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Abstract: In this study, Acısu Basin, i.e. headwater of Gediz Basin, in Türkiye, was modelled using 
three types of hydrological models and three different calibration algorithms. A well-known 
lumped model (GR4J), a commonly used semi-distributed (SWAT+), and a skillful distributed 
(mHM) hydrological models were built and integrated with Parameter Estimation Tool (PEST). 
PEST is a model independent calibration tool including three algorithms i.e. Levenberg Marquardt 
(L-M), Shuffled Complex Evolution (SCE), and Covariance Matrix Adoption Evolution Strategy 
(CMA-ES). Calibration period was 1991-2000, and validation results were obtained for 2002-2005. 
The effect of model structure and calibration algorithm selection on discharge simulation was eval-
uated via comparison of 9 different model-algorithm combinations. Results have shown that mHM 
and CMA-ES combination performed the best discharge simulation according to NSE values (cali-
bration: 0.67, validation: 0.60). Although statistically the model results were classified as acceptable, 
the models mostly missed the peak values in hydrograph. This problem may be related to the inter-
ventions made in 2000-2001 years and possible to overcome by changing the calibration and valida-
tion periods, increasing the number of iterations or using the naturalized gauge data. 
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1. Introduction 
Hydrologic models are used in various areas such as climate models, management 

of water resources, design of hydraulic structures, and drought/flood prediction. Capabil-
ities of hydrologic models are limited with the used data and measurement techniques. In 
the circumstances that the input of model is insufficient, temporal or spatial extrapolation 
is used using available data. At the same time, the changes in land use and climate condi-
tions are needed to be considered in terms of their effects on hydrologic cycle [1]. 

Hydrologic models classified in terms of their spatial resolutions are investigated in 
this study. These structures are lumped, semi-distributed, and distributed namely. 
Lumped models represent whole basin as a single unit by using the averages of the vari-
ables belong to the basin [2]. Distributed models split the basin into grids and conducts 
the process for each grid individually with the inputs and state variables belong to these 
grids. Semi-distributed models are presented to literature to combine the advantages of 
both lumped and distributed models. Instead of defining the spatial variability as contin-
uous such as distributed models, they define the basin as integration of lumped models. 
In this way, it requires less computational load and smaller size data than distributed 
models. It also represents the characteristics and heterogeneity of the basin better than 
lumped models. There are numerous studies in the literature carried out about hydrologic 
modelling over decades [3–5]. Study of [6] focused on the changes in Lake Tana Basin, 
Ethiopia, using different models and their hydrologic responses. They built 2 lumped 
models (GR4J and IHACRES) and a semi-distributed model (SWAT) for the study area 
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using four major gauged watersheds. Findings of the study showed that the lumped mod-
els demonstrated superior discharge simulation performance to SWAT in small catchment 
although the situation is vice versa in large catchments since SWAT represents the heter-
ogeneity of these catchments. In another study, [7] aimed to test GR4J and SWAT for ro-
bustness. Both have undergone calibration and validation studies during climatically di-
verse time periods. Both of them exhibit relative robustness despite a greater performance 
decline for the GR4J model between calibration and validation. Additionally, study of [8] 
compared three lumped models’ – GR4J, Australian Water Balance Model (AWMB), and 
Sacramento – discharge performances on Godavari River Basin, India, considering NSE 
values of calibration results. Results of the study showed that GR4J model is suggested in 
terms of discharge simulations for the study area. In another study of [9], 15 hydrologic 
model including GR4J, SWAT, and mHM was built for Lake Erie, USA, to evaluate mod-
els’ capabilities on hydrologic variables such as discharge, evaporation, and soil moisture. 
The findings of the study demonstrated that the best hydrographs are produced by mHM 
model in terms of resultant NSE values.   

Regardless of their classification, the non-measurable parameters of each hydrologi-
cal model need to be adjusted to represent real basin characteristics. This process is known 
as calibration [10]. Initially, calibration process was conducted manually based on expert 
knowledge. Today, using automatic calibration methods with advantages of improved 
technology is more common. These calibration methods avoid subjective interceptions, 
computation load, and waste of time by using different algorithms and objective func-
tions. Auto-calibration algorithms attain parameter values to optimize objective function 
value. There are two different types of auto-calibration algorithms namely local and 
global. Local calibration algorithms aim to converge the optimum objective function value 
based on 3 main criteria; movement direction of parameters, iteration number, and termi-
nation criteria. Local methods that assign gradient-based values to the parameters in their 
range accept the zero-slope point as the optimum value. This causes possible optimum 
values to be missed if more than one optimum solution is found. Global methods over-
come this problem by approaching the parameter space from all sides. They manipulate 
parameter values in order to improve the objective function by using deterministic and 
probabilistic rules [11]. These algorithm types had been used with various hydrologic 
models in several studies. Study of [12] integrated one local (Levenberg-Marquardt (LM), 
and two global (Dynamically Dimensioned Search (DDS) and Shuffled Complex Evolu-
tion (SCE)) with a semi-distributed hydrologic model (HEC-HMS) built on various basins 
in Germany.  They used an empirical combination of Nash-Sutcliffe Efficiency (NSE) and 
volumetric error (VoE) as objective function for discharge calibration, and found that DDS 
is superior to other algorithms in this study’s circumstances with 0.75-0.90 in calibration 
and 0.57-0.73 in validation. Furthermore, study of  [13] investigated the value of different 
soil moisture products (The Advanced Microwave Scanning Radiometer on the Earth Ob-
serving System (EOS) Aqua satellite (AMSR-E), soil moisture active passive (SMAP), and 
total water storage anomalies from Gravity Recovery and Climate Experiment (GRACE)) 
on Hydrologiska Bryåns Vattenbalansavdelning (HBV) by multi-objective calibration 
(discharge (Q), groundwater (GW), soil moisture (SM)) and soil for each model set-up 
with Levenberg-Marquardt (LM), shuffled complex evolution (SCE), and covariance ma-
trix adoption evolution strategy (CMAES) algorithms for Moselle River Basin in Germany 
and France. Findings of the study demonstrated that global optimization algorithms (SCE 
and CMAES) outperformed the local algorithm (LM) after 3000 iterations for each method 
according to three different objective functions such as NSE-Q, NSE-LNQ, and CORR. 
Additionally, [14] compared the discharge simulation performances resulting from cali-
bration with SCE and sequential uncertainty fitting algorithm (SUFI2) for SWAT model 
to assess climate change impact for Upper Coruh Basin in Türkiye under regional climate 
projections (RCP 4.5 and RCP 8.5). SUFI2 algorithm has 0.67 and 0.62 NSE values for cal-
ibration and validation periods respectively, SCE algorithm has shown better perfor-
mance with 0.73 (calibration) and 0.79 (validation) NSE values. There have been many 
studies on performance comparison of similar and simple models; however, the effect of 
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sophisticated models and global search algorithms on discharge performances in a head-
water catchment has not been studied yet. Selection of model and calibration algorithm is 
key for discharge simulations in catchment hydrology. 

In this study, we integrated three different model structures with three calibration 
algorithms for Acısu Basin. For that, we used PEST and ERA5 model inputs. We selected 
GR4J as lumped model, SWAT+ as semi-distributed model, and mHM as distributed 
model; Levenberg-Marquardt (LM), Shuffled Complex Evolution (SCE), and Covariance 
Matrix Adoption Evolution Strategy (CMAES) as calibration algorithms. The resulting 
discharge values were compared for all combinations. The effect of model structure and 
calibration algorithm on discharge performances was evaluated according to these results. 

2. Materials and Methods 
2.1. Study Area 

Gediz Basin which is located at the Aegean Region of Türkiye has 1.703.586 km2 sur-
face area. It is one of the 5 largest basins in Türkiye. It originates from Murat Mountain in 
Kutahya. The longest river in the basin is Gediz River which ends in Aegean Sea from 
İzmir. Including 5 dams, 2 lakes and 1 hydropower plant, Gediz Basin is of capital im-
portance in terms of water resources. Water potential of the basin consists of % 58,63 po-
tential evapotranspiration loss, % 28,22 groundwater recharge, and % 13,15 surface flow. 
The Acısu Basin is a sub-basin of Gediz Basin and it has 3256 km2 drainage area and 890 
m height. It locates at the headwater of the Gediz Basin with its semi-arid climate. The 
study area belongs to the drainage area of stream gauging station 523. Study domain is 
given in Figure 1. 

   
Figure 1. Study domain. 

2.2. Data 
In this study, common datasets are defined for each model to evaluate and compare 

results fairly. So, the three models are driven by ERA5 reanalysis data. Each model re-
quires various data types in different resolutions. Therefore, the daily meteorological in-
put - precipitation (P (mm)), potential evapotranspiration (PET (mm)), minimum and 
maximum temperature (Tmin (℃), Tmax (℃)) - obtained from ERA5 dataset is used by 
downscaling in line with each model’s resolution. Further, measured P, Taverage , Tmin, and 
Tmax  data belongs to General Directorate of Meteorology of Türkiye (MGM) was used to 
evaluate ERA5 data (Table 1). Additionally, physically based models (SWAT+ and mHM) 
are driven by spatial data such as digital elevation model, land use, and soil data. DEM 
and land use data were shown in Figure 1 within study domain. Having 30 m spatial 
resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 
DEM data is used for SWAT+ and mHM. As land use data, Coordination of Information 
on the Environment (CORINE) open-source land use map with 100 m spatial resolution; 
as soil map, Food and Agriculture Organisation’s (FAO) digital soil map of the world with 
1/5.000.000 scale data is used. 
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Table 1. Monthly and annual data belongs to General Directorate of Meteorology of Türkiye and 
ERA5. 

 Total Precipitation 
(mm) 

Average Temperature 
(℃) 

Maximum Temperature 
(℃) 

Minimum Temperature 
(℃) 

  MGM ERA5 MGM ERA5 MGM ERA5 MGM ERA5 
January 69.2 59.7 3.2 3.2 12.8 12.3 -10.6 -9.4 

February 62.2 56.1 3.4 3.9 14.4 14.2 -8.9 -9.9 
March 60.0 58.6 6.5 7.2 19.2 18.8 -6.5 -5.2 
April 63.5 56.6 11.0 11.9 21.5 21.6 -1.2 -0.1 
May 43.7 40.2 15.6 16.8 23.3 24.9 4.2 5.2 
June 19.8 17.9 19.8 21.4 27.3 28.6 9.9 9.6 
July 17.4 10.2 23.3 24.6 30.2 30.8 12.8 15.5 

August 12.4 7.6 23.3 24.3 29.7 30.4 15.9 17.3 
September 14.7 10.1 19.2 20.0 26.9 28.3 9.4 11.1 

October 37.5 27.2 14.2 14.6 22.8 23.0 3.1 4.1 
November 74.0 58.4 8.4 8.3 18.3 17.2 -2.9 -1.8 
December 88.3 69.3 4.7 4.6 13.9 13.2 -5.4 -5.6 

Annual 562.8 472.0 12.8 13.5 30.2 30.8 -10.6 -9.9 
 
Precipitation and average temperature data were examined using scatter diagrams 

and regression equations (Figure 2) to evaluate ERA5 input and interpret the results. 

 
Figure 2. Comparison of MGM and ERA5 data 

As discharge observation, data of stream gauge 523 -belongs to General Directorate 
of State Hydraulic Works. Türkiye- is used. Line graph of the discharge data is given in 
Figure 3. 
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Figure 3. Observed discharge data of gauge 523. 

2.3. Hydrologic Models 
To compare the effect of model structure on the discharge, three different models 

which are classified based on their spatial resolution are set-up on Acısu Basin. GR4J is 
lumped, SWAT+ is semi-distributed, and mHM is distributed hydrologic model. Each 
model has different procedures and parametrizations to proceed hydrologic processes 
with different resolutions. 

2.3.1. GR4J 
Lumped model facilitates the use and set-up process. It shows whole basin’s response 

to the forcing inputs. Constituting semi-distributed and distributed hydrologic models by 
gathering, lumped models are fundamental and starting point of these models [15]. Gênie 
Rural â 4 Paramêtres Journalier (GR4J) is a lumped hydrologic model processing in daily 
time-step, presented and improved in early 2000s [16]. It requires daily P and PET as input 
time-series. To obtain daily data as time-series from ERA5, mean areal average values of 
the grids are calculated using spatial P and PET data. GR4J involve these inputs to the 
hydrologic processes using its 4 parameters given in Table 2. 

Table 2. GR4J parameter descriptions. 

Parameter Description 
 

X1 Production storage capacity (mm)  

X2 Groundwater exchange coefficient (mm)  

X3 One day ahead maximum capacity of the routing store (mm)  

X4 Time base of unit hydrograph (day)  

 
GR4J conducts the process represents rainfall-runoff relationship via 2 box model 

method which are called production storage and routing storage. Structure of the model 
is given in Figure 4. As the precipitation reaches to the surface, the first unit of the model 
that meets the water mass after interception process is production storage. Most amount 
of net precipitation after infiltration is transferred to routing storage by using unit hydro-
graph method. Then remaining amount of net precipitation is routed by a unit hydro-
graph the base width of which is twice that of the previous step. Finally, the amount of 
water coming from routing storage and routed part of remained net precipitation merge. 
Summation of these values end up with the output of GR4J which is discharge. 
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Figure 4. GR4J model structure. 

During the set-up process of GR4J, we utilized R software [17] and airGR package 
[18] which are both open-source. 

2.3.2. SWAT+  
Soil water assessment tool is published by Dr. Jeff Arnold as a result of his study 

accomplished for USDA-ARS (U.S. Department of Agriculture – Agricultural Research 
Service) to foresee the effects of land use and management in a basin with heterogeneous 
structure [19]. Besides it is a physically based model, SWAT is semi-distributed and con-
tinuous hydrologic model working at a daily time-step which has a wide use area such as 
rainfall-runoff relationship, climate change, environmental studies at small or large basins 
[20–22]. Semi-distributed structure of the model consists of sub-basins and hydrologic re-
sponse units (HRUs) in detail. In earlier versions of SWAT model, the smallest spatial sub-
division of a basin is represented by HRUs. As a new feature in SWAT+, HRUs are divided 
in landscape units (LSUs). LSUs are divided into two part namely upland and floodplain. 
The HRUs are homogenous in themselves in terms of their physical characteristics [23]. 
We used QGIS software and QSWAT+ plugin in this study to set-up the model because of 
its easy-to-use interface and being the most up-to-date version of SWAT+ model. It re-
quires DEM, land use, soil map as physical data; precipitation, temperature, wind speed, 
solar radiation, and relative humidity as climatic and hydrologic data. Although SWAT+ 
can automatically calculate PET with different methods, we added the ERA5 PET data to 
compare results fairly with other models. We only focused on discharge output of SWAT+ 
model in line with our objective. Discharge value is obtained at the outlet location by rout-
ing the output of each HRU individually through the main outlet. During the modelling 
process, we divided the Acısu Basin into 5 sub-basins and 1981 HRUs ranging from 6 to 
60.26 km2 surface area. SWAT+ conducts the process in two phases such as land phase 
and routing phase. Considering the information given in [24], we used SCS-CN (Soil Con-
servation Service – Curve Number) method in land phase, and Muskingum method in 
routing phase. 

2.3.3. mHM 
mesoscale Hydrologic Model (mHM) is a distributed, physically based and continu-

ous hydrologic model published by a team from UFZ (Helmholtz Centre for Environmen-
tal Research) [25,26]. Fundamental numerical approaches about hydrologic processes of 
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the mHM are tested by using well-known and acknowledged lumped models such as 
HBV [27] and VIC [28]. Input and parameter variety for each grid of mHM is setting this 
model apart from other rainfall-runoff models. With this difference, changes in character-
istics of the basin can be represented better as the spatial resolution of model run and 
forcing data increases. Model structure is given in Figure 5. 

 
Figure 5. mHM cell structure. 

All processes are applied in each cell individually and continuity of the model is pro-
vided by using ordinary differential equations (ODE). The results of ODEs obtained from 
each cell are routed by using Muskingum method through the main outlet [29]. 

In this study, open-source Fortran based code of mHM is compiled with Cygwin to 
run the model in Windows environment. 

2.4. Calibration of Models 
2.4.1. Sensitivity Analysis 

Sensitivity analyses and calibrations of the examined models are performed by using 
Parameter Estimation Tool (PEST) which is model-independent auto-calibration tool [30]. 
Sensitivity analysis is used to indicate effect of a change in parameter value to objective 
function. Main purpose of using this method is to eliminate ineffective parameters before 
the calibration process to avoid the waste of time spent for unnecessary iterations. In this 
study, sensitivity analysis of the models’ parameters is performed using the auto-sensi-
tivity module of PEST. It is basically based on the equation given below; 

𝑆𝑆 =  
∆ 𝑂𝑂𝑂𝑂 (%)
∆ 𝑃𝑃𝑃𝑃𝑃𝑃 (%)

 (1) 

where S is sensitivity value, “ΔOF” is change in objective function as percentage cor-
responding to parameter change, and “ΔPar” is change in parameter value as percentage. 

2.4.2. Calibration Algorithms 
Calibration is a process which is performed to obtain optimum results from models 

by adjusting parameter values. The calibration of each models’ parameters was performed 
by using three algorithms of PEST namely Levenberg-Marquardt (LM), Shuffled Complex 
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Evolution (SCE), and Covariance Matrix Adoption Evolution Strategy (CMAES). These 
are classified as local and global algorithms. LM is a local optimization algorithm which 
is composed of gradient descent and Gauss-Newton methods [31]. SCE and CMAES are 
global optimization algorithms. SCE is combinations of the competitive evolution, the lo-
cal direct search of downhill simplex method, a controlled random search, and the concept 
of complex shuffling [32]. Finally, CMAES is another global optimization algorithm in-
cluding stochastic approaches and non-linear functions. It uses maximum likelihood 
method to attain parameter values giving closer results to optimum solution in previous 
iterations [33]. 

3. Results 
3.1. Sensitivity Analysis 

To define the effectiveness of parameters on models’ objective, sensitivity analysis 
was performed for GR4J, SWAT+, and mHM. 4 parameters of GR4J, 20 parameters of 
SWAT+ affecting on discharge [34], and 66 parameters of mHM were involved to this pro-
cess to eliminate unsensitive components. Sensitivity analysis of this study was completed 
by using auto-sensitivity analysis of PEST for the calibration period (1991-2000). The 
threshold of sensitivity value was selected as 0.0025 subjectively using the information 
shared in the study of [35]. Results of sensitivity analysis are given in Figure 6, Figure 7 
and Figure 8. 

 
Figure 6. GR4J sensitivity analysis results. 

For Acısu Basin, results of sensitivity analysis showed that the most effective param-
eter is “X2” which is the change in groundwater storage for GR4J, and 3 out of 4 parame-
ters of GR4J model were defined as sensitive. 

 
Figure 7. SWAT+ sensitivity analysis results. 

SWAT+ sensitivity analysis results demonstrated that “cn2” (SCS curve number) is 
the most sensitive parameter in on discharge. Sensitivity analysis of SWAT+ performed 
using 20 parameters and 11 out of 20 parameters above threshold selected as sensitive. 
Descriptions of sensitive parameters were given in Table 3 for SWAT+. 

Table 3. SWAT+ parameter descriptions 
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Parameter Desscription Unit 

cn2 SCS curve number - 
awc Soil water content - 

k Hydraulic conductivity of saturated soil mm/hr 
perco Percolation coefficient - 
revap Evaporation coefficient from shallow aquifer to root - 
canmx Maximum canopy storage mm 
esco Soil evaporation compensation factor - 
epco Plant uptake compensation factor - 
evrch Reach evaporation adjustment factor - 
flomin Minimum amount of water to be stored in the aquifer for return flow mm 

revap_min Minimum water depth required in shallow aquifer for "revap" mm 
 

 

 
Figure 8. mHM sensitivity analysis results. 

Finally, mHM sensitivity analysis resulted in 15 sensitive parameters out of 69 pa-
rameters. The most sensitive parameter of mHM is “PTF_lower66_5_clay” which a coeffi-
cient of Pedo-transfer function for soil including clay lower than 66.5%. Descriptions of 
sensitive parameters were given in Table 4 for mHM. These results show that soil related 
parameters at each model are dominant for the study area. 

Table 4. mHM parameter descriptions 

Parameter Parameter Description 

PTF_lower66_5_clay Pedotransfer function (PTF) soil moisture constant for less than 66.5% clay 
PTF_Ks_sand PTF hydraulic conductivity constant for saturated sand 
PTF_Ks_clay PTF hydraulic conductivity constant for saturated clay 

rootFractionCoefficient_pervious Root fraction coefficient for pervious area 
PTF_lower66_5_Db PTF density constant for less than 66.5% sand 

PTF_lower66_5_constant PTF soil moisture constant for less than 66.5% sand 
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PTF_Ks_constant PTF hydraulic conductivity constant for saturated soil 
rootFractionCoefficient_forest Root fraction coefficient for forest 

infiltrationShapeFactor Shape factor that divides effective precipitation into infiltration and surface flow 
PET_a_forest Forest - PET correction factor 

PET_a_pervious Pervious area - PET correction factor 
PET_b Agricultural land - PET correction factor 
PET_c Agricultural land - PET correction factor (2) 

canopyInterceptionFactor Canopy interception factor 
exponentSlowInterflow Slow interflow exponent 

 

3.2. Calibration and Validation 
The sensitive parameters were used in calibration period from 1991 to 2000 and val-

idation period from 2002 to 2005 with daily time-step for each model. GR4J, SWAT+, and 
mHM were integrated with PEST to calibrate and validate these models by using three 
optimization algorithms such as Levenberg-Marquardt (LM), shuffled complex evolution 
(SCE), and covariance matrix adoption evolution strategy (CMAES). These algorithms 
have some common limitations to be determined. The limitations were defined similar for 
each algorithm for fair comparison. Maximum iteration number was defined as 1000 and 
termination criteria was defined as lower than 10-6 change in objective function (NSE) 
through 15 successive iterations for all three algorithms.  

To assess discharge simulation performance, calibration process was accomplished 
in daily time basis for used models. Resultant parameter values and defined parameter 
boundaries are given in Table 5 for GR4J, SWAT+, and mHM. 

Table 5. Calibrated parameters of each model. 

Model Parameter 
Calibrated Value Limit 

L-M SCE-UA CMAES Min Max 

G
R4

J 

X1 399.99 346.37 347.02 10 2000 
X2 0.00 0.46 0.47 -8 6 
X3 10.00 10.00 10.00 10 500 
X4 1.77 1.32 1.33 1 4 

SW
A

T+
 

cn2 0.77 0.67 0.68 0.65 0.95 
awc 0.02 0.01 0.01 0.01 0.51 

k 200.40 189.18 193.07 0.00 2000.00 
perco 0.28 0.16 0.20 0.00 1.00 
revap 0.20 0.05 0.16 0.02 0.20 
canmx 19.99 23.55 22.33 0.00 100.00 

esco 0.67 0.37 0.39 0.00 1.00 
epco 0.04 0.17 0.17 0.00 1.00 
evrch 0.67 0.75 0.56 0.50 1.00 
flomin 500.00 355.52 1059.35 0.00 1250.00 

m
H

M
 

PTF_lower66_5_clay 0.0017 0.0012 0.0019 0.0001 0.0029 
PTF_Ks_sand 0.0083 0.0221 0.0158 0.0060 0.0260 
PTF_Ks_clay 0.0079 0.0130 0.0124 0.0030 0.0130 

rootFractionCoefficient_pervious 0.0608 0.0095 0.0460 0.0010 0.0900 
PTF_lower66_5_Db -0.3463 -0.2141 -0.2315 -0.5513 -0.0913 

PTF_lower66_5_constant 0.6877 0.6724 0.6750 0.5358 1.1232 
PTF_Ks_constant -0.7105 -1.1978 -1.0251 -1.2000 -0.2850 

rootFractionCoefficient_forest 0.9401 0.9623 0.9872 0.9000 0.9990 
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infiltrationShapeFactor 1.9602 1.1113 1.0000 1.0000 4.0000 
PET_a_forest 0.7221 1.2466 1.2885 0.3000 1.3000 

PET_a_pervious 0.7414 0.3604 0.3176 0.3000 1.3000 
PET_b 0.6823 0.7020 0.5982 0.0000 1.5000 
PET_c -0.9670 -0.0001 -0.0427 -2.0000 0.0000 

canopyInterceptionFactor 0.1520 0.1501 0.2135 0.1500 0.4000 
exponentSlowInterflow 0.1948 0.2324 0.2054 0.0500 0.3000 

 
Using these parameter values give in the tables above, GR4J, SWAT+, and mHM were 

run for calibration and validation periods. According to the NSE values which were cal-
culated for discharge outputs belong to each model-algorithm combination, Table 6 and 
Table 7 were arranged and given with other statistical performance indicators. 

Table 6. Calibration results. 

CALIBRATOIN 
1991-2000 

NSE R2 KGE RSR PBIAS MSE RMSE 

mHM-CMAES 0.67 0.66 0.74 0.58 2.0 77.84 8.82 
mHM-SCE 0.67 0.67 0.74 0.57 -1.9 76.59 8.75 
GR4J-SCE 0.63 0.63 0.72 0.61 0.4 86.29 9.29 

GR4J-CMAES 0.63 0.63 0.72 0.61 0.4 86.29 9.29 
SWAT+-SCE 0.56 0.57 0.72 0.66 -2.0 102.76 10.14 

SWAT+-CMAES 0.56 0.57 0.72 0.67 2.8 103.13 10.16 
mHM-LM 0.54 0.55 0.71 0.68 -1.5 108.23 10.40 

SWAT+-LM 0.53 0.55 0.70 0.68 -3.4 108.32 10.41 
GR4J-LM 0.44 0.59 0.22 0.75 -55.5 131.05 11.45 

 
As it is shown in Table 6 and Table 7, model-algorithm combinations were ordered 

by their NSE values. Calibrating respectively using LM, SCE, and CMAES, GR4J has NSE 
value of 0.44, 0.63, and 0.63; SWAT+ has 0.53, 0.56, and 0.56; mHM has 0.54, 0.67, and 0.67. 

Table 7. Validation results. 

VALIDATION 
2002-2005 

NSE R2 KGE RSR PBIAS MSE RMSE 

mHM-CMAES 0.60 0.61 0.61 0.63 -9.9 52.96 7.28 
mHM-SCE 0.56 0.58 0.55 0.67 -16.6 58.63 7.66 
GR4J-LM 0.55 0.62 0.44 0.67 -42.7 59.24 7.70 
GR4J-SCE 0.44 0.67 0.60 0.75 23.5 73.77 8.59 

GR4J-CMAES 0.44 0.67 0.60 0.75 23.5 73.50 8.57 
SWAT+-SCE 0.38 0.41 0.57 0.79 -2.4 81.58 9.03 

SWAT+-CMAES 0.38 0.41 0.60 0.78 0.2 81.36 9.02 
SWAT+-LM 0.35 0.40 0.54 0.81 -9.4 86.29 9.29 
mHM-LM 0.31 0.37 0.53 0.83 -20.4 91.59 9.57 

 
For validation period with respectively LM, SCE, and CMAES, GR4J has NSE value 

of 0.55, 0.44, and 0.44; SWAT+ has 0.35, 0.38, and 0.38; mHM has 0.31, 0.56, and 0.60. Iter-
ations are continuously completed for all of the combinations with PEST. From the aspect 
of performance evaluation mHM-CMAES integration has shown “good” performance ac-
cording to the classification given in Table 8 presented in [36]. 

Table 8. Classification of discharge simulation performance. 
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Performance RSR NSE PBIAS 

Very Good 0.00 ≤ RSR ≤ 0.50 0.70 < NSE ≤ 1.00 PBIAS < ±10 
Good 0.50 < RSR ≤ 0.60 0.65 < NSE ≤ 0.75 ±10 ≤ PBIAS < ±15 

Satisfactory 0.60 < RSR ≤ 0.70 0.50 < NSE ≤ 0.65 ±15 ≤ PBIAS < ±25 
Poor RSR > 0.70 NSE ≤ 0.5 PBIAS ≥ ±25 
 
A comparison of these statistical findings was supported with a bar chart in Figure 9 

and Figure 10 to virtualize model and algorithm performances with their average NSE 
values for calibration and validation processes respectively. 

 
Figure 9. Calibration performance for each algorithm. 

What stands out in Figure 9 is SCE and CMAES’s close NSE values to each other. SCE 
and CMAES have average NSE values as 0.62 and outperformed LM which has 0.50 aver-
age NSE value after calibration. 

 
Figure 10. Validation performances for each algorithm. 

CMAES dominated other algorithms in validation with average NSE value of 0.47 
whilst SCE has 0.46 and LM has 0.40 average NSE values as it can be seen in Figure 10. In 
model basis, mHM outperformed other two models with an average NSE value of 0.63. 
SWAT+ and GR4J have average NSE values as 0.37 and 0.48 respectively. By the end of 
comparison process, hydrograph of the best combination is given in Figure 11. 
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Figure 11. Comparison of observed discharge data with mHM-CMAES simulation results. 

As it is shown in Figure 11, resultant hydrograph with the highest NSE value in gen-
eral is mHM-CMAES combination. Besides reaching 0.67 and 0.60 NSE values for respec-
tively, it has 0.67 and 0.61 R2 values which is given Figure 12 with scatter plots. 

 
Figure 12. Scatter diagram of observed and simulated discharge data. 

In line with hydrographs, distribution of calibrated and validated values demon-
strates that simulated values are mostly lower than observed values. 

Additionally, SWAT+ and mHM have ability to present visual results for various 
outputs i.e. discharge, potential evapotranspiration, snowpack, soil moisture content. In 
Figure 13, annual output of each model for the last year of validation (2005) were given as 
maps to visualize the discharge distribution in study domain. Representative map of GR4J 
output was given for comparing distributed structure of models. 

 
Figure 13. Map outputs of each model 

4. Discussion 
Hydrological model selection is a key factor for decision makers in the planning and 

management of water resources. Hydrologic models have various skills and limitations 
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depending on their model structure, model inputs and their ability to represent the nature 
of the hydrological phenomenon. Basically, they convert rainfall to runoff, route in the 
channels, and mainly used for predictions and forecasts using forecasted weather inputs. 
All performed model-algorithm integrations captured the discharge pattern for Acısu Ba-
sin except for the first year of validation (Figure 11). This inaccuracy may be related to 
excluded period of 2001-2002. This exclusion was made to significantly avoid the negative 
impact of this period on the calibration process. Besides, it can be seen from the Table 1 
that ERA5 dataset has almost 20% less annual precipitation and more temperature leading 
to more potential evapotranspiration. In line with these details, models produced less dis-
charge than expected. 

In general, the model and three different calibration algorithm capabilities were 
tested for the study area. Findings showed that results of the combinations are close to 
results of the studies performed for Acısu Basin and around [15,37] for similar methods. 
Main differences between the model structures in this study is their spatial resolutions 
and model complexity. GR4J is a lumped model whereas SWAT+ is semi-distributed 
model. Since mHM is a distributed hydrological model, model structure is more sensitive 
to the input data and its resolution for representing the characteristics of the basin. Most 
importantly, users can retrieve flux and state simulations from any location in the basin. 
On the other hand, GR4J and SWAT+ have limitations in defining meteorological inputs 
as spatially distributed. These models can involve meteorological inputs in the process as 
time series. GR4J allows users to define single time series for whole basin, while SWAT+ 
gives the opportunity to add inputs at different locations. 

It is one of the general results encountered in the literature that the error values de-
crease by using the average of the spatial values of the basin in the lumped models com-
pared to the distributed models. As a result of the analyzes in this study, contrary to the 
aforementioned situation, it is seen that the distributed model (mHM) shows better dis-
charge simulation performance than the lumped and semi-distributed models according 
to NSE. When the obtained data and results were examined, it was concluded that this 
was due to the heterogeneous structure of the basin and that the model structure of mHM 
more successfully defines the basin characteristics in terms of the resolution of which it 
processes heterogeneity. Although the reanalysis data of ERA5 or coarse soil map may be 
insufficient as resolution or for this specific study area due to its small surface area, mHM 
still simulated the discharge better than other two models. The reason of this result can be 
the models skillful multi parameter regionalization algorithm (MPR) capturing the heter-
ogeneity of the basin characteristics with limited number of calibrated parameters. This 
approach is a unique feature of mHM as compared to the other distributed models.   

Modelling procedure needs fine-tuning of model parameters to get closer to the op-
timum. This process is known as calibration. Both local (LM) and global (SCE, CMAES) 
algorithms were applied to the hydrologic models in this study. Results were given in 
Table 6 and Table 7. Global algorithms provide comprehensive search for optimum pa-
rameter set. As it is expected considering previous studies [14,32], SCE and CMAES ended 
with better results than LM while CMAES was the best. 

Acısu Basin has an important location at the upstream of Gediz Basin which is one of 
the largest basins in Türkiye. Hydrologic model studies in this region have priority for 
irrigation because of its agricultural potential [38–40]. For this reason, it is thought that 
alternative modeling approaches will guide researchers for studies to be carried out in the 
basin. Therefore, modelling studies can be directive for researchers for the basin. We 
aimed to facilitate the method selection for decision makers. 

5. Conclusions 
As a developing country, the population and thus the need for industrial, irrigation 

and drinking water is increasing rapidly in Türkiye. For this reason, the importance of 
studies on water resources for the effective use of water is increasing day by day. Espe-
cially the Gediz Basin has an importance in hydrological studies due to its agricultural 
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lands and potential drought risk. To assess the future conditions, hydrologic models are 
preliminary tools. For the purpose of facilitating the selection of hydrologic model and its 
calibration algorithm, three hydrologic model structure (lumped, semi distributed, dis-
tributed) and three algorithms (LM, SCE, CMAES) were compared with 9 combinations 
in this study. Based on the comparison and results, following conclusions can be drawn; 
1. In contrast to general findings, distributed model (mHM) simulated the discharge 

with higher performance than the coarser models (SWAT+ and GR4J). 
2. Global optimization algorithms (CMAES and SCE) have extensive ability to search 

the optimum parameter set compared to local algorithm (LM). The highest perfor-
mance was shown by CMAES based on average NSE through calibration and valida-
tion. 

3. In terms of time efficiency, each model has different run-time for the study domain. 
Single run takes an average of 30 seconds for mHM, 2 minutes for SWAT+, and 4 
seconds for GR4J. 

4. Since mHM and SWAT+ allows to draw outputs for any sub-basin located at the up-
stream, it is advantageous compred to GR4J under data-limited modelling condi-
tions. 

5. Resultant hydrographs were demonstrated that simulated discharge values were 
lower than observed values in general. The reason for that is related to the difference 
between ERA5 data and MGM measurements. Direct relationship between precipi-
tation and discharge leads the models to simulate lower values. 
 
The results obtained with the applied models and algorithms are limited to the Acısu 

Basin. In order to generalize the results, it is recommended to examine the basins with 
different geographical, meteorological and geological characteristics with similar models 
and algorithms. The modelers should identify the priorities of the modeling practice and 
select the right model for the right purpose. Input demands can be cover by open-source 
global data sources and currently distributed model can easily be set up for any location 
in the world. However, if only flood forecasting is the aim and process understanding is 
not necessary, relatively simple models can be utilized for quick solution for the domain. 
Future work should focus on appropriate model structure selection for flood or drought 
forecasting using ERA5 Land inputs and ECMWF forecasted meteorological forcing. 
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