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Abstract: Nutrient analysis through mobile health applications can improve dietary choices, 
particularly among vulnerable populations. However, deploying sophisticated deep learning models 
on resource-constrained devices presents challenges in computational efficiency, model 
interpretability, and user trust. We propose a lightweight interpretable deep learning model for real-
time nutrient analysis on mobile devices. Our approach uses depthwise separable convolutions, 
bottleneck units, and Shuffle Attention to reduce computational complexity while maintaining 
accuracy. For interpretability, we integrate Grad-CAM visualisations, LIME explanations, and 
Concept Activation Vectors. Our model achieves 92.3% accuracy in food recognition and 7.2% mean 
absolute error in nutrient estimation, with a model size of 11MB. Testing on resource-constrained 
devices shows inference times of 150ms on mid-range smartphones with minimal battery impact. 
User studies demonstrate high comprehension scores for interpretability features, with Grad-CAM 
visualisations achieving an 8.2/10 understanding score. These results show our model can effectively 
deliver nutrient analysis on budget mobile devices and in environments with limited infrastructure, 
making it particularly valuable for vulnerable populations facing both technical and infrastructural 
constraints. 

Keywords: deep learning; mobile health applications; nutrient analysis; interpretable AI; lightweight 
neural networks; Vulnerable populations; resource-constrained devices 
 

1. Introduction 

In recent years, mobile health applications have become increasingly prevalent, offering users 
convenient tools for monitoring and managing their health. Among these, nutrient analysis apps play 
a crucial role in helping individuals, particularly those from vulnerable populations, maintain 
balanced diets and make informed nutritional choices. However, the development of accurate and 
efficient nutrient analysis tools for mobile platforms presents unique challenges, especially for users 
with limited resources or health literacy. 

The importance of proper nutrition in maintaining overall health and preventing chronic 
diseases cannot be overstated. Malnutrition, whether in the form of undernutrition or obesity, 
remains a significant global health concern [1]. Mobile health applications have the potential to 
democratise access to nutritional information and guidance, providing personalised 
recommendations based on individual needs and preferences. This is particularly valuable for 
vulnerable populations who may have limited access to healthcare professionals or nutritional 
education [2]. 

Traditional methods of nutrient analysis often rely on manual input of dietary information or 
simplistic algorithms, which can be time-consuming, error-prone, and fail to capture the complexity 
of human nutrition. Recent advancements in artificial intelligence, specifically deep learning, have 
shown promise in enhancing the accuracy and capability of nutrient analysis [3]. Deep learning 
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models can potentially process complex data inputs, such as food images or natural language 
descriptions, to provide more accurate and comprehensive nutritional assessments. 

However, implementing sophisticated deep learning models on mobile devices presents 
significant challenges. Mobile platforms are constrained by limited computational resources, storage 
capacity, and energy consumption considerations. Moreover, many state-of-the-art deep learning 
models are computationally intensive and require substantial memory, making them impractical for 
real-time use on smartphones [4]. This necessitates the development of lightweight models that can 
operate efficiently within the constraints of mobile devices without sacrificing accuracy [5].  Another 
critical challenge in the application of deep learning to health-related tasks is the "black box" nature 
of many models [6]. Users and healthcare professionals require transparency in AI-driven health 
recommendations to foster trust and ensure responsible use. This is particularly important in the 
context of nutrient analysis, where recommendations can have direct impacts on users' dietary 
choices and health outcomes. Therefore, there is a pressing need for interpretable AI models that can 
explain their predictions in human-understandable terms [7]. 

The challenge of model interpretability is further complicated by cultural diversity and varying 
levels of health literacy among vulnerable populations. Different cultural groups may interpret and 
trust AI explanations differently, necessitating culturally sensitive approaches to model 
interpretability. Moreover, while initial user trust is important, maintaining and building that trust 
over time is crucial for long-term adoption and positive health outcomes. These technical challenges 
are compounded by the need to provide culturally appropriate and sustained interpretability across 
diverse user groups. Effective interpretability must not only be technically sound but also culturally 
resonant and trustworthy over extended periods of use. The primary objectives of this research are 
threefold: 

1. To develop a lightweight deep learning model capable of accurate nutrient analysis while 
operating efficiently on mobile devices. 

2. To integrate interpretability features into the model, allowing users to understand the factors 
influencing the nutritional assessments. 

3. To evaluate the model's performance and usability in real-world scenarios, particularly for 
vulnerable populations. 
In this paper, we present a novel approach to addressing these challenges. We propose a 

lightweight, interpretable deep learning architecture specifically designed for nutrient analysis in 
mobile environments. Our model incorporates state-of-the-art compression techniques to reduce its 
size and computational requirements without sacrificing accuracy. Additionally, we integrate 
interpretability features that provide clear, user-friendly explanations for the model's predictions, 
enhancing transparency and user trust. 

The main contributions of this work include: 

1. A novel lightweight architecture that achieves high accuracy in nutrient analysis while being 
suitable for mobile deployment. 

2. The successful integration of interpretability features that enhance user understanding without 
compromising model performance. 

3. A comprehensive evaluation of the model's performance in mobile health contexts, including 
accuracy, speed, and mobile deployment feasibility. 
The remainder of this paper is organised as follows: In Section II, we review related work in 

nutrient analysis, lightweight models, and interpretable AI. In Section III, we detail our methodology, 
including dataset, model architecture, interpretability features, and mobile implementation. In 
Section IV, we present our experimental results, comparing performance, efficiency, and 
interpretability. In Section V, we discuss our findings, analysing model performance, interpretability, 
and limitations. Finally, in Section VI, we conclude the paper, summarising our contributions and 
future directions for nutrient analysis in mobile health applications. 
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2. Related Work 

This section reviews existing approaches in mobile nutrient analysis, focusing on architectural 
developments, efficiency optimisations, and interpretability mechanisms. 

2.1. Nutrient Analysis Architectures 

Encoder-decoder architectures have become fundamental in image analysis tasks, including 
nutrient analysis. The U-Net architecture has been particularly influential in this domain. Several 
variations of U-Net have been proposed to address limitations and improve performance for specific 
tasks. 

Sharp U-Net, proposed by Zunair and Hamza [8], introduces a depth wise convolution with a 
sharpening kernel filter in the skip connections. This approach helps fuse semantically similar 
features and smooth out artifacts during early training stages, outperforming state-of-the-art models 
in both binary and multi-class biomedical image segmentation tasks without adding extra learnable 
parameters. 

Di et al. [9] and Wang et al. [10] introduced KiU-Net, an overcomplete convolutional architecture 
designed to address U-Net's limitations in detecting smaller structures and segmenting boundary 
regions precisely. KiU-Net projects the input image into a higher dimension, constraining the 
receptive field from increasing in deep layers. This approach improves the detection of small 
structures and accurate edge segmentation while using fewer parameters and achieving faster 
convergence compared to traditional U-Net based approaches. 

Yin et al. [11] proposed Half-UNet, a simplified U-Net architecture that maintains similar 
segmentation accuracy while significantly reducing parameters and floating-point operations. Half-
UNet takes advantage of channel number unification, full-scale feature fusion, and Ghost modules, 
demonstrating effectiveness across multiple medical image segmentation tasks. Yang et al. [5] 
developed ELU-Net, an efficient and lightweight U-Net with deep skip connections. ELU-Net 
incorporates same- and large-scale skip connections from the encoder to fully extract features, 
showing improved performance on brain tumour and liver datasets ad researchers are now working 
on nutritional analysis[12,13]. These advancements in U-Net variants demonstrate the ongoing 
efforts to improve segmentation accuracy, computational efficiency, and adaptability to various 
medical imaging tasks, which could be valuable for nutrient analysis in food images. While these 
advances have improved accuracy, they often increase computational complexity, challenging their 
deployment on mobile devices, especially for vulnerable populations with low-end smartphones. 
While these U-Net modifications established feasible deployment paths, the need for even lighter 
architectures led to specific mobile-optimised implementations. 

2.2. Lightweight Deep Learning Models 

Building upon the foundational U-Net architectures, mobile-optimised networks have advanced 
through systematic parameter reduction strategies. Table 1 summarises the key architectures and 
their standardised performance metrics. 

Table 1. Comparison of Lightweight Architectures for Mobile Food Recognition. 

Architecture 
Implementatio
n 

Accuracy 
(Top 1) 

Mode
l Size 

Inferenc
e Time 

Memor
y Usage 

Test 
Device 
Specs 

Powe
r 
Usag
e 

MobileNet 
Mezgec et al. 
[14] 

87.6%(52
0 classes) 

14MB 42ms 84MB 

Snapdrago
n 855, 
6GB RAM, 
Android 11 

0.28W 
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EfficientNet-
B0 

Schilling et al. 
[15] 

86.4% 
(Food-
101) 

29MB 65ms 145MB 
iPhone 11, 
iOS 14 

0.35W 

ShuffleNetV
2 

Jiang et al. [16] 
85.2% 
(300 
classes) 

9.4MB 48ms 67MB 

MediaTek 
P95,4GB 
RAM, 
Android 10 

0.22W 

SqueezeNet Tran et al. [17] 
83.6% 
(Food-
101) 

5MB 55ms 52MB 
Snapdrago

n 7,32G, 
6GB RAM 

0.25W 

through depth wise separable convolutions, with Mezgec et al. [14] achieving 87.6% accuracy on 
520 food classes. EfficientNet [15] introduced compound scaling, with Schilling et al. [16] achieving 
86.4% accuracy while reducing model size by 87%. ShuffleNet [18] employed group convolutions, 
with Jiang et al. [5] achieving 85.2% accuracy and sub-50ms inference times. SqueezeNet [17] achieved 
comparable accuracy with 50x fewer parameters, demonstrated by Tran et al. [17] achieving 83.6% 
accuracy at just 5MB. 

These architectures have shown success across various nutrient analysis tasks. Liu et al. [19] 
applied MobileNetV2 to Asian food recognition (84.3% accuracy), while Tan et al. [20] used 
EfficientNet for portion estimation (15% error). Chen et al. [18] developed a ShuffleNet-based model 
for nutrient prediction (10.5% calorie error), and Zhou et al. [21] combined approaches for 
comprehensive monitoring (82.7% recognition accuracy). While these implementations 
demonstrated significant efficiency improvements, they highlighted the need for robust 
interpretability mechanisms. 

The architectures MobileNet, EfficientNet-B0, ShuffleNetV2, and SqueezeNet are designed to 
optimise performance in convolutional neural networks (CNNs) while minimising computational 
costs. Each architecture employs unique strategies to enhance efficiency, making them suitable for 
various applications, particularly in mobile environments. 

2.3 Interpretability Techniques in Mobile Health AI 

Interpretability mechanisms have become essential for ensuring user trust in mobile nutrient 
analysis applications, particularly for vulnerable populations with varying health literacy levels. 
Recent research has focused on developing techniques that balance explanation quality with 
computational efficiency across diverse mobile platforms. Attention mechanisms have emerged as a 
leading approach, with significant implementations by Choi et al. [22] in their RETAIN model for 
electronic health records, achieving 12% accuracy improvement, and Bahadori et al. [23] in visual 
calorie estimation, though both noted increased computational overhead. Post-hoc explanation 
methods like LIME and SHAP have shown promise in mobile health applications. Yao et al. [24] 
demonstrated SHAP-based explanations increased user trust by 24%, while Adjuik et al. [25] used 
LIME to achieve 18% higher user engagement. However, both approaches required significant 
computational resources on mobile devices. 

Concept Activation Vectors (CAVs) have effectively translated complex decisions into human-
friendly concepts. Selvaraju et al. [26] showed 78% of users preferred CAV-based explanations over 
traditional breakdowns for food classification. Similarly, saliency mapping techniques like Grad-
CAM have proven efficient, with Zhou et al. [18] achieving 86% precision in ingredient identification 
and Xiao et al. [27] improving detection rates by 30% in medical applications. Despite these advances, 
significant challenges remain. Zunair et al. [28] found SHAP explanations increased inference time 
by 250% on low-end smartphones, while Mazzia et al. [29] revealed that explanation effectiveness 
varied significantly with users' educational backgrounds. These findings highlight the need to 
balance computational efficiency with explanation quality across vulnerable populations. 
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2.4. Lightweight Mobile Nutrient Analysis 

Combining lightweight architectures with interpretability features, several mobile 
implementations demonstrated practical deployment strategies. Several notable applications have 
emerged in the field of mobile nutrient analysis. Im2Calories, proposed by Myers et al. [30], is a CNN-
based system for calorie estimation from single images, achieving 20% mean absolute error but 
requiring significant computational resources. NutriNet, developed by Tran et al. [31] is a lightweight 
CNN for food recognition and portion estimation, achieving 87.2% top-1 accuracy on 520 food classes 
with an 8.7MB model size. FoodAI, created by Mezgec and Koroušić Seljak [32] recognises over 500 
food items with 92.8% top-5 accuracy and 0.8-second inference time on mid-range smartphones. 

However, implementing comprehensive nutrient analysis on low-end devices presents several 
challenges. Computational limitations are significant, as Liu et al.[33] found ResNet-50 inference 
times exceeded 2 seconds on entry-level smartphones. Storage constraints also pose issues, with Chen 
et al. [18] reporting that initial 150MB models were impractical for budget smartphones. Energy 
efficiency is another concern, as Zhang et al.[13,34] observed continuous use depleted budget 
smartphone batteries in under 4 hours. 

Additionally, limited sensor quality affects performance, with Jin et al.[35]  noting a 15% 
accuracy drop using entry-level smartphone cameras. Offline functionality is crucial but challenging, 
as Xiu et al. [36] found offline-capable models sacrificed 10% accuracy to reduce size by 70%. User 
interface constraints also impact usability, with Yang et al. [19] observing that simplified UIs for low-
end devices reduced displayed nutritional information by 25%. 

Our research aims to address these challenges by developing a lightweight, interpretable 
nutrient analysis model for low-end mobile devices, focusing on vulnerable populations' needs. This 
approach seeks to balance accuracy, efficiency, and usability while providing meaningful nutritional 
insights to users with limited access to high-end devices. While these implementations showed 
promise, they also revealed significant opportunities for improvement. 

3. Material and Methodology 

This section details our proposed lightweight interpretable model architecture, dataset 
preparation, and experimental methodology. We describe the key components of our approach, 
implementation details, and evaluation metrics. 

3.1. Overview 

Our approach integrates efficient model architecture, comprehensive interpretability features, 
and mobile optimisation techniques to deliver accurate nutrient analysis while maintaining 
accessibility for vulnerable populations. 

The system comprises five key components: (1) a large-scale annotated food dataset, (2) an 
efficient neural network architecture based on MobileNet[37], (3) integrated interpretability 
mechanisms, (4) mobile-specific optimisations, and (5) a comprehensive training pipeline. These 
components work together to achieve a balance between computational efficiency, accuracy, and user 
trust. 

Figure 1 illustrates our system architecture, showing the flow from input image through the core 
neural network to multiple output heads for food recognition, portion estimation, and nutrient 
prediction. The architecture incorporates attention mechanisms and interpretability features while 
maintaining a compact model size of 11MB, suitable for deployment on low-end mobile devices. 
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Figure 1. System Architecture Diagram showing: (a) Input processing, (b) Core neural network components, 
(c) Interpretability mechanisms, (d) Output heads. 

3.2. Model Architecture 

Building upon our diverse dataset requirements, we developed a lightweight architecture that 
balances computational efficiency with accurate nutrient analysis capabilities. Our model design 
specifically addresses the challenges of processing varied food presentations while maintaining 
performance on resource-constrained devices. Our proposed lightweight model architecture is based 
on an adaptation of MobileNetV3[33,38] chosen for its efficiency on mobile devices. We have 
implemented several modifications to optimise performance for nutrient analysis on resource-
constrained devices, particularly focusing on the needs of vulnerable populations. The key 
components of our architecture are as follows: 

3.2.1. Baseline Structure 

The baseline structure of our model is designed to optimise both efficiency and accuracy. The 
key features are as follows: 

• Input Size: The model accepts input images of size 224x224x3, which is standard for many 
mobile applications, ensuring compatibility with various devices. 

• Convolutional Stages: The architecture includes five convolutional stages, with the number of 
channels increasing progressively from 32 to 320. This gradual increase allows the model to 
capture more complex features as the depth of the network increases.   

3.2.2. Reduced Computational Complexity 

To reduce the number of parameters and computational complexity, we employ depthwise 
separable convolutions throughout the network [39] .As illustrated in Figure 2 (STAGE A), this 
applies a 3×3 convolution on each channel separately, followed by a 1×1 convolution to project the 
output channels to another channel space. 

We utilise inverted residuals with linear bottlenecks [40] to further reduce the model size while 
preserving performance. The bottleneck unit, shown in Figure 2 (STAGE B), serves as our basic 
building block with depthwise separable convolution in the middle. We introduced an additional 
hyperparameter, reduction ratio r=4, to reduce the number of input channels for the middle layer. 
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Figure 2. Depthwise separable convolutions throughout the network. 

3.2.3. Squeeze-And-Excitation Blocks 

We incorporate Squeeze-and-Excitation blocks [33,41] to adaptively recalibrate channel-wise 
feature responses, enhancing the model's representational power. For an input feature map 𝑈 ∈ 𝑅^(𝐻 × 𝑊 × 𝐶), as shown by equation Error! Reference source not found.: 𝑈 ∈  𝑅^(𝐻 × 𝑊 × 𝐶) (1) 

The SE block performs the following operation as shown by equation Error! Reference source 
not found.: 𝑠 =  𝜎(𝑊_2 𝛿(𝑊_1 𝐺𝐴𝑃(𝑈))) Û =  𝑠 ·  𝑈 (2) 

where GAP is global average pooling, δ is the ReLU function, σ is the sigmoid activation, and W_1, 
W_2 are learnable parameters. 

Squeeze-and-Excitation (SE) blocks are powerful architectural elements that adaptively 
recalibrate channel-wise feature responses to enhance a model's representational capabilities. The SE 
block processes input feature maps through a series of operations: first applying global average 
pooling (GAP), followed by two fully connected layers with ReLU (δ) and sigmoid (σ) activations, 
controlled by learnable parameters W₁ and W₂. 

This architecture has shown significant benefits in multiple imaging applications. In optical 
coherence tomography (OCT), SE blocks improve imaging accuracy while reducing acquisition time 
by dynamically recalibrating features, as demonstrated by Rashidi et al [41] .Similarly, in depth 
estimation tasks, SE blocks excel at integrating local and global information, leading to superior 
performance on benchmark datasets according to Zhang et al. [33]. 

3.3.4. Attention Mechanisms 

a) Lightweight Attention 
We integrate a lightweight attention mechanism [33] in the final layers to improve 

interpretability and focus on relevant image regions for nutrient analysis. According to recent studies 
this mechanism reduces computational waste and improves model generalisation by adaptively 
adjusting weights during training [24]. 

b) Shuffle Attention (SA) 
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We incorporate a modified Shuffle Attention mechanism [21] to enhance feature learning 
without significantly increasing computational overhead. Given an input feature map, 𝐼 ∈ 𝑅𝐶 × 𝐻 × 𝑊 , the SA module divides I into G groups along the channel dimension, splits each 
subgroup Ik into two branches, and applies channel shown by equation Error! Reference source not 
found.: 𝐼^′ 𝑘1 =  𝜎(𝐹𝑐(𝑠)) ·  𝐼𝑘1 =  𝜎(𝑊1𝑠 +  𝑏1) ·  𝐼𝑘1 (3) 

and spatial attention separately as shown by equation Error! Reference source not found.: 𝐼^′ 𝑘2 =  𝜎(𝑊2 ·  𝐺𝑁(𝐼𝑘2) +  𝑏2) ·  𝐼𝑘2 (4) 

where σ represents the sigmoid function, W1 and W2 are learnable weights, b1 and b2 are bias terms, 
GN denotes Group Normalisation, and k represents the group index. 

After applying these attention mechanisms, the module concatenates and shuffles information 
between groups for better feature integration. Recent research demonstrates that this mechanism 
maintains low computational overhead while enhancing feature learning, making it particularly 
effective for real-time [42,43]. 

3.2.5. Multi-Task Output 

The model features multiple output heads for food recognition, portion estimation, and nutrient 
content prediction, allowing for efficient parameter sharing across related tasks, as shown in Figure 
3. 

These architectural elements combined, our model achieves a balance between computational 
efficiency and accuracy, making it suitable for deployment on resource-constrained devices while 
providing robust nutrient analysis capabilities. The overall architecture is designed to be lightweight 
yet powerful, with a focus on meeting the needs of vulnerable populations who may have limited 
access to high-end mobile devices. 

The integration of various attention mechanisms and efficient convolutional techniques allows 
our model to maintain high performance while significantly reducing computational requirements. 
This approach ensures that the model can provide accurate nutrient analysis in real-time on a wide 
range of mobile devices, including lower-end smartphones that may be more common among 
vulnerable populations. While the architectural design ensures computational efficiency, the practical 
deployment of our model requires careful consideration of interpretability features to enhance user 
trust and understanding. 

 

Figure 3. Overall architecture of the proposed lightweight nutrient analysis model. 

3.3. Interpretability Features 

Complementing our efficient architecture, we implement several interpretability mechanisms as 
shown in Figure 4 designed to make the model's decisions transparent and accessible to users with 
varying levels of technical literacy. To address the "black box" nature of deep learning models and 
enhance user trust, particularly for vulnerable populations who may have varying levels of health 
literacy, we incorporate the following interpretability features: 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 March 2025 doi:10.20944/preprints202503.0964.v1

https://doi.org/10.20944/preprints202503.0964.v1


 9 of 27 

 

 

Figure 4. Interpretability Mechanisms. 

3.3.1. Grad-Cam Visualisations 

We implement Gradient-weighted Class Activation Mapping (Grad-CAM) [26] to generate 
heatmaps highlighting the regions of the input image most influential in the model's predictions. 
Given the final convolutional feature map A^k of a CNN and the score y^c for class c, Grad-CAM is 
computed as shown by equation Error! Reference source not found.: 𝛼^𝑐_𝑘 =  1/𝑍 ∑_𝑖 ∑_𝑗 𝜕𝑦^𝑐 / 𝜕𝐴^𝑘_𝑖𝑗  (5) 

The final Grad-CAM visualisation is then obtained through equation Error! Reference source 
not found.: 𝐿^𝑐_𝐺𝑟𝑎𝑑 − 𝐶𝐴𝑀 =  𝑅𝑒𝐿𝑈(∑_𝑘 𝛼^𝑐_𝑘 𝐴^𝑘)   (6) 

where Z is the number of pixels in the feature map. The resulting 𝐿^𝑐 _Grad-CAM is a coarse 
localisation map highlighting the important regions in the image for predicting class 𝑐 . The 
visualisation process involves computing gradients of class scores with respect to feature maps, 
followed by global average pooling of gradients to obtain feature importance weights. These weights 
are then used in a weighted combination of forward activation maps, with ReLU applied to 
emphasize positively contributing features. This approach provides interpretable visual explanations 
that identify the specific image regions most influential in the model's nutrient analysis predictions. 

3.3.2. Lime Explanations 

We employ Local Interpretable Model-agnostic Explanations (LIME) [44] to generate 
explanatory insights into the model's decision-making process, particularly focusing on feature 
importance quantification for nutrient estimation predictions. The LIME framework operates by 
constructing local approximations of the model's decision boundaries through interpretable 
surrogates. For a given input image 𝑥, LIME generates an interpretable model g in representation 
space 𝑥′ by solving the optimisation problem shown by equation Error! Reference source not found.: 𝜉(𝑥)  =  𝑎𝑟𝑔𝑚𝑖𝑛 𝑔 ∈ 𝐺 𝐿(𝑓, 𝑔, 𝜋_𝑥)  +  𝛺(𝑔)  (7) 

where: 
where: 

• f represents the target deep learning model 
• π_x establishes the locality region surrounding instance x 
• L computes the approximation fidelity between f and g within the defined locality 
• Ω(g) penalises explanation complexity 

The implementation achieves robust feature importance extraction with average processing 
latency of [X] milliseconds per instance [45]. Additional stability enhancements include optimised 
perturbation strategies, feature collinearity detection, and consistency validation protocols. 
Performance metrics demonstrate explanation fidelity of [Y]% and feature importance stability index 
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of [Z] across test cases [44]. This facilitates real-time interpretability while maintaining computational 
efficiency within mobile deployment constraints. 

3.3.3 Concept Activation Vectors (CAVs) 

We integrate CAVs [46] to translate model decisions into human-understandable concepts, such 
as "high in fibre" or "low in saturated fat." For a given concept C and a random concept (or negative 
examples) N, CAV is defined by equation Error! Reference source not found.: 𝑣_𝐶 =  −𝑤_𝐶  (8) 

where 𝑤_𝐶 is the vector orthogonal to the decision boundary of a binary linear classifier trained to 
distinguish between 𝐶 and 𝑁 using the activations of a chosen layer 𝑙 as inputs. 

The directional derivative of the logit for class k with respect to concept 𝐶 at layer l is then 
computed as shown by equation Error! Reference source not found.: 𝑆_𝐶, 𝑘, 𝑙(𝑥)  =  𝛻ℎ_𝑙, 𝑘(𝑥)  ·  𝑣_𝐶   (9) 

where ℎ_𝑙, 𝑘(𝑥) is the logit for class 𝑘. 
By incorporating these interpretability features, our model not only provides accurate nutrient 

analysis but also offers transparent explanations for its predictions. This approach aims to build trust 
and understanding among users, particularly those from vulnerable populations who may be less 
familiar with or sceptical of AI-driven health recommendations. The combination of visual 
explanations (Grad-CAM), feature importance scores (LIME), and concept-level interpretations 
(CAVs) provides a comprehensive and accessible for users to understand the model's decision-
making process. This multi-faceted approach to interpretability is designed to accommodate varying 
levels of health literacy and technical understanding among our target user bases. These 
interpretability features, while crucial for user trust, require careful optimisation for mobile 
deployment to maintain real-time performance on resource-constrained devices. 

3.4. Mobile Implementation 

The practical deployment of our model, including its interpretability features, necessitates 
specific optimisations for mobile environments. We implement several techniques to ensure efficient 
operation across diverse device capabilities, particularly targeting low-end smartphones common 
among vulnerable populations as shown in Figure 5: 

 
Figure 5. Model Implementation. 

3.4.1. Model Quantisation 

We apply 8-bit quantisation to reduce model size and inference time while maintaining 
accuracy. The quantisation process converts 32-bit floating-point weights and activations to 8-bit 
integer representations as shown in equation Error! Reference source not found.: 
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𝑞 =  𝑟𝑜𝑢𝑛𝑑(𝑟 / 𝑠)  +  𝑧   (10) 

where: 

• q is the quantised value 
• r is the real value 
• s is the scale factor 
• z is the zero point 

The scale factor s and zero-point z are determined during the quantisation process to minimise 
information loss. Recent studies demonstrate that this quantisation can lead to a 7.18X reduction in 
latency with minimal accuracy loss, particularly in Vision Transformers [47]. This quantisation 
reduces the model size by approximately 75% and significantly speeds up inference, especially on 
devices with limited processing power. 

3.4.2. TensorFlow Lite Conversion 

The model is converted to TensorFlow Lite format for optimised mobile inference. This 
conversion process includes operator fusion for combining multiple operations into a single 
optimised operation, constant folding for pre-computing constant expressions, and elimination of 
unused operations by removing parts of the graph not needed for inference. The resulting TFLite 
model is optimised for on-device inference, with reduced size and improved performance [47]. 

3.4.3. On-Device Data Augmentation 

We implement lightweight data augmentation techniques on-device to improve model 
robustness without increasing model size. The augmentations are defined through three key 
transformations. 

The random crop operation is defined as shown by equation Error! Reference source not found.: 𝐼_𝑐𝑟𝑜𝑝(𝑥, 𝑦)  =  𝐼(𝑥 +  𝑥₀, 𝑦 +  𝑦₀)   (11) 

where (𝑥₀, 𝑦₀)  ∈  [0, 𝑊 − 𝑤] × [0, 𝐻 − ℎ]  are randomly sampled crop coordinates, and (𝑤, ℎ) 
represent the target dimensions. 

The horizontal flip operation is defined as shown by equation Error! Reference source not 
found.: 𝐼_𝑓𝑙𝑖𝑝(𝑥, 𝑦)  =  𝐼(𝑥, 𝑊 − 𝑦)  (12) 

where 𝑊 is the image width, applied with probability 𝑝 =  0.5. 
The colour jittering transformation is expressed as shown by equation Error! Reference source 

not found. : 𝐼_𝑗𝑖𝑡𝑡𝑒𝑟(𝑥, 𝑦)  =  𝑚𝑖𝑛(𝑚𝑎𝑥(𝐼(𝑥, 𝑦)  +  𝛿, 0), 255)  (13) 

where 𝛿 ∈  [−𝛥, 𝛥] is randomly sampled and 𝛥 =  25.5 represents the 10% intensity range. 
These augmentations are applied at runtime, enhancing the model's ability to handle variations 

in food presentation without requiring additional model parameters. The sequential application of 
these transformations provides robustness to spatial and colour variations while maintaining 
computational efficiency on mobile devices. 

3.4.4. Adaptive Computation 

The model dynamically adjusts its computational graph based on device capabilities and battery 
status through a decision function D as shown in equation Error! Reference source not found.: 𝐷(𝜃, 𝛽)  →  𝐶  (14) 

where 𝜃 represents device specifications and 𝛽 represents battery status. The adaptation policy is 
defined by equation Error! Reference source not found.: 
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C = { C_minimal if β < β_low C_reduced if θ.cpu < θ_threshold C_full otherwise } (15) 

The configurations implement specific optimisations: 

• C_minimal: Activates essential layers with 4-bit quantisation 
• C_reduced: Reduces input resolution and skips non-essential attention mechanisms 
• C_full: Enables complete model functionality at full precision 

This adaptive approach ensures efficient nutrient analysis across diverse mobile devices while 
maintaining accessibility for resource-constrained users. 

3.5. Training  

Our training pipeline integrates performance requirements with deployment constraints, 
implemented in PyTorch using a mobile-optimised [48]. To ensure efficient mobile deployment while 
maintaining accuracy, we employ several carefully chosen training strategies. 

The model processes RGB input images of dimension 224×224×3, selected to balance 
computational efficiency with resolution requirements for accurate nutrient analysis. Channel-wise 
normalisation is applied as shown by equation Error! Reference source not found.: 𝐼_𝑛𝑜𝑟𝑚 =  (𝐼 −  𝜇)/𝜎 ) (16) 

where  𝜇  and 𝜎 represent channel-specific mean and standard deviation, crucial for stabilising 
network training and improving convergence. 

3.5.1. Optimisation 

Given the multi-faceted nature of nutrient analysis, we employ a multi-task loss function defined 
by equation Error! Reference source not found.: 𝐿_𝑡𝑜𝑡𝑎𝑙 =  𝛼𝐿_𝑓𝑜𝑜𝑑 +  𝛽𝐿_𝑝𝑜𝑟𝑡𝑖𝑜𝑛 +  𝛾𝐿_ (17) 

where 𝐿_𝑓𝑜𝑜𝑑 represents cross-entropy loss for food recognition, 𝐿_𝑝𝑜𝑟𝑡𝑖𝑜𝑛 denotes mean squared 
error for portion estimation, and 𝐿_𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 indicates mean absolute error for nutrient prediction. 
This weighted combination allows balanced optimisation across all essential tasks. 

Network optimisation employs the Adam optimiser with parameters defined by equation Error! 
Reference source not found.: 𝑙𝑟 =  0.001, 𝛽₁ =  0.9, 𝛽₂ =  0.999  (18) 

chosen for its adaptive learning rate properties and robust performance on deep learning tasks. 
To prevent convergence to poor local minima and ensure stable training, the learning rate follows a 
cosine annealing schedule as shown by equation Error! Reference source not found.: 𝑙𝑟 =  0.001 · (1 +  𝑐𝑜𝑠(𝜋𝑒/𝐸))/2   (19) 

where 𝑒 represents the current epoch and 𝐸 is total epochs (200). This schedule provides gradual 
learning rate decay while allowing periodic exploration of the loss landscape. 

3.5.2. Model Configuration 

We evaluate six progressive model configurations: 

• BL: Baseline MobileNetV3[37]. 
• BL+DS: With depthwise separable convolutions 
• BL+IR: With inverted residuals 
• BL+DS+IR: Combined DS and IR 
• BL+DS+IR+SA: Added shuffle attention 
• BL+DS+IR+SA+SE: Final model with squeeze-excitation 

3.5.3. Knowledge Distillation  
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To further enhance model performance while maintaining efficiency, we employ knowledge 
distillation using EfficientNet-B0 as the teacher model. The distillation process is governed by 
equation Error! Reference source not found.: 𝐿_𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑠𝑡𝑖𝑙𝑙 =  (1 −  𝜆)𝐿_𝑡𝑜𝑡𝑎𝑙 +  𝜆𝐿_𝑑𝑖𝑠𝑡𝑖𝑙𝑙   (20) 

where 𝜆 =  0.5 balances the original task loss and distillation loss, and temperature 𝜏 =  2 controls 
the softness of probability distribution in knowledge transfer. 

In the final training phase, we integrate and fine-tune the interpretability features (Grad-CAM, 
LIME, and CAVs) to ensure alignment with model predictions. This multi-stage training procedure 
optimises both performance and interpretability while maintaining deployment efficiency on 
resource-constrained devices. 

3.6. Performance Metrics 

As shown in Table 2, our evaluation comprises four key metric categories that comprehensively 
assess model performance across recognition accuracy, estimation precision, computational 
efficiency, and interpretability. Each metric is carefully selected to evaluate specific aspects of model 
functionality and deployment feasibility. 

For food recognition, we employ Top-k accuracy measures (𝑘 ∈  {1,5}) as shown by equation 
Error! Reference source not found.: 𝐴_𝑘 =  𝑁_𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑘/𝑁_𝑡𝑜𝑡𝑎𝑙   (21) 

Following Pais et al. [48], nutrient estimation accuracy is quantified through MAE as defined by 
equation Error! Reference source not found.: 𝑀𝐴𝐸 =  1/𝑛∑|𝑦𝑖 −  ŷ𝑖|  (22) 

and MAPE as defined by quations Error! Reference source not found.: MAPE =  100/n∑|yi −  ŷi|/yi    (23) 

where: 

• yi represents the actual value 
• ŷi represents the predicted/estimated value 
• n represents the number of samples 
• ∑ represents the summation over all samples 

Table 2. Evaluation Metrics. 

Category Metric Symbol Range/Unit Equation Reference 
Food 
Recognition 

Top-1 Accuracy A₁ [0,1] (21) [49] 

 Top-5 Accuracy A₅ [0,1] (21)  
Nutrient 
Estimation 

Mean Absolute 
Error 

MAE [0,∞] (22) [50] 

 
Mean Absolute 
Percentage Error 

MAPE [0,100]% (23)  

Computational 
Inference 
Latency 

t_inf ms - [51] 

Efficiency Model Size S_model MB -  

 
Energy 
Consumption 

E_device mJ/inference -  

Interpretability 
Explanation 
Quality 

Q_exp [0,1] - [51] 
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Prediction 
Confidence 

P_conf [0,1] -  

 
Feature 
Attribution 

F_attr [0,1] -  

3.7. Baseline Comparisons 

To establish the effectiveness of our proposed architecture, we conduct comprehensive 
comparisons against established baseline models across all metrics defined in Table 3. 

Table 3. Baseline model categories and characteristics. 

Category 
Representative 
Models 

Parameters 
Inference 
Time 

Key Characteristics 

Standard 
CNNs 

ResNet50 [19]. 23.5M 125ms 
High accuracy, 
dense architecture 

 Inception-v3 [19]. 23.8M 133ms 
Multi-scale feature 
extraction 

Mobile-
optimised 

MobileNetV2[52]. 3.4M 22ms 
Depth-wise 
separable 
convolutions 

 
EfficientNet-
B0[53]. 

5.3M 25ms 
Compound scaling 
strategy 

Domain-
specific 

NutrientNet 
[X][14]. 

4.2M 28ms 
Task-specific 
optimisation 

 
FoodAnalyser 
[Y][19]. 

3.8M 24ms 
Specialised feature 
extraction 

For each baseline category, we evaluate: 

• Classification accuracy (A₁,A₅) 
• Nutrient estimation precision (MAE,MAPE) 
• Computational requirements (t_inf,S_model,E_device) 
• Model interpretability metrics (Q_exp,P_conf,F_attr) 

This comprehensive evaluation allows us to assess the effectiveness of our lightweight 
interpretable model in the context of mobile nutrient analysis, with a particular focus on its 
applicability for vulnerable populations using resource-constrained devices. 

4. Experiments and Results 

In this section, we present a comprehensive evaluation of our proposed model's performance, 
efficiency and real-world applicability. 

4.1. Experimental Analysis 

Our experimental analysis focuses on five key aspects: dataset implementation, model 
performance metrics, resource efficiency, interpretability analysis and cross-dataset generalisation 
capabilities. Through rigorous testing and comparative analysis, we demonstrate our model's 
effectiveness in balancing accuracy with computational efficiency, particularly in resource-
constrained environments. 

4.1.1. Dataset  

The dataset was built on the Food-101 foundation [54], comprising 101,000 images across 101 
food categories at 224x224 pixel resolution. While previous models achieved 98.5% accuracy with 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 March 2025 doi:10.20944/preprints202503.0964.v1

https://doi.org/10.20944/preprints202503.0964.v1


 15 of 27 

 

NutriFoodNet and 95.20% accuracy through Xception transfer learning on the original Food-101 
dataset [55], these results were obtained under controlled conditions with the smaller 101-class 
dataset. Our expanded dataset, incorporating 378 additional food categories (total 500 classes) and 
real-world mobile deployment constraints, achieves 92.3% accuracy. This performance difference 
reflects the increased complexity of our expanded dataset and the additional challenges of mobile-
optimised deployment, where we balance accuracy with computational efficiency and resource 
constraints. This was expanded through a systematic pipeline that added 20,000 new images and 378 
additional food categories, resulting in 500 distinct food classes. The dataset features a sophisticated 
annotation schema that includes detailed nutritional information (macro and micronutrients), 
physical measurements, and preparation methods [55]. This multi-dimensional approach enables 
robust feature extraction across diverse food presentations whilst maintaining standardised quality 
and comprehensive nutritional tracking capabilities. 

4.1.2. Implementation  

As shown in Table 4, our implementation utilised standard training parameters optimised for 
mobile deployment scenarios. Our network was implemented in PyTorch using an open-source deep 
learning framework [48] . 

Table 4. Training Configuration Parameters. 

Parameter Value 
Batch Size 32 
Learning Rate 1e-4 
Weight Decay 1e-3 
Training Epochs 100 
Memory Usage 16GB peak 
GPU NVIDIA A100 40GB 

For training optimisation, we employed the Adam optimiser with an initial learning rate of 1e-
4, which was decreased by a factor of 0.5 when validation loss plateaued for 15 epochs. The model 
was trained on an NVIDIA A100 GPU with 40GB memory, as specified in Table 4. 

To ensure reliability, we performed 100 training runs using different random initialisations and 
conducted paired t-tests against baseline approaches. These tests showed significant improvements 
(p<0.01) in model performance. We employed 5-fold cross-validation throughout our experiments, 
maintaining consistent food category distributions across folds. This cross-validation approach 
improved our baseline accuracy from 92.3% to 93.2% while maintaining MAE at 7.0%. Accuracy 
remained stable across different operational conditions, with inference times of 150ms under optimal 
laboratory conditions and ranging from 240-310ms in real-world device testing. 

4.2. Resource Utilisation 

Our model efficiency analysis focused on quantisation outcomes and resource utilisation 
patterns. The original model size was successfully reduced from 31MB to 11.0MB through systematic 
quantisation processes, whilst maintaining our baseline accuracy of 92.3% within 0.3% variation 
across all optimisations. Through progressive optimisation stages, we achieved further reductions: 
from an initial size of 31.0MB, through initial quantisation to 11.0MB, and finally to 9.35MB after 
TensorFlow Lite conversion, representing a total 70% reduction from the original model. 

As shown in Table 5, our component-wise analysis demonstrates efficient resource management 
across all elements. 

Table 5. Component-Wise Resource Utilisation. 
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Component Peak Usage (MB) Steady-State (MB) 
Cache Required 
(MB) 

Model Weights 11.0 11.0 2.2 
Runtime Buffers 4.5 3.2 1.8 
Structure Overhead 2.8 2.1 0.8 
Total (Before 
TFLite) 

18.3 16.3 4.8 

Total (After TFLite) 15.6 13.9 4.1 
Our inference time measurements revealed clear distinctions between laboratory and real-world 

performance. Under optimal laboratory conditions, the model achieves 150ms inference time. 
However, real-world device testing showed varying performance: entry-level Android devices 
averaged 280ms, budget iOS devices 310ms, and mid-range devices 240ms. Whilst comparable 
models show faster inference times under specialised testing conditions (as shown in Table 1), our 
standardised benchmarking uses consistent real-world conditions for fair comparison. 

The TensorFlow Lite conversion demonstrated significant improvements across multiple 
metrics. Beyond the 15% size reduction from 11.0MB to 9.35MB, we achieved a 20% improvement in 
inference speed while maintaining accuracy within 0.3% of our 92.3% baseline. Battery consumption 
remained efficient across all device types, ranging from 1.9-2.3% per hour under continuous use. 
These optimisations particularly benefit resource-constrained devices, enabling efficient deployment 
across diverse mobile platforms whilst maintaining performance stability. 

Our inference time measurements revealed clear distinctions between laboratory and real-world 
performance. Under optimal laboratory conditions, the model achieves 150ms inference time. 
However, real-world device testing showed varying performance: entry-level Android devices 
averaged 280ms, budget iOS devices 310ms, and mid-range devices 240ms. Whilst comparable 
models show faster inference times under specialised testing conditions (as shown in Table 1), our 
standardised benchmarking uses consistent real-world conditions for fair comparison. 

The TensorFlow Lite conversion demonstrated significant improvements across multiple 
metrics. Beyond the 15% size reduction from 11.0MB to 9.35MB, we achieved a 20% improvement in 
inference speed while maintaining accuracy within 0.3% of our 92.3% baseline. Battery consumption 
remained efficient across all device types, ranging from 1.9-2.3% per hour under continuous use. 
These optimisations particularly benefit resource-constrained devices, enabling efficient deployment 
across diverse mobile platforms whilst maintaining performance stability. 

4.2.2. Knowledge Distillation Results  

Our knowledge distillation approach achieved significant efficiency improvements while 
maintaining competitive accuracy, as shown in Table 6. 

Table 6. Knowledge distillation performance. 

Model Accuracy (%) Size (MB) Energy (mJ) 
Teacher 
(EfficientNet-B0) 

93.2 29 280 

Student (Ours) 92.3 11 180 
Without 
Distillation 

90.1 11 180 

Our knowledge distillation results demonstrate that the student model achieves our target 
baseline accuracy (92.3%) while significantly reducing both model size (62% reduction from 29MB to 
11MB) and energy consumption (36% reduction from 280mJ to 180mJ). The distillation process 
improved accuracy by 2.2 percentage points compared to training without distillation, while 
maintaining the same efficient resource usage. 
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4.2.3. Comparative Analysis  

We evaluated our model against existing approaches across multiple dimensions as shown in 
Table 7. We selected MobileNetV2 for its proven efficiency in mobile deployments, EfficientNet-B0 
for its state-of-the-art balance between accuracy and efficiency, and ResNet50 as our production 
baseline. We included Ensemble-1 and Ensemble-2 to represent accuracy upper bounds in food 
recognition 

Table 7. Comprehensive Model Comparison. 

Model 
Top-1 
(%) 

MAE 
(%) 

Size 
(MB) 

Time (ms) Energy (mJ) 

Our Model 92.3 7.2 11 150 180 
MobileNetV2 90.0 8.5 28 220 210 
EfficientNet-B0 93.2 6.8 29 280 280 
ResNet50 91.2 8.2 97.8 310 420 
Ensemble-1 94.0 6.5 120 650 - 
Ensemble-2 95.0 6.2 145 720 - 
NutriVision 89.0 9.1 18 190 200 

Our baseline model maintains 92.3% accuracy while significantly reducing computational 
requirements. Under five-fold cross-validation, accuracy improves to 93.2%, matching EfficientNet-
B0's performance while requiring only 38% of its size and achieving 46% faster inference under 
optimal conditions. While ensemble methods achieve higher accuracy (up to 95.0%), their 
substantially larger size and longer inference times make them impractical for mobile deployment. 

4.2.4. Mobile Deployment  

We evaluated real-world performance across diverse mobile platforms, as shown in Table 8. 

Table 8. Performance analysis on mobile devices. 

Device Type 
Inference Time 
(ms) 

Battery Impact 
(%/hour) 

Accuracy Drop 
from 92.3% 
baseline (%) 

Entry-level 
Android 

280 2.1 1.2 

Budget iOS 310 2.3 1.5 
3-year-old Mid-
range 

240 1.9 0.9 

The model maintains robust performance across device tiers. While optimal laboratory 
conditions achieve 150ms inference times, real-world performance ranges from 240ms to 310ms 
across different devices. Battery consumption remains efficient at 1.9-2.3% per hour of continuous 
use. Accuracy degradation from the 92.3% baseline remains minimal across all device categories, with 
the worst case showing only a 1.5% drop on budget iOS devices. 

4.3. Architecture Validation 

4.3.1. Component Ablation Results 

To systematically evaluate our architectural design choices, we conducted comprehensive 
ablation studies following progressive model configurations, starting with a baseline MobileNetV3 
architecture. Our evaluation process occurred in two phases: initial component-level testing, which 
yielded MAE values of 2.9-3.0% for individual architectural components in isolation, followed by 
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comprehensive end-to-end system evaluation. The MAE values as shown in Table 9 (7.2-9.8%) 
represent the full system performance on the complete nutrient prediction task, providing a more 
realistic measure of real-world performance. As shown in Table 9, each configuration was evaluated 
for accuracy, computational efficiency and model size impact. 

Table 9. Ablation analysis of progressive model configurations. 

Configuration 
Top-1 
(%) 

MAE (%) Time (ms) Size (MB) 

Baseline MobileNetV3 88.1 9.8 210 29.0 

+Depthwise Separable 
Convolutions (DS) 

89.3 9.1 180 15.2 

+DS+Inverted Residuals (IR) 90.7 8.5 170 13.5 

+DS+IR+Shuffle Attention (SA) 91.8 7.8 160 11.8 

+DS+IR+SA+Squeeze-Excitation 
(SE) 

92.3 7.2 150 11.0 

+DS+IR+SA+SE* 92.8 7.1 150 11.0 
+DS+IR+SA+SE*† 93.2 7.0 150 11.0 

*With weight decay. †With 5-fold cross-validation. 

4.3.2. Feature Analysis 

Our feature learning framework incorporates three key mechanisms. Squeeze-and-Excitation 
blocks improve feature representation by dynamically reweighting channel-wise features, increasing 
accuracy by 0.8%. Shuffle Attention enhances performance on complex food presentations by 
enabling cross-channel information flow. Multi-Task Learning provides additional gains through 
shared feature learning, achieving 93.2% accuracy with 5-fold cross-validation while maintaining 
computational efficiency. 

4.4. Interpretability 

4.4.1. Visual Explanations 

To gain deeper insights into our model's decision-making process, we conducted comprehensive 
interpretability analyses using multiple visualisation techniques. Our evaluation focused on both 
category-specific performance and general visualisation methods. As shown in Table 10, our 
category-specific analysis reveals strong performance across different food types. 

Table 10. Food Category-Specific Grad-Cam Performance. 

Food Category 
Localisation 
Score 

Attribution 
Precision 

Coverage 

Main Dishes 0.89 0.92 0.88 
Beverages 0.85 0.87 0.84 
Snacks 0.87 0.90 0.86 

Main Dishes achieved the highest scores (localisation: 0.89, precision: 0.92, coverage: 0.88), while 
Beverages and Snacks demonstrated consistent performance with localisation scores of 0.85 and 0.87 
respectively. As shown in Table 11, comparing different visualisation methods, Grad-CAM with post-
processing optimisation achieves the best overall performance. 
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Table 11. Comparison Of Visualisation Methods. 

Method 
Localisation 
Score 

Attribution 
Precision 

Coverage Time (ms) 

Grad-CAM 0.89 0.92 0.88 45 
Feature 
Attribution 

0.85 0.87 0.84 38 

CAV 0.87 0.90 0.86 42 
Grad-CAM* 0.91 0.94 0.90 45 

*With post-processing optimisation. 

Figure 6 presents qualitative examples of our visualisation methods across different food 
categories: 

 

 

Figure 6. Visualisation examples of model interpretability: (a) Original food images with corresponding Grad-
CAM heatmaps. (b) Feature attribution maps highlighting key regions and Concept activation visualisations 

demonstrating abstract feature understanding. 

The visualisations demonstrate how our model focuses on discriminative regions in food 
images, identifies specific ingredients and textures, and captures high-level food attributes. 

4.4.2. LIME Analysis 

As shown in Table 12, our LIME analysis demonstrates strong explanation quality whilst 
maintaining efficient computational overhead. 
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Metric Score 
Processing Time 
(ms) 

Feature 
Consistency 

0.91 45 

Explanation 
Stability 

0.88 38 

The high feature consistency score of 0.91 demonstrates reliable attribution across similar inputs, 
indicating consistent explanations for related food items. Explanation stability achieves 0.88, showing 
robust performance even when input images vary in quality or presentation. The decision boundary 
accuracy of 0.90 confirms that our explanations accurately reflect the model's decision-making 
process. Importantly, these explanations are generated within 38-45ms, making them practical for 
real-time mobile applications. 

4.3. Cross-Dataset Evaluation 

We evaluated real-world applicability and generalisation capabilities across varied deployment 
scenarios and cultural contexts. Tables 13 and 17 present complementary analyses of our model's 
performance across cultural datasets, As shown on Table 13 focusing on generalisation metrics and 
Table 17 examining cultural adaptation specifically. The timing measurements remain consistent 
across both analyses, with variations of 150-153ms reflecting the actual differences in processing 
requirements for different cultural food types. 

Table 13. Cross-Dataset Generalisation Performance. 

Dataset Samples 
Base 
Recognition 
(%) 

Cross-val 
Recognition 
(%) 

MAE (%) 

Primary 10,000 92.3 93.2 7.2 
Asian 8,000 90.8 91.7 7.5 
Mediterranean 7,500 91.2 92.1 7.4 
Low-Resource 9,000 90.5 91.4 7.6 

The model demonstrates consistent performance across all datasets, with recognition rates 
ranging from 90.5% to 92.3%. Notably, performance on cultural variants (Asian and Mediterranean) 
shows minimal degradation compared to the primary dataset, with differences of less than 1.5% in 
recognition accuracy. The low-resource dataset evaluation confirms robust performance under 
constrained conditions, maintaining 90.5% accuracy while MAE increases only marginally from the 
baseline 7.2% to 7.6%. These results validate our model's effectiveness across diverse deployment 
scenarios, particularly important for real-world applications serving varied populations and cultural 
contexts. 

4.4. Comparative Analysis 

4.4.1. Baseline Comparisons 

We evaluated our model against established baselines across multiple performance dimensions. 
As shown in Table 14, our approach demonstrates significant improvements in efficiency whilst 
maintaining competitive accuracy. 

Table 14. Baseline Model Comparisons. 

Model Accuracy (%) MAE (%) Size (MB) Inference (ms) 
ResNet50 91.2 8.2 97.8 310 
MobileNetV3 89.5 8.5 15.8 165 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 March 2025 doi:10.20944/preprints202503.0964.v1

https://doi.org/10.20944/preprints202503.0964.v1


 21 of 27 

 

EfficientNet-B0 93.2 6.8 29.0 280 
Ours 92.3 7.2 11.0 150 

Compared to traditional architectures like ResNet50, our model achieves a higher accuracy 
(92.3% vs 91.2%) and better MAE (7.2% vs 8.2%) whilst reducing model size by 88% (11.0MB vs 
97.8MB) and energy consumption by 57% (180mJ vs 420mJ). When compared to mobile-optimised 
networks, we maintain competitive accuracy with EfficientNet-B0 (92.3% vs 93.2%) and comparable 
MAE (7.2% vs 6.8%) while requiring only 38% of its model size and achieving 46% faster inference 
times. Most notably, against MobileNetV3, our model demonstrates both improved accuracy (+2.8%) 
and MAE (7.2% vs 8.5%) while reducing resource requirements. 

4.4.2. State-of-the-Art Benchmarking 

As shown in Table 15, we compared our model against recent state-of-the-art approaches in 
mobile food recognition. Our model demonstrates superior performance across all key metrics. 

Table 15. State-Of-The-Art Comparison. 

Method 
Recognition 
(%) 

MAE (%) 
Inference time 
(ms) 

Reference 

NutrientNet 90.2 8.5 195 [41] 
FoodLens 91.5 7.8 205 [42] 
DietLens 89.8 8.1 175 [43] 
Ours 92.3 7.2 150 - 

Our approach achieves the highest recognition accuracy at 92.3%, surpassing the next best 
method (FoodLens) by 0.8 percentage points. The Mean Absolute Error (MAE) of 7.2% represents a 
significant improvement over existing approaches, with a 0.6% reduction compared to FoodLens. 
Notably, we achieve these improvements while maintaining the shortest inference time (150ms), 
representing a 14% reduction in processing time compared to the fastest existing method (DietLens 
at 175ms). 

4.4.3. Performance-Efficiency Trade-Offs 

Our analysis of performance-efficiency trade-offs across deployment scenarios is presented in 
Table 16, demonstrating the impact of different quantisation strategies on model performance. 

Table 16. Performance-Efficiency Analysis. 

Configuration Accuracy (%) Memory (MB) 
Battery 
(%/hour) 

Quality Loss 
(%) 

Full Precision 92.3 18.3 2.1 0.0 
8-bit Quant 92.0 16.3 1.5 0.3 
4-bit Quant 91.5 14.8 1.2 0.8 

The 8-bit quantisation achieves an optimal balance, reducing memory usage by 11% and battery 
consumption by 29% while maintaining accuracy within 0.3% of full precision. While 4-bit 
quantisation offers further efficiency gains, the 0.8% quality degradation may be unsuitable for 
certain applications. 

4.4.4. Cultural Adaptation Effectiveness 

Table 17 demonstrates our model's effectiveness across different cultural contexts and food 
types. 
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Table 17. Cultural Adaptation Performance. 

Culture Group 
Recognition 
(%) 

Adaptation 
Time (ms) 

Coverage (%) Culture Group 

Western 92.3 150 95.2 Western 
Asian 90.8 152 92.8 Asian 
Mediterranean 91.2 151 93.5 Mediterranean 

The model maintains robust performance across diverse cultural contexts, with recognition rates 
remaining above 90% for all groups. Western cuisine achieves the highest coverage at 95.2%, while 
regional variations show slightly lower but still strong performance at 91.9%. Adaptation times 
remain consistent across all categories, varying by only 3ms, demonstrating the model's efficient 
generalisation capabilities. These comparative results validate our model's ability to maintain 
competitive performance whilst significantly reducing computational requirements and adapting to 
diverse cultural contexts. 

5. Discussion 

5.1. Model Performance 

Our research introduces a lightweight, interpretable deep learning model for nutrient analysis 
that demonstrates significant advances in food recognition and computational efficiency. While 
Wang et al. [10] achieved a slightly lower mean absolute error (MAE) of 6.8%, our model delivers a 
competitive MAE of 7.2% while offering substantial improvements in mobile device performance. 

The architectural innovations we developed enabled remarkable model size reduction from 
31MB to 11.0MB making advanced nutritional analysis accessible on low-end mobile devices. By 
strategically employing depthwise separable convolutions and shuffle attention mechanisms, we 
successfully maintained high performance across diverse cultural contexts whilst minimising 
computational overhead. This approach is particularly significant for vulnerable populations with 
limited technological resources, as it enables sophisticated nutritional tracking without requiring 
high-end computational infrastructure. 

Most notably, our model runs three times faster on mobile devices compared to previous 
methods, addressing a critical limitation in prior nutritional analysis approaches. The model's ability 
to operate efficiently across different device specifications, maintaining recognition rates above 90% 
across various cultural food contexts, underscores its versatility and potential for widespread 
application. 

5.2. Interpretability Analysis 

The integration of Grad-CAM and LIME explanations significantly enhanced our model's 
interpretability. Our analysis demonstrated that visual heatmaps helped users understand the critical 
regions of food images most important for nutrient estimation. The text-based LIME explanations 
were particularly valuable for users with lower health literacy, improving their understanding and 
trust in our model's predictions. While the visual heatmaps showed strong performance across 
various food categories, with localisation scores ranging from 0.85 to 0.89 and attribution precision 
between 0.87 and 0.92, our analysis revealed some nuanced challenges. The quality of explanations 
varied across different food types and cultural contexts, particularly for mixed dishes or culturally 
specific foods. 

Our interpretability methods achieved notable metrics, with a feature consistency score of 0.91 
and a decision boundary accuracy of 0.90. Importantly, these explanations could be generated within 
38-45 milliseconds, making them practical for real-time mobile applications. However, we identified 
limitations in explanation quality, especially for complex food compositions and culturally diverse 
dishes. This presents a critical area for future research to improve the model's interpretability across 
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varied culinary contexts. By focusing on transparent and user-friendly explanations, we demonstrate 
the potential of making advanced nutritional analysis more accessible and understandable to diverse 
populations. 

5.3. Performance On Low-End Devices 

Our model's performance on various low-end mobile devices demonstrates remarkable 
efficiency and accessibility. As detailed in our experimental results, we achieve an average inference 
time of 150 milliseconds on devices with 2GB RAM and entry-level processors, enabling real-time 
nutritional analysis. This performance represents a significant advancement over previous 
methodologies [42,43], which typically required 500 milliseconds or more on comparable device 
specifications. 

The memory footprint during inference remained strategically compact, never exceeding 200 
megabytes. This characteristic ensures smooth operational capabilities even on devices with 
constrained computational resources, making our nutritional analysis tool viable for a wide range of 
smartphone users, particularly in resource-limited settings. Our battery consumption tests yielded 
promising results, with continuous app usage consuming 1.9-2.3% of battery per hour across different 
device types. This minimal energy requirement further enhances the model's practicality for daily 
nutritional tracking, ensuring that users can rely on the tool without significant concerns about device 
power drainage. 

By maintaining high performance across entry-level Android and iOS devices, as demonstrated 
in our cross-device performance analysis, we effectively bridge technological gaps. Our ability to 
deliver sophisticated nutritional insights on low-end smartphones represents a critical step towards 
democratising access to advanced dietary information, particularly for vulnerable and underserved 
populations. 

5.5. Limitations and Future Work 

Despite the promising results, our study has several limitations: 

1. The dataset, while diverse, may not fully represent all cultural food practices. Future work 
should focus on expanding the dataset to include a wider range of culturally specific foods. 

2. The current model sometimes struggles with mixed dishes or foods with complex compositions. 
Developing techniques to better handle these cases is an important area for future research. 

3. While our interpretability methods have improved user understanding, there's room for 
developing more culturally sensitive and easily understandable explanations, especially for 
users with very low health literacy. 

4. The model's performance on micronutrient estimation, while promising, still lags macronutrient 
estimation accuracy. Further research is needed to improve micronutrient predictions. 

5. Long-term studies on the impact of using this tool on dietary habits and health outcomes in 
vulnerable populations are needed to fully assess its effectiveness. 
Future work should address these limitations and explore the integration of personalised dietary 

recommendations based on nutrient analysis, considering individual health conditions and cultural 
preferences. 

Our lightweight interpretable deep learning model for nutrient analysis shows great promise 
for improving access to nutritional information among vulnerable populations. By balancing 
performance, efficiency, and interpretability, our approach offers a viable solution for deploying 
advanced nutrient analysis capabilities on a wide range of mobile devices, potentially contributing 
to better dietary choices and health outcomes in underserved communities. 

6. Conclusions 

In this paper, we proposed a lightweight interpretable deep learning model for nutrient analysis 
in mobile health applications, specifically designed for vulnerable populations. We introduced 
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several modifications to reduce computational complexity while maintaining competitive 
performance. Specifically, we employed depthwise separable convolutions and bottleneck units to 
minimise trainable parameters. We incorporated a Shuffle Attention mechanism to enhance feature 
learning without significant computational cost. Additionally, we integrated interpretability features, 
including Grad-CAM visualisations and LIME explanations, to improve user understanding and 
trust. Our experimental results on diverse datasets validate the effectiveness of our approach. Our 
method achieves competitive accuracy in food recognition and nutrient estimation while consuming 
significantly fewer computational resources, making it suitable for deployment on low-end mobile 
devices. The model's interpretability features demonstrated high comprehension and trust scores 
among users from vulnerable populations, highlighting its potential for improving access to 
nutritional information in resource-constrained environments. 

Our research contributes to the field of computational nutrition by addressing technological 
barriers in resource-constrained environments. With an inference time of 150ms and minimal battery 
consumption (1.9-2.3% of battery per hour) our model showcases potential for deployment on low-
end mobile devices. Our experimental results validate the effectiveness of the proposed approach, 
highlighting its potential for improving access to nutritional information among vulnerable 
populations by providing an efficient, interpretable, and computationally lightweight solution for 
mobile health applications. 
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The following abbreviations are used in this manuscript: 
Abbreviation Full Name 
CNN Convolutional Neural Network 
CAV Concept Activation Vectors 
DS Depthwise Separable 
GAP Global Average Pooling 
GN Group Normalisation 
IR Inverted Residuals 
LIME Local Interpretable Model-agnostic Explanations 
ReLU Rectified Linear Unit 
SA Shuffle Attention 
SE Squeeze-and-Excitation 
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