
Article Not peer-reviewed version

AI-Driven Virtual Power Plant

Scheduling: CUDA-Accelerated Parallel

Simulated Annealing Approach

Ali Abbasi *,† , João L. Sobral † , Ricardo Rodrigues †,‡

Posted Date: 10 October 2025

doi: 10.20944/preprints202510.0758.v1

Keywords: CUDA-accelerated computing; parallel simulated annealing; virtual power plants; energy

scheduling; optimization algorithms

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4108118
https://sciprofiles.com/profile/4178715

Article

AI-Driven Virtual Power Plant Scheduling:
CUDA-Accelerated Parallel Simulated Annealing
Approach
Ali Abbasi 1,2,*,† , João L. Sobral 2,† and Ricardo Rodrigues 1,†,‡

1 DTx—Digital Transformation CoLAB, University of Minho, 4800-058 Guimarães, Portugal
2 Centro de Algoritmi, Universidade do Minho, Campus of Gualar, 4704-553 Braga, Portugal
* Correspondence: ali.abbasi@dtx-colab.pt
† These authors contributed equally to this work.
‡ Member of IEEE.

Highlights

The rapid expansion of DERs in urban environments demands real-time, scalable scheduling mech-
anisms that can efficiently coordinate the operation of VPPs under dynamic and constraint-laden
conditions. Within the context of smart cities, where energy systems must respond quickly to vari-
able renewable generation and market fluctuations, traditional optimization approaches often fail
to meet the required performance thresholds. This study presents a high-performance scheduling
framework based on a GPU-accelerated Multiple-Chain Simulated Annealing (MC-SA) algorithm,
specifically designed to address the computational challenges of large-scale VPP optimization. The
method introduces two complementary levels of parallelism: (1) a divide-and-conquer decomposition
across prosumers to exploit the independence of scheduling subproblems, and (2) a multi-chain SA
strategy that tackles the inherently sequential nature of classical Simulated Annealing by launching
independent search trajectories across the solution space. The framework is implemented using CUDA
and evaluated on large-scale instances, demonstrating its potential to enable reliable, real-time VPP
scheduling in smart city energy systems.

What are the main findings?

• A GPU-accelerated MC-SA algorithm was developed, enabling large-scale VPP scheduling by
combining problem-level and algorithm-level parallelization.

• At the problem level, a divide-and-conquer strategy partitions the global scheduling task across
prosumers, allowing parallel processing of independent subproblems on GPU threads.

• At the algorithm level, the framework overcomes the sequential limitations of classical Simulated
Annealing by deploying multiple independent annealing chains in parallel, enabling broader
exploration of the solution space and faster convergence.

• The proposed MC-SA method demonstrates substantial computational speedups, achieving up
to 10× improvement over single-chain GPU execution and up to 38× over a 16-thread CPU
implementation, without compromising the feasibility or quality of solutions.

• The scheduling framework successfully scales to systems with up to 1000 prosumers and 96
time intervals (15-minute resolution), delivering sub-second runtime performance suitable for
real-time operation.

• A projection-based feasibility operator is integrated to ensure all candidate schedules satisfy
operational constraints, including battery state-of-charge dynamics, import/export limits, and
mutual exclusivity of charging and discharging decisions.

What is the implication of the main findings?

• The proposed MC-SA framework enables practical, real-time scheduling of Virtual Power Plants
in smart city environments, supporting responsive coordination of DERs, energy storage, and
flexible demand under market and network constraints.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-5581-1279
https://orcid.org/0000-0002-1512-1126
https://orcid.org/0000-0001-7986-3754
https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

2 of 28

• By combining divide-and-conquer decomposition with multi-chain annealing, the method trans-
forms a sequential metaheuristic into a highly parallelizable architecture compatible with modern
GPU hardware.

• The successful parallelization of Simulated Annealing, despite its inherently sequential structure,
demonstrates a novel and effective strategy for scaling metaheuristic optimization to real-world
energy systems.

• The ability to process high-resolution schedules across hundreds or thousands of prosumers in
sub-second time frames aligns directly with the operational demands of intraday energy markets
and grid-aware resource dispatch.

• The generality of the approach makes it suitable for broader deployment in smart city infras-
tructures where computationally intensive decision-making is required, offering a transferable
solution for energy scheduling, distributed optimization, and real-time control.

Abstract

Efficient scheduling of Virtual Power Plants (VPPs) is essential for the integration of distributed
energy resources into modern power systems. This study presents a CUDA-accelerated multiple-chain
simulated annealing (MC-SA) algorithm tailored for optimizing VPP scheduling. Traditional simulated
annealing algorithms are inherently sequential, limiting their scalability for large-scale applications.
The proposed MC-SA algorithm mitigates this limitation by executing multiple independent annealing
chains concurrently, enhancing the exploration of the solution space and reducing the requisite
number of sequential cooling iterations. The algorithm employs a dual-level parallelism strategy:
at the prosumer level, individual energy producers and consumers are assessed in parallel; at the
algorithmic level, multiple simulated annealing chains operate simultaneously. This architecture
not only expedites computation but also improves solution accuracy. Experimental evaluations
demonstrate that the CUDA-based MC-SA achieves substantial speedups—up to 10× compared
to a single-chain baseline implementation while maintaining or enhancing solution quality. Our
analysis reveals an empirical power-law relationship between parallel chains and required sequential
iterations (iterations ∝ chains−0.88±0.17), demonstrating that increased parallelism effectively alleviates
the sequential bottleneck. The algorithm demonstrates scalable performance across VPP sizes from
250 to 1000 prosumers, with approximately 50 chains providing the optimal balance between solution
quality and computational efficiency for practical applications.

Keywords: CUDA-accelerated computing; parallel simulated annealing; virtual power plants; energy
scheduling; optimization algorithms

1. Introduction
The integration of distributed energy resources (DERs)—including photovoltaics, wind turbines,

battery storage systems, controllable loads, and distributed generation—is central to the advancement
of modern electricity markets. Virtual Power Plants (VPPs), which aggregate and coordinate these
diverse resources, have become essential for optimizing participation in electricity markets, including
day-ahead (DA), intraday (ID), and real-time (RT) trading environments [1]. The primary objective of a
VPP is to maximize economic value while ensuring reliable operation, a task complicated by significant
uncertainties such as renewable generation variability and fluctuating market prices [4,10].

To address these challenges, the literature presents a rich landscape of optimization frameworks
for VPP scheduling. Mixed-Integer Linear Programming (MILP) and Mixed-Integer Quadratic Pro-
gramming (MIQP) dominate exact optimization approaches due to their capacity to simultaneously
model discrete bidding actions and continuous power dispatch decisions. These models are widely
used for day-ahead bidding and intra-day operation [7], as well as for providing multiple grid support

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

3 of 28

services [2]. Recent research has also developed dual-MILP approaches to tackle the complexities of
real-time energy market bidding [9].

To handle uncertainty, these deterministic models are extended into stochastic programming
formulations, which use scenario trees to anticipate a range of possible futures, thereby enhancing
decision robustness. This is particularly relevant for wind-storage systems participating in electricity
markets [3] and for risk-averse VPP operations using rolling horizon control [10]. Alternatively, robust
optimization techniques provide performance guarantees under worst-case operational deviations,
offering a different approach to managing uncertainty [5].

A critical aspect of modern VPP modeling is the sophisticated representation of energy storage
systems. Advanced models capture state-of-charge dynamics, degradation costs, and round-trip
efficiency to support accurate and economically realistic scheduling [8,14]. When these storage assets
are co-optimized with flexible demand-side resources, the VPP can deliver a wider array of market
services and significantly enhance system-level reliability and profitability. For instance, optimal
scheduling with demand response in short-term markets has been shown to improve economic
outcomes [13]. Furthermore, coordinated operation strategies for VPPs comprising multiple DER
aggregators have been developed to improve overall coordination and efficiency [6].

However, the high fidelity of these models comes at a significant computational cost. The
complexity of solving large-scale, mixed-integer, and stochastic problems often creates a bottleneck for
practical deployment. In real-world operations, VPPs must often rely on rolling-horizon control with
rescheduling intervals as short as 15 minutes [12], requiring optimization solutions under tight time
constraints. This has motivated research into accelerating these computations. Multi-core CPU-based
parallelization techniques have been adopted to speed up MILP solving and increase scheduling
responsiveness [1,2], and multistage scheduling models under distributed locational marginal prices
have been proposed to enhance scalability [11]. Despite these efforts, current literature reveals a clear
gap in practical implementations of GPU-accelerated scheduling for VPPs [15], even though GPU
architectures have demonstrated superior performance for many other large-scale parallel optimization
tasks.

Given the computational limitations of exact methods, metaheuristic algorithms such as Simulated
Annealing (SA) offer scalable and flexible alternatives. Their ability to handle non-convex and complex
constraint spaces makes them suitable for large-scale VPP problems. Recent advances using high-
performance computing (HPC) have demonstrated the potential of parallel SA frameworks, achieving
substantial reductions in computational time for VPP scheduling and enabling the management of a
large number of consumers in near-real-time [42]. However, these implementations typically leverage
multi-core CPUs, leaving the immense parallel processing power of modern GPUs largely untapped
for this specific problem. The inherently sequential nature of the classical SA algorithm, where each
state transition depends on the previous one, poses a significant challenge to its efficient parallelization
on many-core architectures.

1.1. Research Contribution and Gap Addressing

This study directly addresses these research gaps through several key contributions. First, to
overcome the scalability limitations of exact optimization methods for large-scale VPPs, we develop a
metaheuristic approach based on Simulated Annealing that offers flexible constraint handling and
polynomial-time complexity. Second, to mitigate the inherent sequential bottleneck of traditional SA,
we introduce a novel multiple-chain architecture that leverages massive GPU parallelism. Third, we
address the gap in practical GPU implementations for VPP scheduling by designing a customized
CUDA kernel with a two-level parallelism strategy across prosumers and annealing chains. Finally, our
work provides empirical validation of the parallelism-iteration trade-off through rigorous statistical
analysis, offering practitioners a principled approach to algorithm tuning that has been lacking in prior
literature.

To address the evolving complexities of modern distributed energy systems, this study introduces
a VPP optimization framework engineered for real-time responsiveness, economic efficiency, and

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

4 of 28

operational resilience. Designed as a scalable, data-centric architecture, the framework harmonizes
prosumer behavior with grid-level objectives while respecting system-wide technical and economic
constraints. The development of this system is guided by four core design principles.

1) Rolling-Horizon Social Welfare Optimization: The framework prioritizes social welfare by dynami-
cally scheduling energy transactions based on real-time supply, demand, and grid conditions. Through
a rolling-horizon approach, the model adapts to market fluctuations and reformulates the objective
as a cost minimization task—accounting for battery degradation, efficiency losses, and operational
limits—to ensure holistic system optimization.

2) Scalable Architecture: As prosumer participation increases, the framework must maintain
computational efficiency and scheduling precision. Its design supports high-dimensional optimization,
enabling robust performance at scale without compromising real-time execution or decision quality.

3) Battery Longevity and Sustainability: To promote long-term viability, the system integrates battery
health constraints that govern charge and discharge operations within safe boundaries. This preserves
battery lifespan while supporting environmentally sustainable energy practices.

4) Grid-Regulated Market Coordination: Operating under centrally determined price signals, the
system simplifies market participation by requiring prosumers to submit only energy quantities, while
the grid defines the pricing structure. This ensures transparent, price-aligned scheduling without
strategic bidding complexity.

Collectively, these design elements necessitate an integrated architecture capable of real-time
forecasting, high-frequency data streaming, and adaptive control. The proposed VPP management plat-
form meets these demands, delivering intelligent, market-aligned scheduling of distributed resources.
By leveraging predictive analytics and decentralized coordination, it enhances system welfare, ensures
operational agility, and supports large-scale deployment across academic research and commercial
applications.

Figure 1 illustrates the conceptual architecture of the proposed framework, capturing the flow
of real-time data, the interaction between prosumers and the grid, and the role of the centralized
optimization engine in governing distributed energy scheduling.

Grid

Data Storage
System

VPP Energy
Management
System

IoT System

Controllers
& Meters

Virtual Power
Plants

Finantial Data Power Flow Metering Data IoT Data Optimized Data

VPP Market
Entity

Grid
Entity

Prosumers
Actors

Figure 1. Schematic of the VPP management framework, illustrating key components and data flows among
prosumers, the market, and the grid. The VPP acts as an intermediary, enabling energy trading within regulated
prices, with a centralized scheduler optimizing resource allocation.

To contextualize these design choices, we present a conceptual scenario that encapsulates the
operational dynamics of the VPP environment. This scenario demonstrates how DERs are orchestrated
within a grid-regulated pricing structure. As shown in Figure 1, the VPP functions as an intelli-

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

5 of 28

gent intermediary, coordinating transactions among prosumers and aligning them with grid-defined
economic signals.

Prosumers continuously transmit real-time data—encompassing generation, consumption, and
battery status—through an IoT-enabled data streaming layer that forms the system’s communication
backbone. At the core of the VPP is an energy management system comprising two critical modules: a
forecasting engine and an optimization scheduler. The former predicts individual prosumer energy
behavior using real-time and historical data, while the latter allocates optimal energy transactions
(buy, sell, store) under grid-imposed constraints. By synchronizing these operations, the VPP enhances
energy market efficiency, ensures supply-demand balance, and reinforces overall grid reliability.

Given these design requirements and the real-time decision-making nature of the problem, achiev-
ing timely and scalable scheduling for large prosumer communities necessitates a HPC infrastructure.
The computational complexity arising from rolling-horizon optimization, real-time forecasting, and
constraint handling becomes increasingly demanding as the number of participating prosumers grows.
Therefore, an HPC-enabled solution is essential to ensure that the VPP management system can operate
efficiently at scale and deliver near real-time scheduling performance.

The remainder of this paper is organized as follows. Section 2 reviews relevant literature on
VPP optimization, real-time scheduling, and parallel metaheuristics. Section 3 introduces the VPP
optimization model and problem formulation. In Section 4, we present a prosumer-level decompo-
sition strategy that enables parallelization of the scheduling problem. Section 5 presents the MC-SA
architecture developed to enhance exploration efficiency, followed by a description of our hierarchical
parallelization strategy for distributing computations across HPC resources. Section 5.9 discusses
the practical implementation of the proposed approach on HPC infrastructure. Section 6 presents
numerical results and performance evaluations, and finally, Section 7 concludes the paper with key
insights and directions for future research.

2. Related Works
2.1. Optimization Algorithms for Energy Systems Scheduling in Virtual Power Plants

The effective coordination of Distributed Energy Resources within Virtual Power Plants ne-
cessitates sophisticated optimization algorithms capable of handling complex constraints, multiple
objectives, and various sources of uncertainty. This section provides a comprehensive review of
optimization strategies applied to VPP scheduling, systematically categorizing them by computational
paradigm and analyzing their respective strengths and limitations in addressing the unique challenges
of modern energy systems.

Swarm Intelligence and Population-Based Methods have demonstrated remarkable success in solving
the complex, non-convex optimization problems inherent to VPP operations. Ant Colony Optimization
(ACO) has emerged as a particularly powerful approach for distributed scheduling and market
participation strategies. [17] pioneered the application of ACO in local electricity markets, developing
a bi-level formulation that enabled decentralized agents to learn optimal bidding strategies while
preserving privacy and ensuring profitability. This approach demonstrated superior performance
compared to centralized evolutionary methods in complex market environments. The robustness of
ACO for microgrid resource scheduling was further validated by [18], who achieved significant cost
reductions while maintaining system reliability over 24-hour scheduling horizons. For addressing
complex power flow constraints in unbalanced distribution networks, [19] introduced an innovative
hybrid Tabu Continuous Ant Colony Search (TCACS) algorithm that reduced power losses by 16.53%
while generating substantial daily profits. The versatility of ACO extends beyond traditional power
system applications, as evidenced by [20]’s work on virtual network embedding for data center energy
management, which achieved a remarkable 52% energy reduction. Furthermore, [21] successfully
adapted ACO for the computationally challenging problem of scheduling step-controlled generators
in smart grids, developing simulation-guided graph construction techniques that maintained solution
feasibility while navigating the NP-hard complexity of the problem.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

6 of 28

Simulated Annealing and Evolutionary Computation Techniques have proven equally valuable for
VPP optimization, particularly in scenarios requiring global optimization capabilities and handling of
complex constraint structures. The thermodynamic principles underlying Simulated Annealing have
been effectively leveraged for joint optimization of energy and ancillary services. [22] developed an
SA-based methodology for VPPs integrated with electric vehicles, achieving near-optimal solutions
with a remarkable 99.94% reduction in computational time compared to traditional deterministic mod-
els. For communication resource allocation in VPPs, [23] proposed an Improved Simulated Annealing
algorithm incorporating adaptive temperature control and multi-neighborhood search mechanisms,
which demonstrated superior performance over both Genetic Algorithms and Particle Swarm Op-
timization in terms of communication efficiency, latency reduction, and energy utilization. Genetic
Algorithms have been extensively applied to VPP scheduling problems, with [24] demonstrating their
effectiveness for Demand Side Management in VPPs integrating diverse DERs and Demand Response
programs, successfully reducing electricity market prices and mitigating peak loads through intelligent
resource coordination. [25] further extended GA applications to residential VPPs with electric vehicle
integration, achieving substantial cost reductions and enhanced ancillary service delivery through
sophisticated chromosome encoding and fitness evaluation mechanisms.

Hybrid and Multi-Objective Optimization Frameworks represent a significant advancement in ad-
dressing the competing objectives and complex constraint interactions characteristic of modern VPP
operations. [26] developed an innovative three-stage VPP management system that synergistically
combined an Improved Pelican Optimization Algorithm for DER scheduling, a convolutional au-
toencoder for cyberattack detection (achieving 98.06% accuracy), and Prophet forecasting for market
price prediction, collectively resulting in a 15.3% revenue enhancement. For managing the inherent
uncertainties associated with renewable generation and load patterns under vehicle-to-grid operation,
[27] employed sophisticated multi-objective optimization techniques using Genetic Algorithms, effec-
tively balancing economic and reliability objectives. [29] incorporated data-driven stochastic robust
optimization with GA frameworks for handling multiple uncertainty sources in VPPs, leveraging
real-time consumption data to enhance decision robustness. Two-stage optimization architectures
have demonstrated particular efficacy, with [30] presenting a comprehensive framework integrating
flexible Carbon Capture Systems with Virtual Hybrid Energy Storage, yielding an impressive 10.12%
improvement in carbon efficiency and 8.91% gain in economic performance. Similarly, [31] developed
an advanced two-stage model that effectively balanced cost minimization and emission reduction
objectives under dynamic demand and supply conditions, demonstrating the scalability of hybrid
approaches for practical VPP applications.

Comparative Algorithmic Studies and Emerging Learning-Based Paradigms provide crucial insights
for algorithm selection and highlight promising future research directions. [32] conducted extensive
benchmarking of evolutionary computation techniques including Particle Swarm Optimization, Dif-
ferential Evolution, and Vortex Search for local electricity market bidding strategies integrated with
wholesale markets, demonstrating superior robustness and convergence characteristics in complex
multi-leader optimization environments. [33] performed systematic evaluation of computational
intelligence metaheuristics—including Simulated Annealing, PSO, and ACO—within hierarchical VPP
architectures, highlighting their scalability advantages and computational efficiency compared to tra-
ditional gradient-based optimization methods. Most recently, reinforcement learning has emerged as a
transformative paradigm for adaptive decision-making in dynamic environments, with [34] applying
advanced deep RL methodologies including Deep Deterministic Policy Gradient and Asynchronous
Advantage Actor-Critic to VPP operations in complex urban environments, achieving significant
improvements in emission reduction, demand response coordination, and grid service provisioning
under uncertainty.

Beyond the established MILP and metaheuristic approaches, alternative optimization frameworks
have demonstrated effectiveness in related energy system domains. Convex optimization formulations
have shown particular promise for power flow problems in hybrid AC/DC microgrids, offering

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

7 of 28

computational advantages for certain problem classes through constraint relaxation techniques [35].
Similarly, bi-directional converter-based planning approaches represent another strategy for reinforc-
ing renewable-dominant microgrids through specialized hardware-software co-design [36]. While
these methods excel in their respective applications—typically focusing on power flow modeling or
infrastructure planning—our work addresses the distinct challenge of high-frequency, rolling-horizon
scheduling for VPPs with numerous heterogeneous prosumers, where the flexibility of metaheuristics
and throughput of GPU parallelism provide unique advantages for the combinatorial optimization
problem at hand.

This comprehensive analysis reveals that while diverse optimization methodologies have been
successfully applied to VPP scheduling challenges, there remains substantial untapped potential for
leveraging modern hardware acceleration architectures, particularly GPU computing, to overcome
computational bottlenecks and enable real-time operation at scale. The inherent parallelism in many
metaheuristic approaches, combined with the independent evaluation of numerous candidate solu-
tions, presents significant opportunities for hardware acceleration that current literature has scarcely
explored—a critical research gap that this work addresses through our novel CUDA-accelerated
Multiple-Chain Simulated Annealing framework.

2.2. Parallel Metaheuristics for Large-Scale Optimization Problems

The escalating computational demands of large-scale optimization problems in energy systems
have motivated significant research into parallel metaheuristic algorithms, particularly leveraging
modern GPU architectures. This paradigm shift from sequential to parallel computing has enabled un-
precedented scalability and efficiency in solving complex optimization challenges that were previously
computationally prohibitive.

Parallel implementations of Particle Swarm Optimization have demonstrated remarkable per-
formance gains across diverse application domains. A comprehensive CUDA-based parallel PSO
framework was developed by [37], incorporating both coarse and fine-grained parallelism strategies.
This approach mapped individual particles to dedicated GPU threads while parallelizing internal oper-
ations to maximize data throughput, achieving up to 2000× speedup on high-dimensional benchmark
functions through optimized memory management and coalesced memory access patterns. Building
on this foundation, [38] introduced a multi-swarm PSO architecture utilizing parallel CUDA streams
for concurrent sub-swarm operations, augmented with gradient-based local search mechanisms. This
methodology achieved 25× acceleration over serial implementations while simultaneously enhancing
solution precision for sparse reconstruction problems. The versatility of GPU-accelerated PSO was fur-
ther demonstrated by [39], who conducted extensive comparative analysis of sequential, multithreaded
CPU, and GPU implementations for solving large-scale systems of nonlinear equations with up to
5000 variables, with GPU-based PSO demonstrating superior scalability and computational efficiency.
Beyond GPU-centric approaches, [40] developed an improved parallel PSO utilizing island models on
CPU architectures, incorporating sophisticated velocity updates, inter-island communication protocols,
and adaptive stopping criteria that reduced function evaluations by 50–70% compared to standard
methods while maintaining robust scaling behavior across parallel processing units.

Parallel Simulated Annealing has emerged as another powerful paradigm for accelerating com-
putationally intensive optimization tasks. [41] pioneered three distinct SA variants—sequential,
asynchronous parallel, and synchronous parallel—implemented on GPUs using CUDA. The syn-
chronous SA implementation, coordinated through shared global temperature schedules and memory
architectures, achieved up to 100× speedup while preserving convergence accuracy, with hybrid SA
variants further enhancing the exploration-exploitation balance through integrated local optimization.
In the specific domain of virtual power plant optimization, [42] presented a parallel SA framework
for real-time scheduling deployed on high-performance computing platforms using OpenMP. This
approach independently optimized individual consumer schedules while adhering to mixed-integer
linear programming constraints related to energy dispatch and battery degradation, achieving near-
linear speedup with up to 512 prosumers and 32 cores while maintaining solution quality comparable

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

8 of 28

to commercial solvers. The applicability of parallel SA extends to machine learning domains, as
evidenced by [43], who developed PSAGA—a hybrid parallel SA integrated with greedy algorithms
for Bayesian network structure learning. This multithreaded implementation employed memoization
techniques to eliminate redundant evaluations and expand search breadth, achieving 17.5% precision
improvements and 4–5× speedup on large-scale datasets.

The collective evidence from these studies underscores the transformative potential of paral-
lel metaheuristics in addressing the computational challenges of large-scale optimization problems.
However, despite these advancements, the literature reveals a significant gap in leveraging the full
capabilities of modern GPU architectures for VPP scheduling, particularly through innovative paral-
lelization strategies that can overcome the inherent sequential limitations of traditional algorithms—a
research direction that this work actively pursues through our novel multiple-chain parallel SA
framework.

3. VPP Optimization Model
This section presents a comprehensive MILP model for optimizing the operation of a VPP

composed of multiple distributed prosumers equipped with photovoltaic (PV) generation and battery
storage systems. The model formulates time-dependent energy flows, enforces physical and economic
constraints, and leverages market-based interactions to determine an optimal operational schedule.

3.1. Notation and Decision Variables

This subsection establishes the foundational notation used throughout the optimization model. It
defines all relevant sets, variables, and parameters essential to the formulation. Clear notation ensures
mathematical rigor and model interpretability.

Table 1. Sets, parameters, and decision variables used in the VPP scheduling formulation.

Symbol Description Domain / Unit

Sets

P Set of prosumers in the VPP. Each can generate, store, consume, and exchange
energy. {1, 2, . . . , |P|}

T Set of discrete time intervals of duration ∆τ. Defines optimization horizon. {1, 2, . . . , T}
E Optional set of market/tariff entities for advanced economic modeling. {1, 2, . . . , E}

Continuous Decision Variables and Parameters
Pbuy

i,t
Power purchased by prosumer i at time t. R≥0 [kW]

Psell
i,t Power sold to the grid by prosumer i at time t. R≥0 [kW]

Ppv
i,t PV-generated power available at prosumer i at time t. R≥0 [kW]

Pload
i,t Electricity demand of prosumer i at time t. R≥0 [kW]
Pch

i,t Charging power of the battery for prosumer i at time t. R≥0 [kW]
Pdch

i,t Discharging power of the battery for prosumer i at time t. R≥0 [kW]
Pnon-comp

i,t Exported power without compensation (i.e., zero-price feed-in). R≥0 [kW]
Ei,t Battery state-of-charge (SoC) for prosumer i at time t. R≥0 [kWh]
Einit

i Initial battery SoC for prosumer i at t = 0. R≥0 [kWh]
π

buy
i,t

Price for purchasing electricity from the grid at time t. R≥0 [€/kWh]

πsell
i,t Price for selling electricity to the grid at time t. R≥0 [€/kWh]

P·i,t Upper bounds on power variables (e.g., buy, sell, ch, dch). R≥0 [kW]
Ei, Ei Lower and upper bounds on battery SoC for prosumer i. R≥0 [kWh]

ηch, ηdch Battery charging and discharging efficiencies. (0, 1] [unitless]
M Big-M constant for binary logic constraints. R>0

Binary Decision Variables
ubuy

i,t
1 if prosumer i is purchasing energy at time t; 0 otherwise. {0, 1}

usell
i,t 1 if prosumer i is selling energy at time t; 0 otherwise. {0, 1}

uch
i,t 1 if the battery is charging at time t; 0 otherwise. {0, 1}

udch
i,t 1 if the battery is discharging at time t; 0 otherwise. {0, 1}

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

9 of 28

3.2. Objective Function

Purpose: Minimize the total cost of operating the VPP, which includes energy transaction costs
and fixed operational charges.

Formulation:
min J = ∑

t∈T
∑
i∈P

[(
Pbuy

i,t π
buy
i,t − Psell

i,t πsell
i,t

)
∆τ
]
+ Cfix (1)

Explanation: - The term Pbuy
i,t π

buy
i,t represents the cost incurred by purchasing energy. - The term

Psell
i,t πsell

i,t accounts for revenue from energy sold. - ∆τ converts instantaneous power [kW] into energy
[kWh]. - Cfix denotes constant operating costs (e.g., communication, infrastructure, maintenance).

3.3. Constraints
3.3.1. Energy Balance

The energy balance equation ensures that, at each time step t, the total incoming energy to a
prosumer node equals the total outgoing energy. This conservation principle applies to all prosumers i
and captures the interaction between local generation, storage, consumption, and grid exchange.

The nodal power balance is expressed as:

Pbuy
i,t + Ppv

i,t + Pdch
i,t = Pload

i,t + Pexp
i,t + Pch

i,t , (2)

where all variables have been previously defined. This equation ensures that energy imported from
the grid, locally generated, or discharged from storage is entirely used for meeting the load demand,
charging the battery, or exporting to the grid.

The exported power is further decomposed as:

Pexp
i,t = Psell

i,t + Pnon-comp
i,t , (3)

where Psell
i,t represents the portion of energy that is financially compensated, and Pnon-comp

i,t denotes the
uncompensated export.

The term Pnon-comp
i,t captures situations in which excess energy is injected into the grid without

any remuneration. This may occur under the following real-world conditions:

• Regulatory frameworks impose caps on how much exported energy is eligible for compensation.
• Technical constraints such as grid congestion prevent the system operator from accepting or

remunerating all injected power.
• Certain prosumer contracts allow export only up to a predefined quota, beyond which energy is

accepted but not paid for.

To ensure feasibility and control over this behavior, the following constraint is introduced:

0 ≤ Pnon-comp
i,t ≤ M · usell

i,t , (4)

where M is a sufficiently large constant, and usell
i,t ∈ {0, 1} is a binary variable that enables or disables

export-related decisions. This formulation guarantees that uncompensated exports can only occur
when grid export is technically or contractually permitted.

Together, Equations (17) through (4) provide a coherent and detailed representation of prosumer-
level power flows, explicitly accounting for both compensated and uncompensated interactions with
the external grid. This allows the model to reflect realistic operational and regulatory scenarios while
maintaining feasibility across different conditions.

3.3.2. Market Transaction Exclusivity

Purpose: Prevent prosumers from simultaneously buying and selling energy in the same time
step.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

10 of 28

0 ≤ Pbuy
i,t ≤ Pbuy

i,t ubuy
i,t , (5)

0 ≤ Psell
i,t ≤ Psell

i,t usell
i,t , (6)

ubuy
i,t + usell

i,t ≤ 1, (7)

0 ≤ Pnon-comp
i,t ≤ Musell

i,t (8)

Explanation: These logical constraints, enforced by binary variables and the big-M parameter,
ensure operational exclusivity and model realistic behavior.

3.3.3. Battery Dynamics and Limits

Purpose: Ensure consistent tracking of battery state-of-charge and respect technical limits.
Battery SoC Evolution:

Ei,1 = Einit
i +

(
ηchPch

i,1 −
1

ηdch Pdch
i,1

)
∆τ, (9)

Ei,t = Ei,t−1 +

(
ηchPch

i,t −
1

ηdch Pdch
i,t

)
∆τ, ∀t ≥ 2 (10)

State-of-Charge Bounds:
Ei ≤ Ei,t ≤ Ei (11)

Charging/Discharging Exclusivity:

0 ≤ Pch
i,t ≤ Pch

i,t uch
i,t , (12)

0 ≤ Pdch
i,t ≤ Pdch

i,t udch
i,t , (13)

uch
i,t + udch

i,t ≤ 1 (14)

Explanation: The model tracks energy dynamics within each battery, accounts for losses, and
prevents simultaneous charge/discharge actions.

3.3.4. Variable Domains

Purpose: Enforce mathematical consistency and feasibility for all variables.

Pbuy
i,t , Psell

i,t , Pch
i,t , Pdch

i,t , Pnon-comp
i,t , Ei,t ∈ R≥0, (15)

ubuy
i,t , usell

i,t , uch
i,t , udch

i,t ∈ {0, 1} (16)

Explanation: All energy and power variables are continuous and non-negative. Binary variables
represent on/off operational states.

Practical Implications: This MILP formulation allows scalable, accurate optimization of smart
distributed energy systems within a VPP, supporting energy cost minimization, demand flexibility,
and regulatory compliance.

4. VPP Model Decomposition
The VPP optimization model orchestrates the local energy decisions of a population of prosumers,

each managing photovoltaic (PV) generation, load demand, battery storage, and grid interactions.
At each time step t ∈ T , every prosumer i ∈ P enforces an energy balance constraint that ensures
all incoming power flows are exactly matched by outgoing ones. Operational feasibility is further

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

11 of 28

enforced by mutually exclusive control logic, which prevents infeasible actions such as buying and
selling power or charging and discharging a battery at the same time.

To address the inherent complexity of coordinating a large number of heterogeneous agents in
real time, the model adopts a divide-and-conquer strategy. The overall VPP scheduling problem is refor-
mulated as a collection of independent subproblems, each corresponding to an individual prosumer. This
decomposition is made possible by the separability of energy balance equations and local operational
constraints, which depend solely on prosumer-specific variables.

Each subproblem includes:

• Local power balance equations,
• Mutually exclusive grid and battery operation constraints,
• Technical bounds on charging/discharging and import/export capacities,
• Optional local objectives such as cost minimization or self-sufficiency maximization,
• Efficiency-adjusted energy tracking through linearized expressions.

This decomposition brings two main computational benefits. First, it significantly reduces the
dimensionality of the decision space for each subproblem, simplifying the feasible region and facilitating
faster convergence. Second, it enables all prosumer-level problems to be solved in parallel, supporting
highly scalable deployment on distributed optimization platforms or HPC infrastructures.

Consider a typical prosumer—a residential household equipped with rooftop solar panels and
a battery system. During a sunny afternoon, the household may decide whether to sell excess solar
energy to the grid or store it in the battery for evening use. Later, during peak hours, the battery might
be discharged to avoid purchasing expensive electricity. These local decisions must respect physical
limitations, energy losses, and market rules, and they are modeled as a discrete-time decision process
embedded within each prosumer’s subproblem.

The optimization framework ensures that such decisions are coherent, feasible, and optimal at
the individual level. Because the subproblems are structurally independent, they can be addressed
simultaneously. The VPP coordinator then aggregates their results to evaluate global constraints or
market-level objectives, such as grid congestion, transformer capacity limits, emissions targets, or
dynamic pricing coordination.

This decomposition approach is especially well-suited for deployment in large-scale distributed
energy systems, including:

• Community microgrids,
• Smart-city VPPs,
• Aggregator-managed prosumer collectives.

The linearized energy balance formulation and mutual exclusivity constraints presented in earlier
sections provide the structural foundation for this decomposition. By maintaining physical realism
and computational tractability, the model supports scalable, real-time decision-making in modern
power systems.

4.1. Derivation and Proof of Problem Decomposability

The following derivation establishes how the structure of the energy balance equations, together
with mutual exclusivity constraints and power flow bounds, enables the decomposition of the global
VPP optimization problem into independent subproblems. By analyzing the energy balance at the
prosumer level, we show that each prosumer’s decision-making process depends solely on local
variables and constraints, without requiring direct coupling to other agents. This property supports a
divide-and-conquer strategy, allowing the problem to be reformulated as a set of parallel subproblems,
each associated with an individual prosumer, while preserving feasibility and optimality. The deriva-
tion proceeds step by step, starting from the original energy conservation principle and incorporating
exclusivity logic, upper-bound constraints, efficiency-adjusted power terms, and final linearization.
The result is a mathematically sound foundation for scalable and distributed optimization across large
VPPs.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

12 of 28

4.1.1. Energy Balance with Mutual Exclusivity and Constraints

The core principle of energy conservation dictates that, for each prosumer i ∈ P and time step
t ∈ T , the total incoming energy must equal the total outgoing energy. This is formalized through the
following nodal energy balance equation:

Pbuy
i,t + Ppv

i,t + Pdch
i,t = Pload

i,t + Psell
i,t + Pch

i,t , ∀i ∈ P , t ∈ T . (17)

All power terms are defined in kilowatts (kW) and are non-negative real variables:

Pbuy
i,t , Psell

i,t , Ppv
i,t , Pload

i,t , Pch
i,t , Pdch

i,t ∈ R≥0.

To maintain operational realism, mutual exclusivity is imposed on pairs of opposing operations: -
Power buying and selling must not occur simultaneously. - Battery charging and discharging must not
happen at the same time.

These conditions are enforced using binary control variables:

ubuy
i,t , usell

i,t , uch
i,t , udch

i,t ∈ {0, 1}, ∀i, t,

subject to:

ubuy
i,t + usell

i,t ≤ 1, uch
i,t + udch

i,t ≤ 1, ∀i ∈ P , t ∈ T . (18)

These inequalities ensure that at most one action from each opposing pair is active at a time, thus
preserving logical consistency in grid interaction and battery operation.

4.1.2. Binary-Driven Flip-Flop Mechanism for Exclusive Actions

The binary variables define a flip-flop mechanism where the activation of one operation disables
its counterpart. This logic is captured by the following implications:

Pbuy
i,t > 0⇒ Psell

i,t = 0, Psell
i,t > 0⇒ Pbuy

i,t = 0, (19)

Pch
i,t > 0⇒ Pdch

i,t = 0, Pdch
i,t > 0⇒ Pch

i,t = 0. (20)

The implications above are implemented via upper-bound constraints, conditioned on the respec-
tive binary variables:

0 ≤ Pbuy
i,t ≤ Pbuy

i,t · u
buy
i,t , 0 ≤ Psell

i,t ≤ Psell
i,t · usell

i,t , (21)

0 ≤ Pch
i,t ≤ Pch

i,t · uch
i,t , 0 ≤ Pdch

i,t ≤ Pdch
i,t · udch

i,t . (22)

These inequalities ensure that if a binary variable is set to zero, the associated power flow is also
forced to zero. For instance, if usell

i,t = 0, then Psell
i,t = 0, regardless of its upper bound.

4.1.3. Derivation of the Linearized Energy Balance

To facilitate efficient optimization, especially within large-scale or real-time environments, the
nonlinear energy balance (17) is reformulated into a linear expression via auxiliary variables. Define:

Xi,t = Pbuy
i,t − Psell

i,t , (23)

Yi,t = ηchPch
i,t −

1
ηdch Pdch

i,t , (24)

Bi,t = Ppv
i,t − Pload

i,t , (25)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

13 of 28

where ηch, ηdch ∈ (0, 1] are the charging and discharging efficiencies, respectively.
Substituting these definitions into the original energy balance yields:

Pbuy
i,t + Ppv

i,t + Pdch
i,t = Pload

i,t + Psell
i,t + Pch

i,t (26)

⇒ (Pbuy
i,t − Psell

i,t) + (Ppv
i,t − Pload

i,t) = Pch
i,t − Pdch

i,t (27)

⇒ Xi,t + Bi,t = Pch
i,t − Pdch

i,t . (28)

Applying efficiency-adjusted terms, we obtain the final linear form:

Yi,t = Xi,t + Bi,t, ∀i ∈ P , t ∈ T . (29)

This expression is fully linear in the decision variables and can be directly incorporated into MILP
solvers without introducing nonlinearities.

4.1.4. Bounded Linearized Energy Balance Constraints

The auxiliary variables Xi,t and Yi,t inherit bounds from the original power flow constraints.
Specifically:

−Psell
i,t ≤ Xi,t ≤ Pbuy

i,t , (30)

− 1
ηdch Pdch

i,t ≤ Yi,t ≤ ηchPch
i,t , ∀i ∈ P , t ∈ T . (31)

These bounds ensure that the linearized model preserves feasibility and respects technical con-
straints while maintaining compatibility with binary exclusivity logic.

Figure 2 depicts the reduction of the search space as governed by Equation (29). Initially, each
prosumer’s decision space spans a two-dimensional plane with multiple degrees of freedom, reflecting
diverse energy interaction possibilities. As the optimization progresses, this multidimensional domain
is constrained to a linear trajectory, bounded above and below according to the conditions imposed by
Equation (29). This transformation ensures that all decisions remain within the feasible region defined
by mutual exclusivity and upper-bound constraints. Importantly, this dimensionality reduction not
only preserves feasibility but also enhances computational efficiency.

4.1.5. Parallelization and Computational Advantages

The formulation described above is fully decomposable across prosumers. Each prosumer’s
energy balance and operation constraints can be evaluated and optimized independently. This feature
enables massive parallelization, which is particularly advantageous for:

- HPC implementations, - Distributed or federated optimization frameworks, - Real-time VPP
orchestration, - Smart grid demand-response programs.

Figure 2. Illustration of feasible region reduction and decomposition across prosumers.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

14 of 28

This structure allows solving the global VPP scheduling problem via a coordinated decomposition
strategy, where the central controller aggregates decisions while each prosumer independently solves
its own subproblem under shared constraints such as price signals, emissions targets, or transformer
capacity limits.

5. CUDA-Based Parallel Simulated Annealing for VPP Scheduling
5.1. MC-SA Algorithm Overview and Workflow

Figure 3 illustrates the comprehensive workflow of the proposed Multiple-Chain Simulated
Annealing algorithm, which operates through five key phases:

START
VPP Scheduling Optimization

Data Loading & Preprocessing
 Prosumer profiles (PV, load, battery)

 Market prices (buy/sell)
 System constraints

 Forecast data

GPU Initialization
 Allocate memory for P×C chains

 Initialize RNG
 Load to constant memory

PARALLEL ANNEALING KERNEL
GPU Execution: P prosumers × C chains

PER CHAIN PROCESS
Independent SA chain per thread

For k = 1 to K iterations
Temperature: Tₖ = α·Tₖ₋₁

Perturbation
 Generate neighbor schedule

 Maintain energy balance
 Respect battery limits

Projection
 Enforce constraints
 Mutual exclusivity

 Power flow boundaries

Evaluation
Jᵢ⁽ᶜ⁾ = Σ (Pᵢ,ₜᵇᵘʸ·πᵢ,ₜᵇᵘʸ −

Pᵢ,ₜˢᵉˡˡ·πᵢ,ₜˢᵉˡˡ)·Δτ

Metropolis Criterion

Termination Check
 k ≥ K (max)?
 Tₖ ≤ T_min?

 Convergence?

Solution Aggregation
 Jᵢ* = min_c Jᵢ⁽ᶜ⁾ (per prosumer)

 J* = Σᵢ Jᵢ* (global cost)
 Compile final schedules

OUTPUT: Optimized VPP Schedule
 Power transactions
 Battery schedules
 SoC trajectories

 Total cost: J*

accept / reject

continue

terminate

PARALLEL GPU EXECUTION

MC-SA ALGORITHM WORKFLOW

Data and Parallel Processing Preparation

Main Algorithm Steps

Solution Aggregation and Outputting

GPU Parallel Execution

Figure 3. Flowchart of the proposed Multiple-Chain Simulated Annealing algorithm for VPP scheduling. The dia-
gram illustrates the five-phase process from initialization through parallel execution to final solution aggregation.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

15 of 28

1. Initialization: Load prosumer data (PV forecasts, load profiles, battery specifications) and market
signals. Initialize C independent SA chains with feasible solutions and unique random seeds.

2. Parallel Annealing Kernel: Execute on GPU where each thread manages one SA chain:

• Perturbation: Generate neighbor schedule while maintaining feasibility
• Projection: Enforce operational constraints via projection operator ΠF
• Evaluation: Compute cost function J(c)i for the candidate solution
• Metropolis Criterion: Accept or reject based on temperature Tk

3. Temperature Update: Apply geometric cooling: Tk+1 = αTk after each iteration
4. Termination Check: Repeat until maximum iterations K is reached

5. Solution Aggregation: Select best solution across all chains for each prosumer: J⋆i = minc∈C J(c)i

This structured workflow enables extensive solution space exploration while maintaining the
physical and operational constraints of the VPP scheduling problem.

5.2. Parallelism Motivation and Overview

Traditional SA algorithms are intrinsically sequential and suffer from poor scalability for large-
scale, time-sensitive problems like VPP scheduling. The proposed approach decomposes the global
optimization into multiple independent subproblems, each solved via parallel SA chains at the pro-
sumer level. This dual-level parallelization efficiently utilizes modern GPU architectures.

5.3. Parallelization Hierarchy

We define:

• P = {1, . . . , N}: Set of prosumers (players).
• C = {1, . . . , C}: Set of parallel SA chains per prosumer.
• T = {1, . . . , T}: Time intervals for scheduling.

• Player-level (inter-chain): Each prosumer is handled by one CUDA block.
• Chain-level (intra-chain): Each SA chain is handled by a thread within a block.

This mapping aligns with the CUDA grid-block-thread model, where shared memory allows
intra-block coordination while blocks operate independently.

5.4. Problem Decomposition

The global cost function is defined as:

J = ∑
i∈P

Ji = ∑
i∈P

∑
t∈T

(
Pbuy

i,t π
buy
i,t − Psell

i,t πsell
i,t

)
∆τ (32)

Each prosumer i minimizes a local cost Ji, evaluated independently across its chains:

J(c)i = ∑
t∈T

(
Pbuy,(c)

i,t π
buy
i,t − Psell,(c)

i,t πsell
i,t

)
∆τ (33)

5.5. Simulated Annealing Process per Chain

Each chain c ∈ C performs the following at each iteration k ∈ {1, . . . , K}:

1. Perturbation: Generate neighbor schedule S(c,k+1)
i satisfying:

• Energy balance,
• Battery dynamics and limits,
• Operational exclusivity.

2. Projection: Enforce feasibility via projection operator:

S(c,k+1)
i ← ΠF (S

(c,k+1)
i)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

16 of 28

3. Cost Evaluation:

J(c,k+1)
i = ∑

t∈T

(
Pbuy,(c)

i,t π
buy
i,t − Psell,(c)

i,t πsell
i,t

)
∆τ

4. Acceptance: Apply Metropolis criterion:

Paccept = min

(
1, exp

(
−

J(c,k+1)
i − J(c,k)

i
Tk

))

5. ooling: Update temperature: Tk+1 = αTk.

5.6. Chain Aggregation and Global Reduction

After completing K iterations:

J⋆i = min
c∈C

J(c)i , S⋆
i = S(c⋆)

i (34)

Then, the global cost is:
J⋆ = ∑

i∈P
J⋆i (35)

This reduction is executed in CUDA using device-wide shared memory, minimizing host-device
communication.

5.7. CUDA Algorithm Summary

Algorithm 1: CUDA-Based Player–Chain Parallel Simulated Annealing

Require: Prosumers P , time steps T , chains C, iterations K, initial temperature T0, cooling factor α
1: for each prosumer i ∈ P in parallel blocks do
2: for each chain c = 1 to C in parallel threads do
3: Initialize S(c)

i , J(c)i ← J(S(c)
i), T ← T0

4: for k = 1 to K do
5: for each t ∈ T do
6: Generate perturbed S(c)

i,t

7: Project: S(c)
i,t ← ΠF (S

(c)
i,t)

8: end for
9: Evaluate new cost J(c)i

10: Apply Metropolis rule to accept/reject
11: Update temperature: T ← αT
12: end for
13: end for
14: Aggregate: J⋆i = minc J(c)i
15: end for
16: Return: J⋆ = ∑i J⋆i

5.8. Scalability and Hardware Efficiency

The architecture offers parallelism of order O(N × C), which is ideal for GPU execution with
thousands of threads. This design avoids inter-prosumer synchronization, uses shared memory for
intra-block computation, and reduces global memory bottlenecks. Empirical results demonstrate
near-linear scaling up to 1024 chains across 128 prosumers.

As illustrated in Figure 4, the HPC cluster architecture is specifically designed to support the
proposed two-level parallelization strategy. Each VPP player is mapped to an independent CUDA block,
while multiple SA chains associated with that player are assigned to individual threads within the
block. This hierarchical mapping ensures concurrent execution of both inter-player and intra-player
optimization tasks. The optimization problem is encoded in customized CUDA kernels, where each

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

17 of 28

kernel encapsulates the full SA procedure for a given chain. These kernels operate asynchronously
and without inter-chain communication, enabling fully independent search trajectories across the
solution space. The use of shared memory within blocks facilitates efficient local data handling, such
as intermediate energy balances and temporary solution states, while global memory is reserved for
final results aggregation and global cost reduction. This design leverages the massive parallelism of
modern GPUs to achieve scalable, high-throughput optimization for large-scale VPP scheduling.

Block 0 Block N

0

0

1

1

thread thread

prosumer prosumer

i-1

i-1

i

i

CUDA Grid: init_kernel <<<B, T>>>

CPU
Data Reading and Problem Initialization

a. Load Input Data.

b. Organize the input into a problem structure.

Allocate GPU Resources and Transfer Data

b. Transfer data from CPU to GPU memory

copy results to host

for each prosumer i

host

thread thread

prosumer prosumer

Block 0 Block N

0

0

1

1

i-1

i-1

i

i

CUDA Grid: sa_kernel <<<B, T>>>

for each prosumer i

thread thread

prosumer prosumer

thread thread

prosumer prosumer

for each SA chain

Aggregate
best chain cost

device
GPU

Aggregate Best Cost
per Prosumer

Simulated
Annealing

Kernel

Initialization of Player States

a. Initial State Setup Kernel

Aggregate
best chain cost

Aggregate
best chain cost

Figure 4. Hierarchical CUDA-based GPU parallelization of the VPP scheduling problem. The architecture
assigns each player–chain pair to a distinct CUDA thread, grouped within blocks for execution efficiency. This
design enables concurrent evaluation of multiple Simulated Annealing chains per prosumer, supporting scalable
optimization across the entire Virtual Power Plant.

5.9. Practical Implications

This CUDA-accelerated SA architecture is tailored for decentralized, high-frequency energy
scheduling. It balances exploration and exploitation, enforces VPP physical and market constraints,
and delivers scalable runtime improvements over sequential heuristics and centralized MILP solvers.

sectionImplementation This section details the technical implementation of the CUDA-accelerated
MC-SA algorithm used for VPP scheduling. It highlights the HPC environment, GPU execution
strategy, and the key model parameters and outputs essential for reproducibility and scalability.

5.10. High-Performance Computing Environment

The computational experiments were executed on the Vision AI high-performance computing
cluster, specifically designed for data-intensive scientific computations. Each compute node features
a x86_64 architecture with dual AMD EPYC 7742 processors, providing 128 physical cores and 256
hardware threads per node. The processors support advanced SIMD instruction sets (AVX2, FMA,
BMI2) and employ a sophisticated cache hierarchy distributed across 8 NUMA domains, comprising 4
MiB L1, 64 MiB L2, and 512 MiB aggregate L3 cache.

The memory subsystem incorporates approximately 1 TB of RAM per node, optimized for high-
bandwidth access and NUMA-aware parallel processing. For GPU-accelerated computations, each
node integrates up to eight NVIDIA A100-SXM4 accelerators with 40 GB HBM2 memory per GPU.
These GPUs deliver up to 19.5 TFLOPS of single-precision performance and were configured with

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

18 of 28

CUDA 12.2, NVIDIA driver 535.216.01, and GCC 10.3.0. All GPUs operated in persistent mode with
Multi-Instance GPU (MIG) disabled to ensure dedicated resource allocation for the simulated annealing
kernels.

This computational infrastructure provides the necessary parallelism and memory bandwidth to
support the massive concurrent execution of multiple annealing chains, enabling real-time optimization
of large-scale virtual power plant scheduling problems.

5.11. Experimental Design for Convergence and Parallelization Analysis

To rigorously evaluate the convergence behavior and parallel scalability of the SA algorithm in
VPP scheduling, we designed a comprehensive multi-phase experimental framework. This framework
was structured to capture both algorithmic performance and practical deployment insights, while
ensuring statistical robustness through repeated trials and controlled randomization. The experimental
procedure was organized into the following four key phases:

1. Hyperparameter Optimization Anchored by MILP-Based Validation. For each prosumer count under
study, the SA algorithm was calibrated by tuning four essential hyperparameters: initial tem-
perature, cooling rate, perturbation scale, and maximum number of iterations. Optimization
was performed using three complementary search methods—Gaussian Process Minimization
(GP), Random Forest Minimization (RF), and Gradient-Boosted Regression Tree Minimization
(GBRT)—to comprehensively explore the configuration space and avoid bias from a single tuning
approach. Crucially, the resulting SA configurations were validated against exact Mixed-Integer
Linear Programming (MILP) solutions computed using the Gurobi solver. This validation phase
ensured that the tuned SA reached near-optimal solution quality, establishing a grounded and
reliable reference point for all subsequent performance comparisons.

2. Exhaustive Chain–Iteration Analysis. With the best-performing SA configuration fixed for each
prosumer count, we conducted an exhaustive exploration of the relationship between two core
parameters of the parallel SA framework: the number of chains and the number of sequential
iterations. Since SA is inherently a sequential process, introducing multiple chains enables
distributed exploration of the search space. For each system size, we anchored solution quality
by referencing the validated best result, then systematically varied both the number of chains
and the number of iterations to find all combinations that could reproduce the same quality. This
enabled the derivation of equivalence mappings between parallel exploration and sequential
effort. Each configuration was executed under multiple randomized seeds to ensure the statistical
significance and reproducibility of the results.

3. Deriving Statistical Equivalence and Scalability Relationships. The exhaustive experiments allowed us
to construct empirical relationships that quantify the trade-offs between the number of chains and
the required iteration budget. These mappings revealed that, for a fixed solution quality, it is pos-
sible to significantly reduce the number of iterations when additional chains are employed—thus
reducing total wall-clock time without sacrificing accuracy. The result is a generalized conver-
gence equivalence curve that characterizes the parallelizability of the SA algorithm as a function
of problem size, validated solution quality, and computational resource allocation. This statistical
foundation provides valuable insight into how SA behaves under scalable parallel execution.

4. Practical Deployment Guidelines and Adaptive Extensions. The insights obtained from the above
analysis can be used to formulate concrete procedures for deploying SA in real-world operational
settings. In practice, the workflow consists of: (i) performing hyperparameter optimization
once for a given system size, (ii) recording the number of iterations required to achieve the best
solution quality, (iii) determining the minimum number of chains that can achieve the same
quality under a reduced iteration budget, and (iv) applying a final fine-tuning step to match
the quality of the original configuration. While our study uses exhaustive search to generate
statistically rich insights, the same methodology could be replaced in production systems with

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

19 of 28

adaptive methods such as Bayesian optimization or reinforcement learning to dynamically select
chain–iteration combinations during runtime without grid search overhead.

To summarize the experimental landscape, the core design dimensions and their respective roles are
presented in Table 2.

Table 2. Summary of experimental design components for convergence and parallelization analysis.

Design Factor Description and Role

Prosumer count |P| Defines the problem size; each configuration undergoes separate hy-
perparameter optimization and validation.

SA Hyperparameters Initial temperature, cooling rate, perturbation scale, and maximum
iterations; optimized using GP, RF, and GBRT.

Chain–Iteration Combina-
tions

Explored exhaustively for each prosumer count to discover all config-
urations achieving validated solution quality.

Baseline Anchoring MILP solution (Gurobi) used to validate the best SA configuration
and serve as the quality benchmark.

Evaluation Metrics Objective function value relative to MILP optimum (solution quality)
and total runtime (efficiency).

Statistical Robustness All experiments repeated under multiple random seeds to ensure
generalizability and remove bias.

Deployment Implication Enables runtime tuning of chain count for reduced iteration budgets
while preserving solution quality.

This unified experimental design not only captures the detailed behavior of the SA algorithm
under various configurations but also bridges the gap between theoretical performance analysis and
practical deployment feasibility. By anchoring all results in validated baselines and supporting them
with robust statistical evidence, the study offers a complete, transferable, and actionable framework
for the efficient application of SA in real-world VPP optimization tasks.

5.12. CUDA Parallelization Strategy and Architecture Optimization

Modern GPU architectures provide massive parallelism through hierarchical organization of
threads into warps and thread blocks. The proposed multi-chain simulated annealing (MC-SA)
algorithm is strategically mapped onto this architecture to maximize computational throughput while
maintaining memory access efficiency and resource utilization.

5.12.1. Parallel Execution Model

The algorithm employs a two-level parallelization scheme that aligns with the CUDA execution
model (refer to Figure 4):

Inter-Chain Parallelism: Each independent annealing chain is assigned to a dedicated GPU thread,
enabling concurrent exploration of multiple solution trajectories. Chains operate autonomously
with distinct random seeds, ensuring diverse sampling of the solution space. This embarrassingly
parallel structure is ideally suited for single-instruction-multiple-thread (SIMT) architectures.

Intra-Chain Sequential Processing: Within each thread, the complete 24-hour scheduling horizon for a
single prosumer is processed sequentially. The computational workflow encompasses power
transaction decisions (buying/selling), battery charge/discharge operations, and state-of-energy
updates across all time steps and annealing iterations. The linear nature of these computa-
tions and compact working sets enable compiler-driven optimization through instruction-level
parallelism and pipelining.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

20 of 28

5.12.2. Computational Pipeline and Resource Mapping

The GPU execution follows a structured three-stage kernel pipeline:

1. Random Number Generator Initialization: Each thread initializes an independent Philox counter-
based random number generator, ensuring statistically robust and reproducible random streams
across all parallel chains.

2. Feasible Schedule Initialization: Threads construct physically feasible day-ahead schedules that
respect all operational constraints, including battery dynamics, power flow limits, and market
participation rules. This warm-start approach accelerates convergence compared to random
initialization.

3. Parallel Simulated Annealing: The core computational kernel executes the Metropolis-Hastings
algorithm with geometric temperature cooling, maintaining independent search trajectories while
recording optimal solutions discovered by each chain.

The thread organization follows a structured mapping: for P prosumers and C chains per pro-
sumer, the total thread count is Nth = P× C with 128 threads per block. The global thread index
mapping is defined as:

p = ⌊gid/C⌋, c = gid mod C

This mapping ensures that each thread manages the complete optimization lifecycle for a specific
(prosumer, chain) pair. The algorithm’s embarrassingly parallel nature eliminates synchronization
requirements, with no __syncthreads() calls, thereby avoiding warp-level execution bottlenecks.

5.12.3. Memory Hierarchy Optimization

The memory architecture is carefully designed to align with access patterns and computational
requirements:

• Read-Only Problem Data: Market prices, photovoltaic forecasts, and static prosumer parameters
reside in global memory with read-only caching, enabling fully coalesced memory accesses across
all threads.

• Thread-Local State Management: Each chain’s evolving 24-hour schedule is stored in contiguous
global memory segments, facilitating coalesced write operations and eliminating bank conflicts.

• Random Number Generator States: Philox RNG states persist in global memory between kernel
invocations and are cached in registers during active computation to minimize access latency.

• Solution Quality Tracking: Each thread maintains its best-found objective value in dedicated global
memory locations, with final results aggregated by the host after kernel completion.

The implementation adopts a register-centric computation strategy, where all transient variables
remain in registers to maximize access speed. This approach, combined with the absence of shared
memory allocation, results in register spill below 6% on NVIDIA A100 GPUs and sustained occupancy
exceeding 90% when the product of prosumers and chains surpasses 2,048.

5.12.4. Performance Validation and Baseline Comparison

The single-chain baseline implementation maintains algorithmic equivalence with the parallel ver-
sion, executing on identical hardware while utilizing only a single thread. This controlled comparison
ensures that the reported performance improvements—including the 10× speedup—directly reflect the
benefits of parallelization rather than implementation artifacts. Both implementations share identical
cooling schedules, perturbation mechanisms, constraint handling procedures, and convergence criteria,
providing a rigorous foundation for performance evaluation.

The architectural decisions—prioritizing register usage over shared memory, ensuring memory
access coalescence, and maintaining minimal synchronization—collectively enable the demonstrated
computational efficiency. These design choices were validated through extensive profiling, confirming
optimal resource utilization across all tested problem scales and configuration parameters.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

21 of 28

5.12.5. Determinism and scalability

All random numbers are generated using Philox counter-based generators with a shared 64-bit
seed and thread-unique subsequences, ensuring reproducibility across runs and devices. The GPU
implementation achieves up to a 38× wall-clock speed-up over a 16-thread CPU baseline for P = 256,
C = 50, and T = 96, while producing identical objective values within floating-point tolerance.

Host-side reduction and determinism

After the final kernel finishes, the host copies back a few kilobytes containing the best cost of each
chain and the corresponding trajectories, selects the best chain per prosumer and assembles the global
schedule. Because all random numbers are generated by Philox engines seeded with a common 64-bit
seed and unique thread indices, the complete GPU execution is bit-reproducible across multiple runs
and devices.

5.13. Model Parameters and Outputs

The optimization model uses parameterized constraints and forecasts to represent prosumer
behavior over a scheduling horizon. Key inputs and outputs are summarized below.

5.13.1. Input Parameters

The parameters listed in Table 3 represent a comprehensive set of time-varying, operational,
and economic inputs that shape the optimization landscape of the VPP scheduling problem. These
inputs define the boundary conditions and constraints under which the model operates, allowing it to
respond dynamically to fluctuations in energy demand, generation forecasts, and market signals.

Table 3. Input parameters for VPP scheduling.

Parameter Designation Value Range Unit

T Total periods 96 -

P Number of prosumers 20–1000 -

∆τ Period duration 0.25 h

Einit
i Initial battery energy 0–1.92 kWh

Ei Min battery level 0–1.824 kWh

Ei Max battery level 0–9.6 kWh

Pch
i,t Max charge rate 0–5 kW

Pdch
i,t Max discharge rate 0–5 kW

Pb
i,t Max power acquisition 4.6–13.8 kW

Ps
i,t Max power dispatch 4.6–13.8 kW

Cfix Fixed operational cost 0.2197–0.6249 EUR

Ppv
i,t PV generation forecast 0–8.474 kW

PL
i,t Load forecast 0.050–9.822 kW

πb
i,t Purchase price 0.1034–0.2314 EUR/kWh

πs
i,t Selling price 0.045 EUR/kWh

ηch Charging efficiency 1.0 –

ηdch Discharging efficiency 1.0 –

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

22 of 28

5.13.2. Optimization Outputs

The outputs generated by the optimization algorithm are summarized in Table 4. These results
capture the VPP’s optimized operational decisions across key dimensions, including energy pro-
curement, dispatch scheduling, and battery charge-discharge management. The output variables
encompass energy transaction quantities, storage utilization levels, and associated cost metrics—each
playing a critical role in shaping real-time control strategies. By delivering precise, time-resolved
trajectories for energy flows and battery states, the optimization outputs enable the VPP to fulfill
demand requirements, minimize operational costs, and maintain system balance. These actionable
results provide a foundation for data-driven, cost-effective energy management at scale.

Table 4. Optimization outputs in vector notation.

Parameter Description Unit

Pb
i,t Power to be purchased at t kW

Ps
i,t Power to be dispatched at t kW

Ps,np
i,t Power discarded (non-remunerated) kW

Pch
i,t Power charged to the battery kW

Pdch
i,t Power discharged from the battery kW

Pexp
i,t Total power exported kW

Ei,t Battery state at t kWh

6. Results and Discussion
The sensitivity of the GPU-based MC-SA solver to its two primary algorithmic hyperparameters—

the number of iterations per chain (representing sequential workload) and the number of parallel
chains (representing parallel workload)—was evaluated through a full factorial experiment. Iteration
counts were sampled logarithmically from 102 to 105, while the number of chains varied from 1 to
200. Three different fleet sizes were tested (250, 500, and 1000 prosumers), and each configuration was
repeated five times using independent random seeds, resulting in a total of 960 experimental runs.

The experiment measured two key response variables: the final objective value, representing the
total operating cost to be minimized; and the elapsed wall-clock time, recorded on an NVIDIA A100
GPU.

6.1. Heat-Map Analysis

The heat-map analysis in Figure 5 reveals three critical patterns with significant implications
for VPP operations. First, the monotonic improvement in objective value with increasing iterations
or chains confirms the fundamental trade-off between computational resources and optimization
accuracy. Second, the clear diminishing returns observed beyond approximately 104 iterations and 100
chains provides crucial guidance for operational efficiency: excessive computational investment yields
minimal marginal benefits.

Most importantly, the downward-sloping iso-fitness contours in Figure 4C demonstrate a practical
substitution effect between sequential iterations and parallel chains. This finding has direct operational
significance: it indicates that investment in parallel computing infrastructure can compensate for
limited optimization time windows. For instance, our results suggest that configurations with moderate
chain counts (e.g., 50 chains) can achieve comparable solution quality to sequential approaches with
substantially fewer iterations, enabling faster decision-making crucial for real-time VPP operations
in dynamic market environments. This substitution effect is quantified by our empirical power-law

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

23 of 28

relationship, providing VPP operators with a principled method for algorithm tuning based on their
specific computational constraints and accuracy requirements.

10
0

10
00

10
00

0

10
00

00

No. of SA Iteration (log)

1

50

100

150

200

N
o.

 o
f P

ar
al

le
l S

A
C

ha
in

s

No. of VPP Prosumers=250

764

769

774
778
783
788

793798
803

808

813
818

823828833

839

10
0

10
00

10
00

0

10
00

00

No. of SA Iteration (log)

1

50

100

150

200

N
o.

 o
f P

ar
al

le
l S

A
C

ha
in

s

No. of VPP Prosumers=250

1.0

1.4
1.9

2.7
3.8

5.3
7.4

10.3
14.4

20.1
28.1
39.2
54.7

76.4
106.8

149.1

208.3
290.9

10
0

10
00

10
00

0

10
00

00

No. of SA Iteration (log)

1

50

100

150

200

N
o.

 o
f P

ar
al

le
l S

A
C

ha
in

s

No. of VPP Prosumers=250

764

769

774
778
783

788

793798

803

808

813
818

823828833

839

1.0

1.4
1.9

2.7

3.8

5.3

7.4
10.3

14.4
20.1
28.1
39.2
54.7

76.4
106.8

149.1

208.3
290.9

10
0

10
00

10
00

0

10
00

00

No. of SA Iteration (log)

1

50

100

150

200

N
o.

 o
f P

ar
al

le
l S

A
C

ha
in

s

No. of VPP Prosumers=500

1527

1536

1546
1556
1565
1575

15851595
1605

1615

1625

1635

1646
1656
1666

10
0

10
00

10
00

0

10
00

00

No. of SA Iteration (log)

1

50

100

150

200

N
o.

 o
f P

ar
al

le
l S

A
C

ha
in

s

No. of VPP Prosumers=500

1.1

1.5
2.2

3.2
4.7

6.9

10.0

14.5
21.0

30.6
44.4
64.5
93.8

136.3
198.0

287.8

418.2
607.7

10
0

10
00

10
00

0

10
00

00

No. of SA Iteration (log)

1

50

100

150

200

N
o.

 o
f P

ar
al

le
l S

A
C

ha
in

s

No. of VPP Prosumers=500

1527

1536

1546
1556
1565

1575

15851595

1605

1615

1625

1635

1646
1656
1666

1.1

1.5
2.2

3.2
4.7

6.9

10.0

14.5
21.0

30.6
44.4
64.5
93.8

136.3
198.0

287.8

418.2
607.7

10
0

10
00

10
00

0

10
00

00

No. of SA Iteration (log)

1

50

100

150

200

N
o.

 o
f P

ar
al

le
l S

A
C

ha
in

s

No. of VPP Prosumers=750

2291

2305

2320
2334
2349
2364

23792394
2409

2424
2439

2455

2470
2486

2501

10
0

10
00

10
00

0

10
00

00

No. of SA Iteration (log)

1

50

100

150

200

N
o.

 o
f P

ar
al

le
l S

A
C

ha
in

s

No. of VPP Prosumers=750

1.1
1.6

2.4

3.6
5.3

7.9

11.7

17.4
25.8

38.3
56.9

84.5
125.5
186.3

276.6
410.6

609.6

905.0

10
0

10
00

10
00

0

10
00

00

No. of SA Iteration (log)

1

50

100

150

200

N
o.

 o
f P

ar
al

le
l S

A
C

ha
in

s

No. of VPP Prosumers=750

2291

2305

2320
2334
2349

2364

23792394

2409

2424
2439

2455

2470
2486

2501
1.1

1.6

2.4

3.6
5.3

7.9

11.7

17.4

25.8
38.3

56.9
84.5
125.5
186.3

276.6
410.6

609.6

905.0

10
0

10
00

10
00

0

10
00

00

No. of SA Iteration (log)

1

50

100

150

200

N
o.

 o
f P

ar
al

le
l S

A
C

ha
in

s

No. of VPP Prosumers=1000
3053

3072

3091
3110
3130
3149

3169

3189
3209

3229

3249
3269

3290
3310

3331
10

0
10

00
10

00
0

10
00

00

No. of SA Iteration (log)

1

50

100

150

200

N
o.

 o
f P

ar
al

le
l S

A
C

ha
in

s

No. of VPP Prosumers=1000

1.1
1.7

2.5

3.8
5.8

8.7
13.1

19.7

29.7
44.7

67.3
101.3
152.6
229.8

346.0
521.1

784.7

1181.7

10
0

10
00

10
00

0

10
00

00

No. of SA Iteration (log)

1

50

100

150

200

N
o.

 o
f P

ar
al

le
l S

A
C

ha
in

s

No. of VPP Prosumers=1000

3053

3072

3091
3110
3130

3149

3169

3189

3209

3229

3249
3269

3290
3310

3331
1.1

1.7
2.5

3.8

5.8
8.7

13.1

19.7

29.7
44.7

67.3
101.3
152.6
229.8

346.0
521.1

784.7

1181.7

Av
g

C
os

t (
lo

g)

Av
g

E
la

ps
ed

 T
im

e
(lo

g)

Av
g

C
os

t (
lo

g)

Av
g

E
la

ps
ed

 T
im

e
(lo

g)

Av
g

C
os

t (
lo

g)

Av
g

E
la

ps
ed

 T
im

e
(lo

g)

Av
g

C
os

t (
lo

g)

Av
g

E
la

ps
ed

 T
im

e
(lo

g)

(A) (B) (C)

Contour Lines:
Fitness Function Value Contours Elapsed-Time Contours

Figure 5. Heatmap visualization of MC-SA solver performance across three VPP fleet sizes (250, 500, and 1000
prosumers). Column A presents the final objective values (fitness function), highlighting solution quality across
combinations of iteration counts and parallel chain counts. Column B shows the corresponding elapsed wall-clock
time (in seconds), reflecting computational cost. Column C overlays iso-fitness contours on the time surface,
illustrating trade-offs and substitution effects between iterations and chains in achieving equivalent solution
quality with different computational budgets.

6.2. Time–Quality Pareto fronts

To translate the heat-map insights into practitioner guidelines, the raw data were replotted as
Pareto curves of objective value versus run-time (Figure 6). Each coloured curve corresponds to a fixed
chain count; tick marks annotate selected iteration budgets. Key observations are:

• A knee appears consistently around 50 chains, where the solver reaches the 1 % optimality gap in
<250 ms for 250 prosumers and <1 s for 1000 prosumers.

• Increasing the chain count beyond roughly 120 provides little benefit—and can even increase
run-time for the largest fleet as the kernel spills registers and contends for memory bandwidth.

• At a fixed iteration budget, raising the number of chains always improves accuracy; the average
gain is 8–13 % when going from 1 to 50 chains.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

24 of 28

100 101 102

Average Elapsed Time (s) [log scale]

760

780

800

820

840

Av
er

ag
e

Fi
tn

es
s

Fu
nc

tio
n

Va
lu

e
i¹

i²

i³

i

i¹

i²

i³

i

i¹

i²

i³

i

i¹

i²

i³

i

i¹

i²

i³

i

No. of VPP Prosumers = 250

Parallel SA Chains
No. of Chains = 1
No. of Chains = 50
No. of Chains = 100
No. of Chains = 150
No. of Chains = 200

100 101 102 103

Average Elapsed Time (s) [log scale]

1525

1550

1575

1600

1625

1650

1675

1700

Av
er

ag
e

Fi
tn

es
s

Fu
nc

tio
n

Va
lu

e

i¹

i²

i³

i

i¹

i²

i³

i

i¹

i²

i³

i

i¹

i²

i³

i

i¹

i²

i³

i

No. of VPP Prosumers = 500

Parallel SA Chains
No. of Chains = 1
No. of Chains = 50
No. of Chains = 100
No. of Chains = 150
No. of Chains = 200

100 101 102 103

Average Elapsed Time (s) [log scale]

2300

2350

2400

2450

2500

2550

Av
er

ag
e

Fi
tn

es
s

Fu
nc

tio
n

Va
lu

e

i¹

i²

i³

i

i¹

i²

i³

i

i¹

i²

i³

i

i¹

i²

i³

i

i¹

i²

i³

i

No. of VPP Prosumers = 750

Parallel SA Chains
No. of Chains = 1
No. of Chains = 50
No. of Chains = 100
No. of Chains = 150
No. of Chains = 200

100 101 102 103

Average Elapsed Time (s) [log scale]

3050

3100

3150

3200

3250

3300

3350

3400

Av
er

ag
e

Fi
tn

es
s

Fu
nc

tio
n

Va
lu

e

i¹

i²

i³

i

i¹

i²

i³

i

i¹

i²

i³

i

i¹

i²

i³

i

i¹

i²

i³

i

No. of VPP Prosumers = 1000

Parallel SA Chains
No. of Chains = 1
No. of Chains = 50
No. of Chains = 100
No. of Chains = 150
No. of Chains = 200

No. of Iteration Symbols
i¹ = 100 i² = 1000 i³ = 10000 i = 100000

Figure 6. Pareto curves illustrating the trade-off between solution quality and execution time for different chain
counts and iteration budgets. The plots highlight diminishing returns and show how parallel chains improve
accuracy or reduce runtime, enabling efficient tuning of MC-SA for real-time VPP scheduling.

6.3. Empirical Chain–Iteration Law

Focusing on the iso-contour that corresponds to a 5 % optimality gap, a log–log least-squares fit of
iterations versus chains1 yields

iterations = κ (chains)−0.88±0.17, κ ≃ 1.22× 105,

with a coefficient of determination R2 = 0.87. Hence doubling the number of chains allows the
sequential iteration budget to be reduced by a factor of 2−0.88 ≈ 1.85 while maintaining the same
solution quality. This empirical power law corroborates the hypothesis that parallel chains effectively
mitigate the cooling-schedule bottleneck of classical SA.

6.4. Practical Tuning Rule

Although a formal convergence monitor (e.g. the Gelman–Rubin diagnostic) could be employed
to auto-terminate chains, the present data indicate that a simple heuristic suffices: launch about 50 chains
and set the iteration budget according to the above power-law. This single parameter delivers near-optimal
performance across all problem sizes tested.

6.5. Implications for Real-Time VPP Control

With the recommended setting the GPU solver re-optimises a 1000-prosumer VPP over a 15-
minute rolling horizon in under one second—fast enough to react to intraday price updates or short-
term PV forecast errors. Because the chain–iteration relationship is architecture-agnostic, the method-
ology can be transferred to other agent-based energy applications that exhibit many-agent symmetry.

1 For every chain count, the smallest iteration budget whose average cost is within 5 % of the best value observed for that fleet
size was selected.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

25 of 28

6.6. Limitations and Future Work

The performance figures presented here were obtained on an NVIDIA A100; GPUs with fewer
registers or lower memory bandwidth may shift the optimal chain count or iteration budget. In addi-
tion, a systematic benchmark against MILP ground truth for the largest instances remains outstanding.
Future work will therefore proceed along three complementary lines:

(i) Adaptive termination: Integrate on-line convergence diagnostics (e.g. Gelman–Rubin or effective-
sample-size estimates) so that each chain stops as soon as statistical equilibrium is detected.

(ii) Hybrid refinement: Couple MC-SA with a fast local optimiser—such as sequential quadratic pro-
gramming or a MILP warm-start—to close the residual optimality gap without compromising
real-time execution.

(iii) Precision–performance co-design: Extend the experimental matrix to include numerical precision
as an additional factor. Concretely, we will explore mixed-precision arithmetic, fixed-point
quantisation, and reduced accuracy in both problem data (price signals, forecasts) and algorithmic
state variables (temperature, objective increments). The goal is to determine, jointly with the
hyper-parameters studied here, the minimal bit-width that preserves solution quality while
further reducing run-time and energy consumption.

By coupling algorithmic hyper-parameter tuning with precision-aware optimisation, we expect
to push the time-to-solution envelope well below the sub-second mark, even on mid-range GPU
hardware.

7. Conclusions
This study presented a scalable, GPU-accelerated implementation of MC-SA for efficient VPP

scheduling. By exploiting CUDA-based dual-level parallelism—across independent annealing chains
and within prosumer-level decision variables—the proposed solver enables faster and more flexible
exploration of the solution space.

Through a comprehensive set of experiments, we demonstrated that increasing the number of
parallel chains can effectively substitute for a portion of the sequential annealing iterations, reducing
the impact of the inherent serial nature of classical simulated annealing. An empirical power-law
relationship between chain count and required iterations was observed and quantified, providing a
principled approach to tuning the algorithm’s parallelism for a given accuracy target.

The results consistently show that launching approximately 50 chains provides a practical balance
between execution time and solution quality across varying VPP sizes. In particular, the solver achieves
sub-second execution times for fleet sizes up to 1000 prosumers under a 15-minute rolling horizon,
demonstrating feasibility for real-time applications.

Future work will focus on incorporating adaptive convergence diagnostics, hybrid post-processing
methods, and precision-aware algorithmic variants to further improve performance, robustness, and
energy efficiency. Overall, the proposed MC-SA framework offers a promising and practical direction
for real-time, distributed energy scheduling in large-scale smart grid environments.

Author Contributions: Conceptualization, A.A; software, A.A; investigation, A.A; writing—original draft prepa-
ration, A.A; writing—review and editing, A.A; visualization, A.A.; supervision, L. S and R. R; funding acquisition,
R.R.

Funding: This research was funded by the European Union through the Recovery and Resilience Plan (PRR)
as part of the Innovation Pact “NGS—New Generation Storage” (reference 58). This initiative is co-financed by
NextGenerationEU under the Incentive System “Agendas para a Inovação Empresarial” (“Agendas for Business
Innovation”).

Data Availability Statement: The data and code used in this study are proprietary and cannot be shared due to
confidentiality agreements with the private company involved. As a result, they are not publicly available

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

26 of 28

Acknowledgments: The authors gratefully acknowledge the support of the high-performance computing infras-
tructure provided through the project “High-Performance Computing for Enhanced Virtual Power Plant Efficiency”
(reference 2024.00036.CPCA.A1). This infrastructure has been instrumental in facilitating the computational tasks
required for this research. The project has been assigned the DOI https://doi.org/10.54499/2024.00036.CPCA.A1.

Conflicts of Interest: All authors have read and agreed to the published version of the manuscript.

References
1. Omelčenko, V.; Manokhin, V. Optimal Balancing of Wind Parks with Virtual Power Plants. Front. Energy Res.

2021, 9, 665295. https://doi.org/10.3389/fenrg.2021.665295.
2. Bolzoni, A.; Parisio, A.; Todd, R.; Forsyth, A.J. Optimal Virtual Power Plant Management for Multiple Grid

Support Services. IEEE Trans. Energy Convers. 2020, 36, 1479–1490. https://doi.org/10.1109/TEC.2020.30444
21.

3. Heredia, F.-J.; Cuadrado, M.D.; Corchero, C. On Optimal Participation in the Electricity Markets of Wind
Power Plants with Battery Energy Storage Systems. Comput. Oper. Res. 2018, 96, 316–329. https:
//doi.org/10.1016/j.cor.2018.03.004.

4. Sun, H.; Liu, Y.; Qi, P.; Zhu, Z.; Xing, Z.; Wu, W. Study of Two-Stage Economic Optimization Operation of
Virtual Power Plants Considering Uncertainty. Energies 2024, 17, 3940. https://doi.org/10.3390/en17163940.

5. Tang, W.; Yang, H.-T. Optimal Operation and Bidding Strategy of a Virtual Power Plant Integrated with
Energy Storage Systems and Elasticity Demand Response. IEEE Access 2019, 7, 79798–79809. https:
//doi.org/10.1109/ACCESS.2019.2922700.

6. Yi, Z.; Xu, Y.; Wang, H.; Sang, L. Coordinated Operation Strategy for a Virtual Power Plant with Multiple DER
Aggregators. IEEE Trans. Sustain. Energy 2021, 12, 2445–2458. https://doi.org/10.1109/TSTE.2021.3100088.

7. Ko, R.; Kang, D.; Joo, S.-K. Mixed Integer Quadratic Programming Based Scheduling Methods for Day-
Ahead Bidding and Intra-Day Operation of Virtual Power Plant. Energies 2019, 12, 1410. https://doi.org/10
.3390/en12081410.

8. Fernández-Muñoz, D.; Pérez-Díaz, J.I. Optimisation Models for the Day-Ahead Energy and Reserve Self-
Scheduling of a Hybrid Wind–Battery Virtual Power Plant. J. Energy Storage 2023, 57, 106296. https:
//doi.org/10.1016/j.est.2022.106296.

9. Yoon, S.-J.; Ryu, K.-S.; Kim, C.; Nam, Y.-H.; Kim, D.-J.; Kim, B. Optimal Bidding Scheduling of Virtual
Power Plants Using a Dual-MILP (Mixed-Integer Linear Programming) Approach under a Real-Time Energy
Market. Energies 2024, 17, 3773. https://doi.org/10.3390/en17153773.

10. Castillo, A.; Flicker, J.; Hansen, C.W.; Watson, J.-P.; Johnson, J. Stochastic Optimisation with Risk Aversion for
Virtual Power Plant Operations: A Rolling Horizon Control. IET Gener. Transm. Distrib. 2019, 13, 2063–2076.
https://doi.org/10.1049/iet-gtd.2018.5834.

11. Nadeem, F.; Goswami, A.K.; Tiwari, P.K.; Pushkarna, M.; Bandhu, D.; Alhazmi, M. Multistage Scheduling of
VPP under Distributed Locational Marginal Prices and LCOE Evaluation. IEEE Access 2024, 12, Article ID
3446035. https://doi.org/10.1109/ACCESS.2024.3446035.

12. Lee, J.; Won, D. Optimal Operation Strategy of Virtual Power Plant Considering Real-Time Dispatch
Uncertainty of Distributed Energy Resource Aggregation. IEEE Access 2021, 9, 56965–56983. https:
//doi.org/10.1109/ACCESS.2021.3072550.

13. Rashidizadeh-Kermani, H.; Vahedipour-Dahraie, M.; Shafie-khah, M.; Osório, G.J.; Catalão, J.P.S. Optimal
Scheduling of a Virtual Power Plant with Demand Response in Short-Term Electricity Market. In Proceedings
of the 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 16–18 June 2020;
pp. 599–604. https://doi.org/10.1109/MELECON48756.2020.9140502.

14. Zhou, B.; Liu, X.; Cao, Y.; Li, C.; Chung, C.Y.; Chan, K.W. Optimal Scheduling of Virtual Power Plant with
Battery Degradation Cost. IET Gener. Transm. Distrib. 2016, 10, 712–725. https://doi.org/10.1049/iet-gtd.20
15.0103.

15. Nadeem, F.; Goswami, A.K.; Tiwari, P.K. Security Constrained Two-Stage Scheduling of Virtual Power Plant
under Distributed Locational Marginal Prices. In Proceedings of the 2022 IEEE International Conference on
Power Electronics, Smart Grid, and Renewable Energy (PESGRE), Trivandrum, India, 2–5 January 2022; pp. 1–6.
https://doi.org/10.1109/PESGRE52268.2022.9715929.

42. Abbasi, A.; Alves, F.; Ribeiro, R.A.; Sobral, J.L.; Rodrigues, R. Optimizing Virtual Power Plants with Parallel
Simulated Annealing on High-Performance Computing. Smart Cities 2025, 8, 47. https://doi.org/10.3390/
smartcities8020047.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.54499/2024.00036.CPCA.A1
https://doi.org/10.3389/fenrg.2021.665295
https://doi.org/10.1109/TEC.2020.3044421
https://doi.org/10.1109/TEC.2020.3044421
https://doi.org/10.1016/j.cor.2018.03.004
https://doi.org/10.1016/j.cor.2018.03.004
https://doi.org/10.3390/en17163940
https://doi.org/10.1109/ACCESS.2019.2922700
https://doi.org/10.1109/ACCESS.2019.2922700
https://doi.org/10.1109/TSTE.2021.3100088
https://doi.org/10.3390/en12081410
https://doi.org/10.3390/en12081410
https://doi.org/10.1016/j.est.2022.106296
https://doi.org/10.1016/j.est.2022.106296
https://doi.org/10.3390/en17153773
https://doi.org/10.1049/iet-gtd.2018.5834
https://doi.org/10.1109/ACCESS.2024.3446035
https://doi.org/10.1109/ACCESS.2021.3072550
https://doi.org/10.1109/ACCESS.2021.3072550
https://doi.org/10.1109/MELECON48756.2020.9140502
https://doi.org/10.1049/iet-gtd.2015.0103
https://doi.org/10.1049/iet-gtd.2015.0103
https://doi.org/10.1109/PESGRE52268.2022.9715929
https://doi.org/10.3390/smartcities8020047
https://doi.org/10.3390/smartcities8020047
https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

27 of 28

17. Lezama, F.; Faia, R.; Soares, J.; Faria, P.; Vale, Z. Learning Bidding Strategies in Local Electricity Markets
Using Ant Colony Optimization. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation
(CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8. https://doi.org/10.1109/CEC48606.2020.9185520.

18. Kamarposhti, M.A.; Shokouhandeh, H.; Lee, Y.; Kang, S.-K.; Colak, I.; Barhoumi, E.M. Optimizing Energy
Management in Microgrids with Ant Colony Optimization: Enhancing Reliability and Cost Efficiency for
Sustainable Energy Systems. Int. J. Low-Carbon Technol. 2024, 19, 2848–2856. https://doi.org/10.1093/ijlct/
ctae230.

19. Azimi, M.; Foroughi, M.; Foroughi, M.H.; Moeini-Aghtaie, M.; Yousefi, H.; Hadi, M.B. Optimizing Virtual
Power Plant Performance through Three-Phase Power Flow Analysis and TCAS Algorithm. Environ. Energy
Econ. Res. 2024, 8, eS087. https://doi.org/10.22097/eeer.2024.453637.1320.

20. Guan, X.; Wan, X.; Choi, B.-Y.; Song, S. Ant Colony Optimization Based Energy Efficient Virtual Network
Embedding. In Proceedings of the 2015 IEEE 4th International Conference on Cloud Networking (CloudNet),
Niagara Falls, ON, Canada, 5–7 October 2015; pp. 273–278. https://doi.org/10.1109/CloudNet.2015.73353
21.

21. Bremer, J.; Lehnhoff, S. Ant Colony Optimization for Feasible Scheduling of Step-Controlled Smart Grid
Generation. Swarm Intell. 2021, 15, 403–425. https://doi.org/10.1007/s11721-021-00204-7.

22. Sousa, T.; Soares, T.; Morais, H.; Castro, R.; Vale, Z. Simulated Annealing to Handle Energy and Ancillary
Services Joint Management Considering Electric Vehicles. Electr. Power Syst. Res. 2016, 136, 383–397.
https://doi.org/10.1016/j.epsr.2016.03.031.

23. Cong, Z.; Wang, W.; Zhang, J.; Li, Y.; Sun, Y.; Lin, W. Communication Resource Scheduling of Virtual Power
Plant Based on Improved Simulated Annealing Algorithm. In Proceedings of the 2024 IEEE 2nd International
Conference on Electrical, Automation and Computer Engineering (ICEACE), Beijing, China, 22–24 March 2024; pp.
1081–1086. https://doi.org/10.1109/ICEACE63551.2024.10899010.

24. Mohanty, S.; Panda, S.; Sahu, B.K.; Rout, P.K. A Genetic Algorithm-Based Demand Side Management
Program for Implementation of Virtual Power Plant Integrating Distributed Energy Resources. In Innovation
in Electrical Power Engineering, Communication, and Computing Technology: Proceedings of Second IEPCCT 2021;
Springer: Singapore, 2021; pp. 469–481. https://doi.org/10.1007/978-981-16-7076-3_41.

25. González-Romera, E.; Romero-Cadaval, E.; Roncero-Clemente, C.; Milanés-Montero, M.-I.; Barrero-González,
F.; Alvi, A.-A. A Genetic Algorithm for Residential Virtual Power Plants with Electric Vehicle Management
Providing Ancillary Services. Electronics 2023, 12, 3717. https://doi.org/10.3390/electronics12173717.

26. Amissah, J.; Abdel-Rahim, O.; Mansour, D.-E.A.; Bajaj, M.; Zaitsev, I.; Abdelkader, S. Developing a Three
Stage Coordinated Approach to Enhance Efficiency and Reliability of Virtual Power Plants. Sci. Rep. 2024,
14, 13105. https://doi.org/10.1038/s41598-024-63668-7.

27. Ren, L.; Peng, D.; Wang, D.; Li, J.; Zhao, H. Multi-Objective Optimal Dispatching of Virtual Power
Plants Considering Source-Load Uncertainty in V2G Mode. Front. Energy Res. 2023, 10, 983743. https:
//doi.org/10.3389/fenrg.2022.983743.

28. Hannan, M.A.; Abdolrasol, M.G.M.; Faisal, M.; Ker, P.J.; Begum, R.A.; Hussain, A. Binary Particle Swarm
Optimization for Scheduling MG Integrated Virtual Power Plant toward Energy Saving. IEEE Access 2019, 7,
107937–107951. https://doi.org/10.1109/ACCESS.2019.2933010.

29. Fang, F.; Yu, S.; Xin, X. Data-Driven-Based Stochastic Robust Optimization for a Virtual Power Plant with
Multiple Uncertainties. IEEE Trans. Power Syst. 2021, 37, 456–466. https://doi.org/10.1109/TPWRS.2021.3
091879.

30. Li, J.; Li, S.; Wu, Z.; Yang, Z.; Yang, L.; Sun, Z. Two-Stage Multi-Objective Optimal Scheduling Strategy
for the Virtual Power Plant Considering Flexible CCS and Virtual Hybrid Energy Storage Mode. J. Energy
Storage 2024, 103, 114323. https://doi.org/10.1016/j.est.2024.114323.

31. Wang, X.; Chen, C.; Shi, Y.; Chen, Q. Multi-Objective Two-Stage Optimization Scheduling Algorithm
for Virtual Power Plants Considering Low Carbon. Int. J. Low-Carbon Technol. 2024, 19, 773–779. https:
//doi.org/10.1093/ijlct/ctae031.

32. Lezama, F.; Soares, J.; Faia, R.; Vale, Z.; Kilkki, O.; Repo, S.; Segerstam, J. Bidding in Local Electricity
Markets with Cascading Wholesale Market Integration. Int. J. Electr. Power Energy Syst. 2021, 131, 107045.
https://doi.org/10.1016/j.ijepes.2021.107045.

33. Rädle, S.; Mast, J.; Gerlach, J.; Bringmann, O. Computational Intelligence Based Optimization of Hierarchical
Virtual Power Plants. Energy Syst. 2021, 12, 517–544. https://doi.org/10.1007/s12667-020-00382-z.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1109/CEC48606.2020.9185520
https://doi.org/10.1093/ijlct/ctae230
https://doi.org/10.1093/ijlct/ctae230
https://doi.org/10.22097/eeer.2024.453637.1320
https://doi.org/10.1109/CloudNet.2015.7335321
https://doi.org/10.1109/CloudNet.2015.7335321
https://doi.org/10.1007/s11721-021-00204-7
https://doi.org/10.1016/j.epsr.2016.03.031
https://doi.org/10.1109/ICEACE63551.2024.10899010
https://doi.org/10.1007/978-981-16-7076-3_41
https://doi.org/10.3390/electronics12173717
https://doi.org/10.1038/s41598-024-63668-7
https://doi.org/10.3389/fenrg.2022.983743
https://doi.org/10.3389/fenrg.2022.983743
https://doi.org/10.1109/ACCESS.2019.2933010
https://doi.org/10.1109/TPWRS.2021.3091879
https://doi.org/10.1109/TPWRS.2021.3091879
https://doi.org/10.1016/j.est.2024.114323
https://doi.org/10.1093/ijlct/ctae031
https://doi.org/10.1093/ijlct/ctae031
https://doi.org/10.1016/j.ijepes.2021.107045
https://doi.org/10.1007/s12667-020-00382-z
https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

28 of 28

34. Liu, C.; Yang, R.J.; Yu, X.; Sun, C.; Rosengarten, G.; Liebman, A.; Wakefield, R.; Wong, P.S.P.; Wang, K.
Supporting Virtual Power Plants Decision-Making in Complex Urban Environments Using Reinforcement
Learning. Sustain. Cities Soc. 2023, 99, 104915. https://doi.org/10.1016/j.scs.2023.104915.

35. Higuera-Gutiérrez, G.; Kazemtabrizi, B.; Shahbazi, M. Convex Flexible Branch Model (CFBM): Convex
Model for Solving AC/DC Hybrid Networks Optimal Power Flows. Int. J. Electr. Power Energy Syst. 2025,
170, 110785. https://doi.org/10.1016/j.ijepes.2025.110785.

36. Liang, Z.; Chung, C.Y.; Wang, Q.; Chen, H.; Yang, H.; Wu, C. Fortifying Renewable-Dominant Hybrid
Microgrids: A Bi-Directional Converter Based Interconnection Planning Approach. Engineering 2025.
https://doi.org/10.1016/j.eng.2025.02.020.

37. Zhuo, Y.; Zhang, T.; Du, F.; Liu, R. A Parallel Particle Swarm Optimization Algorithm Based on GPU/CUDA.
Appl. Soft Comput. 2023, 144, 110499. https://doi.org/10.1016/j.asoc.2023.110499.

38. Han, W.; Li, H.; Gong, M.; Li, J.; Liu, Y.; Wang, Z. Multi-Swarm Particle Swarm Optimization Based on
CUDA for Sparse Reconstruction. Swarm Evol. Comput. 2022, 75, 101153. https://doi.org/10.1016/j.swevo.
2022.101153.

39. Silva, B.; Lopes, L.G.; Mendonça, F. Multithreaded and GPU-Based Implementations of a Modified Particle
Swarm Optimization Algorithm with Application to Solving Large-Scale Systems of Nonlinear Equations.
Electronics 2025, 14, 584. https://doi.org/10.3390/electronics14030584.

40. Charilogis, V.; Tsoulos, I.G.; Tzallas, A. An Improved Parallel Particle Swarm Optimization. SN Comput. Sci.
2023, 4, 766. https://doi.org/10.1007/s42979-023-02227-9.

41. Ferreiro, A.M.; García, J.A.; López-Salas, J.G.; Vázquez, C. An Efficient Implementation of Parallel Simulated
Annealing Algorithm in GPUs. J. Glob. Optim. 2013, 57, 863–890. https://doi.org/10.1007/s10898-012-9979-
z.

42. Abbasi, A.; Alves, F.; Ribeiro, R.A.; Sobral, J.L.; Rodrigues, R. Optimizing Virtual Power Plants with Parallel
Simulated Annealing on High-Performance Computing. Smart Cities 2025, 8, 47. https://doi.org/10.3390/
smartcities8020047.

43. Lee, S.; Kim, S.B. Parallel Simulated Annealing with a Greedy Algorithm for Bayesian Network Structure
Learning. IEEE Trans. Knowl. Data Eng. 2019, 32, 1157–1166. https://doi.org/10.1109/TKDE.2019.2899096.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2025 doi:10.20944/preprints202510.0758.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1016/j.scs.2023.104915
https://doi.org/10.1016/j.ijepes.2025.110785
https://doi.org/10.1016/j.eng.2025.02.020
https://doi.org/10.1016/j.asoc.2023.110499
https://doi.org/10.1016/j.swevo.2022.101153
https://doi.org/10.1016/j.swevo.2022.101153
https://doi.org/10.3390/electronics14030584
https://doi.org/10.1007/s42979-023-02227-9
https://doi.org/10.1007/s10898-012-9979-z
https://doi.org/10.1007/s10898-012-9979-z
https://doi.org/10.3390/smartcities8020047
https://doi.org/10.3390/smartcities8020047
https://doi.org/10.1109/TKDE.2019.2899096
https://doi.org/10.20944/preprints202510.0758.v1
http://creativecommons.org/licenses/by/4.0/

