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Abstract: In this study, Acisu Basin, i.e. headwater of Gediz Basin, in Tiirkiye, was modelled using
three types of hydrological models and three different calibration algorithms. A well-known
lumped model (GR4]), a commonly used semi-distributed (SWAT+), and a skillful distributed
(mHM) hydrological models were built and integrated with Parameter Estimation Tool (PEST).
PEST is a model independent calibration tool including three algorithms i.e. Levenberg Marquardt
(L-M), Shuffled Complex Evolution (SCE), and Covariance Matrix Adoption Evolution Strategy
(CMA-ES). Calibration period was 1991-2000, and validation results were obtained for 2002-2005.
The effect of model structure and calibration algorithm selection on discharge simulation was eval-
uated via comparison of 9 different model-algorithm combinations. Results have shown that mHM
and CMA-ES combination performed the best discharge simulation according to NSE values (cali-
bration: 0.67, validation: 0.60). Although statistically the model results were classified as acceptable,
the models mostly missed the peak values in hydrograph. This problem may be related to the inter-
ventions made in 2000-2001 years and possible to overcome by changing the calibration and valida-
tion periods, increasing the number of iterations or using the naturalized gauge data.
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1. Introduction

Hydrologic models are used in various areas such as climate models, management
of water resources, design of hydraulic structures, and drought/flood prediction. Capabil-
ities of hydrologic models are limited with the used data and measurement techniques. In
the circumstances that the input of model is insufficient, temporal or spatial extrapolation
is used using available data. At the same time, the changes in land use and climate condi-
tions are needed to be considered in terms of their effects on hydrologic cycle [1].

Hydrologic models classified in terms of their spatial resolutions are investigated in
this study. These structures are lumped, semi-distributed, and distributed namely.
Lumped models represent whole basin as a single unit by using the averages of the vari-
ables belong to the basin [2]. Distributed models split the basin into grids and conducts
the process for each grid individually with the inputs and state variables belong to these
grids. Semi-distributed models are presented to literature to combine the advantages of
both lumped and distributed models. Instead of defining the spatial variability as contin-
uous such as distributed models, they define the basin as integration of lumped models.
In this way, it requires less computational load and smaller size data than distributed
models. It also represents the characteristics and heterogeneity of the basin better than
lumped models. There are numerous studies in the literature carried out about hydrologic
modelling over decades [3-5]. Study of [6] focused on the changes in Lake Tana Basin,
Ethiopia, using different models and their hydrologic responses. They built 2 lumped
models (GR4] and IHACRES) and a semi-distributed model (SWAT) for the study area
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using four major gauged watersheds. Findings of the study showed that the lumped mod-
els demonstrated superior discharge simulation performance to SWAT in small catchment
although the situation is vice versa in large catchments since SWAT represents the heter-
ogeneity of these catchments. In another study, [7] aimed to test GR4] and SWAT for ro-
bustness. Both have undergone calibration and validation studies during climatically di-
verse time periods. Both of them exhibit relative robustness despite a greater performance
decline for the GR4J model between calibration and validation. Additionally, study of [8]
compared three lumped models” — GR4J, Australian Water Balance Model (AWMB), and
Sacramento — discharge performances on Godavari River Basin, India, considering NSE
values of calibration results. Results of the study showed that GR4] model is suggested in
terms of discharge simulations for the study area. In another study of [9], 15 hydrologic
model including GR4J, SWAT, and mHM was built for Lake Erie, USA, to evaluate mod-
els’” capabilities on hydrologic variables such as discharge, evaporation, and soil moisture.
The findings of the study demonstrated that the best hydrographs are produced by mHM
model in terms of resultant NSE values.

Regardless of their classification, the non-measurable parameters of each hydrologi-
cal model need to be adjusted to represent real basin characteristics. This process is known
as calibration [10]. Initially, calibration process was conducted manually based on expert
knowledge. Today, using automatic calibration methods with advantages of improved
technology is more common. These calibration methods avoid subjective interceptions,
computation load, and waste of time by using different algorithms and objective func-
tions. Auto-calibration algorithms attain parameter values to optimize objective function
value. There are two different types of auto-calibration algorithms namely local and
global. Local calibration algorithms aim to converge the optimum objective function value
based on 3 main criteria; movement direction of parameters, iteration number, and termi-
nation criteria. Local methods that assign gradient-based values to the parameters in their
range accept the zero-slope point as the optimum value. This causes possible optimum
values to be missed if more than one optimum solution is found. Global methods over-
come this problem by approaching the parameter space from all sides. They manipulate
parameter values in order to improve the objective function by using deterministic and
probabilistic rules [11]. These algorithm types had been used with various hydrologic
models in several studies. Study of [12] integrated one local (Levenberg-Marquardt (LM),
and two global (Dynamically Dimensioned Search (DDS) and Shuffled Complex Evolu-
tion (SCE)) with a semi-distributed hydrologic model (HEC-HMS) built on various basins
in Germany. They used an empirical combination of Nash-Sutcliffe Efficiency (NSE) and
volumetric error (VoE) as objective function for discharge calibration, and found that DDS
is superior to other algorithms in this study’s circumstances with 0.75-0.90 in calibration
and 0.57-0.73 in validation. Furthermore, study of [13] investigated the value of different
soil moisture products (The Advanced Microwave Scanning Radiometer on the Earth Ob-
serving System (EOS) Aqua satellite (AMSR-E), soil moisture active passive (SMAP), and
total water storage anomalies from Gravity Recovery and Climate Experiment (GRACE))
on Hydrologiska Bryans Vattenbalansavdelning (HBV) by multi-objective calibration
(discharge (Q), groundwater (GW), soil moisture (SM)) and soil for each model set-up
with Levenberg-Marquardt (LM), shuffled complex evolution (SCE), and covariance ma-
trix adoption evolution strategy (CMAES) algorithms for Moselle River Basin in Germany
and France. Findings of the study demonstrated that global optimization algorithms (SCE
and CMAES) outperformed the local algorithm (LM) after 3000 iterations for each method
according to three different objective functions such as NSE-Q, NSE-LNQ, and CORR.
Additionally, [14] compared the discharge simulation performances resulting from cali-
bration with SCE and sequential uncertainty fitting algorithm (SUFI2) for SWAT model
to assess climate change impact for Upper Coruh Basin in Tiirkiye under regional climate
projections (RCP 4.5 and RCP 8.5). SUFI2 algorithm has 0.67 and 0.62 NSE values for cal-
ibration and validation periods respectively, SCE algorithm has shown better perfor-
mance with 0.73 (calibration) and 0.79 (validation) NSE values. There have been many
studies on performance comparison of similar and simple models; however, the effect of
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sophisticated models and global search algorithms on discharge performances in a head-
water catchment has not been studied yet. Selection of model and calibration algorithm is
key for discharge simulations in catchment hydrology.

In this study, we integrated three different model structures with three calibration
algorithms for Acisu Basin. For that, we used PEST and ERA5 model inputs. We selected
GR4J as lumped model, SWAT+ as semi-distributed model, and mHM as distributed
model; Levenberg-Marquardt (LM), Shuffled Complex Evolution (SCE), and Covariance
Matrix Adoption Evolution Strategy (CMAES) as calibration algorithms. The resulting
discharge values were compared for all combinations. The effect of model structure and
calibration algorithm on discharge performances was evaluated according to these results.

2. Materials and Methods
2.1. Study Area

Gediz Basin which is located at the Aegean Region of Tiirkiye has 1.703.586 km? sur-
face area. It is one of the 5 largest basins in Tiirkiye. It originates from Murat Mountain in
Kutahya. The longest river in the basin is Gediz River which ends in Aegean Sea from
[zmir. Including 5 dams, 2 lakes and 1 hydropower plant, Gediz Basin is of capital im-
portance in terms of water resources. Water potential of the basin consists of % 58,63 po-
tential evapotranspiration loss, % 28,22 groundwater recharge, and % 13,15 surface flow.
The Acisu Basin is a sub-basin of Gediz Basin and it has 3256 km? drainage area and 890
m height. It locates at the headwater of the Gediz Basin with its semi-arid climate. The
study area belongs to the drainage area of stream gauging station 523. Study domain is
given in Figure 1.
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Figure 1. Study domain.

2.2. Data

In this study, common datasets are defined for each model to evaluate and compare
results fairly. So, the three models are driven by ERA5 reanalysis data. Each model re-
quires various data types in different resolutions. Therefore, the daily meteorological in-
put - precipitation (P (mm)), potential evapotranspiration (PET (mm)), minimum and
maximum temperature (Tmin (°C), Tmax (°C)) - obtained from ERAS5 dataset is used by
downscaling in line with each model’s resolution. Further, measured P, Taverage , Tmin, and
Tmax data belongs to General Directorate of Meteorology of Tiirkiye (MGM) was used to
evaluate ERA5 data (Table 1). Additionally, physically based models (SWAT+ and mHM)
are driven by spatial data such as digital elevation model, land use, and soil data. DEM
and land use data were shown in Figure 1 within study domain. Having 30 m spatial
resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
DEM data is used for SWAT+ and mHM. As land use data, Coordination of Information
on the Environment (CORINE) open-source land use map with 100 m spatial resolution;
as soil map, Food and Agriculture Organisation’s (FAO) digital soil map of the world with
1/5.000.000 scale data is used.
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Table 1. Monthly and annual data belongs to General Directorate of Meteorology of Tiirkiye and

ERAS5.
Total Precipitation Average Temperature = Maximum Temperature = Minimum Temperature
(mm) (°C) (°C) 0
MGM ERA5 MGM ERA5 MGM ERA5 MGM ERA5

January 69.2 59.7 3.2 3.2 12.8 12.3 -10.6 -9.4
February 62.2 56.1 3.4 3.9 14.4 14.2 -8.9 -9.9
March 60.0 58.6 6.5 7.2 19.2 18.8 -6.5 -5.2
April 63.5 56.6 11.0 11.9 21.5 21.6 -1.2 -0.1
May 43.7 40.2 15.6 16.8 23.3 249 4.2 52
June 19.8 17.9 19.8 21.4 27.3 28.6 9.9 9.6
July 17.4 10.2 23.3 24.6 30.2 30.8 12.8 15.5
August 12.4 7.6 23.3 24.3 29.7 30.4 15.9 17.3
September 14.7 10.1 19.2 20.0 26.9 28.3 9.4 11.1
October 37.5 27.2 14.2 14.6 22.8 23.0 3.1 4.1
November 74.0 58.4 8.4 8.3 18.3 17.2 -2.9 -1.8
December  88.3 69.3 4.7 4.6 13.9 13.2 -5.4 -5.6
Annual 562.8 472.0 12.8 13.5 30.2 30.8 -10.6 -9.9

Precipitation and average temperature data were examined using scatter diagrams
and regression equations (Figure 2) to evaluate ERA5 input and interpret the results.
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Figure 2. Comparison of MGM and ERA5 data

As discharge observation, data of stream gauge 523 -belongs to General Directorate
of State Hydraulic Works. Tiirkiye- is used. Line graph of the discharge data is given in
Figure 3.
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—— Observed Streamfiow
Figure 3. Observed discharge data of gauge 523.

2.3. Hydrologic Models

To compare the effect of model structure on the discharge, three different models
which are classified based on their spatial resolution are set-up on Acisu Basin. GR4]J is
lumped, SWAT+ is semi-distributed, and mHM is distributed hydrologic model. Each
model has different procedures and parametrizations to proceed hydrologic processes
with different resolutions.

2.3.1. GR4J

Lumped model facilitates the use and set-up process. It shows whole basin’s response
to the forcing inputs. Constituting semi-distributed and distributed hydrologic models by
gathering, lumped models are fundamental and starting point of these models [15]. Génie
Rural & 4 Paramétres Journalier (GR4]) is a lumped hydrologic model processing in daily
time-step, presented and improved in early 2000s [16]. It requires daily P and PET as input
time-series. To obtain daily data as time-series from ERA5, mean areal average values of
the grids are calculated using spatial P and PET data. GR4] involve these inputs to the
hydrologic processes using its 4 parameters given in Table 2.

Table 2. GR4] parameter descriptions.

Parameter Description
X1 Production storage capacity (mm)
Xz Groundwater exchange coefficient (mm)
X3 One day ahead maximum capacity of the routing store (mm)
X4 Time base of unit hydrograph (day)

GR4] conducts the process represents rainfall-runoff relationship via 2 box model
method which are called production storage and routing storage. Structure of the model
is given in Figure 4. As the precipitation reaches to the surface, the first unit of the model
that meets the water mass after interception process is production storage. Most amount
of net precipitation after infiltration is transferred to routing storage by using unit hydro-
graph method. Then remaining amount of net precipitation is routed by a unit hydro-
graph the base width of which is twice that of the previous step. Finally, the amount of
water coming from routing storage and routed part of remained net precipitation merge.
Summation of these values end up with the output of GR4] which is discharge.
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Figure 4. GR4] model structure.

During the set-up process of GR4J, we utilized R software [17] and airGR package
[18] which are both open-source.

2.3.2. SWAT+

Soil water assessment tool is published by Dr. Jeff Arnold as a result of his study
accomplished for USDA-ARS (U.S. Department of Agriculture — Agricultural Research
Service) to foresee the effects of land use and management in a basin with heterogeneous
structure [19]. Besides it is a physically based model, SWAT is semi-distributed and con-
tinuous hydrologic model working at a daily time-step which has a wide use area such as
rainfall-runoff relationship, climate change, environmental studies at small or large basins
[20-22]. Semi-distributed structure of the model consists of sub-basins and hydrologic re-
sponse units (HRUs) in detail. In earlier versions of SWAT model, the smallest spatial sub-
division of a basin is represented by HRUs. As a new feature in SWAT+, HRUs are divided
in landscape units (LSUs). LSUs are divided into two part namely upland and floodplain.
The HRUs are homogenous in themselves in terms of their physical characteristics [23].
We used QGIS software and QSWAT+ plugin in this study to set-up the model because of
its easy-to-use interface and being the most up-to-date version of SWAT+ model. It re-
quires DEM, land use, soil map as physical data; precipitation, temperature, wind speed,
solar radiation, and relative humidity as climatic and hydrologic data. Although SWAT+
can automatically calculate PET with different methods, we added the ERA5 PET data to
compare results fairly with other models. We only focused on discharge output of SWAT+
model in line with our objective. Discharge value is obtained at the outlet location by rout-
ing the output of each HRU individually through the main outlet. During the modelling
process, we divided the Acisu Basin into 5 sub-basins and 1981 HRUs ranging from 6 to
60.26 km2 surface area. SWAT+ conducts the process in two phases such as land phase
and routing phase. Considering the information given in [24], we used SCS-CN (Soil Con-
servation Service — Curve Number) method in land phase, and Muskingum method in
routing phase.

2.3.3. mHM

mesoscale Hydrologic Model (mHM) is a distributed, physically based and continu-
ous hydrologic model published by a team from UFZ (Helmholtz Centre for Environmen-
tal Research) [25,26]. Fundamental numerical approaches about hydrologic processes of
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the mHM are tested by using well-known and acknowledged lumped models such as
HBYV [27] and VIC [28]. Input and parameter variety for each grid of mHM is setting this
model apart from other rainfall-runoff models. With this difference, changes in character-
istics of the basin can be represented better as the spatial resolution of model run and
forcing data increases. Model structure is given in Figure 5.

P: Daily precipitation depth (mmyd)

R Snow precipitation depth (mm/d)

I: Becharge, infiltration intensity or effective precipitation (mm/d)
C: Percolation {mm/'d)

x,: Depth of the canopy storage (mm)

x,: Depth of the snowpack (mm)

x5: Depth of the soil moisture content in the root zone (mm)

x,: Depth of the impounded water in reserveir {mm)

x5: Depth of the water storage in the subsurface reservoir (mm)

x,: Depth of the water storage in the groundwater reservoir (mm)

x,: Depth of the water storage in the channel reservoir (mm)
I J’ ' z — E,: Actual evaporation intensity from the canopy (mm/d)
C¢ T, E,: Actual evapotranspiration intensity (mmy/d)

E,: Actual evaporation from free water bedies (mm/d)

g,: Surface runoff from impervious areas (m#/s)

q,: Fast interflow (m¥/s)

g5: Slow interflow (mé/s)

1. Baseflow (mé#/s)
Figure 5. mHM cell structure.

All processes are applied in each cell individually and continuity of the model is pro-
vided by using ordinary differential equations (ODE). The results of ODEs obtained from
each cell are routed by using Muskingum method through the main outlet [29].

In this study, open-source Fortran based code of mHM is compiled with Cygwin to
run the model in Windows environment.

2.4. Calibration of Models
2.4.1. Sensitivity Analysis

Sensitivity analyses and calibrations of the examined models are performed by using
Parameter Estimation Tool (PEST) which is model-independent auto-calibration tool [30].
Sensitivity analysis is used to indicate effect of a change in parameter value to objective
function. Main purpose of using this method is to eliminate ineffective parameters before
the calibration process to avoid the waste of time spent for unnecessary iterations. In this
study, sensitivity analysis of the models” parameters is performed using the auto-sensi-
tivity module of PEST. It is basically based on the equation given below;

_ AOF (%) .
"~ APar (%) )

where S is sensitivity value, “AOF” is change in objective function as percentage cor-
responding to parameter change, and “APar” is change in parameter value as percentage.

2.4.2. Calibration Algorithms

Calibration is a process which is performed to obtain optimum results from models
by adjusting parameter values. The calibration of each models’ parameters was performed
by using three algorithms of PEST namely Levenberg-Marquardt (LM), Shuffled Complex
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Evolution (SCE), and Covariance Matrix Adoption Evolution Strategy (CMAES). These
are classified as local and global algorithms. LM is a local optimization algorithm which
is composed of gradient descent and Gauss-Newton methods [31]. SCE and CMAES are
global optimization algorithms. SCE is combinations of the competitive evolution, the lo-
cal direct search of downhill simplex method, a controlled random search, and the concept
of complex shuffling [32]. Finally, CMAES is another global optimization algorithm in-
cluding stochastic approaches and non-linear functions. It uses maximum likelihood
method to attain parameter values giving closer results to optimum solution in previous
iterations [33].

3. Results
3.1. Sensitivity Analysis

To define the effectiveness of parameters on models’” objective, sensitivity analysis
was performed for GR4J, SWAT+, and mHM. 4 parameters of GR4]J, 20 parameters of
SWATH+ affecting on discharge [34], and 66 parameters of mHM were involved to this pro-
cess to eliminate unsensitive components. Sensitivity analysis of this study was completed
by using auto-sensitivity analysis of PEST for the calibration period (1991-2000). The
threshold of sensitivity value was selected as 0.0025 subjectively using the information
shared in the study of [35]. Results of sensitivity analysis are given in Figure 6, Figure 7
and Figure 8.

(=1
=1

Figure 6. GR4] sensitivity analysis results.

For Acisu Basin, results of sensitivity analysis showed that the most effective param-
eter is “X2” which is the change in groundwater storage for GR4J, and 3 out of 4 parame-
ters of GR4J model were defined as sensitive.

perco
revap co
canmsx
8sco
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e
.

flo_min

revap min

Figure 7. SWAT+ sensitivity analysis results.

SWATH+ sensitivity analysis results demonstrated that “cn2” (SCS curve number) is
the most sensitive parameter in on discharge. Sensitivity analysis of SWAT+ performed
using 20 parameters and 11 out of 20 parameters above threshold selected as sensitive.
Descriptions of sensitive parameters were given in Table 3 for SWAT+.

Table 3. SWAT+ parameter descriptions
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Parameter Desscription Unit
cn2 SCS curve number -
awc Soil water content -

k Hydraulic conductivity of saturated soil mm/hr
perco Percolation coefficient -
revap Evaporation coefficient from shallow aquifer to root -
canmx Maximum canopy storage mm
esco Soil evaporation compensation factor -
epco Plant uptake compensation factor -
evrch Reach evaporation adjustment factor -
flomin Minimum amount of water to be stored in the aquifer for return flow mm
revap_min Minimum water depth required in shallow aquifer for "revap" mm
0 01 02 4 5 06 7 08
PTF_lower66_5_clay |
F_Ks_sand _
S ; |———
===
es
==
fant .
st §
PET ¢
infiltrationShapeFactor
Figure 8. mHM sensitivity analysis results.

Finally, mHM sensitivity analysis resulted in 15 sensitive parameters out of 69 pa-
rameters. The most sensitive parameter of mHM is “PTF_lower66_5_clay” which a coeffi-
cient of Pedo-transfer function for soil including clay lower than 66.5%. Descriptions of
sensitive parameters were given in Table 4 for mHM. These results show that soil related
parameters at each model are dominant for the study area.

Table 4. mHM parameter descriptions
Parameter

Parameter Description

PTF_lower66_5_clay
PTF_Ks_sand
PTF_Ks_clay

rootFractionCoefficient_pervious

PTF_lower66_5_Db

PTF_lower66_5_constant

Pedotransfer function (PTF) soil moisture constant for less than 66.5% clay
PTF hydraulic conductivity constant for saturated sand
PTF hydraulic conductivity constant for saturated clay
Root fraction coefficient for pervious area
PTF density constant for less than 66.5% sand
PTF soil moisture constant for less than 66.5% sand
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PTF_Ks_constant PTF hydraulic conductivity constant for saturated soil
rootFractionCoefficient_forest Root fraction coefficient for forest
infiltrationShapeFactor Shape factor that divides effective precipitation into infiltration and surface flow
PET_a_forest Forest - PET correction factor
PET_a_pervious Pervious area - PET correction factor
PET_b Agricultural land - PET correction factor
PET_c Agricultural land - PET correction factor (2)
canopylInterceptionFactor Canopy interception factor
exponentSlowInterflow Slow interflow exponent

3.2. Calibration and Validation

The sensitive parameters were used in calibration period from 1991 to 2000 and val-
idation period from 2002 to 2005 with daily time-step for each model. GR4J], SWAT+, and
mHM were integrated with PEST to calibrate and validate these models by using three
optimization algorithms such as Levenberg-Marquardt (LM), shuffled complex evolution
(SCE), and covariance matrix adoption evolution strategy (CMAES). These algorithms
have some common limitations to be determined. The limitations were defined similar for
each algorithm for fair comparison. Maximum iteration number was defined as 1000 and
termination criteria was defined as lower than 10-6 change in objective function (NSE)
through 15 successive iterations for all three algorithms.

To assess discharge simulation performance, calibration process was accomplished
in daily time basis for used models. Resultant parameter values and defined parameter
boundaries are given in Table 5 for GR4], SWAT+, and mHM.

Table 5. Calibrated parameters of each model.

Model Parameter Calibrated Value Limit
L-M SCE-UA CMAES Min Max
X1 399.99 346.37 347.02 10 2000
i X2 0.00 0.46 0.47 -8 6
O X3 10.00 10.00 10.00 10 500
X4 1.77 1.32 1.33 1 4

cn2 0.77 0.67 0.68 0.65 0.95

awc 0.02 0.01 0.01 0.01 0.51
k 200.40 189.18 193.07 0.00 2000.00

+ perco 0.28 0.16 0.20 0.00 1.00

[:: revap 0.20 0.05 0.16 0.02 0.20
% canmx 19.99 23.55 22.33 0.00 100.00

esco 0.67 0.37 0.39 0.00 1.00

epco 0.04 0.17 0.17 0.00 1.00

evrch 0.67 0.75 0.56 0.50 1.00
flomin 500.00 355.52 1059.35 0.00 1250.00
PTF_lower66_5_clay 0.0017 0.0012 0.0019 0.0001 0.0029
PTF_Ks_sand 0.0083 0.0221 0.0158 0.0060 0.0260
PTF_Ks_clay 0.0079 0.0130 0.0124 0.0030 0.0130
% rootFractionCoefficient_pervious 0.0608 0.0095 0.0460 0.0010 0.0900
g PTF_lower66_5_Db -0.3463 -0.2141 -0.2315  -0.5513 -0.0913
PTF_lower66_5_constant 0.6877 0.6724 0.6750 0.5358 1.1232
PTF_Ks_constant -0.7105 -1.1978 -1.0251  -1.2000 -0.2850

rootFractionCoefficient_forest 0.9401 0.9623 0.9872 0.9000 0.9990
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infiltrationShapeFactor 1.9602 1.1113 1.0000 1.0000 4.0000
PET_a_forest 0.7221 1.2466 1.2885 0.3000 1.3000
PET_a_pervious 0.7414 0.3604 0.3176 0.3000 1.3000
PET_b 0.6823 0.7020 0.5982 0.0000 1.5000

PET_c -0.9670 -0.0001 -0.0427  -2.0000 0.0000
canopylInterceptionFactor 0.1520 0.1501 0.2135 0.1500 0.4000
exponentSlowInterflow 0.1948 0.2324 0.2054 0.0500 0.3000

Using these parameter values give in the tables above, GR4], SWAT+, and mHM were
run for calibration and validation periods. According to the NSE values which were cal-
culated for discharge outputs belong to each model-algorithm combination, Table 6 and
Table 7 were arranged and given with other statistical performance indicators.

Table 6. Calibration results.

CALIBRATOIN
1991-2000 NSE R? KGE RSR PBIAS MSE RMSE
mHM-CMAES 0.67 0.66 0.74 0.58 2.0 77.84 8.82
mHM-SCE 0.67 0.67 0.74 0.57 -1.9 76.59 8.75
GR4]J-SCE 0.63 0.63 0.72 0.61 0.4 86.29 9.29
GR4J-CMAES 0.63 0.63 0.72 0.61 0.4 86.29 9.29
SWAT+-SCE 0.56 0.57 0.72 0.66 -2.0 102.76 10.14
SWAT+-CMAES 0.56 0.57 0.72 0.67 2.8 103.13 10.16
mHM-LM 0.54 0.55 0.71 0.68 -1.5 108.23 10.40
SWAT+LM 0.53 0.55 0.70 0.68 -3.4 108.32 10.41
GR4J-LM 0.44 0.59 0.22 0.75 -55.5 131.05 11.45

As it is shown in Table 6 and Table 7, model-algorithm combinations were ordered
by their NSE values. Calibrating respectively using LM, SCE, and CMAES, GR4] has NSE
value of 0.44, 0.63, and 0.63; SWAT+ has 0.53, 0.56, and 0.56; mHM has 0.54, 0.67, and 0.67.

Table 7. Validation results.

VALIDATION
2002-2005 NSE R2 KGE RSR PBIAS MSE RMSE
mHM-CMAES 0.60 0.61 0.61 0.63 -9.9 52.96 7.28
mHM-SCE 0.56 0.58 0.55 0.67 -16.6 58.63 7.66
GR4J-LM 0.55 0.62 0.44 0.67 -42.7 59.24 7.70
GR4]J-SCE 0.44 0.67 0.60 0.75 23.5 73.77 8.59
GR4J-CMAES 0.44 0.67 0.60 0.75 235 73.50 8.57
SWAT+-SCE 0.38 0.41 0.57 0.79 -2.4 81.58 9.03
SWAT+-CMAES 0.38 0.41 0.60 0.78 0.2 81.36 9.02
SWAT+LM 0.35 0.40 0.54 0.81 9.4 86.29 9.29
mHM-LM 0.31 0.37 0.53 0.83 -20.4 91.59 9.57

For validation period with respectively LM, SCE, and CMAES, GR4] has NSE value
of 0.55, 0.44, and 0.44; SWAT+ has 0.35, 0.38, and 0.38; mHM has 0.31, 0.56, and 0.60. Iter-
ations are continuously completed for all of the combinations with PEST. From the aspect
of performance evaluation mHM-CMAES integration has shown “good” performance ac-
cording to the classification given in Table 8 presented in [36].

Table 8. Classification of discharge simulation performance.
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Performance RSR NSE PBIAS

Very Good 0.00<RSR<0.50 0.70 <NSE <1.00 PBIAS < £10
Good 0.50<RSR<0.60 0.65<NSE<0.75 #10<PBIAS<=15

Satisfactory 0.60 <RSR<0.70 0.50 <NSE <0.65 %15 <PBIAS <125
Poor RSR >0.70 NSE <0.5 PBIAS > +25

A comparison of these statistical findings was supported with a bar chart in Figure 9
and Figure 10 to virtualize model and algorithm performances with their average NSE
values for calibration and validation processes respectively.

SCE CMAES

mGRA mSWAT+ mmHM

Figure 9. Calibration performance for each algorithm.

What stands out in Figure 9 is SCE and CMAES's close NSE values to each other. SCE
and CMAES have average NSE values as 0.62 and outperformed LM which has 0.50 aver-
age NSE value after calibration.

MSE

SCE CMAES

BGRY mESWAT+ mmbM

Figure 10. Validation performances for each algorithm.

CMAES dominated other algorithms in validation with average NSE value of 0.47
whilst SCE has 0.46 and LM has 0.40 average NSE values as it can be seen in Figure 10. In
model basis, mHM outperformed other two models with an average NSE value of 0.63.
SWAT+ and GR4] have average NSE values as 0.37 and 0.48 respectively. By the end of
comparison process, hydrograph of the best combination is given in Figure 11.
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Figure 11. Comparison of observed discharge data with mHM-CMAES simulation results.

As it is shown in Figure 11, resultant hydrograph with the highest NSE value in gen-
eral is mHM-CMAES combination. Besides reaching 0.67 and 0.60 NSE values for respec-
tively, it has 0.67 and 0.61 R2 values which is given Figure 12 with scatter plots.
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Figure 12. Scatter diagram of observed and simulated discharge data.

In line with hydrographs, distribution of calibrated and validated values demon-
strates that simulated values are mostly lower than observed values.

Additionally, SWAT+ and mHM have ability to present visual results for various
outputs i.e. discharge, potential evapotranspiration, snowpack, soil moisture content. In
Figure 13, annual output of each model for the last year of validation (2005) were given as
maps to visualize the discharge distribution in study domain. Representative map of GR4]
output was given for comparing distributed structure of models.

mHM GR4J

Total runoff generated by each cell (mm) Total runoff generated by GRAJ (mm)
-

59

Figure 13. Map outputs of each model

4. Discussion

Hydrological model selection is a key factor for decision makers in the planning and
management of water resources. Hydrologic models have various skills and limitations
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depending on their model structure, model inputs and their ability to represent the nature
of the hydrological phenomenon. Basically, they convert rainfall to runoff, route in the
channels, and mainly used for predictions and forecasts using forecasted weather inputs.
All performed model-algorithm integrations captured the discharge pattern for Acisu Ba-
sin except for the first year of validation (Figure 11). This inaccuracy may be related to
excluded period of 2001-2002. This exclusion was made to significantly avoid the negative
impact of this period on the calibration process. Besides, it can be seen from the Table 1
that ERA5 dataset has almost 20% less annual precipitation and more temperature leading
to more potential evapotranspiration. In line with these details, models produced less dis-
charge than expected.

In general, the model and three different calibration algorithm capabilities were
tested for the study area. Findings showed that results of the combinations are close to
results of the studies performed for Acisu Basin and around [15,37] for similar methods.
Main differences between the model structures in this study is their spatial resolutions
and model complexity. GR4J is a lumped model whereas SWAT+ is semi-distributed
model. Since mHM is a distributed hydrological model, model structure is more sensitive
to the input data and its resolution for representing the characteristics of the basin. Most
importantly, users can retrieve flux and state simulations from any location in the basin.
On the other hand, GR4J and SWAT+ have limitations in defining meteorological inputs
as spatially distributed. These models can involve meteorological inputs in the process as
time series. GR4] allows users to define single time series for whole basin, while SWAT+
gives the opportunity to add inputs at different locations.

It is one of the general results encountered in the literature that the error values de-
crease by using the average of the spatial values of the basin in the lumped models com-
pared to the distributed models. As a result of the analyzes in this study, contrary to the
aforementioned situation, it is seen that the distributed model (mHM) shows better dis-
charge simulation performance than the lumped and semi-distributed models according
to NSE. When the obtained data and results were examined, it was concluded that this
was due to the heterogeneous structure of the basin and that the model structure of mHM
more successfully defines the basin characteristics in terms of the resolution of which it
processes heterogeneity. Although the reanalysis data of ERA5 or coarse soil map may be
insufficient as resolution or for this specific study area due to its small surface area, mHM
still simulated the discharge better than other two models. The reason of this result can be
the models skillful multi parameter regionalization algorithm (MPR) capturing the heter-
ogeneity of the basin characteristics with limited number of calibrated parameters. This
approach is a unique feature of mHM as compared to the other distributed models.

Modelling procedure needs fine-tuning of model parameters to get closer to the op-
timum. This process is known as calibration. Both local (LM) and global (SCE, CMAES)
algorithms were applied to the hydrologic models in this study. Results were given in
Table 6 and Table 7. Global algorithms provide comprehensive search for optimum pa-
rameter set. As it is expected considering previous studies [14,32], SCE and CMAES ended
with better results than LM while CMAES was the best.

Acisu Basin has an important location at the upstream of Gediz Basin which is one of
the largest basins in Tiirkiye. Hydrologic model studies in this region have priority for
irrigation because of its agricultural potential [38—40]. For this reason, it is thought that
alternative modeling approaches will guide researchers for studies to be carried out in the
basin. Therefore, modelling studies can be directive for researchers for the basin. We
aimed to facilitate the method selection for decision makers.

5. Conclusions

As a developing country, the population and thus the need for industrial, irrigation
and drinking water is increasing rapidly in Tiirkiye. For this reason, the importance of
studies on water resources for the effective use of water is increasing day by day. Espe-
cially the Gediz Basin has an importance in hydrological studies due to its agricultural
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lands and potential drought risk. To assess the future conditions, hydrologic models are

preliminary tools. For the purpose of facilitating the selection of hydrologic model and its

calibration algorithm, three hydrologic model structure (lumped, semi distributed, dis-
tributed) and three algorithms (LM, SCE, CMAES) were compared with 9 combinations
in this study. Based on the comparison and results, following conclusions can be drawn;

1. In contrast to general findings, distributed model (mHM) simulated the discharge
with higher performance than the coarser models (SWAT+ and GR4]J).

2. Global optimization algorithms (CMAES and SCE) have extensive ability to search
the optimum parameter set compared to local algorithm (LM). The highest perfor-
mance was shown by CMAES based on average NSE through calibration and valida-
tion.

3. Interms of time efficiency, each model has different run-time for the study domain.
Single run takes an average of 30 seconds for mHM, 2 minutes for SWAT+, and 4
seconds for GR4]J.

4. Since mHM and SWAT+ allows to draw outputs for any sub-basin located at the up-
stream, it is advantageous compred to GR4] under data-limited modelling condi-
tions.

5. Resultant hydrographs were demonstrated that simulated discharge values were
lower than observed values in general. The reason for that is related to the difference
between ERA5 data and MGM measurements. Direct relationship between precipi-
tation and discharge leads the models to simulate lower values.

The results obtained with the applied models and algorithms are limited to the Acisu
Basin. In order to generalize the results, it is recommended to examine the basins with
different geographical, meteorological and geological characteristics with similar models
and algorithms. The modelers should identify the priorities of the modeling practice and
select the right model for the right purpose. Input demands can be cover by open-source
global data sources and currently distributed model can easily be set up for any location
in the world. However, if only flood forecasting is the aim and process understanding is
not necessary, relatively simple models can be utilized for quick solution for the domain.
Future work should focus on appropriate model structure selection for flood or drought
forecasting using ERA5 Land inputs and ECMWF forecasted meteorological forcing.
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