; € K, zero at the other three corner points, and varies linearly from that point to
the opposite edges. This set of coordinates has the property that the sum of the four coordinates
(each belonging to one tetrahedron point) in any location inside the tetrahedron is identically one:
x1(xi) + x2(xi) + x3(x;) + xa(x;) = 1, with x; € K. Hence, the shape functions inside each linear
tetrahedron are defined to be these coordinates: N;(x;) = x;(x;), withi = 1,2, 3,4 denoting the corner
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points. The FEM interpolation (1) of a three-dimensional vector function, say F (x,t), can be defined
inside each linear tetrahedron K as

4
F(x,t)=x1(x)F1 () +x2(x) Fo (£) + x3 (x) F3 () + xa (x) F4 () = ij (x)Fi(t), x€K, (2
j=1

10 by denoting F; (t) = F (x;,t), fori = 1,2,3,4, nodes of the tetrahedron.
The way the tetrahedral coordinates x;, i = 1,2,3,4, are defined is by means of the previous
interpolating relation together with the summation constraint. This is, when one aims to define

the tetrahedron geometry and calculate any position inside the tetrahedron x = [x; x x3]T, we
compute
1 1 1 1 1 X1 (x) X1 (x) 6V a4y bl C1 1
x| _ % w1 X1 x| [xe () xe(x)| _ 1 |60 ax by cf |x3 3)
X2 X12 X2 X3p Xap| (X3 (%) xs(x)| 6v 6V a3 b3 c3| |x2
X3 X153 X23 X33 Xa3] |X4 (%) X4 (x) 6v ay by caf [x3

in order to obtain the tetrahedral coordinates system where the coefficients of the inverted matrix are
given by

A1 = X22X433 — X32X423 + X42X323,
Ay = —X12X433 + X32X41,3 — X42X31,3,
a3 = X12X40,3 — X22X413 + X42X21,3,

Ay = —X12X32,3 + X2,2X31,3 — X32X21,3,

by = —x01X433 + X3,1%423 — X41X323,
by = X1,1%433 — X3,1%X413 + X4,1%31,3,
b3 = —x1,1X403 + X2,1X41,3 — X41X21,3,

by = x11%323 — X2,1X313 + X3,1%21,3,

C1 = X2,1X432 — X3,1X422 + X41X32,2,
C1 = —X1,1X432 + X31X41,2 — X4,1X31,2,
€3 = X1,1X42,2 — X2,1X41,2 + X4,1X21,2,

C4 = —X1,1X322 + X2,1X31,2 — X3,1X21 2

Here, the abbreviation x;; = x; — x; has been used, and the volume v can be calculated with the
expression

6V =x21,1 (X312%41,3 — X41,2X31,3) + X212 (X41,1%31,3 — X31,1X41,3) + X213 (X31,1X412 — X41,1X31,2) -

At this point, it is possible to calculate the spatial derivatives of any interpolated function %P (x,t)
in terms of the tetrahedral coordinates as

IF (%) IF(xt) 9X; 1 0F(xt)
OF (x,) | artin < aFa(Xx] ) 3? s Y apa(xx] B :
4 = 4 g Z N A = Z L 2 b X E K. (4)
ax axz 4 a)(] 8x2 4 6v a)(] 7l
OF(xt) J=1 | 9F(xt) 9x; J=H] 1 0k
ox3 ax; 0x3 6v dyx; J

The way to calculate the continuous stress-rate tensor field is through the derivation of a
continuous version of the velocities. Hence, we calculate the continuous velocity field by means
of the FEM, in which linear piece-wise polynomials are used to interpolate the velocity at any spatial
position inside the mesh. Let us explain how to calculate the discrete velocities of points. We suppose
that the displacement s; of point p; in the time interval (#",#"™!) can be defined -without loss of
accuracy- as infinitesimal, in the sense of s; (") ~ x; (#"*1) — x; (#"). We rely on the Taylor expansion:

5tk gy dx; d?x; St?
(1) = hi = x: (t i ot ! ...
= t=t 0 0
in order to calculate the discrete velocity v; of point p; as
oy = | LB o) _x (B ma () ©
dt |,_m ot (1l — )

12 Where the second (and higher) order terms are neglected.
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162 With the previous result in hand, we then generate a continuous version of (6) by replacing it in
163 (2).

16a  2.3. Elemental strain-rate calculation

165 Having defined the continuous space of velocities, we can calculate the derivatives along each
16 one of the spatial directions and derive the strain-rate tensor field.
Following the continuum mechanics concepts in [15] and assuming small deformations, the
strain-rate tensor is calculated as

E (x,t") ::% (Vv (x,t") + (Vo (x, t"))T) ,

with Vv the gradient of velocity. Each component of the 3 x 3—tensor is developed in Cartesian
coordiantes as

v (x,t") 1 (9vi(x,t") +8v2(x,t") 1 (9 (x,t") +av3(x,t”)
E11 Elz E13 axl 2 8x2 axl 2 aX3 axl
_ |1 (9va(xt") v (x,t") vy (x, ") 1 [ 9vp(x,t") vz (x, ")
Ex Exn Ex| =379y + 7o “on 2T T T om
E31 E32 E33 1 av3(x,t") +avl(x,t”) l avg(x,t”) +avz(x,t”) 803(x,t”)
2 8x1 8x3 2 E)xz BX3 aX3

The six independent components of the strain-rate tensor can be arranged using Voigt’s notation
into a 6-component strain-rate vector as follows:

E (x, i’n) = [Ell (x, fn) Ex (x, tn) Ess (x, tn) Y12 (x, tn) 723 (%, tn> Y31 (x, tn)} ' ?)

where v1p (x,t) = 2E1p (x,t), 723 (x,t) = 2Ep3(x,t) and 713 (x,t) = 2Eq3 (x,t) are the Shear-Rate
Strains. With this notation in hand, the strain-rate tensor can be calculated as

_ r_o T
En(xt] [m O 0
Ex (x,t") 0 oy g vy (x, ")
E tﬂ 0 0 Nvm ’
E (x’ t”) _ 33 (x, n) _ 5 5 0x3 Uy (x, tﬂ> , (8)

m2 (D] ae a0 )
Y23 (%, t") 0 3%

n d el
Ly31 (%, £") ] L 9x; 0 oxq 4

by defining the matrix operator of derivatives over the velocity field. In the case of the right hand side
velocities, we can arrange a node-wise vector of discrete velocities in the tetrahedron K, as

\% (K, tn) = [7)1,1 (tn) 12 (tn) 01,3 (fn) 02,1 (tn) 22 (tn) cee U4 (tn) V43 (f”)} !

167 Using the definition of the finite element interpolation of any function (2) together with its partial
1es  derivatives (4), and replacing those in (8), we obtain

- _
b
0 bz 0 )
14100 0 G| |Xi (x) Vi1 (t")
E(x,t") = P Z bl a0 X () Vip (E7) ] - )
j=1 JOX;' 1o%j b2 Xj (%) Vi (t")
Cfa?]- ja)(]
p) 9
_CjT}Cj 0 a]‘TXj_
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Now, the operation g—?l—’] = F; since g—? = 0;j, with §;; the Kronecker delta. Hence, E (K, t") can be
j j
calculated as the product of the matrix S (K) and the vector V (K, ). This is,

E(K ") =S (K ")V (K t"), (10)

with x € K and the discrete matrix S (K, t"*) defined as

a 0 0 ar 0 0 as 0 0 ag 0 0
0 by 0 0 b, O 0 b3 0O 0O by O
110 0 ¢g¢ 0 0 ¢ 0 0 g 0 0 ¢4

S(K,t") = — . 11
( ) 6v bl a 0 bz an 0 b3 as 0 b4 ag 0 ( )
0 C1 b1 0 Co bz 0 C3 b3 0 Cy b4

lc1 0 a4 ¢ 0 a3 ¢c3 0 a3 cs 0 ay

1o Thus, this last matrix can be computed solely in terms of the coordinates of the nodes.

Up to this point, we have demonstrated how to calculate the elemental strain-rate. Now, our
purpose is to identify the data cloud transformation throughout the visualization of the strain-rate
patterns. This is, we need to identify the extrema strain-rates and their orientations. In a formal
sense, this is the well-known Eigenvalues and Eigenvectors problem, which is stated as: if T is a linear
transformation from a vector space V over a field F into itself, and v is a vector in V' that is not the zero
vector, then v is an eigenvector of T if T(v) is a scalar multiple of v. Knowing that by definition the
second order strain-rate tensor is a linear operator from a vector field into another first-order tensor
field, the previous definition applied to the strain-rate tensor leads to:

[E(K, ") — IA (K, )] n (K, ") =0, (12)

170 where I is the 3 x 3 identity tensor, n (K, ") € R3 is a normalized (non zero), i.e. unit, vector called
i eigenvector, and A (K, t") € R is the eigenvalue associated with the eigenvector. In other words, an
172 eigenvector is a vector that changes by only a scalar factor when the strain-rate tensor is applied
173 to it, resulting in a vector parallel to itself. By solving (12) one obtains three different eigenvalues
e A (K #"), A (K, 1), Az (K, #7) , and three eigenvectors 11 (K, ") ,ny (K, "), n3 (K, ") , associated with
s each eigenvalue.

176 The eigenvalues and eigenvectors describe the principal magnitudes and orientations of the
177 strain-rate tensor: since the diagonal components of the strain-rate tensor Eq; (K, #"), Ex (K, #"), and
ize  E33 (K, ") have different values in different reference systems, one finds with the set of eigenvalues the
170 extreme -maximum and minimum- possible values that any of these components may take. Indeed,
10 the maximum and minimum stress-rates -and their orientations- are related with the maximum and
1 minimum eigenvalues. In this work, we follow the notation in which positive values for the eigenvalues
1.2 represent the extension-rate and negative values represent contraction-rate. Hence, A; (K, t") is the
1z maximum and positive eigenvalue meaning extension-rate, A3 (K, t") is the minimum and negative
1ss  eigenvalue meaning contraction-rate, and A; (K, ") is either extension or contraction rate, but in
s smaller magnitude.

186 Hence, with the extrema strain-rates at the elemental level we can reveal the deformation
w7 trend of the data cloud, and above all, locating which regions suffer the most abrupt change in
s the time-span. We also propose to draw the family of curves -trajectories- that are instantaneously
10 tangent to Ajny (K, "), Axnp (K, "), and Azn (K, ) in the complete mesh (), and thus, illustrate the
10 main patterns of change inside the data cloud. Note that An (K, t") is a composition of a vector using
101 tensor components. Those differ in formal definition, but we use this concept merely for visualization
102 puUrposes.
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Table 1. Tetrahedral elements derived from the Delaunay Triangulation of the set of points.

Element (id)  First Vertex  Second Vertex Third Vertex Fourth Vertex

1 Eixample LesCorts Gracia Sarria
2 SantAndreu Horta SantMarti NouBarris
3 Sants SantAndreu SantMarti NouBarris
4 LesCorts Eixample Sants CiutatVella
5 Gracia SantMarti Horta Sarria
6 Gracia SantMarti Sarria LesCorts
7 Eixample Gracia Sants CiutatVella
8 CiutatVella SantAndreu Sants NouBarris
9 Sarria SantMarti Horta LesCorts
10 Gracia SantAndreu Sants CiutatVella
11 Gracia SantAndreu CiutatVella NouBarris
12 Sarria Eixample LesCorts CiutatVella
13 Horta SantAndreu Gracia NouBarris
14 SantAndreu SantMarti Horta Gracia
15 LesCorts Eixample Gracia Sants
16 LesCorts Gracia SantMarti Sants
17 Gracia SantAndreu SantMarti Sants

103 3. Results

108 In the present section, we demonstrate the application of this methodology to quantify the

15 temporal change of an urban multivariate system (see Figure 3). First, we cite the case study
10s that includes the multivariate description of the ten districts of Barcelona, and whose reduced
17 three-dimensional data-set is used as the starting point. Then, we derive the strain-rate state of
10s  the data-set, pursuing the extension and contraction patterns visualization. Finally, we close this
100 section with insights about the city transformation implied in the strain-rate state of the data cloud.

200 3.1. Time-dependent data cloud from an urban multivariate description

201 The time-dependent data cloud comes from the PCA output of a multivariate description of the
202 city of Barcelona. Since 1987, the city has been divided into 10 administrative districts, which are the
203 largest territorial units of the city and can be compared with neighborhoods in a common metropolitan
20 area: Ciutat Vella, Eixample, Gracia, Les Corts, Sarria, Sant Andreu, Sant Marti, Horta, Sants, and Nou
20 Barris. Barcelona has a population of approximately 1.6 million inhabitants living in 10216 ha. The
206 inclusion of all the 10 districts in the multivariate description has been aimed to represent the city at its
207 overall scale and to allow comparisons between them.

208 The raw multivariate description -from which the PCA is calculated- comprises the data of 40
200 environmental, economic, and social indicators for the ten districts in the time span of 9 = 2003 <
a0 1 <2015 =, n=0,1,..,12. Hence, the case study data cloud comes from a PCA reduction of the
2 higher-dimensional multivariate data-set J, (#) € R*, into a lower-dimensional one &, (") € R3
212 that possesses only three independent dimensions: PC1, PC2, and PC3. The dimensionally-reduced
z3 data-set from the application of the PCA is presented in Appendix A. Hence, the three-dimensional
212 and time-dependent data cloud is composed by the coordinates &, (t") of the n = 10 total number of
x5 points p; defined in the sequence of N = 12 time-steps from 2003 to 2015, with the time-step size of
26 0t = 1 year. These points are displayed in Figure 2, where all the observations -districts each year- in
z7  the time-span are included.

218 As the first step of our methodology, we apply the Delaunay Triangulation (DT) to the data
a0 cloud. Specifically, we calculate the DT to the set of coordinates at each time-step X, (#"). This
220 results in a mesh 75, (#") composed by nel = |K| non-overlapping tetrahedron. Table 1 expands the
= resulting triangulation for year 2003, with the vertices information for the nel = 17 tetrahedron.
222 Since the position x; (") of a given point p; at a later time-step can surpass the initial tetrahedron’s
223 circumscribed sphere, we recalculate the mesh triangulation at each time step t", n = 1,..,11.


https://doi.org/10.20944/preprints201906.0114.v1
https://doi.org/10.3390/app9142920

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2019 d0i:10.20944/preprints201906.0114.v1

© 2003 ® 2004 2005 ® 2006 © 2007 ® 2008 ® 2009 @ 2010 = 2011 2012 © 2013 ® 2014 ® 2015
107 6r
‘,o CiutatVella 8, od-esCorts
8t g:. al hd
® S t [ ]
an
61 ﬁ,@utatﬁlella o
2r # L]
SEMMarti
4t a |
No#®Bd &4 eSarria
Y] @ L J
O 9 S ﬁ_‘ o°@arftAndreu e
2| o’ ° L (S e ®
#° 3t ﬁ' Eixample 2 % e . o
of S ? & . Gracia® Ei |
@@ Gracia o ) < ?' ixample
-4t % »
2 ".*IO IS e e J’%@%‘;ma 'o'
L ort (9]
4 -6 .
6 4 6 8 6 4 -2 0 2 4 6 8
PC1 PC1
6r
LesCorts
.j'
4 i .
Sants CiutatVella 5 o besCorts
% °® o CiutatVella
ol ? oo . F) o.
o it SantMgm N . 8'§Sants
. Barris ° ) ‘ﬁarria
Q 0 SantAndreu % ° 3o
) o ’SantMartiO
2+ %
a acia
.ﬁ Elxample 5 5 o
4t °® “) s e 5
9]
-6 : 0 5
4 2 0 2 4 6 8 10 pc2 - > PCt

Figure 2. Three-dimensional and time-dependent data cloud from the case study.
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Table 2. Principal strain-rate components. Eigenvalues and Eigenvectors of the strain-rate tensor at the

year 2003. The extension is denoted by the maximum eigenvalue A;, and contraction is denoted by the

minimum eigenvalue A3.

Element (id) A4 (year‘l) A (year‘l) A3 (year‘l) an 112T n3T
1 0,53152326  0,03372761 -0,5035305 [-0.4030 -0.7620 0.5069]  [-0.8521 0.1104 -0.5116]  [0.3339 -0.6381 -0.6938]
2 0,82703046  -0,07233917  -3,26208499 [0.0599 0.4379 0.8970] [0.9979 -0.0488 -0.0428]  [0.0250 0.8977 -0.4399]
3 1,86537595 0,0239402 -1,26311701  [-0.2846 -0.7630 0.5804] [0.8705 0.0479 0.4898] [-0.4015 0.6447 0.6505]
4 0,13368209  0,03257601  -0,09645259 [0.3448 0.0267 0.9383] [0.6847 -0.6909 -0.2320]  [0.6421 0.7225 -0.2565]
5 0,49758344  0,15637449  -0,04820077  [-0.2529 0.9667 0.0396] [-0.3025 -0.1179 0.9458] [0.9190 0.2272 0.3223]
6 0,95472589 0,0373597 -0,54006708  [-0.0595 -0.8341 0.5484] [0.9779 0.0616 0.1998] [-0.2005 0.5482 0.8120]
7 0,24389104  -0,02462416  -0,21220276  [0.9802 -0.0490 -0.1918] [0.0873 0.9766 0.1964] [0.1777 -0.2093 0.9616]
8 0,04516871  -0,00558049  -0,29509916  [-0.5143 -0.5503 -0.6578]  [0.7221 -0.6916 0.0139] [0.4626 0.4679 -0.7531]
9 0,83841605  0,06226881  -0,72504166  [-0.4963 0.7789 0.3834] [0.7282 0.1330 0.6723] [-0.4727 -0.6128 0.6332]
10 0,08250367 -0,007911 -0,1849469 [-0.9511 0.1145-0.2870]  [0.0253 -0.8969 -0.4415]  [-0.3079 -0.4272 0.8501]
11 0,1403248 -0,00962214  -0,34760551  [0.1721 -0.7223 -0.6698] [0.9327 -0.0992 0.3467] [0.3169 0.6844 -0.6566]
12 0,28802797  -0,02754418  -0,54411227  [-0.1025-0.4296 -0.8972]  [0.6308 -0.7255 0.2753] [0.7692 0.5377 -0.3453]
13 525376147  -0,1612729  -2,63828711  [-0.2599 -0.7733 0.5783] [0.9210-0.0187 0.3890] [-0.2900 0.6338 0.7171]
14 2,58304682  0,22953554  -2,02948589  [-0.4920 0.6994 0.5184] [0.7802 0.0900 0.6190] [-0.3863 -0.7091 0.5900]
15 0,28104681  0,05995401  -0,17975011  [-0.6611-0.5949 0.4572]  [-0.7488 0.4850 -0.4518]  [-0.0470 0.6410 0.7661]
16 0,12268815  0,06554156  -0,16290843  [-0.0458 0.8952 -0.4432] [0.9468 0.1805 0.2666] [-0.3187 0.4074 0.8559]
17 0,17492291  0,11156825  -0,27224695  [0.5895-0.1016 0.8014] [-0.2177 0.9354 0.2788]  [-0.7779 -0.3388 0.5292]

224 3.2. Principal strain-rates

225 We compute the strain-rate tensor of each tetrahedron with the interpolated version of the

226 velocities for the case study, such that linear piece-wise polynomial functions defined inside each
227 tetrahedron are used in the FEM interpolation. Certainly, we suppose that the velocities come from an
226 infinitesimal analysis in which the higher order terms of the displacement are neglected. The gradients
220 inside each tetrahedron are also considered to be constant since the polynomial functions are of first
a0 order. Applying (10), we compute the strain-rate tensor of every tetrahedron, E(K, t") for time-steps
=1 1 = 0,...,11, since displacements cannot be calculated for the last year t12 = 2015. Note that the
232 strain-rate tensor units are year ! (for the case study).

233 We are interested in the magnitude and orientations of the principal strain-rates -extension and
23s  contraction- at the elemental level. Hence, the next step is to solve (12) and obtain the eigenspace
235 components (eigenvalues and eigenvectors) of the strain-rate tensor. For the sake of conciseness, we
236 list in Table 2 the results of the principal strain-rates for the year 2003 solely.

237 The application of this methodology to the case study is displayed graphically in Fig. 3, beginning
=3¢  with the map of the ten districts of Barcelona as the abstraction of the multivariate and time-dependent
230 dataset. The three-dimensional coordinates arising from the PCA output are displayed next. We
2a0  also present next the triangulated mesh at the initial year 2003, where kinematic depictions of the
2a1  point-wise displacements following (6) are plot as velocity vectors. It is clear from the visual inspection
22 that the quantitative analysis of the temporal transformation is greatly justified, so that we calculate
23 the strain-rate tensor over the FEM interpolation of discrete velocities and compute its principal
242 COmMponents.

2as  3.2.1. Trajectory patterns of the principal strain-rates

246 In favor of the analysis, we display the principal strain-rate components in a graphical way.
2az  One first approach is to illustrate the patterns of extension-rate and contraction-rate using a vector
2e  representation, to what is referred as the Strain-rate diagrams [21]. In that approach, the centroid of the
a0 tetrahedron serves as the location from which the principal components of the strain-rate tensor give
20 a representative result inside the element. We draw the strain-rate diagram of the year 2003 in the
=1 sixth step of Fig. 3, where extension-rate is represented by symmetric blue vectors A;n; pointing out
=2 the centroid, and contraction-rate is represented by the red vectors A3n3 pointing in. But, it is hard to
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Figure 4. The trajectory patterns of the principal strain-rates at the year 2003. First principal strain-rate
(top), second principal strain-rate (middle), and third principal strain-rate (bottom).
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23 visualize the distribution of the principal strain-rates and their three-dimensional orientations using
s this type of illustration.

255 Our approach to ease the visualization and understanding of the strain-rate state is to draw
=6 the trajectories of the principal strain-rate components, as used for displaying stresses in beams and
27 columns in [36]. In the following we demonstrate our findings of the strain-rate state at the year
2s 2003 using the trajectories visualization. In Figure 4 we display the principal components trajectories,
20 Where the lines are colored by the magnitude of the principal strain-rate and those are parallel to
260 its orientation. From these representations, we can understand the magnitude and orientation of
201 each principal component of the strain-rate tensor. And more importantly, the trajectory patterns
202 overlapped with the coordinates of the districts (in Figure 2) provide information about local regions
263 Of extension and contraction rates inside the urban description, where extension-rate patterns means
2ea  differentiation and contraction-rate patterns means clustering -or homogenization-.

265 In the case of the first strain-rate component which is shown at the top of Fig 4, we observe that
26 the larger magnitude of extension-rate is localized in between Nou Barris Sant Andreu, Sant Marti,
267 Horta and Sants, and that it decreases near Eixample, Les Corts, and Ciutat Vella. Therefore, the main
20s transformation is located at the first cluster of districts: Nou Barris, Sant Andreu, Sant Marti, and
200 Horta. The extension-rate patterns are oriented from this cluster apart to Ciutat Vella, suggesting that
20 there is a divergence of Ciutat Vella from the clustered districts. Indeed, the main extension pattern
= is oriented along the PC3 dimension and covers the clustered districts. It is of lesser importance the
22 pattern which comprises the districts of Nou Barris, Sant Marti, and Sants and ends at Gracia and
23 Eixample.

274 Contraction-rate, on the other hand, is expressed by the third principal strain-rate component,
zrs - which by definition is orthogonal to the first and second principal strain-rates. The third principal
276 strain-rate component is shown at the bottom of Fig. 4, where we can appreciate this orthogonality by
2z noticing that the trajectories of the third principal strain-rate are perpendicular to the extension-rate
2rs  pattern. We observe that the contraction-rate trajectories are mostly homogeneous, with a minor
270 importance between Sant Marti, Sant Andreu, Nou Barris and Horta districts, and completely
200 declining at Sants and Gracia. This direct relation between extension and contraction is found in solids
21 deformations, where it is ruled by the conservation of mass -or Poisson ratio- [15].

282 Apart from the extension and contraction patterns of the mesh, locations of smaller strain-rates
203 are represented by the second principal component. Considering the middle plots of Fig. 4, we
2ea recognize that the orientation of this strain-rate component is concentrated in between Les Corts,
zes  Sarria, Horta and Nou Barris, and that it is directed towards Eixample, fading at Ciutat Vella. This
26 principal strain-rate component is certainly orthogonal to the first and second components, but it
2e7 implies a strain-rate pattern that is two orders of magnitude smaller.

288 In the previous lines we have demonstrated the application of the trajectories diagrams of the
280 principal strain-rate components as a powerful visualization technique of the three-dimensional
200 strain-rate state of a data cloud. The strain-rate patterns can be used to analyze the system’s
201 development, in example, with the identification of regions with a special behavior: although there are
202 some clustered districts in the case study, all of those are separating at a high rate in dimensions 1 and
203 3. Hence, those are differentiating themselves in the PC1 and PC3 description. On the contrary, low
204 strain-rates can be an indication of stagnation, and thus, an expression of inactivity where an abrupt
205 change is not probably to occur. That is specially the case of the Ciutat Vella district, which is separated
206 from the clustered nodes but it is neither diverging nor converging to them.

207 One final remark to the visualization of strain-rate patterns is that the principal strain-rate
208 trajectory plots are mesh independent: different triangulations will produce different positions,
200 Mmagnitudes and orientations of the principal strain-rate components, nevertheless, trajectory lines
300 coincide for all of them.
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Element(id) Aq (year™!) A (year™!) Az (year!) nl = Ay n, = A n, = Az

1 0,1157 -0,0086 -0,0687 [-0.4941 -0.4365 0.7519] [0.1770 0.1339 -0.9751] [0.1682 0.8390 0.5175]

2 0,5087 -0,0085 -0,8859 [-0.5777 0.5570 0.5966] [-0.4259 -0.1592 -0.8907]  [-0.0636 -0.9309 0.3596]
3 0,3919 -0,0440 -0,1662 [-0.3746 -0.7054 0.6017] [-0.9963 0.0335 0.0789] [0.3127 -0.7926 -0.5234]
4 0,0868 0,0041 -0,0193 [0.4684 0.8217 0.3247] [-0.0619 0.3756 -0.9247]  [-0.7437 -0.4144 -0.5246]
5 0,0435 -0,0326 -0,0659 [-0.2319 0.8799 0.4148] [-0.0891 -0.1728 0.9809] [0.2229 -0.2816 -0.9333]
6 0,1834 0,0096 -0,0536 [-0.2271 -0.8440 0.4859] [-0.6281 0.2260 -0.7446] [-0.4216 0.8544 0.3038]

7 0,0647 -0,0059 -0,0485 [0.5157 -0.6416 0.5678] [0.0741 -0.9932 0.0893] [0.2985 -0.4332 -0.8504]
8 0,1436 -0,0198 -0,0174 [-0.3994 -0.4110 0.8194] [-0.1094 0.9614 -0.2525] [0.3984 -0.8684 -0.2952]
9 0,6311 0,0178 -0,1144 [-0.2472 -0.6917 0.6785] [0.2277 0.2955 0.9278] [0.1771 0.8523 0.4921]

10 0,0355 0,0098 -0,0745 [0.4275 0.8923 -0.1449] [0.8566 -0.5130 -0.0551] [-0.5198 0.2220 -0.8249]
11 0,0452 -0,0239 -0,1039 [0.4742 -0.0948 0.8753] [-0.7018 -0.6930 0.1650]  [-0.3132-0.9345 -0.1693]
12 0,2054 0,0336 -0,0703 [-0.5086 -0.8385 -0.1954] [0.1867 0.6566 0.7307] [0.0460 -0.4726 -0.8801]
13 1,1642 -0,0218 -0,3192 [-0.4080 -0.6299 0.6609] [-0.9632 0.2605 0.0654] [-0.5136 0.5798 -0.6325]
14 0,1923 0,0415 -0,2640 [-0.4758 0.8168 0.3264] [0.9570 0.2693 -0.1076] [0.4308 -0.2715 -0.8606]
15 0,0552 0,0085 -0,0363 [-0.2364 0.6160 0.7514] [0.7518 0.2783 -0.5978] [0.6817 0.6544 -0.3270]

16 0,0438 0,0175 -0,0059 [0.2794 0.9257 -0.2549] [0.8449 -0.2441 0.4760] [-0.5430 -0.2892 -0.7883]
17 0,2113 -0,0196 -0,3129 [-0.0062 0.9656 0.2599] [0.0760 0.2441 0.9668] [0.0666 -0.9959 -0.0609]

Table 4. Maximum and minimum eigenspace components in the time span.

Element(id) L%®(A1) Year n] = L*(\) L~®(A3)  Year n] = L™*(A3)

1 0,5315 2003  [-0.4030 -0.7620 0.5069] -0,5035 2003  [0.3339 -0.6381 -0.6938]
2 2,0893 2010  [-0.5094 0.8338 0.2130] -3,2621 2003  [0.0250 0.8977 -0.4399]
3 3,0249 2009 [-0.0766 -0.8956 0.4383] -1,2631 2003  [-0.4015 0.6447 0.6505]
4 04860 2010 [0.5309 0.8024 0.2724] -0,1901 2005  [0.8017 0.5583 -0.2134]
5 0,6321 2014  [0.0691 0.9893 -0.1286] -0,3019 2010  [-0.3219 0.5283 0.7857]
6 1,1842 2006  [0.1651 -0.9360 0.3110] -0,9833 2005  [0.2453 -0.7335 -0.6338]
7 0,2772 2010  [0.0108 -0.9360 0.3518] -0,2122 2003  [0.1777-0.2093 0.9616]
8 05104 2010 [-0.4614 -0.6584 0.5946] -0,5374 2009  [-0.2484 -0.6025 0.7585]
9 4,3858 2010  [-0.2509 -0.6991 0.6696] -2,4530 2010  [0.4203 -0.7018 -0.5752]
10 0,3753 2010 [-0.4800 0.8570 -0.1874] -0,3477 2009  [0.4401 -0.6943 0.5695]
11 0,5210 2009  [-0.0542 0.3205 0.9457] -0,5164 2009  [0.3738 0.8847 -0.2784]
12 1,5272 2008  [-0.6804 -0.7328 0.0027] -0,7379 2007  [0.4304 0.8624 -0.2666]
13 52538 2003  [-0.2599 -0.7733 0.5783] -4,6094 2008  [0.2022 -0.9445 0.2588]
14 2,5830 2003  [-0.4920 0.6994 0.5184] -2,0295 2003  [-0.3863 -0.7091 0.5900]
15 0,2810 2003  [-0.6611-0.5949 0.4572] -0,4221 2010  [0.0927 -0.9519 -0.2919]
16 0,2659 2009  [0.45710.7618 -0.4591] -0,1636 2012 [-0.5501 0.7352 0.3961]
17 1,4269 2009  [-0.0935 0.9952 0.0288] -1,1715 2010 [0.1262 0.9888 0.0798]
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Figure 5. The trajectory patterns of the time-averaged principal strain-rates. Averaged first principal
strain-rate (top), averaged second principal strain-rate (middle), and averaged third principal strain-rate
(bottom).
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so1  3.3. Temporal statistics of the principal strain-rates

302 Plots of the principal strain-rate components trajectories can be completed for the remaining years
s03  Of the time span, t", n = 1,2,...,,11, and those are attached as meta-data in the electronic version of
s0s the present article. Readings of the strain-rate streamline patterns for those years can be completed
s0s  straightforwardly as discussed in the paragraphs above. Nevertheless, we perform some temporal
s0s  statistics of the strain-rate states, where the principal strain-rates calculated for each time-step are
;07 accounted as the temporal events: each strain-rate state is accounted as a single observation.

308 The first statistics that we perform is the time-average of the principal strain-rate components,
;00 separated as the first, second, and third principal strain-rates. Table 3 presents the time-averaged
a0 results of the principal strain-rates. Also, in the last schematic of Fig. 3, we plot the strain-rate diagram
su  of the time-averaged principal strain-rates at the time-averaged centroid of tetrahedron elements. This
a1z figure gives insights about the orientation and magnitude of the first and third principal strain-rates,
a1 again by plotting the symmetric arrows pointing out for extension and pointing in for contraction. We
s complete our analysis by drawing the trajectory curves of those time-averaged strain-rate diagrams in
315 Flg 5.

316 With the aid of Figures 2 and 5 we analyze the trajectory patterns of the time-averaged strain-rate
a1z state of the data cloud. In the case of the first and third strain-rate components, those are comparable
se  to the ones described in the previous paragraphs for the year 2003. We observe a high extension-rate
s10 behavior between Nou Barris, Sant Andreu and Horta in the PC1 dimension. The contraction-rate,
s20 on the other side, is oriented in the PC2 dimension and it is mostly located in between Gracia and
sz Eixample and decreases near Sants. In the case of the contraction-rate in the PC3 dimension, it is
sz mostly present between Nou Barris and Horta, and in smaller magnitude between Horta and Sant
s22 Andreu. The contraction-rate between the remaining districts is negligible in all dimensions. Both the
224 extension and contraction rates demonstrate trajectory patterns which are directed from the clustered
s2s  districts towards the separated district of Ciutat Vella. However, the magnitude of the time-averaged
226 strain-rates is much smaller than the ones obtained for year 2003. In the case of the time-averaged
;27 second strain-rate, its magnitude is greater for Eixample, Les Corts, and Sarria nodes than for the
222 clustered nodes. The orientation of the trajectories involving this second strain-rate component is
s20 parallel to the one linking Eixample and Les Corts to the clustered nodes.

330 The second temporal statistics that we perform is to calculate L —norm of the temporal strain-rate
a1 distribution. That is, to calculate the year where the maximum extension and contraction rates occur
sz within each tetrahedron. The results of the application of the L* —norm to the case study are presented
;33 in Table 4. We observe that the maximum strain-rates occur at year 2003: either expansion or contraction.
s3a Also, that important contraction-rate magnitudes take place between the years 2003 and 2010. This is
s not the case of the extension-rate magnitudes, which are more prevalent after year 2008.

3¢ 4. Conclusions

337 In the present article, we have quantified the temporal change of a time-dependent and
:3s  three-dimensional dataset. Contrary to other approaches [1], we have calculated the three-dimensional
330 strain-rate state of the dataset based on the interpolation of discrete point-wise displacements -or
ss0 data variations-. We have applied a technique in continuum mechanics using a FEM interpolation of
s non-overlapping linear tetrahedral elements that spans the three-dimensional dataset.

342 The methodology has demonstrated to exhibit regions of major deformation-rate. Departing from
sz the calculation of the numerical strain-rate values, we have introduced some data-visualization
sas  techniques that help to locate the magnitudes and orientations of the strain-rate state in the
w5 three-dimensional framework. This is the case of the principal strain-rate trajectories, whose have
ass  demonstrated to be more detailed than other possible visualization techniques, e.g. strain-rate diagrams
a7 in [24,28]. The main difference with strain-rate diagrams is the ability of the former to visualize a
e continuum version of the strain-rate inside the dataset, and to separate the analysis into each principal
;a0 component of the strain-rate state, while being mesh independent.
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350 The calculation of the strain-rate state shows that the methodology is suitable for quantifying
ss1  the temporal change of a reduced three-dimensional dataset describing the social, economic and
2 environmental state of the city of Barcelona. In particular, high strain-rates are associated with the
353 localized deformation of regions that represent the districts of the city in the time span of 13 years. It is
sss  similar to Cluster Analysis [37-39] or Distance measures [40], in the sense that the method portrays the
s similarities and differences between the districts of the city. The distinctive attribute of the present
s work is the feasibility to quantify the districts” differentiation with time: the strain-rate tensor provides
ss7  quantitative information about local regions of extension and contraction, where extension-rate patterns
s means differentiation and contraction-rate patterns means clustering -or homogenization-. Conclusions
0 about the divergence or clustering of districts in time can therefore be stated. For example, it reveals
0 the time, location, and orientation of pressures affecting the inhabitants of certain districts of the city,
se1  essentially those which are rapidly diverging from the rest (e.g. the case of Ciutat Vella for the case
se2  study). This methodology locates regions where detailed action is necessary, as well as the foretelling
se3s  Of possible ruptures in the system.

364 Finally, we would like to say that this method is not limited to the study of the data change,
ses  but can also be applied to other descriptions: a natural sequel to the present article is the study of
ses the time-dependent data cloud as a deforming elastic solid under equilibrium. Solving the inverse
se7  problem, namely the identification of the constitutive moduli of the deforming material emerges as the
ses  first step for predicting the system’s future state given its historical data.
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Table A1. Coordinates (seen as the component loadings of the PCA analysis) for the ten districts in the
temporal span.

Ciutat Vella Eixample Gracia

Year PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3
2003 | -0,8063 9,0563 -0,8014 | 4,2613 1,8666 -4,832 1,05 0,6006 -5,1456
2004 -1,2263 8,749 0,0207 4,444 1,7361 -4,6018 0,4589 0,4104 -3,8634
2005 -1,1214 8,1463 -0,5941 4,538 1,4541 -4,6755 1,105 0,0923 -4,7119
2006 -1,5671 7,6138 -0,1879 4,2079 1,6011 -4,3598 0,7275 -0,1042 -4,0577
2007 | -1,1198 7,2281 0,0579 4,1476 1,0994 -3,7909 0,4875 -0,305 -3,1769
2008 | -1,5106 6,9424 0,4942 3,9782 1,0165 -3,4243 0,1741 -0,8197 | -2,7533
2009 | -1,3956 7,5225 0,9368 3,685 0,7901 -3,3483 0,2523 -0,6319 | -3,1446
2010 | -0,9735 7,7025 1,6649 3,7625 0,4337 | -2,9882 0,0594 -0,7371 | -2,9213
2011 | -1,2043 7,9648 1,9629 3,3624 0,6786 -2,9333 0,0113 -0,6152 | -2,9398
2012 -1,195 7,8653 1,7417 3,0545 0,9032 -2,8587 -0,1365 -0,5935 -2,8493
2013 -1,5913 7,9264 1,9916 29124 0,8291 -2,6614 -0,5758 -0,3804 -2,6808
2014 -1,3629 8,3386 2,2818 3,1193 0,867 -2,4646 -0,4876 -0,7186 -2,4188
2015 | -1,2049 8,9012 2,4749 3,5172 0,8941 -2,8168 | -0,3677 | -0,3717 | -2,4571

Horta Les Corts Nou Barris
Year PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

2003 | -2,1138 | -1,2904 | -1,4894 4,1613 -0,1746 2,4413 -3,9792 | -0,6683 | -2,2832
2004 | -1,9348 | -1,6926 | -1,2007 4,2907 -0,4407 3,246 -4,3116 | -0,8449 | -1,6886
2005 | -1,9037 | -1,9865 | -1,2151 4,72 -0,9836 3,0771 -4,1319 | -1,0375 | -1,7496
2006 | -2,0135 -2,068 -0,7788 4,2483 -1,1456 4,3327 -4,5379 | -1,1949 | -1,1161
2007 | -2,0524 | -2,4994 | -0,2639 4,9414 -1,5988 4,5201 -4,4199 | -1,6649 | -0,5806
2008 | -2,2745 | -2,6368 | -0,0178 4,6463 -2,081 4,7669 -4,5522 | -2,0702 | -0,4074
2009 -2,203 -2,4633 | -0,2194 4,3805 -2,0041 4,7494 -4,3531 | -1,8088 | -0,7178
2010 | -2,3921 | -2,5868 | -0,1021 3,9936 -1,4523 4,6517 -4,4486 | -2,0712 | -0,3091
2011 -2,751 -2,4149 0,1039 3,6955 -1,41 4,9955 -49566 | -19717 | -0,0125
2012 -2,94 -2,4159 0,1586 3,8331 -1,4371 4,5223 -5,0669 | -1,7986 | -0,0275
2013 | -3,1722 | -2,3885 0,2543 3,6767 -1,4507 4,9202 -5,5219 | -1,7744 0,214

2014 | -3,4071 | -2,5664 0,5601 3,7339 -1,6226 5,1188 -54769 | -1,9184 0,3528
2015 | -3,4105 | -3,0084 0,8318 3,6617 -1,6611 5,1225 -5,5952 | -2,3473 0,6067

Sant Andreu Sant Marti Sants
Year PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

2003 | -1,9206 | -0,7244 -2,038 -1,6692 | -0,6515 -0,759 -0,4118 2,8214 1,4929
2004 | -2,3282 | -0,8237 | -1,2921 | -2,0666 | -0,9143 0,1126 -0,4382 2,7054 1,9119
2005 | -2,2532 | -1,0002 | -1,5723 | -1,8884 | -1,2945 | -0,2293 | -0,2215 2,1389 1,7699
2006 | -2,5938 | -1,0519 | -1,0073 | -2,1435 | -1,0797 | 0,6638 -0,321 2,0008 2,104

2007 -2,5244 -1,4196 -0,5319 -2,2487 -1,4918 1,1851 0,1661 1,5314 2,1307
2008 -2,5551 -1,8275 -0,6822 -2,2779 -1,9199 1,2394 -0,3843 0,6045 2,3897
2009 -2,772 -1,4689 -0,812 -2,2868 -1,6089 0,9544 -0,7046 0,5952 2,4362
2010 -3,0476 -1,8197 -0,1474 -2,4825 -2,1435 1,8678 -0,7341 1,5812 2,6913
2011 | -3,2915 | -1,7145 | -0,1452 | -2,4366 | -1,9662 1,5397 | -1,0958 0,1433 2,3358
2012 | -3,3955 | -1,8174 | -0,1092 | -2,5843 | -1,9311 1,5931 -1,0935 0,5496 2,3024
2013 | -3,7081 | -1,7173 0,0948 -3,0101 | -1,7819 1,6588 -0,961 0,3743 2,6883
2014 | -3,5488 | -1,8093 0,0797 -2,732 -1,9099 1,6373 -0,9836 0,4766 2,9893
2015 | -3,4406 | -1,5402 | -0,0642 | -2,6473 | -1,8349 1,4236 -0,9148 0,4841 2,9255

Sarria
Year PC1 PC2 PC3

2003 6,9446 -0,3658 | -2,1205
2004 6,6038 -0,6365 -0,9552
2005 7,2135 -0,9469 -1,7803
2006 6,6584 -1,2802 | -0,9586
2007 6,5343 -1,7212 -0,0213
2008 6,3394 -2,261 0,3627
2009 6,4824 -2,2093 -0,0221
2010 5,9119 -2,0589 0,2891
2011 5,7193 -1,7978 | -0,0559
2012 5,716 -2,0188 0,2245
2013 53182 -2,1666 0,5166
2014 5,4857 -2,3904 0,6632
2015 5,4919 -2,1922 0,4949
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