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Abstract: This paper introduces PatchFusion, an innovative approach for nonrigid tracking and reconstruction of
deformable objects using a single RGB-D sensor. Existing methods face challenges in accurately capturing the
rapid deformations of soft and flexible objects, thereby limiting their utility in diverse scenarios. Our approach
overcomes this challenge by employing a dynamic patch-based framework that adapts to rapid inter-frame
motions. Firstly, patch-wise rigid transformation fields for non-overlapping patches are solved via Iterative
Closest Point (ICP) by incorporating geometric features as additional similarity constraints, thereby enhancing
robustness and accuracy. Secondly, deformation optimization based on a nonrigid solver is applied to refine
the coarse transformation fields. In order to enable simultaneous tracking and reconstruction of deformable
objects, the patch-based rigid solver is designed to run in parallel with the nonrigid solver, serving as a plug-and-
play module requiring minimal modifications for integration while enabling real-time performance. Following
a comprehensive evaluation, PatchFusion showcases superior performance in effectively dealing with rapid
inter-frame deformations when compared to existing techniques, rendering it a promising solution with broad

applicability across domains such as robotics, computer vision, and human-computer interaction.

Keywords: nonrigid tracking; deformable objects; RGB-D sensor; deformation optimization

1. Introduction

The advent of RGB-D sensors has revolutionized computer vision applications, such as body
measurements [1], 3D gaming [2] and robot navigation [3]. This kind of sensor provides a wealth of
visual information by seamlessly integrating color and depth data, thereby facilitating the understand-
ing and reconstruction of intricate objects and scenes. Of particular significance is the tracking and
reconstruction of deformable objects, which present formidable challenges owing to their intricate and
dynamic nature. Unlike rigid structures, deformable objects lack distinct geometric features, rendering
their tracking and reconstruction a complex endeavor.

Soft tissues, fabrics, and biological structures are prime examples of deformable objects that
undergo intricate shape changes, posing difficulties for conventional rigid tracking and reconstruction
methods. The research interest has been growing for developing efficient 4D reconstruction schemes to
capture dynamic scenes. Fusion-based methods [4-7] achieves 4D reconstruction of dynamic scenes via
monocular RGB-D camera, by incrementally fusing live depth data into a canonical volume. The fusion-
based reconstruction decompose the 4D representation of dynamic scenes into a canonical volumetric
representation and temporarily varying deformation fields. The canonical volumetric representation is
maintained and updated by integrating live depth data via Truncated Signed Distance Fields (TSDF) [§],
while the deformation fields are characterized by a sparse set of rigid transformations on an embedded
deformation graph (EDG) [9], and the evaluation of the transformation matrix on an arbitrary point
in the whole 3D space is performed via interpolation. In order to estimate the deformation fields,
a nonrigid solver including a data term and a regularization term is applied to the model-to-frame
registration task. For humans and objects that move slowly, such solvers typically perform well.
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However, in the presence of rapid inter-frame deformations, these solvers may struggle to accurately
track the motion fields, often resulting in erroneous integration of geometry and texture.

Raw input Reconstruction results
Figure 1. Comparison of raw input and our reconstruction results.

To address the aforementioned challenges, it’s crucial to note that many fusion-based methods
approach nonrigid tracking by framing it as an as-rigid-as-possible optimization problem. This
entails establishing an objective function that accounts for the projection data associations between a
canonical frame and a live frame. Typically, these methods employ a Gauss-Newton solver iteratively
within an ICP-based framework to address this optimization challenge. However, these techniques
often struggle when the inter-frame deformation is significant and rapid, as iterative linearization
becomes necessary during optimization. Consequently, this leads to diminished tracking accuracy,
particularly when dealing with complex and fast deformations [5,6]. Another significant observation
is that many nonrigid deformations can be decomposed into large rigid motions and small nonrigid
deformations [10]. The presence of large rigid motions is often the primary cause of many tracking
failure cases.

Accordingly, this paper introduces an innovative approach to tackle the intricate issues associated
with nonrigid tracking and reconstruction of rapidly deformable objects using RGB-D data. Leveraging
the depth information provided by commodity RGB-D sensor, our method aims to capture the fast
deformations and shape variations of flexible object and scenes in real-time. Specifically, we introduce
efficient modules to solve the embedded large rigid motions ahead of the deformation optimization for
global nonrigid deformations. The two frames to be registered are initially partitioned into geometric
patches, and individual rigid transformations are estimated for each patch using an improved variant
of ICP [11]. This local patch-based rigid solver captures more local structural information, mitigating
the influence induced by the APAP regularization term, which encourages the surface to move as
rigidly as possible. This regularization term may not be compatible with the fact that some areas move
relatively faster than their neighboring areas, causing fast-moving areas to be dragged by slow-moving
ones. However, the solved patch-based rigid transformations may not be continuous due to abrupt
motions in certain local areas. Therefore, we employ nonrigid deformation optimization to refine
the coarse motion fields and obtain the finer ones. Once the final warping fields is computed, we
update the TSDF values stored in each voxel of the canonical volume by warping its coordinates
into the live camera frame in a nonrigid manner, thus integrating the new depth information with
an averaging scheme. A comparison between the raw inputs captured by an RGB-D sensor and the
temporally reconstructed results via our proposed method is presented in Figure ??. The underlying
surface extracted from the canonical volume is progressively denoised and completed by fusing more
registered depth data. This integration of RGB-D measurements not only enhances tracking precision

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202403.1670.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 March 2024 d0i:10.20944/preprints202403.1670.v1

30f17

but also facilitates the reconstruction of detailed surface structures, rendering it particularly suitable
for applications requiring high-fidelity modeling of deformable objects.
The main contributions can be summarized as follows:

* A dynamic patch-based framework, mainly consisting of two threads running in parallel that
estimate motion fields in a coarse-to-fine manner, adapting to the inherent challenges posed by

nonrigid deformations.
¢ A patch-based rigid registration module is designed for efficiently solving a set of coarse trans-

formation fields, which are defined and solved for each non-overlapped patch independently.
¢ A deformation optimization module is employed and integrated to refine the coarse transfor-

mation fields, yielding more accurate and consistent transformation fields with the embedded

deformation graph.
¢ Extensive experiments demonstrate that the proposed approach is able to dynamically track

and reconstruct deformable surfaces, offering a more accurate representation of their evolving
shapes.

The remainder of the paper is organized as follows: Section 2 presents related works to our
proposed method. An overview of definition of variables and system architecture of proposed method
is presented in Section 3. The details of each module are described in Section 4. Extensive experiments
and evaluations are conducted in Section 5. Finally, Section 6 concludes.

2. Related Works

2.1. Rigid Registration

Benefiting from advancements in fields such as computer vision and robotics, registration algo-
rithms have experienced rapid development. Registration can typically be categorized into rigid [12,13]
and nonrigid registrations [14,15]. In this section, we concentrate on rigid registration methods which
play an important role in the coarse stage of our proposed approach. The Iterative Closest Point (ICP)
algorithm [16] stands out due to its conceptual simplicity and ease of implementation. However, it
encounters challenges when dealing with complex geometries featuring low overlap or significant
displacements, primarily due to the difficulty in finding reasonable correspondences via closest point
search. Consequently, numerous ICP variants have been proposed to address these issues, includ-
ing various designs concerning correspondence matching [17,18], objective functions [11,19], and
robust kernels [20]. In the context of our system’s rigid registration thread, we leverage geometric
features such as normals and curvatures to enhance correspondence matching, as demonstrated in
prior work [11]. These features are integrated into the objective function to improve the robustness
and accuracy of the registration process.

2.2. Patch-Based Approaches for 3D Reconstruction

Patch-based methods have gained prominence in various computer vision tasks [21-24] due
to their ability to handle local variations and adapt to changing environments. In the context of
object tracking, patch-based approaches have been applied to both rigid and nonrigid scenarios [25].
In structure from motion, Fayad et al. [26] proposed to reconstruct the underlying surface given a
monocular video by partitioning the surface into patches, each of which is reconstructed using a
quadratic deformation model. In traditional reconstruction methods based on multi-view stereo, local
image patches are leveraged to estimate depth information and address challenges such as occlusions
and textureless regions [27,28]. In this paper, we leverage the patch-based representation for two
frames to be registered and estimate patch-wise rigid motion fields for source frame, which plays an
crucial role in recovering rapid inter-frame motion.

2.3. Deformable Object Tracking

Traditional approaches to object tracking often rely on rigid body assumptions, which are inade-
quate for capturing the complex deformations exhibited by soft and flexible materials. Recent works in
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deformable object tracking explore various techniques, such as shape models [21], optical flow [29], and
physics-based simulations [30], to address the challenges associated with nonrigid motion. Driven by
the need to track human bodies and hands, researchers have developed several methods for instances
containing articulated structures by incorporating skeletons [31] or a low-dimensional parametric
shape [32,33]. Although deformable object tracking with pre-scanned templates or shape priors has
shown impressive performance, they usually depend on careful initialization, which restricts their
applicability to more generalized scenarios. In contrast, our proposed approach is template-free,
devoid of assumptions about the shape, making it readily applicable to a diverse range of scanning
requirements.

2.4. RGB-D Tracking and Reconstruction

The integration of RGB-D sensors has significantly improved the accuracy and reliability of
object tracking and reconstruction. Methods utilizing depth information alongside color data have
been successful in handling rigid objects [34,35]. Zollhofer et al. [4] presented the first real-time
nonrigid tracking and reconstruction method based on pre-scanned mesh template. Newcombe et
al. [5] developed a template-less framework that addressed the motion and geometry estimation as an
optimization problem. Many following works improve the DynamicFusion algorithm with additional
constraints, such as sparse 2D features[6], lighting and appearance models [7]. Moreover, Slavcheva
et al. [36] proposed an novel framework for nonrigid reconstruction by level set evolution that is
able to handle topology changes without correspondence search. The authors of BodyFusion [31]
propose to introduce the skeletal information for tracking fast articulated motion, optimizing both the
embedded node deformations and bone transformations simultaneously. Building upon this, their
subsequent work, DoubleFusion [32], employs a low dimensional parametrized body model [37] to
achieve robust nonrigid tracking and fusion. However, such methods heavily rely on prior knowledge
of human shape, making them less suitable for general object tracking and reconstruction. Additionally,
for human wearing loose clothing, extracting useful information about underlying shape and pose
becomes challenging [37]. Compared with these contributions, the key property of our work is a
highly efficient plug-and-play module that greatly improves the tracking accuracy and robustness of
fusion-based algorithm making minimal assumption of the object shape.

3. System Overview

3.1. Definition of Variables

In this paper, common variables are defined as follow:

Dy - depth image at time t; C; - color image at time t.

u = (v,u)T - pixel location; @ - homogeneous coordinate of u.

D;(u) - depth value at u.

p - continuous point in R3; q - dehomogenised coordinate of p in R?.

714 - perspective projection of the depth camera.

Tt - perspective projection of the color camera.

K - intrinsic matrix of depth camera.

Taoc - extrinsic matrix between depth camera and color camera.

7; - rigid transformation matrix of i-th node.

X - unknown parameter vector of all nodes.

x; = (&;, Bi, Vi t¥, tly , tf)T - parame:crized vector of 7;.

M - canonical mesh at frame t; M; - warped mesh at frame t.

S; - rendered vertex map of M; that is predicted-to-be-visible.

v - vertex in R from S; v/ - corresponding vertex of v; ¥ - warped vertex of v.
G - embedded deformation graph consisting of nodes and edges.

Tw2c - rigid transformation matrix from canonical coordinate frame to camera coordinate frame.
wj - influence weights; 0; - influence radius.

N;(v) - K-NN nodes of v used in data term.

N;(z) - K-NN nodes of node used in regularization term.
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3.2. System Architecture

This paper presents a comprehensive approach for nonrigid tracking and reconstruction of
deformable objects using data from a single RGB-D camera. Deformable objects, such as soft tissues
and fabrics, exhibit intricate and dynamic deformations that pose challenges for traditional tracking
and reconstruction methods. Our approach revolves around a patch-based methodology designed
to dynamically adapt to the evolving shape of deformable objects. The pipeline of proposed method
is depicted in Figure 2. By taking continuous depth and color images as input, our system outputs
denoised meshes with high fidelity fused colors. The key components of the system consist of two
parallel threads: the Thread I involves a coarse registration module, as depicted within the blue
rectangular box. This thread aims at solving the patch-based transformation fields, consisting of a
rigid solver for global rotation and translation, a sampling and clustering module for generating
geometric patches, and a patch-based solver for individual transformations of each non-overlapping
patch. The Thread II acts as an embedded deformation optimization module for the refinement of
the coarse transformation fields, as depicted within the orange rectangular box. This thread involves
the construction of an embedded deformation graph, a nonrigid solver based on Gauss-Newton
steps, and a nonrigid volume update module. It's worth noting that the patch-based registration is
designed to run in parallel with the deformation optimization thread, enabling real-time performance
and requiring minimal modifications for integration. To demonstrate the efficacy of our approach,
we conduct extensive experimental evaluations comparing our method to existing techniques. The
results showcase the superior performance of our RGB-D-based approach in handling fast nonrigid
deformations, making it a valuable contribution to the fields of computer vision, robotics, and VR/AR
content generation.

__Rigid Solver Sampling & Clustering

8

Patch-based Registration
Py s

Before ICP After ICP Seed points Geometric Patches ICP-Reg Patch-Reg \
{ } Meshes
- 1 Deformation Graph Nonrigid Volume Update

Nonrigid Solver

Canonical Space Ravp

Data Term

1] &7 epii 4 1
Color Images ONodes EVertice® ™ Patch-Reg NonrigidReg = v/ 015 (P Warped \/oxeki Colored Meshes
A. Input B. Thread I: Coarse Registration Module C. Thread II: Fine Registration Module D. Output
Figure 2. Pipeline of proposed method.
4. Methods

4.1. Preliminaries

We leverage RGB-D data to reconstruct the surface of deformable objects. The fusion of color
and depth information facilitates the creation of a detailed 3D model that accurately captures the
object’s shape A measurement from RGB-D sensor at time t consists of a depth map D; with depth
value D;(u) € R at each pixel location u = (u,v)T. The homogeneous coordinates of u is denoted by
@ = (u',1)7 such that p = D;(u)K~ i is the corresponding 3D point in 3D space, where p € R? and
K represents camera calibration matrix. The function q = 77;(p) performs perspective projection of p
to obtain dehomogenised coordinate.

4.2. Nonrigid Alignment as Energy Optimization

For nonrigid alignment, we adopt the embedded deformation graph (EDG) representation which
is constructed and updated for each new frame [5]. A 4 x 4 rigid transform 7; is assigned to each node
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and is parametrized through matrix exponentials based on skew-symmetric matrix theory [7], yielding

fast convergence. As a result, each node has total six unknowns such that three for rotation and three
for translation. For simpler notation, we stack unknowns for all nodes in a parameter vector:

T T T \T

X == (Xo,...,xi ,...,XIZI) ’ (1)

where x; = (&;, Bi, Vi, t5, tiy, t7 )T with («;, B;, ;) for rotation and (tl’.‘, tly , tf) for translation. The nonrigid

alignment is formulated as a nonlinear least squares optimization problem with respect to the un-

knowns X. Following pioneering works [7], we define the objective based on point-to-plane data term

and as-rigid-as-possible regularization term:
Etotat (G, M, D', X') = wgEa(M, D', &) + w,E (G, X), @)

where G denotes the node graph and M represents the canonical mesh geometry at time t — 1. Note
that G and M are updated for each subsequent frame, while time superscripts are omitted here for
simplicity. D' denotes the live input depth at time ¢, w; and ws are balance weights for data and
regularization term. E; represents a point-to-plane energy term:

Eg(MTLDL A = ) (g (v =), ®)

v/
(v,v')eC

where v and Vv’ is a pair of correspondence, v’ is a 3D point computed by back projecting a pixel in D!
via intrinsic matrix K and nI/ is its normal, and C contains all correspondence pairs. The canonical
vertex v is from M!~1, while warped vertex ¥ is computed as follows:

V="Tax ), wi(v,0)T}v, (4)
JEN (v)

where Ty, represents the world-to-cam rigid transformation common to all points in canonical space,
T is the unknown transformation matrix residing on the j-th node at time t, w;(v, 0;) is the weighting
coefficients for neighboring nodes with pre-defined ¢; controlling influence radius, and AV (v) denotes
the 4 closest neighbors of v. E, is an as-rigid-as-possible regularization term:

Nz
E(GX) =Y Y Tz —T'l5 ®)
i=1jeN (z;)

where Nz is the number of graph nodes, N (z;) represents the 8 closest neighbors of i-th node z;.
On one hand, this regularization term prevents the motion fields from abrupt changing due to noisy
depth measurements. On the other hand, only a subset of node transformations participates data
term in the optimization according to the predicted-to-be-visible geometry, leaving the rest nodes
unrestricted. This term plays an vital role for driving these currently invisible regions to deform as
rigidly as possible.

The described nonrigid deformation objective is a nonlinear least squares problem in the unknown
node transformation parameters. We employ the Gauss-Newton method that only requires first-order
derivatives and exhibits quadratic convergence when close to the optimum. After linearization of X'*
around X*~1, we have the following linearized system to be solved:

JIjAxt = )Ty, (6)

where ] is the Jacobian matrix evaluated at X t=1 AX!is the incremental update, and r is a residue
vector.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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4.3. Patch-Based Rigid Alignment

The tracking accuracy of Equation (2) is severely degenerated due to fast inter-frame motions.
In such case, the initial state X*~! is too far from the optimum so that solving the linearized problem
falls into local minima quickly. Another reason is the as-rigid-as-possible regularization term prevents
the local region from deforming fast. To address this issue, we propose a novel patch-based rigid
motion estimation module as a preprocessing step prior to solving Equation (2). The insight is that
large inter-frame motion appears locally and rigidly which can be solved independently from the
area that is far from the local area and moves relatively slowly. That is to say, the inherent motion
graph is temporarily break in this preprocessing stage, facilitating the solving for fast inter-frame
motion in some areas. Once the surface patching is completed on both D!~! and D!, patch-wise
rigid ICP algorithm is applied to compute the inter-frame rigid motions for each patch. Note that,
we compute the patch-wise rigid transformation fields for between adjacent depth frames instead
of the warped canonical frame and current frame. The reasons are two folds. One is that we can
perform this preprocessing procedure independently from the deformation optimization described in
last section, opening a parallel thread for this task. Another is that resulted patch-wise motion fields
between D!~ and D! is enough well for rigid motion compensation for deformation optimization in
the following stage, though warped canonical geometry might be more smooth and complete. We
adopt an improved variant version of ICP called GFOICP [11] for registering two patches from source
and target frame respectively. In the context of patch-based registration, it is imperative to locate
several neighboring patches in the target frame that are closest to a specific patch in the source frame.
This process effectively enlarges the target patch, ensuring the preservation of valid overlaps between
the patches. This dilation operation proves crucial, especially in scenarios where motion is rapid and
displacements are substantial.

As shown in Figure 3, we visualize the registration results of two patches extracted from a
sequence depicting waving motion, marked by red and blue boxes respectively. Two different views
are employed to render the patches to be registered, with the source patch marked in yellow, the
target patch in blue and the transformed source patch in red, facilitating a clearer comparison between
patches before and after the registration process. Our designed patch-based registration algorithm
demonstrates its effectiveness in aligning two point clouds subjected to significant displacements.

Waving

Figure 3. Patch-wise registration based on an improved variant of ICP.

4.4. Local-to-Global Fusion

In this section, we present a mechanism for integrating locally computed, independent patch-wise
rigid transformation fields into the global nonrigid deformation graph. This integration enables the
system to seamlessly adapt to nonrigid deformations. The fusion process not only enhances tracking
accuracy but also provides a more precise representation of the deformable object’s shape, even in
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scenarios characterized by rapid and complex shape changes. In addition to the transformations of
individual nodes, we introduce a common rigid body transformation denoted as 7p., which applies
to all points in canonical space. This transformation accounts for any camera motion and factored rigid
motions. Given that patch-wise transformation fields are defined and computed in live camera space,
while the node transformation fields are defined and stored in canonical space, we must convert the
former to the latter. This conversion process is outlined as follows:

ATiv="Y wi(z) Ty T Tanev, )
kEN(Z])

where N (z;) represents the 4 closest patch to the j-th node z;, w;(z;) is similar as defined in Equation
(4), and ’7? is the estimated rigid transformations for k-th patch obtained in last section. Instead of
initializing AT as an identity transformation matrix, We employ Equation (7) to fuse and integrate
patch-based motion fields, which are locally computed, into the subsequent deformation optimization
process.

4.5. Implicit Surface and Rasterization

In order to reconstruct the finer geometry incrementally with more incoming depth information,
we represent the underlying geometric information with the implicit surface, which is a mathematical
representation in three-dimensional space define implicitly rather than explicitly. Specifically, it is
described by an implicit function of the form F(x,y,z) = 0, where F is a function that evaluates to zero
on the surface. Point inside the surface have negative values of F, points outside have positive values,
and points on the surface have zero values. This implicit representation allows for the modeling of
complex shapes without explicitly defining the surface. We construct the implicit function over regular
grids of 3D space following [8] using a truncated signed distance function (TSDF), denoted as SDF(-).
A set of descretized voxels {0, } are the sampled point in a regular grid that contains a distance
value, which is initialized with depth images and subsequently updated by nonrigid registration. We
assume the first depth frame defines the world coordinate system, based on which the canonical TSDF
volume V is stored and update. Once the warping fields at time t is solved, we warped the voxel center
0; x in canonical volume nonrigidly under T.,. and node-based motion fields as:

Oijk = Tupe ), wi(X)T 0k (8)
JEN (04 k)

Then the signed distance values SDF(o; ;1) is computed as:
SDF(O,‘J’,]{) = Sgi’l(SDF(Oi,]',k» . min(|SDF(0i,]',k) |, ttrunc)r (9)

where i nk represents the truncation parameter, which selectively updates voxels within a narrow
shell, and SDF(o; ;) is the projective distance (along the z-axis) between the warped voxel and depth
measurements Dy, which is given by

SDF(0; k) = [6;klz — Dt(7a (8 j))- (10)
And the updated TSDF value is given by the weighted averaging as:

SDF(0;:r) *w(0; ;)i —l—S/ISI/-"o--
SDF,(Oi,]"k) _ ( 1,],k) ( 'z,J,k)t 1 ( 1,],k). 11)
w(oz,],k)tfl +1

In order to reconstruct a colored mesh, we employ an update rule for signed distance values to
update the color volume using the captured C'. Subsequently, a triangular mesh is extracted using the
Marching Cubes algorithm [38] for visualization and post-processing.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Given that depth cameras can only capture a portion of the entire surface, it is advantageous to
register the canonical geometry, which is predicted to be visible in the current camera coordinate frame.
The advantage of this strategy avoids utilizing the entire geometry of the canonical volume, which
reduces the time spent on correspondence search. Specifically, the canonical geometry is warped by
the currently estimated warping fields and perspectively projected onto the live depth frame. Vertices
and normals from the canonical geometry are used to shade the warped geometry. Subsequently,
we rasterized the shaded geometry to produce a rendered frame denoted as S;, which stores the
vertex and normal pairs of canonical geometry. This rendered frame efficiently facilitates fetching a
canonical vertex v in Equation 3. Then, data association between &; and D; is computed by warping
and projecting the point-normal pairs stored in S; onto the D; image plane to identify corresponding
point-normal pairs according to distance and normal differences.

5. Experiments
5.1. Experiment Setup
5.1.1. Dataset

We utilize a commodity depth sensor to record sequences of dynamic scenes featuring human
bodies or soft objects such as clothes or toys. In whole-body sequences, the actor stands in front of the
camera at a distance of 2.0 meters to ensure capture of the entire body, facilitating rapid articulated
motions. In upper-body sequences, the actor stands closer to the camera, approximately 1.2 meters
away. This closer proximity enhances the accuracy of depth measurements, particularly for capturing
facial details. In datasets involving clothes and objects, these items are positioned at a default distance
of 1.2 meters from the camera. Additionally, we curate a dataset focusing on hand-object interactions,
showcasing PatchFusion’s capability for reconstructing intricate geometry.

5.1.2. Evaluation Metrics

For evaluation purposes, reconstructing the ground truth of highly nonrigid deformable scenes
poses a significant challenge. While the newly developed light stage offers a potential solution for
this task, in this paper, we focus on evaluating the effectiveness of the proposed method in terms of
temporal tracking accuracy. Specifically, we quantitatively assess the registration accuracy between
two adjacent depth frames generated by different competing schemes. In theory, more accurate
registration should lead to more precise reconstruction results. To measure the registration accuracy,
we utilize an implementation in Meshlab [39], which calculates both the Root Mean Square (RMS) and
maximum (MAX) values concerning the bounding box of the input point set. This allows us to gauge
the performance of the proposed method quantitatively.

5.1.3. Implementation Details

Our pipeline comprises four key modules: a depth image preprocessor, a patch-based solver, a
nonrigid solver, and a geometry and color volume update module. The depth image preprocessor
acquires depth images via the official SDKs of the sensor and applies a bilateral filter. Each CUDA
thread is dedicated to processing one pixel of the depth image to compute its 3D vertex and associated
normal. This computation is performed in parallel for all pixels and takes no more than 2ms on a
single GPU. We implement the rigid solver following the approach by Newcombe et al. [34], where
data reduction is carried out on the GPU, and the solution of the 6x6 matrix and 6x1 vector for solving
the linear system is done on the CPU. Based on the predefined sampling radius for surface patching,
approximately 30-50 small patches are required to solve the rigid transformation. For the nonrigid
solver, we follow the method proposed by Dou et al. [40], which involves constructing the matrix
JTJ and then solving the linear system JTJAx = —JTr. The maximum number of Gauss-Newton
iterations is set to 10. However, due to the superior initialization provided by patch-based motion
fields compared to solving node-based warping fields from the identity matrix, the solver typically
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converges in 2-3 iterations. The update of the geometry and color volume requires approximately 2-
3ms per frame. By designing the patch-based solver and nonrigid solver as two major time-consuming
modules running in parallel, our system achieves a processing speed of 30Hz, matching the capturing
frame rate of the depth sensor. Additionally, we set the voxel size to 0.004m and the resolution of the
grid to 256, forming a cube with a size of 1.024m. The sampling radius of patches is set to 0.05m, while
the sampling radius of deformation nodes is set to 0.025m. We set w; = 1 and w; = 50 across all tests.

5.2. Quantative Analysis

In this section, we present a quantitative analysis of our proposed method for registering two
consecutive depth frames. Evaluating the performance of our registration algorithm is crucial for
assessing its accuracy and robustness in tracking-based reconstruction. We configure several competing
schemes for evaluation, including rigid-ICP, nonrigid-ICP, and patch-ICP. The rigid-ICP estimates a
single rigid transformation, while nonrigid-ICP involves estimating a set of rigid transformations, with
the final warping fields interpolated following the implementations of DynamicFusion [5]. Patch-ICP
utilizes a patch-based registration module proposed in Section 4.3. We conduct experiments on four
human body sequences and two hand-interacting object sequences. Our proposed method outperforms
the competing schemes with a significant improvement in both RMS and MAX errors, as reported in
Table 1.

Table 1. Registration results on adjacent two frames. The best result of each sequence is marked in
bold and the units of RMS and MAX errors are millimeters.

Input ICP Nonrigid-ICP Patch-ICP Ours

max), RMS| max/ RMS] max] RMS| max] RMS|
Marching 17.610 2.306 18.950 1.366 15.244 1.382 16.081 1.230
Boxing 23.210 3.955 19.227 1.642 22014 1.774 20.723 1.597
Waving ~ 33.528 3.850 20.086 1406 18.886 1.622 17.196 1.241
Jumping 27100 1.816 26.761 1.464 24.475 1.390 23.819 1.316
Jacket 16.127 1.817 15.895 0.911 14.460 0.939 13.663 0.869
Tablecloth 23575 3915 16.165 1.099 16.576 1.201 15.989 1.013

5.3. Qualitative Comparison Results

In this section, we present various dynamic scenes reconstructed using our proposed method,
showcasing its improved performance and robustness, especially for fast inter-frame motions. We
compare our method with several state-of-the-art RGBD-based reconstruction techniques, including
DynamicFusion [5], DeepDeform [41], Bozic et al. [42], OcclusionFusion [43], and NDR [44]. Initially,
we integrate the color volume update into both DynamicFusion and our proposed framework. Al-
though both methods utilize geometric information for tracking, integrating color information into the
visualization can effectively reveal tracking accuracy. By testing on two hand-interacting sequences
captured by our own RGB-D sensor, our method achieves more accurate tracking results, resulting
in sharper textures. As shown in Figure 4, blurry results, observed in the alphabet on the jacket and
the grid texture of the tablecloth, highlight the challenges faced in tracking when capturing objects
subjected to fast nonrigid deformations. Furthermore, we conduct experiments on a public dataset
called DeepDeform [41], and select one of the hand-interacting object sequences for comparison with
recent advances in deep learning-based reconstruction methods. As illustrated in Figure 5, our method
outperforms DynamicFusion and DeepDeform in terms of tracking accuracy and the quality of recon-
structed surfaces. It achieves comparable tracking robustness as Boizc et al. and NDR. While NDR
produces finer geometric structures by employing high-resolution RGB cues, our method requires only
depth input, making it a more lightweight solution adaptable to textureless objects. In addition to hand-
interacting objects, we also conduct experiments on another crucial scenario involving deformable
scenes: articulated human body datasets. We capture an avatar performing various actions, including
marching, boxing, waving, and jumping. All of these actions involve fast inter-frame motions, posing
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significant challenges for tracking and reconstruction tasks. As depicted in Figure 6, the reconstruction
results from DynamicFusion present noticeable artifacts around the arms and feet during fast motions.
In contrast, our method achieves more stable reconstruction results in such scenarios.

Input RGB DynamicFusion DynamicFusion Texture Ours Texture

LI
||

Figure 4. Comparison results of our own captured hand-interacting objects.

RGB DynamicFusion DeepDeform Bozic et al. OcclusionFusion NDR Ours
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Figure 6. Dynamic tracking and reconstruction results on four challenging articulated human body
sequences.

5.4. Ablations of Patch-Based Registration

In this section, we demonstrate the effectiveness of our proposed patch-based registration module
compared to DynamicFusion, which only operates deformation optimization. The test sequence
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features a human body with rapid articulated motion around the arms, posing a challenging scenario
for tracking-based reconstruction algorithms. As shown in Figure 7, the live input point set, computed
by back-projecting the 2D depth frame into 3D space, is marked in yellow, while the warped point sets
are computed by warping the canonical point set with the current estimated warping fields, marked
by red, green, and blue respectively. We iterate over 3 outer loops, updating data associations between
canonical frames and current input frames according to the newly computed warping fields, and
perform Gauss-Newton steps within each outer loop with fixed data associations. The DynamicFusion
algorithm struggles to recover the rapid articulated motion, leading to obvious registration errors. In
Iteration-0 of DynamicFusion, the displacements mainly occur around the hands and wrists due to
fast articulated motion, while the main body remains static. This discrepancy arises because the closest
point search fails to find correct correspondences, causing the optimization to fall into local minima.
Additionally, the As-Rigid-As-Possible (ARAP) regularization term tends to constrain the wrists and
hands to move together with the static body with slight motions, leading to rapid convergence into local
minima. In contrast, our proposed approach’s patch-based registration module computes coarse rigid
transformations individually for each patch, fully respecting local large displacements. Furthermore,
we introduce feature-based similarity in both correspondence matching and objective optimization to
enhance registration robustness and accuracy. Overall, our patch-based registration module computes
coarse transformation fields that roughly align the two point sets, making the refinement process of
deformation optimization more robust. As observed in the bottom right inset, the two point sets align
very well. Our proposed method outperforms the competing scheme with a significant improvement
in both RMS and MAX errors, as reported in the figure. Additionally, we visualize the data energy
versus Gauss-Newton iterations in Figure 8 for the Tablecloth sequence from frame number 1009
to 1012, comparing the convergence performance of DynamicFusion and our method. The initial
registration error is dramatically reduced via our proposed patch-based registration module, thereby
enabling the subsequent deformation optimization thread to achieve more accurate registration results.
Furthermore, our method converges faster, typically requiring only two Gauss-Newton iterations
within each outer loop, which is set to 3. However, DynamicFusion needs 3-4 iterations to meet the
preset stop condition in each loop.

Merged results Iteration-0 Iteration-1 Iteration-3

DynamicFusion

5 RMS: 2.954 )
¥ MAX: 35.486 A MAX:31.951

§

WL
S
@ N
£ i ot
&) | K i
b ¥
i 7 B4
{ K & 4
RMS: 0.667 ) U RMSs:0.484 § R RMS: 0470
& MAX: 8.030 A & MAX: 7.749 B, MAX: 7.708

Figure 7. Ablation results of canonical point set (source) and live input point set (target) during 3
Gauss-Newton iterations.
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Figure 8. Convergence analysis of four frames from Tablecloth sequence.

5.5. System Limitations and Future Work

13 of 17

This section discusses the limitations of our proposed method and outlines potential areas for
future research. The first category of failure cases involves tracking planar objects. Since our method
relies solely on geometric information and does not utilize color data, it becomes challenging to
accurately track planar objects with translational motion. As illustrated in Figure 9, when attempting
to track a planar object, such as a chessboard, the reconstructed texture often appears severely blurred.
Another class of failure cases arises when the captured object undergoes topology changes, as depicted
in Figure 10. For instance, when a paper with a QR code is torn apart, our method struggles to handle
such topology changes. This challenge emerges because the canonical volume initialized by previous
depth frames assumes the geometry and topology of a complete object, whereas the live capture may
exhibit topology changes. Consequently, the resulting warped model maintains the same topology as
the canonical geometry, leading to an inability to accurately reconstruct the gap caused by tearing.
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Figure 10. Failure case of paper-tearing sequence due to topology change.

Despite these limitations, our proposed method demonstrates superior tracking accuracy in local
areas, as highlighted by the green ellipsoid, compared to existing approaches like DynamicFusion. In
future work, we aim to leverage the high-resolution RGB images provided by RGB-D sensors. We plan
to incorporate high-resolution cues such as sparse 2D features, dense photometric terms, and intrinsic
scene parameters like albedo to enhance tracking performance. Additionally, we intend to explore
existing techniques designed for topology-change-aware tracking systems [45,46] and integrate them
into our method, thereby enabling its applicability in scenarios involving topology changes.

6. Conclusions

In conclusion, PatchFusion presents an innovative approach for nonrigid tracking and reconstruc-
tion of deformable objects using a single RGB-D sensor. By addressing the challenges associated with
capturing rapid deformations of soft and flexible objects, PatchFusion offers a robust and accurate
solution applicable across diverse scenarios. The dynamic patch-based framework, coupled with patch-
wise rigid transformation fields and deformation optimization running in parallel, enables efficient
tracking and reconstruction in real-time. Through comprehensive evaluation, PatchFusion demon-
strates superior performance compared to existing RGB-D based reocnstruction methods especially for
addressing fast inter-frame motions.
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