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Abstract: Managing a portfolio whose value closely tracks an index by trading only in a subset of the index

constituents involves an NP-hard optimisation problem. In the prior literature, it has been suggested to solve

this problem using sequential Monte Carlo (SMC, a.k.a. particle filter) methods. However, this literature does

not take transaction costs into account, although transaction costs are the primary motivation for attempting

to replicate the index by trading in a subset, rather than the full set of index constituents. This paper extends

the SMC approach to index tracking to allow for proportional transaction costs and implements this extended

method on empirical data for a variety stock indices. In addition to providing a more practically useful tracking

strategy by allowing for transaction costs, we find that including a penalty for transaction costs in the optimisation

objective can actually lead to better tracking performance.

Keywords: index tracking; sequential Monte Carlo; transaction costs; portfolio management

1. Introduction

Index tracking, also known as index replication, is a passive investment strategy that has gained
popularity due to the higher costs associated with active investing and skepticism regarding the ability
of active funds to outperform the market (see e.g. Rompotis (2013), Barber and Odean (2000)). Financial
indices track the performance of a collection of financial assets or an overall market. Indices are not
tradable instruments themselves, however replication can be achieved by creating a portfolio of assets
that closely match the performance of an index. To perfectly replicate the performance of an index, one
would need to invest in all its constituents stocks in the appropriate proportions. This may require
continuously trading in hundreds of assets, which is both costly and often infeasible. More specifically,
index replication’s effectiveness can be influenced by the constituent assets’ liquidity. Furthermore,
continuous trading can lead to high transaction costs due to the costs incurred with each trade and the
adjustments made during rebalancing of the portfolio’s composition. The goal of sparse index tracking
is to create a portfolio that closely replicates the performance of a benchmark index while avoiding the
need to invest in all its constituent assets. The desired solution is a portfolio of a relatively small subset
of assets that replicates an index at a lower cost.

Satpathy and Shah (2022) proposed a Sequential Monte Carlo (SMC) algorithm to address the
sparse index tracking problem. The key idea is to interpret the index-tracking problem as a maximiza-
tion problem over the set of all possible (fixed-size) subsets of stocks composing some index and then
using SMC as a global optimization technique. Despite the novelty and the success of this approach
when compared to other methods, such as for example Tibshirani (1996), Xu et al. (2015), Benidis et al.
(2018), it is not clear whether this technique is an optimal index-tracking strategy, as it falls short in
addressing the equally significant objective of reducing transaction costs. Indeed, when rebalancing
the tracking portfolio, the algorithm does not explicitly minimize transaction costs. It focuses solely on
minimising the tracking error between the portfolio and index returns. This approach may lead to
marginal improvements in the tracking error, but the cost associated with the portfolio rebalancing
could outweigh any benefit gained.
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The purpose of this work is to improve the Sequential Monte Carlo algorithm proposed by
Satpathy and Shah (2022) by accounting for transaction costs in portfolio rebalancing. To this end, we
redefine the dynamics of the index-tracking portfolio in such a way as to account for (proportional)
transaction costs. Relying on this, we first reformulate the problem by adding a penalization term to
the objective function of the index-tracking problem and then study this modified problem by adopting
similar techniques.

The remainder of the report is structured as follows. The general formulation of the index tracking
problem, as proposed by Satpathy and Shah (2022), is presented in Section 2. In Section 3, a description
of how to adjust the index tracking problem for transaction costs is given. Section 4 details the methods
used for model implementation and testing, followed by the results in Section 5. Finally, the report
concludes in Section 6 with a brief summary of the outcomes as well as a short description of possible
further studies.

2. Preliminaries

2.1. The Index Tracking Problem

In this section, we recall the general formulation of the index-tracking problem. Let us consider
an index I comprised of n stocks. Denote by rI ∈ RT the column vector of daily returns of the index
over a period of T days. For each constituent stock i, let ri ∈ RT be the corresponding returns and set
R := [r1, . . . , rn] ∈ RT×n. The index tracking problem at time t consists of finding β∗(t) ∈ Rn, where
β∗(t) = (β∗1(t), . . . , β∗n(t)), such that

β∗(t) := arg min
β∈Rn

||rI − Rβ||22 (1)

s.t. 0 ≤ β ≤ 1 (2)

βT1 = 1 (3)

||β||0 = p. (4)

Constraint (3) represents a full budget constraint, while (2) imposes a constraint on β that limits
investors to taking only long positions. The cardinality constraint (4) restricts the number of stocks
used to track the index to a fixed number p ∈ N. An increase in p might lead to a reduction in tracking
errors, but possibly incurring larger transaction costs. Thus, p allows us to control the trade-off between
tracking error and trading costs.

The cardinality constraint for β is non-convex and gives rise to an NP-hard problem. A wealth of
methods exist in the literature to solve this. Popular methods include applying L1/2 regularization, us-
ing a Lagrangian version with an approximated L0-norm, replacing the L0-norm with an L1-norm (the
LASSO technique), employing Mixed Integer Quadratic optimization and various genetic algorithm
methods. We refer to Satpathy and Shah (2022) and references therein for a more general discussion on
this problem as well as an overview of these methods.

2.1.1. Optimization Problem as Sampling Problem

In Satpathy and Shah (2022), Sequential Monte Carlo Methods (SMC) are used to solve the opti-
mization problem 1. There, the key idea is to interpret the L0 optimization problem as a maximization
problem over the set of all possible (fixed-size) permutations of stocks composing some index and then
using SMC as a global optimization technique. Hereafter, we briefly recall the main idea in Satpathy
and Shah (2022), see also Duan (2019).
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The index tracking problem with a L0-norm penalty is a regression problem where the objective
function in Equation 1 is minimized. Similarly, one can consider the following maximization problem:

β∗(t) := arg max
β∈Rn

exp(−||rI − Rβ||22)

s.t. 0 ≤ β ≤ 1

βT1 = 1

||β||0 = p.

(5)

Introducing the L0-norm penalty translates to finding the optimal permutation P∗(t) of p stocks
(a fixed number of regressors) that solves:

P∗(t) := arg max
P

exp(−||rI − RP β̂P||
2
2), (6)

where RP is the submatrix of R corresponding to columns in R for p regressors and β̂P is given via1

β̂P := arg min
βp∈Rp

||rI − RPβP||
2
2

s.t. 0 ≤ βP ≤ 1

βT
P1 = 1.

(7)

Moreover, since for every fixed permutation P(t), exp(−||rI − RP β̂P||22) > 0 and bounded above
by 1, if a normalization constant η > 0 is introduced, we can interpret this as a discrete probability
distribution function over the permutation space. The target distribution to be maximised is then
expressed as

T(P(t)) :=
exp(−||rI − RP(t) β̂P(t)||22)

η
. (8)

The optimal composition of p stocks is then the permutation that maximizes this T(P(t)).

2.2. Sequential Monte Carlo Methods

A naive approach to solve problem (6) would comprise of drawing samples from T(P) and
choosing the optimal P that maximises it. However, it is not easy to sample from T(P). For such a case,
T(P) can be empirically approximated via SMC methods. SMC methods sample particles2 from an
initial proposal distribution after which a sequence of (sequential) importance sampling, resampling
and support boosting steps are employed. A collection of weighted particles is then obtained which
then represents the approximation of the target distribution. In what follows we describe in more detail
the steps within the SMC algorithm as employed in Satpathy and Shah (2022). See also Del Moral et al.
(2006) for a more general discussion of the SMC method.

1 In Satpathy and Shah (2022) the sparse index problem is solved without considering any constraints on the β̂P. In such a
case the optimal solution admits an explicit form.

2 Going forward particles, samples and permutations will be used interchangeably, i.e., each particle represents a particular
subset of p of the n stocks comprising the index.
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2.2.1. Sequential Importance Sampling

The first step in a SMC algorithm is importance sampling. It can be described as follows: N
particles, denoted by (Pi)

N
i=1, are sampled from an easy-to-sample distribution I(P), also called

proposal distribution. Then, for each i = 1, . . . , N, normalized importance weights wi are computed:

wi :=
T(Pi)

I(Pi)

(
N

∑
j=1

T(Pj)

I(Pj)

)−1

.

The pair (Pi, wi)
N
i=1 completely characterizes the target distribution approximation and all quanti-

ties of interest from the distribution can be computed.
The quality of the sample drawn depends on the choice of I(P), in particular on its closeness to

the target distribution. Moreover, a necessary condition for I(P) to be a good initial choice is that its
support includes the support of T(P).

A tool to gauge the quality of the sample (and thus of the proposal distribution) is given by the
computation of its Effective Sample Size defined by:

ESS :=
1

∑N
i=1 wi

2
.

Since the weights wi are normalized, the ESS value will range from 1 to N, where we remember
that N is the number of samples drawn from the proposal distribution. An ESS value of 1 indicates a
poor choice for I(P), contrary to a value equal to N which stands for a good choice of I(P). Indeed,
this happens if for instance each importance weight is equal to 1

N .
However, when approximating a target distribution that is high-dimensional and complex, the

simple importance sampling method tends to yield poor approximations (Satpathy and Shah (2022)).
To account for this, Sequential Importance Sampling (SIS) methods are used. They aim to gradually
approximate the target distribution with a sequence of approximating distributions.

SIS methods are commonly employed in filtering problems, where a sequence of new information
arrives sequentially. However, in the context of this report, a sequence of new information used
to approximate T(P) does not occur in the same manner. To account for this, density tempering is
introduced.

Density tempering is a process proposed by Del Moral et al. (2006) which allows for sampling
from target distributions with higher dimensions.

Its main ideas can be summarized as follows: a collection of synthetic, intermediate target
distributions (Tγi (P))

M
i=0 are introduced, where for all i = 1, . . . , M, γi ∈ [0, 1] with 0 = γ0 < γ1 <

γ2 < . . . γM = 1.The sequence of γ-modulated distribution is computed as follows:

∀γi, Tγi (P) = I(P) ∗
[

T(P)
I(P)

]γi

.

Notice that Tγ0 = I(P) and Tγ1 = T(P), corresponding to the proposal and (true) target distribu-
tion. Similarly, the importance weights between each intermediate step are calculated according to the
following formula:

wγj(P) := wγi (P) ∗
[

T(P)
I(P)

]γj−γi

, γi < γj.

The initial proposal distribution I(P) suggested by Satpathy and Shah (2022) is described as
follows. Consider the regression coefficient of determination R2

j for the jth stock returns (vis-à-vis the

index to be replicated). A high R2
j would imply that stock j is more likely to appear in the final P that
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maximises T(P). A sampling strategy without replacement is considered and the probability of the
first jth stock to be chosen is described as:

qj =
R2

j

∑n
j=1 R2

j

Similarly, the probability for choosing the next mth stock in a set of n− 1 stocks is qm
1−qj

. Following

this logic, I(P) for a given permutation P of p stocks is computed as follows:

I(P) =
q1 ∗ q2 ∗ . . . ∗ qp

(1− q1) ∗ (1− (q1 + q2)) ∗ . . . ∗ (1−∑
p−1
i=1 qi)

(9)

Notice that I(P) described above is sequence dependent. The order in which stocks are chosen
to compute I(P) matters. However, this is not the case for the regression solution that we consider.
Indeed, the value of T(P) is the same for each combination of p stocks despite the order in which they
appear within the permutation. We are only concerned with the choice of stocks used to track the
index and their proportion of the current portfolio wealth (their respective weights).

2.2.2. Resampling

As Tγ(P) evolves and with each re-weighting process more variability is introduced and fewer
samples retain significant weights. This causes weight degeneracy and consequently a low ESS value.
To overcome this phenomenon, one gets rid of samples with low-importance weights and repeatedly
samples those with high-importance weights. This is in practice done by applying some resampling
methods (see e.g. Chen (2003), Speekenbrink (2016), Gellert and Schlögl (2021)) whenever the ESS value
falls below a certain threshold (commonly set to N/2). In Satpathy and Shah (2022) a multinomial
resampling technique is implemented. Here, we instead consider the systematic resampling technique,
which can be described as follows. Fix the number of particles to be resampled to r ≤ N. For
k ∈ {1, . . . , r}, let

uk :=
(k− 1) + ũ

N
with ũ ∼ U[0, 1).

Consider the m-th resampling in the algorithm. Replace particle k with particle i according to the
following condition:

Pk(m) = Pi(m), with i s.t. uk ∈
[

i−1

∑
j=1

w(m)j,
i

∑
j=1

w(m)j

)
,

where wj(m) denotes the weight corresponding to the particle j on the m-th resampling.

2.2.3. Support Boosting and Metropolis Hastings Algorithm

Since in the resampling step samples with high weights are repeatedly resampled, this method
leads to a loss in particle diversity, causing the support of the sequence of distributions represented by
the particles and their weights to shrink. To account for this problem, an additional step is added with
the intention of boosting the support. To this end, several moves of the Metropolis-Hastings (MH)
algorithm are performed in Satpathy and Shah (2022). Here, we consider the same method which can
be briefly described as follows: after each resampling step, MH algorithm is used for sampling from
the current intermediate target distribution Tγ(P), by using a new distribution for proposing a new
sample P′ and then accepting or rejecting the new sample with some probability.

The MH probability of acceptance, that is the probability of replacing the current particle P with
the new sample P′, is computed as follows:
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αγ(P→ P′) = min
(

1,
Tγ(P′)
Tγ(P)

∗ hw(P|P′)
hw(P′|P)

)
,

where hω(P|P′) denotes the proposal density. Notice that if the ratio
Tγi (P

′)
Tγi (P)

is high there is a greater

chance of moving from P to P′.
The acceptance or rejection step in the MH algorithm is applied until the accumulative acceptance

rate reaches 500% to ensure the support of the distribution is sufficiently boosted.
The choice of the proposal distribution3 h is done as follows. Initially, a count-based probability

Qγi (P) is considered, meaning that the probability of choosing a stock to be sampled in a permutation
is proportional to the number of times the stock appears in the current sample of permutations. Notice
that this choice reflects the relative importance of particles after the SMC algorithm has reached the
stage indicated by the current γ. Then, the proposal distribution h is defined as a weighted sum of
I(P), the initial proposal distribution described in Section 2.2.1, and Qγi (P):

hω(P′|P) = ω ∗ hQ(P′|P) + (1−ω) ∗ hI(P′|P),

where ω ∈ [0, 1]. Moreover, the distribution employed in Satpathy and Shah (2022) h is defined in
such a way that only a given subset A of the permutation is replaced. More precisely, to describe the
computation of hQ(P′|P) and hI(P′|P) as it is done in Satpathy and Shah (2022), consider a subset A of
the permutation Pr that we wish to replace in order to transform P to P′. Since only a subset of P is
replaced, for every P′ it holds that P′−A = P−A. Thus, we sample A from the set of stocks that exclude
stocks in P−A. In particular, if the set of all stocks is S, we sample A from S \ P−A. We then define
hQ(P′|P) as the probability of sampling A from S \ P−A given the count-based probability Qγi (P)
described above. Similarly hI(P′|P) can be computed based on I(P) applied to the set of S \ P−A
stocks.

Finally, Satpathy and Shah (2022) set the number of stocks for constructing an index tracking
portfolio as a constant, p representing 20% of the total number of stocks in the index. We instead
use Principal Component Analysis (PCA) to set the number of stocks chosen for the index tracking
portfolio. The variance explained by the principal components is set to 95%. The variable p is then
assigned a value equal to the number of principal components computed under this constraint.

Summary of SMC Algorithm

1. Fix the number of stocks used to replicate the index to p (using PCA).
2. Draw n permutations of size p from Tγ=0(P) = I(P), for I(P) computed as in Equation 9. Set the

importance weights for each permutation to 1
N .

3. Choose δ and increment γ such that γ = γ + δ.
4. At γ + δ, compute the importance weights for each permutation using recursive formulas in

2.2.1.
5. Compute ESS
6. While γ ≤ 1

(a) if ESS ≥ N
2 proceed to Step 3.

(b) if ESS < N
2 . Resample and initialise MH with an accumulative acceptance rate of 500%.

(c) Set the weights of new samples computed in MH to 1
N and proceed to Step 3.

7. At γ = 1, samples from T(P) are obtained, represented as pairs of permutations and their
respective weights.

8. Resample once more to obtain new permutations with equal weights.

3 The proposal in MH algorithm has no relation to the proposal in the Importance Sampling step.
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9. Compute T(P) for the new sample of permutations to obtain the optimal P∗ that maximises T(P)
given by Equation (8).

3. Transaction Costs

As briefly mentioned in Section 1, in Satpathy and Shah (2022) transaction costs have not been
considered when rebalancing the index tracking portfolio. This can potentially cause stocks to enter
and exit the tracking portfolio with minimal benefit but at an increased cost. In order to consider this
aspect, in this section we reformulate the index-tracking problem by adding an additional term to the
objective function, which results in a more gradual rebalancing of the index-tracking portfolio.

3.1. Dynamics of the Wealth Process Given Proportional Transaction Costs

We start by describing the evolution of the value of the index-tracking portfolio over rebalancing
times. Consider the rebalancing time point t. Let’s also denote the money invested in the j-th stock at
time t as ψj(t). If transaction costs are not considered, the value of the index tracking (self-financing)
portfolio X, for an index comprised of n stocks, is given by:

X(t) = X(t−) =
n

∑
j=1

ψj(t−),

where t− stands for the moment just before the rebalancing.
If instead transaction costs are allowed, we model the evolution of X(t) as follows:

X(t) = X(t−) · C (10)

where C ∈ (0, 1) is the proportion of our wealth spent on the transaction costs at t. Since the portfolio
wealth is less due to transaction costs, we take into account that there is now less money to invest in
each stock. Here, the portfolio is constructed in such a way that after paying the transaction costs
the portfolio weights are strictly equal to the target portfolio weights: (β1(t), . . . , βn(t)). Thus, the
following equation represents the value of the portfolio after rebalancing:

X(t) = X(t−) · C
n

∑
j=1

β j(t) =
n

∑
j=1

ψj(t) = C
n

∑
j=1

ψj(t−). (11)

Recall that only p of all β’s are not zero. Now recall that we pay a transaction cost for each unit of
money we buy or sell. Let ε be the percentage we pay per unit of money we buy or sell i.e. the rate of
transaction costs. We assume here that the transaction costs for buying and selling are the same. We
will incur a transaction cost of ε enforced on the difference in the amount of money invested in each
stock before and after the rebalancing. In some sense it means that instead of buying a stock for $1 we
buy it for $(1 + ε).

It was demonstrated in Ruf and Xie (2019) that knowing the target portfolio weights, (β1(t), . . . , βn(t)),
and amount of money invested in each stock prior to rebalancing, (ψ1(t−), ..., ψn(t−)), is sufficient to
compute C. Refer to Ruf and Xie (2019) for a detailed approach on the computation of C. Here, we
introduce notations and ideas from Ruf and Xie (2019) necessary to present the exact formula for C.

Recall that the portfolio is self-financing, that is, the amount of currency used to buy extra stocks
should be exactly the amount of currency obtained from selling redundant stocks, hence the following
should be satisfied:

(1 + ε)
n

∑
j=1

(ψj(t)− ψj(t−))+ = (1− ε)
n

∑
j=1

(ψj(t−)− ψj(t))+, (12)
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where dividends are not taken into account. We introduce D̂ and cj as follows:

D̂ =
(1− ε)∑n

j=1 ψj(t−)1β j(t)=0

X(t−) , (13)

cj =
β j(t−)
β j(t)

1β j(t)>0. (14)

If we now divide both parts of (12) by X(t−) we will obtain the following equation:

(1 + ε)
n

∑
j=1

(C− cj)
+β j(t) = (1− ε)

n

∑
j=1

(cj − C)+β j(t) + D̂, (15)

where the LHS of (15) is a continuous function of C and strictly increasing from 0 to 1, as C changes
from mini∈{1,··· ,n} ci to ∞. Conversely the RHS of (15) is a continuous function of C strictly decreasing
from ∞ to D̂ ≥ 0, as C changes from −∞ to maxi∈{1,...,n} ci, and equals to D̂ as C changes from
maxi∈{1,...,n} ci to ∞. Therefore, both sides of equation (15), treated as functions of C, must intersect at
a unique point, indicating the existence of a unique solution for equation (15).

Given the above, an expression for C now follows:

C(β) =
(1 + ε)∑n

j=1 cjβ j(t)1cj≤ĉ + (1− ε)∑n
j=1 β j(t−)1cj>ĉ + D̂

(1 + ε)∑n
j=1 β j(t)1cj≤ĉ + (1− ε)∑n

j=1 β j(t)1cj>ĉ
. (16)

Here ĉ = ck, where k = arg maxk∈(1,...,n){D̂k; D̂k ≤ D̂} with D̂k defined as follows:

D̂k = (1 + ε)
n

∑
j=1

(ck − cj)
+β j(t)− (1− ε)

n

∑
j=1

(cj − ck)
+β j(t). (17)

Using this formulas we will be able to update the wealth process after each rebalancing step. The
formula was given in (11).

3.2. Index Tracking Problem with Proportional Transaction Costs

Our goal is to minimize the transaction costs incurred at each rebalancing step, i.e. to minimize
the money lost due to transaction costs, (1− C) ∗ X(t−). In order to do that we will introduce the
updated version of the regression problem from Satpathy and Shah (2022). The objective function is
the following:

β(t) = arg min
β(t)

||rI − Rβ(t)||22 + λ||β(t)− β(t−)||22, (18)

where λ > 0 is a flexible parameter needed to model the sensitivity of the algorithm to transaction
costs. The intuition behind this formula is that we don’t want to change the weights too abruptly and
quickly as it implies higher transaction costs.

Given all these considerations, we introduce the (simplified) index tracking problem (allowing
for transaction costs) as follows:

β∗(t) := arg min
β(t)

||rI − Rβ(t)||22 + λ||β(t)− β(t−)||22

s.t. β(t)T1 = 1,

||β(t)||0 = p.

(19)
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Similarly to the approach in Satpathy and Shah (2022), we introduce distribution on the space of
permutations as a means to solve this problem

T(P(t)) = exp

(
−||rI − RP(t)βP(t)(t)||22 − λ||βP(t)(t)− βP(t)(t−)‖|22

η

)
.

Then, applying a similar reasoning as in the case of the optimization problem without transaction
costs, in order to find the optimal permutation at time t, T(P(t)) is approximated via SMC methods
using density tempering.

4. Methodology and Data

The index-tracking algorithm utilized in this study builds upon the framework introduced in
Section 2, with further details provided in Section 3. Here, we delve into the methodological framework
used for implementing index tracking strategies, emphasizing their reliance solely on historical data.
To clarify, at each rebalancing point (t), the composition of the tracking portfolio is determined based
solely on market data available up to time t, within a predefined lookback period of 30 trading days.
This approach ensures that no future data beyond time t influences our backtesting methodology.
Furthermore, we’ve defined the temporal scope to encompass 20 portfolio rebalancing instances
for each strategy under investigation. The rebalancing frequency is set to every 60 observations,
corresponding to a span of 60 trading days.

4.1. Model cases

The model cases examined in this analysis primarily differ in their hyperparameter settings. To
provide a concise overview of the diverse models formulated, Table 1 summarizes the hyperparameters
employed for each case.

Table 1. Hyperparameters chosen for implementation and comparison of model cases on real–world
data.

Hyper-parameters Values
Step Size (δ) 0.2
Lookback Window Size (T) 30
ESS Threshold N

2
Number of Particles (n) {10, 100, 1000}
Variance Explained 95%
Rebalance Frequency (Observations) 60
Transaction Cost per Unit Nominal (ε) 0.001
Transaction Cost Penalty (λ) {0, 1000, 10000}

In order to assess the performance of the updated model that incorporates transaction costs
compared to the initial model, we maintain the hyperparameters of both models at the values specified
in Table 1. When λ = 0, this corresponds to the initial model, without accounting for transaction costs.

Following an initial examination of the efficacy of the R2 proposal distribution in identifying
accurate stock selections, it became evident that its capacity to accurately pinpoint assets relevant
to the experimental framework was inadequate. Consequently, an alternative proposal distribution
rooted in multiple linear regression was employed. Specifically, this approach entails evaluating all
assets within the designated universe at a given time point and computing the coefficients of multiple
linear regression for these stock prices relative to index prices. Subsequently, the absolute values of
these regression coefficients are obtained, normalized to ensure their cumulative sum equals one,
thereby constituting the basis of our prior/proposal distribution. An exploratory analysis unveiled the
superiority of this proposal distribution over the R2 variant originally posited by Satpathy and Shah
(2022).
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The enhanced efficacy of the revised proposal distribution, coupled with considerations regarding
numerical efficiency, culminated in the decision to forgo the Metropolis/Hastings support boosting
step. The proposal distribution gives a good sampling of the state space and is close enough to
the posterior distribution to make additional steps such as support boosting redundant or even
counterproductive. Due to this, we have chosen to not use the support boosting step in our version of
the particle filter algorithm.

4.2. Constraints and Optimization

In our numerical experiments, we implemented the index-tracking algorithm with the inclusion of
no-short selling constraints and full-budget constraints. It is worth noting the implications of introduc-
ing these constraints. When incorporating short-selling and full-budget constraints, an explicit solution
of the β parameters cannot be obtained, necessitating the use of numerical optimization techniques.
This introduces a critical consideration, as the numerical optimization algorithm needs to be run
multiple times during the execution of the index-tracking algorithm, particularly when the Effective
Sample Size (ESS) falls below the threshold, requiring Metropolis-Hastings steps. Consequently, this
can significantly increase the overall runtime and potentially limit the algorithm’s performance and
efficiency.

Fortunately, the problem at hand benefits from the presence of a closed-form expression for the
Jacobian, which provides valuable gradient information. The closed-form expression for the Jacobian,
obtained by simply differentiating Equation (19), is given by

(RTR)β(t)− RTrI + 2λ(β(t)− β(t−)).

Numerical optimizers that utilize this gradient information can leverage it to enhance the conver-
gence speed and improve overall efficiency. In our study, we employed the Sequential Least Squares
Quadratic Programming (SLSQP) algorithm while incorporating the provided Jacobian. This approach
allowed us to reduce the computation time by a substantial factor of approximately 7 (compared to
algorithms not using gradient information).

4.3. Data

4.3.1. Simulated Data

In the process of algorithm development, we employed simulated index and stock data where the
true parameters were known. To generate the stock price paths for N stocks up to some future time
T > 0, we employed the Standard Geometric Brownian Motion (GBM) model. Each stock price path
follows the process

dSi(t) = µiSi(t)dt + σiSi(t)dWi(t)

where µi and σi denotes the drift and volatility of the i-th stock, respectively, and {Wi(t) : t ≥ 0}
denotes a standard Brownian Motion process. The Brownian Motion processes are correlated such that
E(dWi(t) · dWj(t)) = ρi,j · dt and ρi,i = 1 . This leads to an explicit form to determine the stock price
paths for each stock i = 1, ..., n using

Si(tk) = Si(0) exp

(
k

∑
j=1

(µi −
1
2

σ2
i )∆tj +

√
∆tjσiXi

)

with time points 0 = t0, t1, ..., tn = T and time increments ∆tj = tj − tj−1. Xi corresponds to the i-th
element in a multivariate normal vector X ∼ Nn(0, ρ) where ρ = Corr(X, X′) denotes the correlation
matrix. The multivariate normal random vectors can be calculated as X = LZ where Z ∼ Nn(0, I) and
L denotes the Cholesky decomposition of the correlation matrix ρ.
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To account for the dynamic nature of index constituents, we established a fixed maximum number
of stocks (n) in the asset universe and a maximum number of stocks that could compose the index
(nI ≤ n). From the asset universe S = {1, ..., n}, a random selection of stocks was made to form the
index, along with random time points indicating when these stocks entered or exited the index. This
gives the set of stocks that the index comprises of at each time point as It ⊆ S. This simulation setup
mirrors the dynamic nature of real-world indices, where stocks are added or removed based on specific
criteria and timing.

In order to construct the simulated index time series, we take the weighted average of stock
returns in the index at each time point, i.e.,

rI(t) = ∑
i∈It

βi(t)Ri(t)

where at each time point we have that

∑
i∈It

βi(t) = 1

The simulated data spanned a predetermined temporal window, with a daily frequency. The
parameters for drift, volatility, and initial stock prices for the constituent stocks in the index were
uniformly sampled within appropriate ranges. The rationale behind uniformly sampling GBM pa-
rameters was primarily to introduce random variation among the simulated stocks. By incorporating
this variation, we aimed to capture the inherent diversity and unpredictability observed in real-world
stock markets. This approach ensured that the simulated data reflected a realistic scenario, allowing us
to evaluate the algorithm’s performance under more representative conditions.

To evaluate the accuracy and effectiveness of the index-tracking algorithm, we calculated index
returns as the average of the individual stock returns that constituted it (i.e. βi(t) = 1

|It | ). By aggre-
gating these returns, we obtained the index value, which served as a benchmark for evaluating the
algorithm’s ability to accurately select the constituent stocks and their weights in the tracking portfolio.

Throughout the simulation experiments, the index-tracking algorithm consistently demonstrated
the capability to effectively identify the stocks forming the index and their constituent weights. This
successful performance suggests that the algorithm holds promise in real-world scenarios, where the
true underlying stock dynamics are not known. The key test, however, is the algorithm’s performance
on such real–world data, which will be considered next.

4.3.2. Empirical Data

Daily data for various indices was obtained from Bloomberg for an empirical study. This resulted
in a diverse set of empirical datasets, encompassing the number of constituent stocks and economy
sectors. Additionally, data points were excluded from the analysis when the timelines for the indices
did not align with those of the individual stocks. The results presented in this paper are based on
the indices from Table 2 and the period spanning 2018-10-18 to 2023-07-05. The presented number of
stocks in each index is approximate as stocks enter and exit the indices from time to time.
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Table 2. Equity indices used to test the performance of the algorithm.

Index Location Number of Stocks Sectors
SMI Switzerland 20 Financials, industrials, pharmaceuti-

cals and technology
SENSEX India 30 Information technology, financial

services, energy, and consumer
goods.

DAX Germany 30 Automotive, financial services, in-
dustrials and technology.

HSI Hong Kong 50 Financials, real estate, technology
and consumer goods.

UKX United Kingdom 100 Financials, energy, consumer goods
and pharmaceuticals.

JALSH South Africa 164 Financials, mining, consumer goods
and telecommunications.

SPTSX Canada 230 Financials, energy, materials, and in-
dustrials.

SPX United States 500 Financials, technology, healthcare
and consumer discretionary.

4.4. Metrics

In this section, we outline the metrics of interest. These metrics fall into two categories: “Perfor-
mance metrics,” which directly impact the decision-making process for selecting investment strategies
and parameters, and “Research metrics,” which we explore in order to understand the nature of the
algorithms more deeply.

4.4.1. Tracking Error

The primary performance measure we utilize is the tracking error, as defined in Satpathy and
Shah (2022). For actual index returns rI(t) and tracking portfolio returns β(t)R(t) at times t = 1, ..., T,
the tracking error can be calculated as

TE =

√√√√ 1
T − 1

T

∑
t=1

(rI(t)− β(t)R(t))2 (20)

The tracking error quantifies the level of deviation between the returns of the index tracking
portfolio and the target index. It can be calculated as the standard deviation of the return residuals,
which are the differences between the returns of the index and the returns of the index tracking
portfolio.

4.4.2. Total Transaction Costs

The second performance metric we looked at was the total transaction costs. In the context of
transaction cost-conscious investing, monitoring the evolution of the wealth process over time becomes
crucial. If transaction costs are defined as in Section 3, then the total transaction costs can be calculated
as

TC =
n

∑
i=1

(1− C(β(t))) ∗ X(t−) (21)

Recall that t− is the moment just before the rebalancing at t. Tracking the total transaction costs
allows us to assess the overall cost-effectiveness of the tracking strategy. These costs are calculated at
the end of each rebalancing period, representing the expenses incurred during the adjustment of the
portfolio’s composition.
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The interpretation of the results regarding transaction costs should take into account the specific
investment objectives and constraints of the investor. Lower total transaction costs are generally de-
sired, as they indicate a more efficient allocation of resources. However, it is important to balance these
cost considerations with the tracking error. Intuitively, there is often a trade-off between minimizing
tracking error and minimizing transaction costs. Achieving a lower tracking error may require more
frequent portfolio rebalancing, leading to higher transaction costs. Conversely, reducing transaction
costs may involve a less frequent rebalancing strategy, potentially resulting in a higher tracking error.

4.4.3. Wealth Error

The assessment of tracking error conventionally involves the examination of the standard devia-
tion of error terms derived from the difference between the simple returns of an index and those of a
tracking portfolio. While this method provides valuable insights into tracking performance, we sought
to devise a composite metric that not only evaluates tracking accuracy, but also integrates considera-
tions of cost efficiency inherent to a tracking strategy. To this end, we have opted to employ a metric
that combines both aspects by computing the average absolute differences between the cumulative
returns of the portfolio wealth and the benchmark returns. Formally, our proposed metric, denoted as
the Wealth Error (WE), is defined as:

WE =
1
T

T

∑
t=1

∣∣∣∣∣ t

∏
u=1

(1 + rI(u))−
X(t)
X(1)

∣∣∣∣∣
where T represents the total number of observations, rI(u) denotes the return of the index at time
u, and X(t) represents the portfolio wealth at time t. Furthermore, ∏t

u=1(1 + rI(u)) represents the
cumulative return of the index, whereas X(t)

X(1) represents the cumulative return of the portfolio. This
formulation encapsulates both the magnitude and direction of disparities between the portfolio’s
cumulative returns and those of the benchmark index, thereby providing a comprehensive measure of
tracking performance while considering the cost efficiency of the tracking strategy.

By evaluating both the tracking error and total transaction costs, we can comprehensively assess
the performance of the index tracking strategy. It allows us to understand the trade-offs between
achieving accurate index replication and managing transaction costs, enabling investors to make
informed decisions based on their specific investment goals and preferences.

The following metrics relates to the “Research metrics” category.

4.4.4. Other Cost Metrics

To better understand the interplay and distribution of costs in a tracking strategy, we additionally
investigate the minimum, mean and maximum transaction costs associated with a rebalancing over
the investment horizon.

4.4.5. Retention

This metric indicates the proportion of stocks retained in the tracking portfolio after each rebal-
ancing. For instance, if initially there are 20 stocks in the portfolio and after rebalancing 12 of them are
replaced with others from the index, the retention is 40%.

We aggregate the values of Min, Mean, and Max Retention over all the rebalancing time points in
the experiment.

4.4.6. Maximum Weight

Lastly, in order to assess the effect that our objective function has on portfolio concentration, we
will look at the maximum weight metric, which is defined as the overall maximum weight achieved by
a single asset in the tracking portfolio, over the entire investment horizon.
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5. Results and Discussion

In this section, we present an analysis of the experimental results. Our primary objective is to
investigate the various patterns exhibited by the metrics concerning changes in the number of particles,
denoted as N, and the cost aversion parameter, represented by λ.

To examine how the metrics respond to changes in the number of particles, we compute the
average value of each metric across all values of λ for each index. Similarly, we assess the impact of
varying λ on the metrics by calculating their average values across different numbers of particles for
each index.

5.1. Tracking Error

Consider Table 3. The highest average Tracking Error was associated with 100 particles for 5 out
of 8 indices. Conversely, the lowest average Tracking Error occurred with 10 particles. This setting
showed consistent performance across 6 out of 8 indices. No discernible trend was observed between
the number of particles and average Tracking Error.

Similarly, examining Tracking Error metrics across different cost aversions revealed fluctuations.
The highest average Tracking Error was linked to a cost aversion of 10000 which was consistent across 4
out of 8 indices. On the other hand, the lowest average Tracking Error corresponded to a cost aversion
of 1000, showing consistent performance across HSI, UKX, and JALSH. The highest overall Tracking
Error of 1.086% was associated with the HSI index, 100 particles, and a cost aversion of 10000 (Figure
1). Conversely, the lowest overall Tracking Error of 0.367% was linked to the SPX index, 1000 particles,
and a cost aversion of 1000 (Figure 1).

Figure 1. Index Returns for the best (SPX) and worst (HSI) performing cases, where the blue graph is
the tracking portfolio and red is the index.
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Table 3. Tracking Error, Wealth Error and Transaction Costs Observed for all Combinations of Number of Particles (N) and Cost Aversions (λ) for Each Index
Observed.

Tracking Error Wealth Error Total Cost
λ = 0 λ = 1000 λ = 10000 λ = 0 λ = 1000 λ = 10000 λ = 0 λ = 1000 λ = 10000

N = 10 0.59877% 0.58457% 0.59178% 17.27785% 16.36773% 13.40419% 40393.76 26249.92 23510.09
DAX 0.58689% 0.72071% 0.76259% 18.71743% 26.21527% 11.35055% 34235.95 18562.46 19843.48

HSI 0.82953% 0.63888% 0.69552% 12.35483% 10.12154% 10.09875% 35225.75 27373.53 18640.06
JALSH 0.64292% 0.62397% 0.69927% 17.15719% 15.79817% 20.58057% 36106.94 28107.81 29007.45

SENSEX 0.61286% 0.67109% 0.74528% 16.08276% 19.30123% 30.29464% 45328.63 16664.50 12578.89
SMI 0.50931% 0.55798% 0.57527% 29.17910% 8.33662% 5.28817% 37639.89 5636.16 1827.69

SPTSX 0.54980% 0.57193% 0.39170% 17.28082% 35.47859% 20.98324% 45940.40 48004.04 40105.69
SPX 0.57546% 0.38831% 0.37443% 9.85225% 4.74101% 4.52234% 48630.53 40897.98 39905.47

UKX 0.48338% 0.50373% 0.49014% 17.59846% 10.94941% 4.11529% 40042.00 24752.89 26171.98
N = 100 0.65428% 0.68345% 0.67622% 13.24902% 14.64676% 9.74140% 38163.94 18630.72 16815.02

DAX 0.69572% 0.83409% 0.83155% 12.95641% 7.62099% 6.69474% 36843.25 13963.39 9471.72
HSI 0.81485% 0.77457% 1.08637% 7.70339% 6.42025% 23.29781% 34100.34 13288.64 14176.46

JALSH 0.76951% 0.81020% 0.77314% 31.79696% 6.70502% 6.78045% 31491.44 24276.11 21502.14
SENSEX 0.67007% 0.68515% 0.87292% 9.05378% 34.55286% 7.30683% 38671.82 6561.78 7200.32

SMI 0.51122% 0.47362% 0.43846% 4.21370% 3.68650% 10.42701% 32318.57 3103.56 1326.33
SPTSX 0.59226% 0.98857% 0.40284% 6.73261% 44.14928% 3.91737% 39423.03 35252.99 28133.31

SPX 0.58038% 0.41832% 0.38740% 8.34139% 4.98613% 3.90626% 49695.05 38282.31 37832.97
UKX 0.60027% 0.48307% 0.61705% 25.19396% 9.05303% 15.60073% 42768.02 14316.99 14876.88

N = 1000 0.66062% 0.63942% 0.65255% 15.06630% 10.34565% 12.39240% 41729.76 15367.46 15836.81
DAX 0.67222% 0.90155% 1.01459% 6.95423% 26.81817% 7.27033% 41729.35 9298.69 7814.12

HSI 0.84903% 0.90031% 0.98868% 17.99268% 9.28388% 5.53880% 40210.23 11448.09 9021.65
JALSH 0.78545% 0.69222% 0.79928% 25.66035% 12.01656% 37.61821% 34345.00 16989.90 25995.95

SENSEX 0.70163% 0.78741% 0.70523% 6.79509% 7.14030% 8.94453% 45435.92 4534.44 5113.80
SMI 0.57148% 0.41061% 0.41420% 9.44854% 6.38063% 6.90988% 34374.99 2601.58 778.90

SPTSX 0.65343% 0.50946% 0.42155% 39.18594% 4.76414% 21.71314% 53907.41 28532.57 30234.32
SPX 0.52266% 0.36746% 0.40129% 3.65117% 4.24413% 7.47839% 46589.27 34119.90 38219.30

UKX 0.52907% 0.54635% 0.47563% 10.84243% 12.11736% 3.66587% 37245.90 15414.52 9516.43
AVERAGE 0.63789% 0.63582% 0.64018% 15.19773% 13.78671% 11.84600% 40095.82 20082.70 18720.64
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It might seem counterintuitive that a larger transaction cost weighting λ doesn’t imply larger
tracking error. However, because the future return behaviour of real-world data may differ from past
behaviour and in particular correlations can change, the optimal tracking portfolio based on past
returns is not necessarily optimal going forward. Therefore, as including transaction costs would tend
to stabilise the tracking portfolio weights, this may result in better tracking performance, as opposed
to ignoring transaction costs and rebalancing fully to reflect any change in return correlations in the
lookback estimation window, which may be partly due to random noise.

5.2. Total Cost

The investigation into Total Cost (Figures 2 and 3) reveals intriguing patterns across different
particle counts and cost aversions. Surprisingly, the highest average Total Cost is consistently associated
with 10 particles across the majority of indices, while the lowest occurs with 1000 particles, a trend
observed in 4 out of 8 indices.

Figure 2. Total Cost for each index and all cases of λ. Here, the green line represents λ = 0, the orange
line represents λ = 1000 and the red line represents λ = 10000.
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Despite the variation in particle count, we found no discernible correlations between the number
of particles and total costs, indicating that particle count alone may not significantly impact total
expenses.

Upon scrutinizing Total Cost concerning different cost aversions, expected outcomes emerge. The
highest average Total Cost aligns with a cost aversion of 0, while the lowest occurs with a cost aversion
of 10,000, a consistent trend across all indices.

This observed pattern is in line with expectations, as higher cost aversions are anticipated to
mitigate larger transaction costs, underscoring the influence of cost aversion on total expenses.

Figure 3. Total Cost for the best (SMI) and worst (SPTSX) cases, where blue is the tracking portfolio
and red is the index

5.3. Retention

Table 4 offers insights into the behavior of portfolio retention under varying levels of λ, repre-
senting transaction cost sensitivity. When λ is set to 0, indicating no consideration for transaction
costs, there are notable instances where the entire portfolio experiences complete turnover during
rebalancing.

However, as λ increases, reaching values as high as 10,000, the frequency of rebalancing events
resulting in no stock replacements becomes more pronounced. This trend suggests a shift towards a
conservative approach, where transaction costs heavily influence decision-making processes, leading
to fewer adjustments in the portfolio composition.

Further examination of the Mean Retention reveals additional nuances. On average across all in-
dices, approximately 25% of stocks persist in the portfolio post-rebalancing when λ = 0. This relatively
low retention rate underscores the high level of churn as a consequence of ignoring transaction costs.

Overall, the observed patterns suggest that the adjustment of λ plays a crucial role in determining
the level of portfolio turnover, with higher values acting as a deterrent to excessive stock hopping and
fostering a more consistent investment strategy.
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Table 4. Portfolio retention under varying levels of the transaction cost penalty λ.

Min Retention Mean Retention Max Retention Max Weight
λ = 0 λ = 1000 λ = 10000 λ = 0 λ = 1000 λ = 10000 λ = 0 λ = 1000 λ = 10000 λ = 0 λ = 1000 λ = 10000

10 8.705% 15.408% 21.348% 25.048% 32.504% 33.770% 46.902% 52.568% 48.031% 50.386% 45.648% 42.404%
DAX 0.000% 14.286% 14.286% 17.826% 34.398% 32.989% 42.857% 62.500% 57.143% 63.028% 71.368% 84.534%

HSI 7.143% 12.500% 18.750% 22.676% 28.691% 30.356% 56.250% 53.846% 50.000% 67.825% 31.116% 62.487%
JALSH 12.500% 16.000% 12.000% 21.952% 27.401% 26.963% 38.462% 34.615% 38.462% 20.843% 34.718% 16.469%

SENSEX 0.000% 16.667% 33.333% 30.961% 43.818% 45.447% 50.000% 66.667% 66.667% 56.195% 74.368% 64.280%
SMI 16.667% 25.000% 50.000% 44.474% 55.088% 59.211% 80.000% 100.000% 75.000% 85.063% 84.874% 65.526%

SPTSX 11.905% 11.111% 11.628% 21.558% 21.741% 23.810% 31.707% 31.111% 33.333% 41.747% 22.745% 14.569%
SPX 16.162% 17.172% 15.000% 20.936% 22.124% 21.799% 28.571% 26.804% 26.804% 25.796% 10.552% 7.094%

UKX 5.263% 10.526% 15.789% 20.000% 26.773% 29.584% 47.368% 45.000% 36.842% 42.592% 35.445% 24.272%
100 9.665% 22.845% 25.789% 25.532% 37.482% 39.257% 50.660% 57.074% 57.471% 55.490% 50.188% 47.683%

DAX 0.000% 14.286% 25.000% 21.930% 38.158% 45.019% 66.667% 62.500% 71.429% 73.474% 79.150% 78.900%
HSI 6.667% 25.000% 18.750% 21.583% 34.948% 33.136% 50.000% 50.000% 50.000% 62.346% 52.145% 60.134%

JALSH 11.538% 20.000% 20.000% 23.593% 32.551% 30.030% 42.308% 46.154% 42.308% 40.864% 40.055% 41.143%
SENSEX 0.000% 28.571% 33.333% 28.321% 45.405% 54.595% 50.000% 83.333% 83.333% 66.602% 63.731% 63.303%

SMI 16.667% 50.000% 50.000% 43.684% 67.456% 69.912% 100.000% 100.000% 100.000% 90.251% 50.437% 53.204%
SPTSX 17.778% 11.111% 15.909% 23.719% 24.644% 25.510% 38.636% 35.714% 37.778% 53.869% 54.694% 26.812%

SPX 14.141% 18.000% 17.000% 20.069% 22.703% 23.017% 26.087% 26.263% 27.551% 15.480% 14.424% 13.783%
UKX 10.526% 15.789% 26.316% 21.357% 33.989% 32.839% 31.579% 52.632% 47.368% 41.030% 46.865% 44.187%

1000 5.721% 25.437% 28.054% 23.525% 41.154% 43.755% 43.607% 57.573% 55.807% 56.290% 39.176% 38.516%
DAX 0.000% 14.286% 28.571% 18.252% 46.523% 47.932% 50.000% 71.429% 71.429% 100.000% 62.516% 69.324%

HSI 0.000% 25.000% 20.000% 16.684% 36.394% 37.876% 28.571% 57.143% 46.667% 71.379% 43.143% 42.285%
JALSH 8.333% 16.000% 23.077% 21.220% 30.132% 32.222% 42.308% 40.000% 40.000% 26.412% 39.078% 30.861%

SENSEX 0.000% 42.857% 50.000% 30.326% 58.312% 66.458% 57.143% 66.667% 83.333% 55.485% 51.655% 48.034%
SMI 0.000% 50.000% 50.000% 35.175% 73.509% 81.842% 75.000% 100.000% 100.000% 83.152% 45.231% 40.284%

SPTSX 11.905% 18.182% 11.111% 21.700% 26.451% 26.308% 31.818% 41.463% 33.333% 38.698% 21.954% 27.368%
SPX 15.000% 17.172% 20.619% 21.358% 23.893% 24.524% 27.174% 31.250% 29.592% 25.586% 14.770% 13.270%

UKX 10.526% 20.000% 21.053% 23.485% 34.017% 32.881% 36.842% 52.632% 42.105% 49.609% 35.064% 36.699%
AVERAGE 8.030% 21.230% 25.064% 24.702% 37.047% 38.927% 47.056% 55.738% 53.770% 54.055% 45.004% 42.868%
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In contrast, with λ set at 10,000, the average retention rate increases to around 40%, signifying a
more stable portfolio composition. This implies that higher λ values effectively curb the turnover of
stocks, promoting greater stability and potentially reducing transaction costs associated with frequent
rebalancing.

An intriguing insight is depicted through the visualization in Figure 4. This chart vividly show-
cases the dynamic evolution of the tracking portfolio’s composition. Notably, larger values of λ

lead to a more stable portfolio, whereas smaller values of λ permit frequent changes in the portfolio
composition at each rebalancing step.

Figure 4. Changes in the composition of the tracking portfolio for the DAX index.

5.4. Mutual Correlation

In light of the other metrics we consider, in Figure 5 we present the correlation matrix only
considering cost-neutral (λ = 0) strategies, followed by the correlation matrix including cost-averse
tracking strategies in Figure 6.

Introduction of the λ parameter strengthens the relationships between the key parameters and
elucidates the underlying workings of the added cost-aversion to the objective function on the overall
tracking strategy. Most importantly, note how the relationships between the transaction cost metrics
and the retention metrics became stronger.

Wealth error is a metric that offers the most comprehensive summary of performance by looking
at both tracking performance and cost efficiency. After inspecting the correlation structure of the
different factors, we can see that wealth error does not have very strong correlations. The most two
notable relationships that exists with wealth error is weak positive relationships with tracking error
and maximum cost. These two factors can be identified as the primary contributors to wealth error.
This implies that the source of wealth error can come from tracking error and from the magnitude of
the transaction costs incurred at a rebalancing.
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Figure 5. Correlation heat map for all observed metrics for λ = 0.

Figure 6. Correlation heat map for all observed metrics for all λs.

Investigating the maximum transaction cost as a source of error, we discover that maximum
transaction costs exhibit strong relationships. Although there is a weak positive relationship with the
size of the index, which is a property in the particle filter algorithm beyond our control, the maximum
transaction cost has a weak negative relationship with the cost aversion parameter, an independent

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 March 2024                   doi:10.20944/preprints202403.0859.v1



21 of 34

parameter, which we can control. This suggests that the cost aversion parameter can be altered to
influence the magnitude of transaction costs to some extent. It has obvious positive correlations with
the other cost metrics. But perhaps, most importantly, it has a very strong inverse relationship with
retention metrics. Since the retention metrics are strongly related to maximum transaction costs, and
all of the transaction costs are strongly related to each other, this reveals a possible lever to control
transaction costs in the tracking portfolio.

Minimum retention has a weak direct relationship with cost aversion and a weak inverse relation-
ship with both tracking error and wealth error. In contrast, it has very strong inverse relationships
with most of the cost metrics and a strong direct relationship with mean and maximum retention.

There exists a weak negative relationship between mean retention and the size of the index,
suggesting that index size exerts some influence on asset retention rates. Conversely, there is a weak
positive relationship observed with cost aversion. Strong negative relationships are apparent with the
cost metrics, while strong positive relationships emerge with other retention metrics. Additionally, a
weak positive relationship is identified with the maximum weight.

The maximum retention exhibits a strong inverse relationship with asset count, suggesting that
the size of the index significantly impacts the maximum retention rate. Furthermore, it demonstrates
strong negative relationships with the cost metrics, while displaying very strong positive relationships
with the retention metrics. Additionally, it shows a moderate to strong positive correlation with the
maximum weight, indicating that higher retention tends to align with more concentrated portfolios.

Looking at the maximum weight metric, we observe a strong negative relationship with asset
count, indicating the larger indices tends to be more diversified. There is a weak to moderate positive
relationship with tracking error with some weak to moderate negative relationships with the cost
metrics. It has some moderate positive relationships with the mean and maximum retention rate.

After investigating tracking error as a source of wealth error, we see that it has some weak inverse
relationships with the minimum cost and the size of the index. This suggests that lower minimum
transaction costs tend to coincide with higher tracking error, again revealing a possible trade-off
between tracking performance and cost efficiency. Tracking error has a weak positive relationship with
the maximum weight metric, which reveals a tendency for concentrated portfolios leading to tracking
error.

Given the interconnected nature of these factors, further exploration is warranted. Based on the
evidence thus far, we hypothesize that the mechanism by which the cost aversion parameter regulates
transaction costs and enhances wealth estimation operates as follows:

The cost aversion parameter has a weak direct relationship with minimum retention. Minimum
retention has a strong direct relationship with the other retention metrics. The mean retention metric
has a large influence over the minimum and maximum transaction cost metrics, where the maximum
retention metric has a strong direct influence on the minimum transaction cost metric. Thus, higher cost
aversion coefficients, will lead to portfolios where we retain more of our assets between rebalancings.
This in turn will cause the minimum, maximum, mean and total transaction costs to decrease.

The total transaction costs may not directly correlate with wealth error, however, the maximum
transaction cost appears to be significantly related. By reducing the maximum transaction costs as
previously described, we mitigate wealth error and consequently lower total transaction costs. The
total transaction costs do not inherently drive wealth error, rather, it is the maximum cost that plays a
key role. This observation is evident in Figure 3, where the top performer in terms of total transaction
costs may not necessarily exhibit the best performance in terms of wealth error.

It’s important to consider that the penalty term within our objective function appears to promote
more concentrated portfolios and that there exists a direct relationship between portfolio concentration
and tracking error, one of the sources of wealth error.

Higher asset retention, our primary lever for controlling transaction costs, may lead to increased
portfolio concentration, which could cause higher tracking errors and subsequently result in higher
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wealth errors. However, it’s worth noting that the strong inverse relationship between index size and
portfolio concentration may underlie this phenomenon.

A notable finding is the slight negative correlation between minimum transaction costs and
tracking error. However, it’s crucial to understand that just because lower transaction costs are linked
with higher tracking error doesn’t necessarily imply causation. Instead, it’s more probable that the
primary factor at play is portfolio concentration, which tends to coincide with lower transaction costs.
Given the relationships described above, the diagram in Figure 7 provides a summary.

Figure 7. Relationships observed for key metrics: Here, red lines refer to a positive correlation and blue
lines refer to a negative correlation. Lines with more weight represent strong correlations (|ρ|>0.65).
Lines with less weight represent weak correlations (0.3 < |ρ| < 0.65).

6. Conclusions

The analysis of higher penalty terms on transaction costs yields several noteworthy conclusions.
Firstly, it is observed that implementing such penalties successfully reduces the overall transaction costs
for most indices, aligning with the expected outcome. This indicates that the imposition of penalties
effectively achieves the objective of mitigating expenses. Perhaps somewhat surprisingly, the degree
of penalty imposed on transaction costs tends not to increase the tracking error. Taking transaction
costs into account can actually stabilise tracking portfolio weights, prevent excessive rebalancing in
response to estimation noise and lead to an improvement in index tracking performance.

These conclusions emphasize the complex interplay between tracking error minimization and
the incorporation of transaction costs into the objective function. The study reveals that there are
additional factors at play beyond the straightforward trade-off between minimizing tracking error and
integrating transaction costs. This highlights the need for a deeper understanding of the underlying
mechanisms that govern the relationship between these variables.

Opportunities for Further Study
Future research to be explored could include:

1. Consider the market impact as it can also lead to the additional losses when working with large
volumes. Hence, investor should come up with smart order routing algorithms to optimize trade
execution and reduce market impact. These algorithms can help split large orders into smaller
ones and execute them in a way that minimizes price impact.
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2. Consider liquidity screening to avoid investing in assets that may have high transaction costs or
are illiquid, as these can significantly impact the performance of your tracking strategy.

3. Consider short sales so one can also track "short" indices. As well as considering short position,
i.e. negative β’s which will relax the constraints in the proposed method.

4. Consider other types of transaction costs: Tiered Commissions, Fixed-Plus-Percentage Commis-
sions, Flat Fee Commissions.
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Appendix A

This part provides additional plots obtained during the experiments.

Appendix A.1. Tracking Performance

In this subsection, you’ll find plots that illustrate the returns of the constructed portfolio compared
to the real index returns across various values of λ-s and numbers of particles. Red line indicates the
index returns and blue indicates the tracking portfolio’s retruns.
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Figure A1. DAX Tracking portfolio return versus actual index returns.

Figure A2. HSI Tracking portfolio return versus actual index returns.
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Figure A3. JALSH Tracking portfolio return versus actual index returns.

Figure A4. SENSEX Tracking portfolio return versus actual index returns.
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Figure A5. SMI Tracking portfolio return versus actual index returns.

Figure A6. SPTSX Tracking portfolio return versus actual index returns.
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Figure A7. SPX Tracking portfolio return versus actual index returns.

Figure A8. UKX Tracking portfolio return versus actual index returns.
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Appendix A.2. Transaction Costs

The plots below illustrate the cumulative transaction costs resulting from running the algorithm
various numbers of particles.

Figure A9. Cumulative transaction costs paid. Here, green is for λ = 0, orange λ = 1000 and red is
λ = 10000.
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Appendix A.3. Composition Plots

These plots illustrate how the composition of the tracking portfolio was changing during the
experiments, for various values of λ.

Figure A10. Changes in the composition of the tracking portfolio for DAX index.

Figure A11. Changes in the composition of the tracking portfolio for HSI index.
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Figure A12. Changes in the composition of the tracking portfolio for JALSH index.

Figure A13. Changes in the composition of the tracking portfolio for SENSEX index.
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Figure A14. Changes in the composition of the tracking portfolio for SMI index.

Figure A15. Changes in the composition of the tracking portfolio for SPTSX index.
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Figure A16. Changes in the composition of the tracking portfolio for SPX index.

Figure A17. Changes in the composition of the tracking portfolio for UKX index.
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