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Abstract: Nutrient analysis through mobile health applications can improve dietary choices,
particularly among vulnerable populations. However, deploying sophisticated deep learning models
on resource-constrained devices presents challenges in computational efficiency, model
interpretability, and user trust. We propose a lightweight interpretable deep learning model for real-
time nutrient analysis on mobile devices. Our approach uses depthwise separable convolutions,
bottleneck units, and Shuffle Attention to reduce computational complexity while maintaining
accuracy. For interpretability, we integrate Grad-CAM visualisations, LIME explanations, and
Concept Activation Vectors. Our model achieves 92.3% accuracy in food recognition and 7.2% mean
absolute error in nutrient estimation, with a model size of 11MB. Testing on resource-constrained
devices shows inference times of 150ms on mid-range smartphones with minimal battery impact.
User studies demonstrate high comprehension scores for interpretability features, with Grad-CAM
visualisations achieving an 8.2/10 understanding score. These results show our model can effectively
deliver nutrient analysis on budget mobile devices and in environments with limited infrastructure,
making it particularly valuable for vulnerable populations facing both technical and infrastructural
constraints.

Keywords: deep learning; mobile health applications; nutrient analysis; interpretable Al lightweight
neural networks; Vulnerable populations; resource-constrained devices

1. Introduction

In recent years, mobile health applications have become increasingly prevalent, offering users
convenient tools for monitoring and managing their health. Among these, nutrient analysis apps play
a crucial role in helping individuals, particularly those from vulnerable populations, maintain
balanced diets and make informed nutritional choices. However, the development of accurate and
efficient nutrient analysis tools for mobile platforms presents unique challenges, especially for users
with limited resources or health literacy.

The importance of proper nutrition in maintaining overall health and preventing chronic
diseases cannot be overstated. Malnutrition, whether in the form of undernutrition or obesity,
remains a significant global health concern [1]. Mobile health applications have the potential to
democratise access to nutritional information and guidance, providing personalised
recommendations based on individual needs and preferences. This is particularly valuable for
vulnerable populations who may have limited access to healthcare professionals or nutritional
education [2].

Traditional methods of nutrient analysis often rely on manual input of dietary information or
simplistic algorithms, which can be time-consuming, error-prone, and fail to capture the complexity
of human nutrition. Recent advancements in artificial intelligence, specifically deep learning, have
shown promise in enhancing the accuracy and capability of nutrient analysis [3]. Deep learning
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models can potentially process complex data inputs, such as food images or natural language
descriptions, to provide more accurate and comprehensive nutritional assessments.

However, implementing sophisticated deep learning models on mobile devices presents
significant challenges. Mobile platforms are constrained by limited computational resources, storage
capacity, and energy consumption considerations. Moreover, many state-of-the-art deep learning
models are computationally intensive and require substantial memory, making them impractical for
real-time use on smartphones [4]. This necessitates the development of lightweight models that can
operate efficiently within the constraints of mobile devices without sacrificing accuracy [5]. Another
critical challenge in the application of deep learning to health-related tasks is the "black box" nature
of many models [6]. Users and healthcare professionals require transparency in Al-driven health
recommendations to foster trust and ensure responsible use. This is particularly important in the
context of nutrient analysis, where recommendations can have direct impacts on users' dietary
choices and health outcomes. Therefore, there is a pressing need for interpretable Al models that can
explain their predictions in human-understandable terms [7].

The challenge of model interpretability is further complicated by cultural diversity and varying
levels of health literacy among vulnerable populations. Different cultural groups may interpret and
trust Al explanations differently, necessitating culturally sensitive approaches to model
interpretability. Moreover, while initial user trust is important, maintaining and building that trust
over time is crucial for long-term adoption and positive health outcomes. These technical challenges
are compounded by the need to provide culturally appropriate and sustained interpretability across
diverse user groups. Effective interpretability must not only be technically sound but also culturally

resonant and trustworthy over extended periods of use. The primary objectives of this research are
threefold:

1. To develop a lightweight deep learning model capable of accurate nutrient analysis while
operating efficiently on mobile devices.

2. To integrate interpretability features into the model, allowing users to understand the factors
influencing the nutritional assessments.

3. To evaluate the model's performance and usability in real-world scenarios, particularly for
vulnerable populations.

In this paper, we present a novel approach to addressing these challenges. We propose a
lightweight, interpretable deep learning architecture specifically designed for nutrient analysis in
mobile environments. Our model incorporates state-of-the-art compression techniques to reduce its
size and computational requirements without sacrificing accuracy. Additionally, we integrate
interpretability features that provide clear, user-friendly explanations for the model's predictions,
enhancing transparency and user trust.

The main contributions of this work include:

1. A novel lightweight architecture that achieves high accuracy in nutrient analysis while being
suitable for mobile deployment.

2. The successful integration of interpretability features that enhance user understanding without
compromising model performance.

3. A comprehensive evaluation of the model's performance in mobile health contexts, including
accuracy, speed, and mobile deployment feasibility.

The remainder of this paper is organised as follows: In Section II, we review related work in
nutrient analysis, lightweight models, and interpretable Al In Section III, we detail our methodology,
including dataset, model architecture, interpretability features, and mobile implementation. In
Section IV, we present our experimental results, comparing performance, efficiency, and
interpretability. In Section V, we discuss our findings, analysing model performance, interpretability,
and limitations. Finally, in Section VI, we conclude the paper, summarising our contributions and
future directions for nutrient analysis in mobile health applications.
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2. Related Work

This section reviews existing approaches in mobile nutrient analysis, focusing on architectural
developments, efficiency optimisations, and interpretability mechanisms.

2.1. Nutrient Analysis Architectures

Encoder-decoder architectures have become fundamental in image analysis tasks, including
nutrient analysis. The U-Net architecture has been particularly influential in this domain. Several
variations of U-Net have been proposed to address limitations and improve performance for specific
tasks.

Sharp U-Net, proposed by Zunair and Hamza [8], introduces a depth wise convolution with a
sharpening kernel filter in the skip connections. This approach helps fuse semantically similar
features and smooth out artifacts during early training stages, outperforming state-of-the-art models
in both binary and multi-class biomedical image segmentation tasks without adding extra learnable
parameters.

Dietal. [9] and Wang et al. [10] introduced KiU-Net, an overcomplete convolutional architecture
designed to address U-Net's limitations in detecting smaller structures and segmenting boundary
regions precisely. KiU-Net projects the input image into a higher dimension, constraining the
receptive field from increasing in deep layers. This approach improves the detection of small
structures and accurate edge segmentation while using fewer parameters and achieving faster
convergence compared to traditional U-Net based approaches.

Yin et al. [11] proposed Half-UNet, a simplified U-Net architecture that maintains similar
segmentation accuracy while significantly reducing parameters and floating-point operations. Half-
UNet takes advantage of channel number unification, full-scale feature fusion, and Ghost modules,
demonstrating effectiveness across multiple medical image segmentation tasks. Yang et al. [5]
developed ELU-Net, an efficient and lightweight U-Net with deep skip connections. ELU-Net
incorporates same- and large-scale skip connections from the encoder to fully extract features,
showing improved performance on brain tumour and liver datasets ad researchers are now working
on nutritional analysis[12,13]. These advancements in U-Net variants demonstrate the ongoing
efforts to improve segmentation accuracy, computational efficiency, and adaptability to various
medical imaging tasks, which could be valuable for nutrient analysis in food images. While these
advances have improved accuracy, they often increase computational complexity, challenging their
deployment on mobile devices, especially for vulnerable populations with low-end smartphones.
While these U-Net modifications established feasible deployment paths, the need for even lighter
architectures led to specific mobile-optimised implementations.

2.2. Lightweight Deep Learning Models

Building upon the foundational U-Net architectures, mobile-optimised networks have advanced
through systematic parameter reduction strategies. Table 1 summarises the key architectures and
their standardised performance metrics.

Table 1. Comparison of Lightweight Architectures for Mobile Food Recognition.

Test Powe
. Implementatio Accuracy Mode Inferenc Memor . r
Architecture . . Device
(Top 1) 1Size e Time y Usage Usag
Specs
e
Snapdrago
. Mezgec et al. 87.6%(52 n 855,
MobileNet 14MB 42 84MB 0.28W
OPTEREL 14 0 classes) ms 6GB RAM,

Android 11
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EfficientNet- Schilling et al 86.4% iPhone 11
& ’ (Food- 29MB 65ms 145MB . " 0.35W
BO [15] i0S 14
101)
iaT
ShuffleNetV 85.2% llzlge’jdiz;k
Jiang et al. [16] (300 94MB 48ms 67MB ! 0.22W
2 ) RAM,
classes) Android 10
83.6% Snapdrago
SqueezeNet  Tranetal. [17] (Food- 5MB 55ms 52MB n7,32G, 0.25W
101) 6GB RAM

through depth wise separable convolutions, with Mezgec et al. [14] achieving 87.6% accuracy on
520 food classes. EfficientNet [15] introduced compound scaling, with Schilling et al. [16] achieving
86.4% accuracy while reducing model size by 87%. ShuffleNet [18] employed group convolutions,
with Jiang et al. [5] achieving 85.2% accuracy and sub-50ms inference times. SqueezeNet [17] achieved
comparable accuracy with 50x fewer parameters, demonstrated by Tran et al. [17] achieving 83.6%
accuracy at just 5SMB.

These architectures have shown success across various nutrient analysis tasks. Liu et al. [19]
applied MobileNetV2 to Asian food recognition (84.3% accuracy), while Tan et al. [20] used
EfficientNet for portion estimation (15% error). Chen et al. [18] developed a ShuffleNet-based model
for nutrient prediction (10.5% calorie error), and Zhou et al. [21] combined approaches for
comprehensive monitoring (82.7% recognition accuracy). While these implementations
demonstrated significant efficiency improvements, they highlighted the need for robust
interpretability mechanisms.

The architectures MobileNet, EfficientNet-B0, ShuffleNetV2, and SqueezeNet are designed to
optimise performance in convolutional neural networks (CNNs) while minimising computational
costs. Each architecture employs unique strategies to enhance efficiency, making them suitable for
various applications, particularly in mobile environments.

2.3 Interpretability Techniques in Mobile Health Al

Interpretability mechanisms have become essential for ensuring user trust in mobile nutrient
analysis applications, particularly for vulnerable populations with varying health literacy levels.
Recent research has focused on developing techniques that balance explanation quality with
computational efficiency across diverse mobile platforms. Attention mechanisms have emerged as a
leading approach, with significant implementations by Choi et al. [22] in their RETAIN model for
electronic health records, achieving 12% accuracy improvement, and Bahadori et al. [23] in visual
calorie estimation, though both noted increased computational overhead. Post-hoc explanation
methods like LIME and SHAP have shown promise in mobile health applications. Yao et al. [24]
demonstrated SHAP-based explanations increased user trust by 24%, while Adjuik et al. [25] used
LIME to achieve 18% higher user engagement. However, both approaches required significant
computational resources on mobile devices.

Concept Activation Vectors (CAVs) have effectively translated complex decisions into human-
friendly concepts. Selvaraju et al. [26] showed 78% of users preferred CAV-based explanations over
traditional breakdowns for food classification. Similarly, saliency mapping techniques like Grad-
CAM have proven efficient, with Zhou et al. [18] achieving 86% precision in ingredient identification
and Xiao et al. [27] improving detection rates by 30% in medical applications. Despite these advances,
significant challenges remain. Zunair et al. [28] found SHAP explanations increased inference time
by 250% on low-end smartphones, while Mazzia et al. [29] revealed that explanation effectiveness
varied significantly with users' educational backgrounds. These findings highlight the need to
balance computational efficiency with explanation quality across vulnerable populations.
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2.4. Lightweight Mobile Nutrient Analysis

Combining lightweight architectures with interpretability features, several mobile
implementations demonstrated practical deployment strategies. Several notable applications have
emerged in the field of mobile nutrient analysis. Im2Calories, proposed by Myers et al. [30], is a CNN-
based system for calorie estimation from single images, achieving 20% mean absolute error but
requiring significant computational resources. NutriNet, developed by Tran et al. [31] is a lightweight
CNN for food recognition and portion estimation, achieving 87.2% top-1 accuracy on 520 food classes
with an 8.7MB model size. FoodAl, created by Mezgec and Korousi¢ Seljak [32] recognises over 500
food items with 92.8% top-5 accuracy and 0.8-second inference time on mid-range smartphones.

However, implementing comprehensive nutrient analysis on low-end devices presents several
challenges. Computational limitations are significant, as Liu et al.[33] found ResNet-50 inference
times exceeded 2 seconds on entry-level smartphones. Storage constraints also pose issues, with Chen
et al. [18] reporting that initial 150MB models were impractical for budget smartphones. Energy
efficiency is another concern, as Zhang et al.[13,34] observed continuous use depleted budget
smartphone batteries in under 4 hours.

Additionally, limited sensor quality affects performance, with Jin et al.[35] noting a 15%
accuracy drop using entry-level smartphone cameras. Offline functionality is crucial but challenging,
as Xiu et al. [36] found offline-capable models sacrificed 10% accuracy to reduce size by 70%. User
interface constraints also impact usability, with Yang et al. [19] observing that simplified Uls for low-
end devices reduced displayed nutritional information by 25%.

Our research aims to address these challenges by developing a lightweight, interpretable
nutrient analysis model for low-end mobile devices, focusing on vulnerable populations' needs. This
approach seeks to balance accuracy, efficiency, and usability while providing meaningful nutritional
insights to users with limited access to high-end devices. While these implementations showed
promise, they also revealed significant opportunities for improvement.

3. Material and Methodology

This section details our proposed lightweight interpretable model architecture, dataset
preparation, and experimental methodology. We describe the key components of our approach,
implementation details, and evaluation metrics.

3.1. Overview

Our approach integrates efficient model architecture, comprehensive interpretability features,
and mobile optimisation techniques to deliver accurate nutrient analysis while maintaining
accessibility for vulnerable populations.

The system comprises five key components: (1) a large-scale annotated food dataset, (2) an
efficient neural network architecture based on MobileNet[37], (3) integrated interpretability
mechanisms, (4) mobile-specific optimisations, and (5) a comprehensive training pipeline. These
components work together to achieve a balance between computational efficiency, accuracy, and user
trust.

Figure 1 illustrates our system architecture, showing the flow from input image through the core
neural network to multiple output heads for food recognition, portion estimation, and nutrient
prediction. The architecture incorporates attention mechanisms and interpretability features while
maintaining a compact model size of 11MB, suitable for deployment on low-end mobile devices.
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Figure 1. System Architecture Diagram showing: (a) Input processing, (b) Core neural network components,
(c) Interpretability mechanisms, (d) Output heads.

3.2. Model Architecture

Building upon our diverse dataset requirements, we developed a lightweight architecture that
balances computational efficiency with accurate nutrient analysis capabilities. Our model design
specifically addresses the challenges of processing varied food presentations while maintaining
performance on resource-constrained devices. Our proposed lightweight model architecture is based
on an adaptation of MobileNetV3[33,38] chosen for its efficiency on mobile devices. We have
implemented several modifications to optimise performance for nutrient analysis on resource-
constrained devices, particularly focusing on the needs of vulnerable populations. The key
components of our architecture are as follows:

3.2.1. Baseline Structure

The baseline structure of our model is designed to optimise both efficiency and accuracy. The
key features are as follows:

e Input Size: The model accepts input images of size 224x224x3, which is standard for many
mobile applications, ensuring compatibility with various devices.

e  Convolutional Stages: The architecture includes five convolutional stages, with the number of
channels increasing progressively from 32 to 320. This gradual increase allows the model to
capture more complex features as the depth of the network increases.

3.2.2. Reduced Computational Complexity

To reduce the number of parameters and computational complexity, we employ depthwise
separable convolutions throughout the network [39] .As illustrated in Figure 2 (STAGE A), this
applies a 3x3 convolution on each channel separately, followed by a 1x1 convolution to project the
output channels to another channel space.

We utilise inverted residuals with linear bottlenecks [40] to further reduce the model size while
preserving performance. The bottleneck unit, shown in Figure 2 (STAGE B), serves as our basic
building block with depthwise separable convolution in the middle. We introduced an additional
hyperparameter, reduction ratio r=4, to reduce the number of input channels for the middle layer.
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Convolutional Stages

! ) |

Stage 1: 32 Channels ] [ Stage 2: 64 Channels ] [Slage 3: 128 Channels ] [Stage 4: 256 Channels ]

Stage 5: 320 Channels
I
Depthwise Separable
Convolutions
Inverted Residuals with
Linear Bottlenecks

Input Image
224x224x3
STAGE A

STAGE B

Reduction Ratio r=4
Optimized Output for
Nutrient Analysis

Figure 2. Depthwise separable convolutions throughout the network.

3.2.3. Squeeze-And-Excitation Blocks

We incorporate Squeeze-and-Excitation blocks [33,41] to adaptively recalibrate channel-wise
feature responses, enhancing the model's representational power. For an input feature map U €
RM(H x W x C), as shown by equation Error! Reference source not found.:

U € RMNHXW xC) 1)

The SE block performs the following operation as shown by equation Error! Reference source
not found.:

s =oc(W28W_1GAP())U =5 - U )

where GAP is global average pooling, 0 is the ReLU function, o is the sigmoid activation, and W_1,
W_2 are learnable parameters.

Squeeze-and-Excitation (SE) blocks are powerful architectural elements that adaptively
recalibrate channel-wise feature responses to enhance a model's representational capabilities. The SE
block processes input feature maps through a series of operations: first applying global average
pooling (GAP), followed by two fully connected layers with ReLU (d) and sigmoid (o) activations,
controlled by learnable parameters Wy and W-.

This architecture has shown significant benefits in multiple imaging applications. In optical
coherence tomography (OCT), SE blocks improve imaging accuracy while reducing acquisition time
by dynamically recalibrating features, as demonstrated by Rashidi et al [41] .Similarly, in depth
estimation tasks, SE blocks excel at integrating local and global information, leading to superior
performance on benchmark datasets according to Zhang et al. [33].

3.3.4. Attention Mechanisms

a) Lightweight Attention

We integrate a lightweight attention mechanism [33] in the final layers to improve
interpretability and focus on relevant image regions for nutrient analysis. According to recent studies
this mechanism reduces computational waste and improves model generalisation by adaptively
adjusting weights during training [24].

b) Shuffle Attention (SA)
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We incorporate a modified Shuffle Attention mechanism [21] to enhance feature learning
without significantly increasing computational overhead. Given an input feature map, I €
RC X H X W, the SA module divides I into G groups along the channel dimension, splits each
subgroup Ik into two branches, and applies channel shown by equation Error! Reference source not
found.:

I"k1 = a(Fe(s)) - Ikl = o(Wls + bl) - Ikl (3)
and spatial attention separately as shown by equation Error! Reference source not found.:
k2 = o(W2 - GN(Ik2) + b2) - Ik2 (4)

where o represents the sigmoid function, W1 and W2 are learnable weights, bl and b2 are bias terms,
GN denotes Group Normalisation, and k represents the group index.

After applying these attention mechanisms, the module concatenates and shuffles information
between groups for better feature integration. Recent research demonstrates that this mechanism
maintains low computational overhead while enhancing feature learning, making it particularly
effective for real-time [42,43].

3.2.5. Multi-Task Output

The model features multiple output heads for food recognition, portion estimation, and nutrient
content prediction, allowing for efficient parameter sharing across related tasks, as shown in Figure
3.

These architectural elements combined, our model achieves a balance between computational
efficiency and accuracy, making it suitable for deployment on resource-constrained devices while
providing robust nutrient analysis capabilities. The overall architecture is designed to be lightweight
yet powerful, with a focus on meeting the needs of vulnerable populations who may have limited
access to high-end mobile devices.

The integration of various attention mechanisms and efficient convolutional techniques allows
our model to maintain high performance while significantly reducing computational requirements.
This approach ensures that the model can provide accurate nutrient analysis in real-time on a wide
range of mobile devices, including lower-end smartphones that may be more common among
vulnerable populations. While the architectural design ensures computational efficiency, the practical
deployment of our model requires careful consideration of interpretability features to enhance user
trust and understanding.

Attention Module

Core Processing Lightweight
Layers
1y Attention

Input Image | Convolutional . Depthwise . Inverted ‘Reswdua\s Squeeze-and- e Attention i Multi-task
224x224%3 Sta - Separable - with - Excitation Mechani Output Head:
x22ax 9es Convelutions Linear Bottlenecks Blocks echanisms put Heads

Shuffle
Attention

Figure 3. Overall architecture of the proposed lightweight nutrient analysis model.

3.3. Interpretability Features

Complementing our efficient architecture, we implement several interpretability mechanisms as
shown in Figure 4 designed to make the model's decisions transparent and accessible to users with
varying levels of technical literacy. To address the "black box" nature of deep learning models and
enhance user trust, particularly for vulnerable populations who may have varying levels of health
literacy, we incorporate the following interpretability features:
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| Multi-task Output Heads

Interpretability Features

Concept Activation

Grad-CAM Visualisations LIME Explanations
Vectors

Figure 4. Interpretability Mechanisms.

3.3.1. Grad-Cam Visualisations

We implement Gradient-weighted Class Activation Mapping (Grad-CAM) [26] to generate
heatmaps highlighting the regions of the input image most influential in the model's predictions.
Given the final convolutional feature map A"k of a CNN and the score y”c for class ¢, Grad-CAM is
computed as shown by equation Error! Reference source not found.:

arck = 1/Z% iy _joy~c/0A k_ij 5)

The final Grad-CAM visualisation is then obtained through equation Error! Reference source
not found.:

L*c_Grad — CAM = ReLU(}_k a”c_k A™k) 6)

where Z is the number of pixels in the feature map. The resulting L*c_Grad-CAM is a coarse
localisation map highlighting the important regions in the image for predicting class c¢. The
visualisation process involves computing gradients of class scores with respect to feature maps,
followed by global average pooling of gradients to obtain feature importance weights. These weights
are then used in a weighted combination of forward activation maps, with ReLU applied to
emphasize positively contributing features. This approach provides interpretable visual explanations
that identify the specific image regions most influential in the model's nutrient analysis predictions.

3.3.2. Lime Explanations

We employ Local Interpretable Model-agnostic Explanations (LIME) [44] to generate
explanatory insights into the model's decision-making process, particularly focusing on feature
importance quantification for nutrient estimation predictions. The LIME framework operates by
constructing local approximations of the model's decision boundaries through interpretable
surrogates. For a given input image x, LIME generates an interpretable model g in representation
space x' by solving the optimisation problem shown by equation Error! Reference source not found.:

§(x) = argming € G L(f,g9,m_x) + 02(9) (7)

where:
where:

e frepresents the target deep learning model

e  m_x establishes the locality region surrounding instance x

e L computes the approximation fidelity between f and g within the defined locality
e ()(g) penalises explanation complexity

The implementation achieves robust feature importance extraction with average processing
latency of [X] milliseconds per instance [45]. Additional stability enhancements include optimised
perturbation strategies, feature collinearity detection, and consistency validation protocols.
Performance metrics demonstrate explanation fidelity of [Y]% and feature importance stability index
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of [Z] across test cases [44]. This facilitates real-time interpretability while maintaining computational
efficiency within mobile deployment constraints.

3.3.3 Concept Activation Vectors (CAVs)

We integrate CAVs [46] to translate model decisions into human-understandable concepts, such
as "high in fibre" or "low in saturated fat." For a given concept C and a random concept (or negative
examples) N, CAV is defined by equation Error! Reference source not found.:

vC = —-wC (8)

where w_C is the vector orthogonal to the decision boundary of a binary linear classifier trained to
distinguish between C and N using the activations of a chosen layer [ as inputs.

The directional derivative of the logit for class k with respect to concept C at layer 1 is then
computed as shown by equation Error! Reference source not found.:

S_C k() = Vh Lk(x) - v.C )

where h_[, k(x) is the logit for class k.

By incorporating these interpretability features, our model not only provides accurate nutrient
analysis but also offers transparent explanations for its predictions. This approach aims to build trust
and understanding among users, particularly those from vulnerable populations who may be less
familiar with or sceptical of Al-driven health recommendations. The combination of visual
explanations (Grad-CAM), feature importance scores (LIME), and concept-level interpretations
(CAVs) provides a comprehensive and accessible for users to understand the model's decision-
making process. This multi-faceted approach to interpretability is designed to accommodate varying
levels of health literacy and technical understanding among our target user bases. These
interpretability features, while crucial for user trust, require careful optimisation for mobile
deployment to maintain real-time performance on resource-constrained devices.

3.4. Mobile Implementation

The practical deployment of our model, including its interpretability features, necessitates
specific optimisations for mobile environments. We implement several techniques to ensure efficient
operation across diverse device capabilities, particularly targeting low-end smartphones common
among vulnerable populations as shown in Figure 5:

Multi-task Output Heads

| Mobile Implementation |

Model Quantisation ensoriiow]lis Paayceibats Adaptive Computation
ugmentation
Random Crop Horizontal Flip Coler Jittering

Device Specification &
Battery Adjustments

Figure 5. Model Implementation.

3.4.1. Model Quantisation

We apply 8-bit quantisation to reduce model size and inference time while maintaining
accuracy. The quantisation process converts 32-bit floating-point weights and activations to 8-bit
integer representations as shown in equation Error! Reference source not found.:
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q = round(r/s) + z (10)
where:

e  gis the quantised value
e  risthe real value

e  s5isthe scale factor

e  zis the zero point

The scale factor s and zero-point z are determined during the quantisation process to minimise
information loss. Recent studies demonstrate that this quantisation can lead to a 7.18X reduction in
latency with minimal accuracy loss, particularly in Vision Transformers [47]. This quantisation
reduces the model size by approximately 75% and significantly speeds up inference, especially on
devices with limited processing power.

3.4.2. TensorFlow Lite Conversion

The model is converted to TensorFlow Lite format for optimised mobile inference. This
conversion process includes operator fusion for combining multiple operations into a single
optimised operation, constant folding for pre-computing constant expressions, and elimination of
unused operations by removing parts of the graph not needed for inference. The resulting TFLite
model is optimised for on-device inference, with reduced size and improved performance [47].

3.4.3. On-Device Data Augmentation

We implement lightweight data augmentation techniques on-device to improve model
robustness without increasing model size. The augmentations are defined through three key
transformations.

The random crop operation is defined as shown by equation Error! Reference source not found.:

I_crop(x,y) = I(x + x0,y + Yo) (11)

where (x0,¥0) € [0,W —w] X [0,H —h] are randomly sampled crop coordinates, and (w,h)
represent the target dimensions.

The horizontal flip operation is defined as shown by equation Error! Reference source not
found.:

[ flip(x,y) = I(x,W —y) (12)

where W is the image width, applied with probability p = 0.5.
The colour jittering transformation is expressed as shown by equation Error! Reference source
not found. :

I_jitter(x,y) = min(max(I(x,y) + 6,0),255) (13)

where § € [—4,4] is randomly sampled and 4 = 25.5 represents the 10% intensity range.

These augmentations are applied at runtime, enhancing the model's ability to handle variations
in food presentation without requiring additional model parameters. The sequential application of
these transformations provides robustness to spatial and colour variations while maintaining
computational efficiency on mobile devices.

3.4.4. Adaptive Computation

The model dynamically adjusts its computational graph based on device capabilities and battery
status through a decision function D as shown in equation Error! Reference source not found.:

b®,p) - C (14)

where 6 represents device specifications and f§ represents battery status. The adaptation policy is
defined by equation Error! Reference source not found.:
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C={ C_minimal if B < B_low C_reduced if 6.cpu < O_threshold C_full otherwise } (15)

The configurations implement specific optimisations:

e C_minimal: Activates essential layers with 4-bit quantisation
e C_reduced: Reduces input resolution and skips non-essential attention mechanisms
e C_full: Enables complete model functionality at full precision

This adaptive approach ensures efficient nutrient analysis across diverse mobile devices while
maintaining accessibility for resource-constrained users.

3.5. Training

Our training pipeline integrates performance requirements with deployment constraints,
implemented in PyTorch using a mobile-optimised [48]. To ensure efficient mobile deployment while
maintaining accuracy, we employ several carefully chosen training strategies.

The model processes RGB input images of dimension 224x224x3, selected to balance
computational efficiency with resolution requirements for accurate nutrient analysis. Channel-wise
normalisation is applied as shown by equation Error! Reference source not found.:

I_.norm = (I — p)/o) (16)

where y and o represent channel-specific mean and standard deviation, crucial for stabilising
network training and improving convergence.

3.5.1. Optimisation

Given the multi-faceted nature of nutrient analysis, we employ a multi-task loss function defined
by equation Error! Reference source not found.:

L_total = alL_food + BL_portion + yL_ (17)

where L_food represents cross-entropy loss for food recognition, L_portion denotes mean squared
error for portion estimation, and L_nutrient indicates mean absolute error for nutrient prediction.
This weighted combination allows balanced optimisation across all essential tasks.

Network optimisation employs the Adam optimiser with parameters defined by equation Error!
Reference source not found.:

Ir = 0.001,8;, = 09,8, = 0.999 (18)

chosen for its adaptive learning rate properties and robust performance on deep learning tasks.
To prevent convergence to poor local minima and ensure stable training, the learning rate follows a
cosine annealing schedule as shown by equation Error! Reference source not found.:

Ilr = 0.001-(1 + cos(me/E))/2 (19)

where e represents the current epoch and E is total epochs (200). This schedule provides gradual
learning rate decay while allowing periodic exploration of the loss landscape.

3.5.2. Model Configuration

We evaluate six progressive model configurations:
e  BL: Baseline MobileNetV3[37].
e  BL+DS: With depthwise separable convolutions
e  BL+IR: With inverted residuals
e  BL+DS+IR: Combined DS and IR
e  BL+DS+IR+SA: Added shuffle attention
o  BL+DS+IR+SA+SE: Final model with squeeze-excitation

3.5.3. Knowledge Distillation
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To further enhance model performance while maintaining efficiency, we employ knowledge
distillation using EfficientNet-BO as the teacher model. The distillation process is governed by
equation Error! Reference source not found.:

L_total_distill = (1 — A)L_total + AL_distill (20)

where 4 = 0.5 balances the original task loss and distillation loss, and temperature T = 2 controls
the softness of probability distribution in knowledge transfer.

In the final training phase, we integrate and fine-tune the interpretability features (Grad-CAM,
LIME, and CAVs) to ensure alignment with model predictions. This multi-stage training procedure
optimises both performance and interpretability while maintaining deployment efficiency on
resource-constrained devices.

3.6. Performance Metrics

As shown in Table 2, our evaluation comprises four key metric categories that comprehensively
assess model performance across recognition accuracy, estimation precision, computational
efficiency, and interpretability. Each metric is carefully selected to evaluate specific aspects of model
functionality and deployment feasibility.

For food recognition, we employ Top-k accuracy measures (k € {1,5}) as shown by equation
Error! Reference source not found.:

A_k = N_correct_k/N_total (21)

Following Pais et al. [48], nutrient estimation accuracy is quantified through MAE as defined by
equation Error! Reference source not found.:

MAE = 1/n}|yi — Ji| (22)
and MAPE as defined by quations Error! Reference source not found.:
MAPE = 100/nd|yi — ¥il|/yi (23)
where:

e  yirepresents the actual value

e  yirepresents the predicted/estimated value

e nrepresents the number of samples

e ) represents the summation over all samples

Table 2. Evaluation Metrics.

Category Metric Symbol Range/Unit Equation Reference
Food
Top-1 A A 0,1 21 49
Recognition op-= Acedmagy ! 041 @1) [49]
Top-5 Accuracy  As [0,1] (21)
Nutrient Mean Absolute
MAE 0,00 22 50
Estimation Error [0,==] @2) 1501
Absol
Mean Absolute "y pr010019%  (23)
Percentage Error
Inf
Computational nierence t_inf ms - [51]
Latency
Efficiency Model Size S_model MB -
E
nergy ) E_device m]/inference -
Consumption
Explanation

Interpretability Q_exp [0,1] - [51]

Quality
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Prediction

P f 0,1 -
Confidence —con [01]
Feature

F_att 0,1 -
Attribution -att [01]

3.7. Baseline Comparisons

To establish the effectiveness of our proposed architecture, we conduct comprehensive
comparisons against established baseline models across all metrics defined in Table 3.

Table 3. Baseline model categories and characteristics.

R tati Inf
Category I\;:Ci‘zlssen atve Parameters Tr;szence Key Characteristics
Standard High accuracy,
R 19]. 23. 1
CNNs esNet30 [19] 3-5M 25ms dense architecture
Multi-scale  feat
Inception-v3 [19].  23.8M 133ms ieeale Teatie
extraction
Mobile- ‘ Depth-wise
Lo MobileNetV2[52]. 3.4M 22ms separable
optimised .
convolutions
EfficientNet- 5.3M 25ms Compound scaling
BO[53]. strategy
Dom.a‘in— NutrientNet 40M 28ms Tas'k—s'pec'ific
specific [X][14]. optimisation
FoodAnalyser 3.8M 2dms Special.ised feature
[Y][19]. extraction

For each baseline category, we evaluate:

e  C(lassification accuracy (A1,As)
e Nutrient estimation precision (MAE,MAPE)
¢  Computational requirements (t_inf,5_model,E_device)
e  Model interpretability metrics (Q_exp,P_conf,F_attr)
This comprehensive evaluation allows us to assess the effectiveness of our lightweight

interpretable model in the context of mobile nutrient analysis, with a particular focus on its
applicability for vulnerable populations using resource-constrained devices.

4. Experiments and Results
In this section, we present a comprehensive evaluation of our proposed model's performance,
efficiency and real-world applicability.

4.1. Experimental Analysis

Our experimental analysis focuses on five key aspects: dataset implementation, model
performance metrics, resource efficiency, interpretability analysis and cross-dataset generalisation
capabilities. Through rigorous testing and comparative analysis, we demonstrate our model's
effectiveness in balancing accuracy with computational efficiency, particularly in resource-
constrained environments.

4.1.1. Dataset

The dataset was built on the Food-101 foundation [54], comprising 101,000 images across 101
food categories at 224x224 pixel resolution. While previous models achieved 98.5% accuracy with
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NutriFoodNet and 95.20% accuracy through Xception transfer learning on the original Food-101
dataset [55], these results were obtained under controlled conditions with the smaller 101-class
dataset. Our expanded dataset, incorporating 378 additional food categories (total 500 classes) and
real-world mobile deployment constraints, achieves 92.3% accuracy. This performance difference
reflects the increased complexity of our expanded dataset and the additional challenges of mobile-
optimised deployment, where we balance accuracy with computational efficiency and resource
constraints. This was expanded through a systematic pipeline that added 20,000 new images and 378
additional food categories, resulting in 500 distinct food classes. The dataset features a sophisticated
annotation schema that includes detailed nutritional information (macro and micronutrients),
physical measurements, and preparation methods [55]. This multi-dimensional approach enables
robust feature extraction across diverse food presentations whilst maintaining standardised quality
and comprehensive nutritional tracking capabilities.

4.1.2. Implementation

As shown in Table 4, our implementation utilised standard training parameters optimised for
mobile deployment scenarios. Our network was implemented in PyTorch using an open-source deep
learning framework [48] .

Table 4. Training Configuration Parameters.

Parameter Value

Batch Size 32

Learning Rate le-4

Weight Decay le-3

Training Epochs 100

Memory Usage 16GB peak

GPU NVIDIA A100 40GB

For training optimisation, we employed the Adam optimiser with an initial learning rate of le-
4, which was decreased by a factor of 0.5 when validation loss plateaued for 15 epochs. The model
was trained on an NVIDIA A100 GPU with 40GB memory, as specified in Table 4.

To ensure reliability, we performed 100 training runs using different random initialisations and
conducted paired t-tests against baseline approaches. These tests showed significant improvements
(p<0.01) in model performance. We employed 5-fold cross-validation throughout our experiments,
maintaining consistent food category distributions across folds. This cross-validation approach
improved our baseline accuracy from 92.3% to 93.2% while maintaining MAE at 7.0%. Accuracy
remained stable across different operational conditions, with inference times of 150ms under optimal
laboratory conditions and ranging from 240-310ms in real-world device testing.

4.2. Resource Utilisation

Our model efficiency analysis focused on quantisation outcomes and resource utilisation
patterns. The original model size was successfully reduced from 31MB to 11.0MB through systematic
quantisation processes, whilst maintaining our baseline accuracy of 92.3% within 0.3% variation
across all optimisations. Through progressive optimisation stages, we achieved further reductions:
from an initial size of 31.0MB, through initial quantisation to 11.0MB, and finally to 9.35MB after
TensorFlow Lite conversion, representing a total 70% reduction from the original model.

As shown in Table 5, our component-wise analysis demonstrates efficient resource management
across all elements.

Table 5. Component-Wise Resource Utilisation.
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Cache  Required
Component Peak Usage (MB)  Steady-State (MB) ache equire

(MB)
Model Weights 11.0 11.0 2.2
Runtime Buffers 45 3.2 1.8
Structure Overhead 2.8 2.1 0.8
Total (Before
TFLite) 18.3 16.3 4.8
Total (After TFLite) 15.6 13.9 4.1

Our inference time measurements revealed clear distinctions between laboratory and real-world
performance. Under optimal laboratory conditions, the model achieves 150ms inference time.
However, real-world device testing showed varying performance: entry-level Android devices
averaged 280ms, budget iOS devices 310ms, and mid-range devices 240ms. Whilst comparable
models show faster inference times under specialised testing conditions (as shown in Table 1), our
standardised benchmarking uses consistent real-world conditions for fair comparison.

The TensorFlow Lite conversion demonstrated significant improvements across multiple
metrics. Beyond the 15% size reduction from 11.0MB to 9.35MB, we achieved a 20% improvement in
inference speed while maintaining accuracy within 0.3% of our 92.3% baseline. Battery consumption
remained efficient across all device types, ranging from 1.9-2.3% per hour under continuous use.
These optimisations particularly benefit resource-constrained devices, enabling efficient deployment
across diverse mobile platforms whilst maintaining performance stability.

Our inference time measurements revealed clear distinctions between laboratory and real-world
performance. Under optimal laboratory conditions, the model achieves 150ms inference time.
However, real-world device testing showed varying performance: entry-level Android devices
averaged 280ms, budget iOS devices 310ms, and mid-range devices 240ms. Whilst comparable
models show faster inference times under specialised testing conditions (as shown in Table 1), our
standardised benchmarking uses consistent real-world conditions for fair comparison.

The TensorFlow Lite conversion demonstrated significant improvements across multiple
metrics. Beyond the 15% size reduction from 11.0MB to 9.35MB, we achieved a 20% improvement in
inference speed while maintaining accuracy within 0.3% of our 92.3% baseline. Battery consumption
remained efficient across all device types, ranging from 1.9-2.3% per hour under continuous use.
These optimisations particularly benefit resource-constrained devices, enabling efficient deployment
across diverse mobile platforms whilst maintaining performance stability.

4.2.2. Knowledge Distillation Results

Our knowledge distillation approach achieved significant efficiency improvements while
maintaining competitive accuracy, as shown in Table 6.

Table 6. Knowledge distillation performance.

Model Accuracy (%) Size (MB) Energy (m])
Teacher

93.2 29 280
(EfficientNet-B0)
Student (Ours) 92.3 11 180
Without

1 11 1

Distillation 20 80

Our knowledge distillation results demonstrate that the student model achieves our target
baseline accuracy (92.3%) while significantly reducing both model size (62% reduction from 29MB to
11MB) and energy consumption (36% reduction from 280m]J to 180m]). The distillation process
improved accuracy by 2.2 percentage points compared to training without distillation, while
maintaining the same efficient resource usage.
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4.2.3. Comparative Analysis

We evaluated our model against existing approaches across multiple dimensions as shown in
Table 7. We selected MobileNetV2 for its proven efficiency in mobile deployments, EfficientNet-BO
for its state-of-the-art balance between accuracy and efficiency, and ResNet50 as our production
baseline. We included Ensemble-1 and Ensemble-2 to represent accuracy upper bounds in food

recognition
Table 7. Comprehensive Model Comparison.

Model ;l;/oof) ! ?:Z?E (S;:;) Time (ms)  Energy (m])
Our Model 92.3 7.2 11 150 180
MobileNetV2 90.0 8.5 28 220 210
EfficientNet-BO 93.2 6.8 29 280 280
ResNet50 91.2 8.2 97.8 310 420
Ensemble-1 94.0 6.5 120 650 -
Ensemble-2 95.0 6.2 145 720 -
NutriVision 89.0 9.1 18 190 200

Our baseline model maintains 92.3% accuracy while significantly reducing computational
requirements. Under five-fold cross-validation, accuracy improves to 93.2%, matching EfficientNet-
B0's performance while requiring only 38% of its size and achieving 46% faster inference under
optimal conditions. While ensemble methods achieve higher accuracy (up to 95.0%), their
substantially larger size and longer inference times make them impractical for mobile deployment.

4.2.4. Mobile Deployment

We evaluated real-world performance across diverse mobile platforms, as shown in Table 8.

Table 8. Performance analysis on mobile devices.

Accuracy Drop

Inf Ti B I
Device Type (Irlllse)rence e (‘;;:::Zr) mpact from 92.3%
° baseline (%)
Entry-level
Android 280 2.1 12
Budget iOS 310 2.3 1.5
3-year-old Mid- 240 19 0.9
range

The model maintains robust performance across device tiers. While optimal laboratory
conditions achieve 150ms inference times, real-world performance ranges from 240ms to 310ms
across different devices. Battery consumption remains efficient at 1.9-2.3% per hour of continuous
use. Accuracy degradation from the 92.3% baseline remains minimal across all device categories, with
the worst case showing only a 1.5% drop on budget iOS devices.

4.3. Architecture Validation

4.3.1. Component Ablation Results

To systematically evaluate our architectural design choices, we conducted comprehensive
ablation studies following progressive model configurations, starting with a baseline MobileNetV3
architecture. Our evaluation process occurred in two phases: initial component-level testing, which
yielded MAE values of 2.9-3.0% for individual architectural components in isolation, followed by
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comprehensive end-to-end system evaluation. The MAE values as shown in Table 9 (7.2-9.8%)
represent the full system performance on the complete nutrient prediction task, providing a more
realistic measure of real-world performance. As shown in Table 9, each configuration was evaluated
for accuracy, computational efficiency and model size impact.

Table 9. Ablation analysis of progressive model configurations.

Top-1

Configuration (0;);) MAE (%) Time (ms) Size (MB)
o

Baseline MobileNetV3 88.1 9.8 210 29.0
Depthwi 1
roepthwise Separable g5 5 9.1 180 152
Convolutions (DS)
+DS+Inverted Residuals (IR) 90.7 8.5 170 13.5
+DS+IR+Shuffle Attention (SA) 91.8 7.8 160 11.8
DS+IR+SA -Excitati
+DS+IR+SA+Squeeze-Excitation 9.3 70 150 1.0
(SE)
+DS+IR+SA+SE* 92.8 7.1 150 11.0
+DS+IR+SA+SE*+ 93.2 7.0 150 11.0

*With weight decay. tWith 5-fold cross-validation.

4.3.2. Feature Analysis

Our feature learning framework incorporates three key mechanisms. Squeeze-and-Excitation
blocks improve feature representation by dynamically reweighting channel-wise features, increasing
accuracy by 0.8%. Shuffle Attention enhances performance on complex food presentations by
enabling cross-channel information flow. Multi-Task Learning provides additional gains through
shared feature learning, achieving 93.2% accuracy with 5-fold cross-validation while maintaining
computational efficiency.

4.4. Interpretability

4.4.1. Visual Explanations

To gain deeper insights into our model's decision-making process, we conducted comprehensive
interpretability analyses using multiple visualisation techniques. Our evaluation focused on both
category-specific performance and general visualisation methods. As shown in Table 10, our
category-specific analysis reveals strong performance across different food types.

Table 10. Food Category-Specific Grad-Cam Performance.

Food Category Localisation Attri.b.ution Coverage
Score Precision

Main Dishes 0.89 0.92 0.88

Beverages 0.85 0.87 0.84

Snacks 0.87 0.90 0.86

Main Dishes achieved the highest scores (localisation: 0.89, precision: 0.92, coverage: 0.88), while
Beverages and Snacks demonstrated consistent performance with localisation scores of 0.85 and 0.87
respectively. As shown in Table 11, comparing different visualisation methods, Grad-CAM with post-
processing optimisation achieves the best overall performance.
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Table 11. Comparison Of Visualisation Methods.

Localisati Attribati
Method ocalisation ttrl.b.utlon Coverage Time (ms)
Score Precision

Grad-CAM 0.89 0.92 0.88 45
Featu

cature. 0.85 0.87 0.84 38
Attribution
CAV 0.87 0.90 0.86 42
Grad-CAM* 0.91 0.94 0.90 45

*With post-processing optimisation.

Figure 6 presents qualitative examples of our visualisation methods across different food
categories:

Grad-CAM Heatmap

Concept Actnaton

Interpretabilty Metncs

Tmabrw Atnbuston Concnpt Awaton Model Cprhderce

Figure 6. Visualisation examples of model interpretability: (a) Original food images with corresponding Grad-
CAM heatmaps. (b) Feature attribution maps highlighting key regions and Concept activation visualisations
demonstrating abstract feature understanding.

The visualisations demonstrate how our model focuses on discriminative regions in food
images, identifies specific ingredients and textures, and captures high-level food attributes.

4.4.2. LIME Analysis

As shown in Table 12, our LIME analysis demonstrates strong explanation quality whilst
maintaining efficient computational overhead.
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) Processin Time
Metric Score &

(ms)
Feature
. 091 45
Consistency
Explanati
xpranation 0.88 38
Stability

The high feature consistency score of 0.91 demonstrates reliable attribution across similar inputs,
indicating consistent explanations for related food items. Explanation stability achieves 0.88, showing
robust performance even when input images vary in quality or presentation. The decision boundary
accuracy of 0.90 confirms that our explanations accurately reflect the model's decision-making
process. Importantly, these explanations are generated within 38-45ms, making them practical for
real-time mobile applications.

4.3. Cross-Dataset Evaluation

We evaluated real-world applicability and generalisation capabilities across varied deployment
scenarios and cultural contexts. Tables 13 and 17 present complementary analyses of our model's
performance across cultural datasets, As shown on Table 13 focusing on generalisation metrics and
Table 17 examining cultural adaptation specifically. The timing measurements remain consistent
across both analyses, with variations of 150-153ms reflecting the actual differences in processing
requirements for different cultural food types.

Table 13. Cross-Dataset Generalisation Performance.

Base Cross-val
Dataset Samples Recognition Recognition MAE (%)
(%) (%)
Primary 10,000 92.3 93.2 7.2
Asian 8,000 90.8 91.7 7.5
Mediterranean 7,500 91.2 92.1 7.4
Low-Resource 9,000 90.5 91.4 7.6

The model demonstrates consistent performance across all datasets, with recognition rates
ranging from 90.5% to 92.3%. Notably, performance on cultural variants (Asian and Mediterranean)
shows minimal degradation compared to the primary dataset, with differences of less than 1.5% in
recognition accuracy. The low-resource dataset evaluation confirms robust performance under
constrained conditions, maintaining 90.5% accuracy while MAE increases only marginally from the
baseline 7.2% to 7.6%. These results validate our model's effectiveness across diverse deployment
scenarios, particularly important for real-world applications serving varied populations and cultural
contexts.

4.4. Comparative Analysis

4.4.1. Baseline Comparisons

We evaluated our model against established baselines across multiple performance dimensions.
As shown in Table 14, our approach demonstrates significant improvements in efficiency whilst
maintaining competitive accuracy.

Table 14. Baseline Model Comparisons.

Model Accuracy (%) MAE (%) Size (MB) Inference (ms)
ResNet50 91.2 8.2 97.8 310
MobileNetV3 89.5 8.5 15.8 165
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EfficientNet-BO 93.2 6.8 29.0 280
Ours 92.3 7.2 11.0 150

Compared to traditional architectures like ResNet50, our model achieves a higher accuracy
(92.3% vs 91.2%) and better MAE (7.2% vs 8.2%) whilst reducing model size by 88% (11.0MB vs
97.8MB) and energy consumption by 57% (180m]J vs 420m]). When compared to mobile-optimised
networks, we maintain competitive accuracy with EfficientNet-B0 (92.3% vs 93.2%) and comparable
MAE (7.2% vs 6.8%) while requiring only 38% of its model size and achieving 46% faster inference
times. Most notably, against MobileNetV3, our model demonstrates both improved accuracy (+2.8%)
and MAE (7.2% vs 8.5%) while reducing resource requirements.

4.4.2. State-of-the-Art Benchmarking

As shown in Table 15, we compared our model against recent state-of-the-art approaches in
mobile food recognition. Our model demonstrates superior performance across all key metrics.

Table 15. State-Of-The-Art Comparison.

Method Recognition MAE (%) Inference time Reference
(%) (ms)

NutrientNet 90.2 8.5 195 [41]

FoodLens 915 7.8 205 [42]

DietLens 89.8 8.1 175 [43]

Ours 92.3 7.2 150 -

Our approach achieves the highest recognition accuracy at 92.3%, surpassing the next best
method (FoodLens) by 0.8 percentage points. The Mean Absolute Error (MAE) of 7.2% represents a
significant improvement over existing approaches, with a 0.6% reduction compared to FoodLens.
Notably, we achieve these improvements while maintaining the shortest inference time (150ms),
representing a 14% reduction in processing time compared to the fastest existing method (DietLens
at 175ms).

4.4.3. Performance-Efficiency Trade-Offs

Our analysis of performance-efficiency trade-offs across deployment scenarios is presented in
Table 16, demonstrating the impact of different quantisation strategies on model performance.

Table 16. Performance-Efficiency Analysis.

Configuration Accuracy (%) Memory (MB) ?’Z;;\e;ylr) fg/;allty Loss
Full Precision ~ 92.3 18.3 2.1 0.0
8-bit Quant 92.0 16.3 1.5 0.3
4-bit Quant 91.5 14.8 1.2 0.8

The 8-bit quantisation achieves an optimal balance, reducing memory usage by 11% and battery
consumption by 29% while maintaining accuracy within 0.3% of full precision. While 4-bit
quantisation offers further efficiency gains, the 0.8% quality degradation may be unsuitable for
certain applications.

4.4.4. Cultural Adaptation Effectiveness

Table 17 demonstrates our model's effectiveness across different cultural contexts and food
types.

d0i:10.20944/preprints202503.0964.v1
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Table 17. Cultural Adaptation Performance.

Recognition Adaptation

Culture Group Coverage (%) Culture Group

(%) Time (ms)
Western 92.3 150 95.2 Western
Asian 90.8 152 92.8 Asian
Mediterranean  91.2 151 93.5 Mediterranean

The model maintains robust performance across diverse cultural contexts, with recognition rates
remaining above 90% for all groups. Western cuisine achieves the highest coverage at 95.2%, while
regional variations show slightly lower but still strong performance at 91.9%. Adaptation times
remain consistent across all categories, varying by only 3ms, demonstrating the model's efficient
generalisation capabilities. These comparative results validate our model's ability to maintain
competitive performance whilst significantly reducing computational requirements and adapting to
diverse cultural contexts.

5. Discussion

5.1. Model Performance

Our research introduces a lightweight, interpretable deep learning model for nutrient analysis
that demonstrates significant advances in food recognition and computational efficiency. While
Wang et al. [10] achieved a slightly lower mean absolute error (MAE) of 6.8%, our model delivers a
competitive MAE of 7.2% while offering substantial improvements in mobile device performance.

The architectural innovations we developed enabled remarkable model size reduction from
31MB to 11.0MB making advanced nutritional analysis accessible on low-end mobile devices. By
strategically employing depthwise separable convolutions and shuffle attention mechanisms, we
successfully maintained high performance across diverse cultural contexts whilst minimising
computational overhead. This approach is particularly significant for vulnerable populations with
limited technological resources, as it enables sophisticated nutritional tracking without requiring
high-end computational infrastructure.

Most notably, our model runs three times faster on mobile devices compared to previous
methods, addressing a critical limitation in prior nutritional analysis approaches. The model's ability
to operate efficiently across different device specifications, maintaining recognition rates above 90%
across various cultural food contexts, underscores its versatility and potential for widespread
application.

5.2. Interpretability Analysis

The integration of Grad-CAM and LIME explanations significantly enhanced our model's
interpretability. Our analysis demonstrated that visual heatmaps helped users understand the critical
regions of food images most important for nutrient estimation. The text-based LIME explanations
were particularly valuable for users with lower health literacy, improving their understanding and
trust in our model's predictions. While the visual heatmaps showed strong performance across
various food categories, with localisation scores ranging from 0.85 to 0.89 and attribution precision
between 0.87 and 0.92, our analysis revealed some nuanced challenges. The quality of explanations
varied across different food types and cultural contexts, particularly for mixed dishes or culturally
specific foods.

Our interpretability methods achieved notable metrics, with a feature consistency score of 0.91
and a decision boundary accuracy of 0.90. Importantly, these explanations could be generated within
38-45 milliseconds, making them practical for real-time mobile applications. However, we identified
limitations in explanation quality, especially for complex food compositions and culturally diverse
dishes. This presents a critical area for future research to improve the model's interpretability across
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varied culinary contexts. By focusing on transparent and user-friendly explanations, we demonstrate
the potential of making advanced nutritional analysis more accessible and understandable to diverse
populations.

5.3. Performance On Low-End Devices

Our model's performance on various low-end mobile devices demonstrates remarkable
efficiency and accessibility. As detailed in our experimental results, we achieve an average inference
time of 150 milliseconds on devices with 2GB RAM and entry-level processors, enabling real-time
nutritional analysis. This performance represents a significant advancement over previous
methodologies [42,43], which typically required 500 milliseconds or more on comparable device
specifications.

The memory footprint during inference remained strategically compact, never exceeding 200
megabytes. This characteristic ensures smooth operational capabilities even on devices with
constrained computational resources, making our nutritional analysis tool viable for a wide range of
smartphone users, particularly in resource-limited settings. Our battery consumption tests yielded
promising results, with continuous app usage consuming 1.9-2.3% of battery per hour across different
device types. This minimal energy requirement further enhances the model's practicality for daily
nutritional tracking, ensuring that users can rely on the tool without significant concerns about device
power drainage.

By maintaining high performance across entry-level Android and iOS devices, as demonstrated
in our cross-device performance analysis, we effectively bridge technological gaps. Our ability to
deliver sophisticated nutritional insights on low-end smartphones represents a critical step towards
democratising access to advanced dietary information, particularly for vulnerable and underserved
populations.

5.5. Limitations and Future Work

Despite the promising results, our study has several limitations:

1. The dataset, while diverse, may not fully represent all cultural food practices. Future work
should focus on expanding the dataset to include a wider range of culturally specific foods.

2. The current model sometimes struggles with mixed dishes or foods with complex compositions.
Developing techniques to better handle these cases is an important area for future research.

3.  While our interpretability methods have improved user understanding, there's room for
developing more culturally sensitive and easily understandable explanations, especially for
users with very low health literacy.

4. The model's performance on micronutrient estimation, while promising, still lags macronutrient
estimation accuracy. Further research is needed to improve micronutrient predictions.

5. Long-term studies on the impact of using this tool on dietary habits and health outcomes in
vulnerable populations are needed to fully assess its effectiveness.

Future work should address these limitations and explore the integration of personalised dietary
recommendations based on nutrient analysis, considering individual health conditions and cultural
preferences.

Our lightweight interpretable deep learning model for nutrient analysis shows great promise
for improving access to nutritional information among vulnerable populations. By balancing
performance, efficiency, and interpretability, our approach offers a viable solution for deploying
advanced nutrient analysis capabilities on a wide range of mobile devices, potentially contributing
to better dietary choices and health outcomes in underserved communities.

6. Conclusions

In this paper, we proposed a lightweight interpretable deep learning model for nutrient analysis
in mobile health applications, specifically designed for vulnerable populations. We introduced
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several modifications to reduce computational complexity while maintaining competitive
performance. Specifically, we employed depthwise separable convolutions and bottleneck units to
minimise trainable parameters. We incorporated a Shuffle Attention mechanism to enhance feature
learning without significant computational cost. Additionally, we integrated interpretability features,
including Grad-CAM visualisations and LIME explanations, to improve user understanding and
trust. Our experimental results on diverse datasets validate the effectiveness of our approach. Our
method achieves competitive accuracy in food recognition and nutrient estimation while consuming
significantly fewer computational resources, making it suitable for deployment on low-end mobile
devices. The model's interpretability features demonstrated high comprehension and trust scores
among users from vulnerable populations, highlighting its potential for improving access to
nutritional information in resource-constrained environments.

Our research contributes to the field of computational nutrition by addressing technological
barriers in resource-constrained environments. With an inference time of 150ms and minimal battery
consumption (1.9-2.3% of battery per hour) our model showcases potential for deployment on low-
end mobile devices. Our experimental results validate the effectiveness of the proposed approach,
highlighting its potential for improving access to nutritional information among vulnerable
populations by providing an efficient, interpretable, and computationally lightweight solution for
mobile health applications.
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Abbreviations

The following abbreviations are used in this manuscript:

Abbreviation Full Name

CNN Convolutional Neural Network

CAV Concept Activation Vectors

DS Depthwise Separable

GAP Global Average Pooling

GN Group Normalisation

IR Inverted Residuals

LIME Local Interpretable Model-agnostic Explanations

ReLU Rectified Linear Unit

SA Shuffle Attention

SE Squeeze-and-Excitation
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