
Article

Not peer-reviewed version

Proactive Decentralized Historian

Improving Long-Term Used

Legacy System in the Water

Industry 4.0 Context

Adrian Korodi 

*

 , Andrei Nicolae , Ionel-Aurel Draghici

Posted Date: 20 June 2023

doi: 10.20944/preprints202306.1400.v1

Keywords: proactive historian; IIoT; Industry 4.0; legacy systems; water industry; industrial automation;

SCADA.

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/662170
https://sciprofiles.com/profile/663104


 

Article 

Proactive Decentralized Historian Improving  
Long-Term Used Legacy System in the Water 
Industry 4.0 Context 

Adrian Korodi 1,*, Andrei Nicolae 1 and Ionel Aurel Drăghici 2 

1 Department of Automation and Applied Informatics, Faculty of Automation and Computers, University 

Politehnica Timișoara, 300223 Timișoara, Romania; andy_nicolae@yahoo.com (A.N.); 
2 AQUATIM S.A., 300081 Timisoara, Romania; ionel.draghici@aquatim.ro (I.D.) 

* Correspondence: adrian.korodi@upt.ro 

Abstract: The industry is in a continuous evolution in the context of Industrial Internet of Things (IIoT) and 

Industry 4.0 requirements and expected benefits. Some sectors allow a higher reconfiguration dynamics 

considering the interference capabilities and process/equipment renewals, but others have considerable inertia 

that is many times justified. In most encountered situations, the reality confirms that the industry is struggling 

with new demands as interoperation and efficiency improvements. The water industry makes no difference, 

being a sector with critical infrastructures and highly varied subsystems, where invasive interference in legacy 

solutions tends to be avoided. Following previous successful footsteps in researching a proactive decentralized 

historian, the current work focuses on a case-study that refers to a water treatment and distribution facility that 

is operated for several years and the current operating regime was established by local operators following 

accumulated observations, restrictions and response strategies. The proactive historian was tailored for the 

current case-study and it was applied and tested in the suboptimal functioning scenario where the water 

sources configuration was manually selected and used for water availability and energy efficiency, but without 

assuming current/future failures or different water demands. The proposed low-cost historian targeted to 

improve the functioning and operation of the water facility considering energy efficiency and other impacting 

outcomes of the current strategy, and to establish an automatic functioning regime in a completely non-

invasive manner towards the local legacy solution. The results were satisfactory, proving that the historian is 

able to adapt to a particular and suboptimal functioning real industrial scenario, to establish recipes in a 

process-aware manner, and to interoperate with the local legacy solution in order to apply improving actions. 

Keywords: proactive historian; IIoT; Industry 4.0; legacy systems; water industry; industrial 

automation; SCADA 

 

1. Introduction 

Sustainability in automation and SCADA impacts directly the associated industrial processes 

and must be argued together. A sustainable system has to focus on long lasting productivity and 

quality, on the environmental impact, and on cost issues. These outcomes may derive from each 

other, or a proper strategy may impact their majority. A new solution has to foresee future 

sustainability but obviously a higher impact derives from adapting legacy systems. The pace of 

progress in the Operational Technology (OT) and Information Technology (IT) is usually higher than 

in the actual industrial process structuring related research. However, the industrial processes need 

constant improvements, changes, expansions. Also, the current status of Industrial Internet of Things 

(IIoT) and Industry 4.0 is providing various opportunities to raise the level of improvements and 

sustainability [1–3]. 

Companies from various sectors are targeting IIoT/Industry 4.0 benefits, and are struggling with 

interoperation and efficiency improvements. By promising very high potential towards 

improvements in productivity, cost reduction, availability and safety, the aforementioned concepts 

became main areas of focus for both academic and industrial actors. In order to achieve this high 

potential, efforts are channeled on obtaining better connectivity, information exchange and 
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interoperability between different industrial entities, with the aim of creating links between 

previously isolated subsystems. The new frameworks that are being created will serve as the 

backbone of intelligent software solutions that are expected to gain capabilities to optimize technical 

systems, maximizing their performances and durability. Such advances are crucial in the light of 

growing concerns regarding the industrial sustainability in the context of climate changes, the 

transformations started by Industry 4.0 and IIoT presenting undeniable contributions towards 

emission reduction, energy savings, reduced pollution and a cleaner environment [4]. This aspect is 

commonly underrated because it is indirectly derived, compared to the more direct, measurable, 

observable outcomes of the new solutions. 

Numerous research directions have branched out under Industry 4.0 guidance [5], consistent 

advances being noted lately in machine learning [6], artificial intelligence [7], security [8,9] and edge 

computing [10]. By focusing on superior interoperability and information exchange as core features, 

the Industry 4.0 concept naturally led to research results in the communication protocols area as well. 

Different solutions around the Open Platform Communications Unified Architecture (OPC UA) [11] 

have supported a general acceptance in recent years of OPC UA as the standard Industry 4.0 

communication protocol, required by technical systems that need to become Industry 4.0 compliant, 

even though alternatives are available [12]. Those improvements into communication are supporting 

the data accumulation, which is demanding for the integration of Big Data techniques into the 

Industry 4.0 development directions, researches such as [13,14] recently exploring this path. Further 

emerging directions under Industry 4.0 umbrella can be noted, briefly enumerating cloud computing, 

networking, plug & produce, information models, data models, fog computing and standardization, 

among others. 

Depending on the industrial sector, the access to reconfigure, to change, to interfere, to renew 

processes, solutions, equipment, can be more or less restricted. All industries have inertia but some 

of them have a lower reconfiguration dynamic. For example, the automotive manufacturing industry 

is often expanding or changing its production lines due to new or changing requests from its clients, 

but the water industry is much more reluctant to solution change or to invasive interference in its 

current systems. Therefore, legacy systems are predominating in the water industry and constituting 

a multitude of different technical solutions and processes, maintaining a heterogeneous and 

chronologically dispersed perspective. Processes and process components change through time, 

control strategies need adjustments, efficiency increase is necessary, so improvements are mandatory 

with respect to non-invasive interference and sustainability. This practical reality of struggling to 

adapt to Industry 4.0, in the context of water treatment and distribution facilities, means that issues 

like high energy consumption, equipment failures, high consumption of substances, maintenance or 

water sources quality changes are continuing to persist on a large scale [15]. Although representing 

viable solutions at the time of their development, many technical implementations from the water 

industry became outdated and more efforts are required from both academic and industrial actors in 

order to leverage the massive potential benefits and opportunities for improvements into this 

industry that is critical for human health and the environment in the same time [16]. 

After previous successful footsteps in researching a proactive decentralized historian, the 

current work focuses on a case-study that refers to a water treatment and distribution facility that is 

operated for several years. Regarding various process changes, observations, restrictions, behaviors, 

and learned response strategies, the operators were establishing a local operating regime. The 

proactive historian is tailored for the current case-study and it is applied and tested in the suboptimal 

functioning scenario where the water sources configuration was manually selected and used for 

water availability and energy efficiency, but without assuming current/future failures or different 

water demands. This suboptimal scenario was chosen because it represented a very important 

challenge considering some criteria. The energy consumption was close to minimal, respectively the 

water demand in this period could be assured by two water sources at their close to optimal 

functioning point throughout each day. The proposed low-cost historian targeted to improve the 

functioning and operation of the water facility considering energy efficiency and other impacting 

outcomes (e.g. longer working hours of the personnel, inability to respond to rapidly changing water 
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demands, process equipment fault due to heavy use, etc.) of the current strategy, and to establish an 

automatic functioning regime in a completely non-invasive manner towards the local legacy solution. 

The strong partnership and previous joint research between the academia and the industry allowed 

important solution tailoring and real-world testing with only few restrictions, assuring faster reach 

to higher technological readiness levels. The aim was to prove that the historian is able to adapt to a 

particular and suboptimal functioning real industrial scenario, to establish recipes in a process-aware 

manner, and to interoperate with the local legacy solution in order to apply improving actions. 

The paper continues in the second chapter to present the previous work regarding the proactive 

historian, that is the essential starting point of the current research. The third chapter depicts the case-

study solution tailoring in the context of the water treatment and distribution facility. The fourth 

chapter is presenting and discussing the obtained results, respectively the last chapter concludes the 

work.   

2. Previous Work 

Local data collecting tools are crucial for offering the possibility of having insights into local 

processes. From a more practical perspective, the most often available data collecting tools are placed 

at top supervisory levels only and are offered by well-known automation software producers, which 

are still preserving their own ecosystems in terms of collected data availability and means to access 

it. Or, recently, the data collection is conceived even further away, towards the IT level or even the 

cloud. But the gathered data from the Operational Technology (OT) level is relying only on the central 

control center SCADA software data, that is usually filtered and reduced in volume, adapted for the 

central operators’ perspective, with lower level of knowledge regarding the local processes. A water 

distribution company may have hundreds or thousands local processes, dispersed in a large 

geographical area. The level of understanding the local technological process functioning and the 

access to all variables is the highest locally, within the water plants. Water plants are typically 

containing redundant SCADA servers, but few SCADA software environments are allowing proper 

data storage and access. SCADA software is representing the locally available data collection 

alternative. Usually, SCADA software solutions are relying on logging services for a certain tag set 

and rudimentary archiving services. The backwards data access is many times almost impossible (e.g. 

long waiting times, access only through trend graphs, few tags perspective, some with own format 

databases, etc.), respectively no real data processing and manipulation possibilities are available. The 

classical historians are costly and general-purpose data gathering and manipulation systems, 

therefore being placed on central or regional control centers, or larger water plants. The availability 

of historic data regarding equipment and processes operation, proves to be the first obstacle for some 

potential exploratory research ideas or solutions. As researched and developed in [17], lightweight 

and low-cost historians with abilities to interface using emerging Industry 4.0 (e.g. OPC UA) and 

classic protocols are key elements for local data collection and storage.  

With the data available, the evolution of software tools is opening up the possibility of analyzing 

the collected data and identifying optimizing recipes in an autonomous manner. The research 

towards data dependency analysis and pattern recognition within the historian was presented in [18], 

as a step towards even more intelligent and sophisticated solutions, capable of optimizing the 

monitored system without requiring human supervision or intervention. The non-invasive character 

of the solution was important, as the historian was foreseen to be implemented also for legacy 

systems.  

The historian was applied also for wastewater sector in [19], where weather data was used for 

predicting plant behavior. This work consolidated the services using external data and integrate them 

for prediction.  

The proactive historian concept further advanced in [20], where the accumulated data, the 

dependency analysis, were added with implemented recipes to reach an objective function, 

considering inserted constraints. The solution was applied for a water facility in two steps. First step 

was only collecting data that was applied on the plants’ model. A 9% energy consumption reduction 

resulted by selecting water sources according to a quality indicator and functioning hours, 
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respectively setting a flow requirement for each water well. The second step consisted in applying a 

reduced form of the solution on the real water facility. The test scenario was short-term and the 

solution was not allowed to set the flow requirement exactly as calculated by the algorithm, and some 

actions were strictly controlled by the operators. The historian only selected the water sources, the 

flow set point was a fix value for the local control loops. However, the results showed a reduction of 

energy consumption by 30% in the water plant. 

Work [21] closed the general control loop, bridging the gaps for an autonomous functioning. In 

the sense that the water quality indicators were automatically adapted, and steps were made towards 

a process-aware historian, adapted for the water sector. 

3. Case-Study Solution Tailoring 

3.1. Water treatment facility revisited. Challenges 

An efficiency increasing solution cannot be researched without real data and real industrial 

scenarios. The hypothesis that guided the current research relied on a water treatment facility that 

represented the testbed for previous status of the proactive historian. The water treatment facility 

consists of 6 water wells that are foreseen with flow based main local control loops and a level based 

secondary control loop. The water enters into the treatment plant on a common pipe. It is aerated and 

filtered with sand and charcoal filters, respectively chlorinated in 3 points before distributed in the 

network. Figure 1 depicts the mentioned components within the process aware setting interface of 

the proactive historian, where all process components are represented, with all constraints and 

objective function. 

 

Figure 1. Process components within the process-aware proactive historian interface. 

The historian is using the collected data to establish well priorities and flow set-points according 

to estimated water quality indicators (water quality based on the previous impact over the energy 

consumption) and functioning times (impacting the future availability of the water well), respectively 

to current and predicted water demand (output flow in the distribution network and water 

accumulation necessities in the reservoirs for peak consumption hours). 

As mentioned in [20], the previous research was focusing on reducing energy consumption in 

the context of all process components functioning in automatic regime, limited historian deployment 

(only selecting the water sources but without setting the calculated flow set-points within the control 

loops of the wells), respectively limited-time testing. The results were very satisfactory, reducing the 

energy consumption in the plant by 30%. Throughout the following years, the situation changed 

within the water facility. Targeting minimal energy consumption and following several observations 

regarding water demand and components functioning (including the inability to automatically 

establish flow set-points within the water wells), the automatic activation and selection of water 

sources based on functioning hours and level in the reservoirs was stopped by the operators. 

Therefore, the current situation provided several challenges for research: 
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- The close to minimal room for energy reduction. The operators are selecting the water sources 

choosing the best available options according to previous research and observations. Depending 

on the season and the weather, some situations allow minimal number of well selection (e.g. the 

test scenario within the current work covered a situation when only 2 water sources were able to 

assure the necessary water for normal expected demand, using flow set-points that determine 

close to optimal frequencies for the drives). 

- The number of selected wells are functioning all day at the same flow set-point regardless of the 

water demand. This behavior benefits energy consumption pricing due to lower night tariffs. But, 

the manual water well selection regime will not cover situations of varying water demand, nor 

situations where faults occur. The outcome would be either wasted water (usually water is 

wasted) or lack of water for the population (later accumulation of water can be difficult in some 

periods of time). 

- The manual regime cannot distribute the functioning time correctly for the water sources. This 

may lead to faulty behavior or defects within the well. Currently, the first water source cannot 

function on flow-based control loops anymore because of slower provision of water, and the 

fourth water well is not able to keep the flow set-point, having large fluctuations. This leads to 

an even more limited room for energy efficiency improvement, but considerable necessity for a 

complete automatic regime. 

Besides the mentioned challenges, a supplementary challenge is to tailor and to stress the 

proactive historian for longer testing periods in an autonomous functioning and a non-invasive 

interoperation with the legacy system.    

Therefore, these challenges are transformed into historian tailoring and testing tasks, briefly 

presented as follows: 

- To assure the automatic selection of water wells according to accumulated data with the energy 

efficiency increase as primary objective function but considering also functioning hours of the 

water wells. 

- To assure the automatic activation of the water wells according to varying current water 

demands, but considering the accumulation perspective for peak hours, the varying flow set-

points in the local control loops of the water sources, and other constraints as the upper, lower 

and optimal limits in pumps driving frequencies. 

- To interoperate with the legacy system in order to set the flow references and to start/stop the 

pumps. These task assumes multiple checking and protection functions according to the current 

manual regime and other functioning regimes at the water source level (e.g. steps in starting and 

stopping the pumps, level-based regime check, faulty behavior check, faults detected in the local 

systems, interoperation sampling periods proper setting, etc.). 

- To generate general safety procedures to deactivate properly the historian-based interference that 

provides the automatic regime in case of malfunction signs or on operator demand, with an 

option to reestablish the previous settings within the local system before decoupling.  

- To evaluate the overall performance in the current suboptimal regime and longer-term 

functioning.  

3.2. Architecture and Solution Deployment 

The proactive historian solution developed in [21] formed the basis for the practical 

implementation of the current research, but special tailoring for the current case-study was required, 

in order to fit the software solution to the specific particularities of the tested scenario. All 5 tasks 

identified at the end of the previous subsection were considered and the adjustments made to the 

historian software solution in order to meet those aforementioned requirements are briefly described 

below. 

Firstly, the optimizing algorithm described in [21] was adjusted in order to include a hysteresis 

h, as percent of the minimum flow of the water source. More specifically, if the difference from the 

total flow delivered towards population and the sum of the water flows offered by the sources that 

are running is not greater than ½ of the minimum flow that can be offered by the next idle source (in 
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the order of its priority), then the respective water source is not started, to avoid excessive water 

pump wear down. The same hysteresis limit applies for stopping a water source. ℎ = 12 ∙ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑛𝑒𝑥𝑡_𝑠𝑜𝑢𝑟𝑐𝑒_𝑓𝑙𝑜𝑤_𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 ห𝑓𝑙𝑜𝑤_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑓𝑟𝑜𝑚_𝑠𝑜𝑢𝑟𝑐𝑒𝑠௔௖௧௨௔௟ − 𝑓𝑙𝑜𝑤_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑓𝑟𝑜𝑚_𝑠𝑜𝑢𝑟𝑐𝑒𝑠௣௥௘௩௜௢௨௦ห > ℎ 

if 

𝑓𝑙𝑜𝑤_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑓𝑟𝑜𝑚_𝑠𝑜𝑢𝑟𝑐𝑒𝑠௔௖௧௨௔௟ > ෍ 𝑤𝑎𝑡𝑒𝑟_𝑠𝑜𝑢𝑟𝑐𝑒_𝑓𝑙𝑜𝑤௠௔௫௜௠௔௟_௩௔௟௨௘௔௖௧௜௩௘_௦௢௨௥௖௘௦
௜ୀଵ  

or 

𝑓𝑙𝑜𝑤_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑓𝑟𝑜𝑚_𝑠𝑜𝑢𝑟𝑐𝑒𝑠௔௖௧௨௔௟ < ෍ 𝑤𝑎𝑡𝑒𝑟_𝑠𝑜𝑢𝑟𝑐𝑒_𝑓𝑙𝑜𝑤௠௜௡௜௠௔௟_௩௔௟௨௘௔௖௧௜௩௘_௦௢௨௥௖௘௦
௜ୀଵ  

The percent was established at a fixed value using the historian and it proved to be more efficient 

than varying hysteresis correlated to the water accumulation necessities and minimal values of the 

flow for a specific water source. A varying h value for each water well is requiring a proper frequency 

of updating and proper correlation with the evolution of each water source. No benefit was 

encountered for a varying h.   

Secondly, the Historian was updated in order to read the minimum and maximum flows that 

can be offered by each water source from a configuration file, so that those limits can be easily 

adjusted by operators if necessary. The limit values are important as it was noticed that through time, 

these limits were changing for each water well. Also, the automation from the drinking water 

treatment plant (DWTP) used in this research takes into account a specific OPC UA tag for 

determining when to start or stop the water pump of a source, instead of using a 0-based convention 

for the reference flow tag, which led to the necessity of adjusting the algorithm from [21] in order to 

properly set this start/stop command tag value as well when it is required. Taking the manual 

selection of the water wells towards the automatic regime required more condition checks and further 

reaction towards the local functioning of the legacy solution. As examples, the names of the OPC UA 

tags used for start/stop command, sources reference flows and total flow delivered towards 

population had to be set (together with proper verification procedures), as well, particularly for this 

DWTP. Comparing to [21], the magnitude of algorithmic and protection structures referring to local 

system interoperation following the efficiency recipes provided by the historian increased 

significantly.   

Lastly, in the targeted DWTP the filters washing operation takes place at approximately 24 hours 

intervals and it consumes around 50 m3 of water from the water tank containing the treated water 

which will be sent in the network. The respective water tank has a maximum capacity of around 400 

m3 and the filters washing operation takes just around 30 minutes to complete. So, in order to 

compensate for this significant drop in the distribution tank’s water level in a short time interval, the 

historian was adjusted to compute the target water flow (total flow that must be offered by the water 

sources) not as equal to the water flow towards the distribution network, but as: 

flow_required_from_sources = p% * DWTP_output_flow.  

(where p% was set for 120%, but it can change between 110%-130% 

depending on the the actual value of the treated daily volumes 

within the DWTP that is varying according to the season). 

This way, the water level in the tank is slowly, but constantly rising, compensating the big drop 

during filters cleaning. In this context, all experiments were monitoring the frequency of the filter 

washing cycles and filters clogging status. 

The interfacing between the specifically developed version of the historian application and the 

legacy system from the DWTP targeted by the current research is presented in Figure 2. 
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Figure 2. Interfacing between historian and the legacy system. 

The historian implementation has 2 loops through which it communicates with the legacy 

system: monitoring loop and optimizing loop. The monitoring loop is used by the historian to collect 

data, reading the OPC UA tags values at 20 seconds intervals from the OPC UA Server that is 

functioning in the DWTP. The values are collected inside the legacy system from the field equipment 

(pumps, air blowers, filters, chlorine injectors, flowmeters, etc.) and exposed into the OPC UA Server, 

where only real time values are available. Those real time values are being read by the Historian at 

20 seconds intervals and the values are being stored within a SQLite database, thus collecting 

historical data about DWTP’s functioning parameters. The values associated with OPC UA tags are 

components of internal DWTP control systems. For example, the reference flow for water sources 

represents the set-point of the flow-based control loop within each water source (primary closed-loop 

control system for each well), and the actuators are frequency converters that are adjusting the 

revolution speed of the pumps (see simplified scheme of the flow-based closed-loop control within 

each water source of the legacy system in Figure 3).  

 

Figure 3. The flow-based control loop within the legacy solution of each water source. 
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The optimizing loop starts by reading from historian’s database the most recent value recorded 

for the water flow distributed towards population, which is fed into the optimizing algorithm 

described in [20,21], resulting the optimized reference flows for each water source, which are being 

written alongside the necessary command tags values (for start/stop) on the OPC UA Server from the 

legacy systems. The consequence of writing new values on the OPC UA Server is that DWTP’s 

automation takes the new values into consideration, thus the historian being able to influence the 

functioning of the DWTP in a non-invasive manner regarding the legacy system’s existing 

automation. The operations from the optimizing loop are repeating at 60 seconds intervals. The 

historian can run in 2 separate regimes: monitoring only (monitoring loop runs and optimizing loop 

does not run) or optimizing (both loops are running), the applying of the optimization over the 

monitored system being a decision left at the historian’s user choice, Figure 4 showing the settings 

area from the historian’s graphical user interface (GUI) which allows this choice to be made. 

 

Figure 4. The settings area from the historian’s GUI. 

In advance of running the optimizing loop, the historian must analyze the recorded data and 

identify the water sources priority indices (by running the algorithms described in [18,20]), this 

analysis operation being started manually by the user clicking a button in the ‘Analyzer’ tab from 

Figure 4. Because the quality of the water from sources changes over time, the historian’s user has 

the possibility of repeating this analysis periodically, when considered appropriate, so that the energy 

optimizing strategy is not considering some outdated priority indices. 

From a more physical standpoint, the historian is installed on a Raspberry Pi 4 Model B 

hardware platform, which is located inside the DWTP’s command room, alongside the existing 

computers hosting the local SCADA software and OPC UA Server. The Raspberry Pi is connected to 

an uninterruptible power supply (UPS) and secure remote access to historian’s GUI was implemented 

as well, through SSH tunneling. 

The deployed software solution represents not just a simple data collecting tool, but a step 

forward, in the form of a process-aware historian, that understands the meaning of the monitored 

OPC UA tags and also possesses proactive capabilities. The historian can autonomously analyze the 

stored data, compute an optimizing recipe and apply it to the monitored system in a fully automated 

and non-invasive manner. The optimizing strategy applied by the historian starts by analyzing the 

stored data, considering the water flows of water sources and the total energy consumption of the 

DWTP, the data dependencies identification algorithm detailed in [18] offering an output based on 
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which a priority indicator regarding water quality can be computed for each water source. 

Afterwards, a priority indicator regarding equipment wear down is computed for each water source 

based on the functioning hours recorded for each water source. Those 2 priority indicators are used 

to compute a global priority indicator for each water source, which is then considered in the 

optimizing algorithm for deciding the usage of the water sources. The algorithm attempts to match a 

specific total water flow that must enter the DWTP, which is computed based on the water flow 

distributed into the network from the station, and also keep the running water sources closest 

possible to a computed optimum flow for each. The target water flow that must be matched 

represents the sum of the flows of the water sources, the algorithm maximizing the usage of the 

highest priority water sources to the detriment of lower priority water sources, thus obtaining better 

energy efficiency and equipment wear down balancing, depending on the weights of the 2 priority 

indexes when computing the global priority indicator for a water source. More details regarding the 

optimizing strategy and algorithm are available in [18,20]. 

Furthermore, the process of tailoring the historian solution developed in previous researches 

supported an increase of the software application’s technological readiness level (TRL) at level 7. 

The historian software solution described in the current section was deployed at a DWTP located 

in Timiș, Romania, supplying a population of around 8000 people. The historian was operational for 

the current testing and validation purposes, in monitoring only regime since 30 August 2022, 

continuously gathering data from the DWTP until the current moment. Following previous testing 

experiments, the presented testing of the optimizing regime was realized during a 50 hours long 

interval, between 27 February 2023 at 13:30 local time and 01 March 2023 at 15:30 local time. During 

the aforementioned interval, the local operators did not make any adjustments to the functioning of 

the DWTP, which was left entirely under the control of the historian application with regards to the 

water sources usage. The results of the test conducted in the optimizing regime are presented and 

discussed in the following section. 

4. Results and discussion 

4.1. Energy consumption related considerations 

Being the primary objective of the applied optimizing strategy, the electricity consumption is 

presented at the beginning of the results section, considering 4 different points of view. All data 

referred below was collected with the historian application installed in the DWTP and the energy 

consumption mentioned is global, per entire DWTP. 

The first analyzed aspect was the energy consumption per day, considering stored data from the 

3 months preceding the test. The recorded energy indexes were used to compute the total energy 

consumption per each respective month, which was then divided to the number of days in the 

respective month. Regarding the test period, the energy consumption was divided by 2,083 (the result 

of dividing 50 hours of test interval by 24 hours in a day). The conclusions are summarized in Table 

1 below and they highlight an energy consumption reduction during test. 

Table 1. Total energy consumption per day comparison during test with previous months. 

 December 2022 January 2023 
February 2023 

01.02 - 27.02 (before test) 

Energy index start (kWh) 1252010,25 1266546,5 1281298,75 

Energy index end (kWh) 1266546,25 1281298,625 1293673,25 

Total energy consumed (kWh) 14536 14752,125 12374,5 

Energy per day (kWh) 468,90 475,875 475,942 

Energy per day (kWh) during test 454,38 

Comparison 
- 14,52 kWh/day 

- 3,1% 

- 21,495 kWh/day 

- 4,51% 

- 21,562 kWh/day  

- 4,53% 
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The second analysis was focused on comparing the total energy consumption during the test 

interval with other similar intervals. For this, the same interval inside a week (Monday 13:30 – 

Wednesday 15:30) was considered from 3 of the 4 weeks preceding the test. Also, similar 50 hours 

long intervals, but in Wednesday – Friday period were considered from the week preceding test and 

in the week of the test (immediately after test finished). In all 5 intervals, the comparison of the energy 

consumption with the test denote reductions using the optimizing strategy, as illustrated in Table 2. 

Table 2. Total energy consumption comparison during test with other similar 50-hours long 

intervals. 

 

30.01.2023 

13:30 - 

01.02.2023 

15:30 

(Monday –  

Wednesday) 

06.02.2023 13:30 - 

08.02.2023 15:30 

(Monday –  

Wednesday) 

13.02.2023 13:30 - 

15.02.2023 15:30 

(Monday –  

Wednesday) 

22.02.2023 13:30 - 

24.02.2023 15:30 

(Wednesday –  

Friday) 

01.03.2023 15:30 - 

03.03.2023 17:30 

(Wednesday –  

Friday) 

Energy index 

start (kWh) 
1280569,5 1283990,5 1287399 1291612,875 1294833 

Energy index 

end (kWh) 
1281572,5 1284977 1288386,5 1292580,5 1295789,5 

Total energy 

consumed 

(kWh) 

1003 986,5 987,5 967,625 956,5 

During test (27.02.2023 13:30 - 01.03.2023 15:30 Monday - Wednesday) 

Energy index start (kWh)  1293886,25 

Energy index end (kWh) 1294832,875 

Total energy consumed (kWh) 946,625 

Comparison 
- 56,375 kWh  

- 5,95% 

- 39,875 kWh  

- 4,21% 

- 40,875 kWh  

- 4,31% 

- 21 kWh 

- 2,22% 

- 9,875 kWh 

- 1,03% 

The third analyzed perspective takes into consideration the water volume that entered the 

DWTP to be treated, the chosen metric being the energy consumption relative to the water volume. 

In this case, 2 time intervals were considered for comparison with the test period: the entire week 

before the test period and a similar 50 hours interval, the results of this analysis composing Table 3, 

which shows good energy consumption optimizations during the test. 

Table 3. Total energy consumption per m3 entering DWTP comparison during test with previous 

intervals. 

 

20.02.2023 00:00:00 – 

27.02.2023 00:00:00 

(the week before test) 

22.02.2023 13:30 – 

24.02.2023 15:30 

Total energy consumed (kWh) 3156,125 967,625 

Total water volume entering DWTP (m3) 2813,8 816 

Total energy consumed per water volume 

(kWh / m3) 
1,121 1,186 

During test (27.02.2023 13:30 - 01.03.2023 15:30) 

Total energy consumed (kWh) 946,625 

Total water volume entering DWTP (m3) 882,9 

Total energy consumed per water volume 

(kWh / m3) 
1,072 

Comparison 
- 0,049 kWh/m3  

- 4,37% 

- 0,114 kWh/m3  

- 9,61% 
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The final point of view in the data analysis regarding energy consumption focused, also, on 

water volumes, but this time, the total water volume that was offered by sources (sum of the 

individual water volume that left each source towards DWTP, during a considered interval). The 

comparison made between the test and the similar interval from the preceding week is detailed in 

Table 4 and an improvement of energy consumption by using the historian application’s optimizing 

strategy was detected in this case, as well. 

Table 4. Total energy consumption per m3 from water sources comparison during test with previous 

similar interval. 

 

Week before test interval 

20.02.2023 13:30:00 – 

22.02.2023 15:30:00 

Monday – Wednesday 

During test 

27.02.2023 13:30 – 

01.03.2023 15:30 

Monday – Wednesday 

Total energy consumed (kWh) 914,75 946,625 

Total water volume offered by water sources 

(m3) 
881,25 936,25 

Total energy consumed per water volume 

(kWh / m3) 
1,038 1,011 

Comparison  
- 0,027 kWh/m3  

- 2,60% 

As stated before, in all time intervals with which the test was compared with, the DWTP’s water 

sources were operated manually by the local operators, through the local SCADA software. The 

manual operation techniques that are being applied in this DWTP were refined during years of 

experience and were focused solely on energy consumption and water availability. As a consequence, 

the energy consumption was already very close to the minimum possible in the respective intervals 

and being able to further improve that energy efficiency with the historian solution in this particular, 

unfavorable test case represents a very good result under the given circumstances. 

4.2. Other considerations 

Besides the energy related information from the previous subsection, there are other remarks 

derived from the same test using the historian application in optimizing regime that can be brought 

into discussion. 

Firstly, no stability issues were identified regarding the historian software application, errors or 

normal service interruption not occurring during the 50 hours test period. Also, the interoperability 

with the monitored system did not raise any problems. On the other side, no stability issues were 

identified regarding the DWTP’s functioning, during the entire 50 hours the DWTP operating under 

normal parameters considering water quality at output and the water level in the distribution tank 

being well above any risk limit (including after filters washing operation finished). No human 

operator intervention was required during the test. This stability, concomitant with the energy related 

results presented in the previous subsection proves the increase of TRL level for the historian that 

was obtained during the current research. 

Using the historian application for controlling the water sources usage instead of the manual 

source selections and activations by human operators based approach presents major advantages. 

The water necessities can change either by varying demand from the population, local equipment 

failures, sudden bad quality of water causing clogged filters and increased washing cycles, or by 

broken pipes. This way, water can be wasted or the reservoirs could empty. The case of a sudden 

change in the water flow distributed towards the population, could result in a highly delayed water 

sources flow increase command that could lead to an empty distribution tank in the DWTP and an 

interruption of water supply in the entire network. Using the described historian solution, the water 

sources flows are adjusted appropriately after maximum 60 seconds after any sudden change, 

regardless of the time of its occurrence, thus, possibly avoiding a full interruption of water supply. 
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Another observation is linked to the equipment wear down, which is not currently taken into 

account with the current manual operation of the DWTP. Overusing a specific water source because 

it offers better water quality wears down the pump and, in the long term, could result in higher 

financial costs for the water company in the event of wear down-induced failures. The optimizing 

strategy from the historian taken into consideration the functioning hours of the water sources as 

well when deciding the operation mode of the sources. However, the hypothesis of reducing the wear 

down-induced equipment failures by using the historian compared to the current manual operation 

requires long time data (several years) of both usage cases to verify, data that is not available at the 

moment. 

5. Conclusion 

The rapid pace of development that represents a prominent characteristic of Industry 4.0 is 

forcing various industrial actors to remain competitive through updating and adapting to new 

standards of industrial efficiency, performance and flexibility. One important mean through which 

this can be achieved is strong partnerships between academic and industrial spheres, oriented 

towards researching and developing solutions that possess a very significant practical applied 

character. This way, the perfect context is set for facilitating the transition of research results and 

improvements into real-world, daily-basis used systems, thus delivering research benefits to many 

people. 

Constituting such a research, the current paper presented the development and deployment of 

a historian software solution into an industrial environment represented by a DWTP. Besides the data 

collecting capabilities, proactive and process-aware intelligence of the solution was highlighted 

through a detailed case study, the results of which were presented and discussed from the energy 

efficiency and other points of view. The presented solution proved high technological readiness level, 

very good stability and interoperability with the associated technical system, posing valuable benefits 

for the future operation of the considered DWTP. 

Also, considering the fact that approximately 50% of the electrical energy consumed by the 

DWTP is still produced from fossil fuels, through the energy efficiency increase provided by the 

usage of the historian solution, the current research indirectly contributes to a more sustainable 

operation of the DWTP by decreasing the associated carbon emissions. 

The authors consider that the results of tailoring and applying the proactive historian in the 

current suboptimal scenario are highly notable. The targeted suboptimal perspective success rate was 

minimal from the energy reducing perspective, respectively the increased interoperation with the 

legacy system running for around 10 years raised many issues. The proactive historian was able to 

increase the energy efficiency in the worst possible context with almost no room of maneuver 

considering the current energy focusing strategy, reduced water source availability, water demand. 

Also, the manual perspective was replaced with the automatic regime only through the proactive 

historian and its interoperation with the legacy system, raising the level of availability for the water 

sources, the reaction to varying water demands, and reducing the human intervention.    

Regarding future development directions, numerous possibilities are opened up by the presence 

of a local data collecting solution that is process-aware and capable of understanding and analyzing 

the monitored data. Different objective function can be chosen that would lead to researching other 

types of optimizations, such as reduction of substances (chlorine) consumption, for example. On a 

different note, the large quantities of stored data can be used to investigate the feasibility of 

application of Machine Learning or Artificial Intelligence techniques towards the Predictive 

Maintenance area, in an attempt to develop the ability to predict equipment failures. Furthermore, 

tailoring the historian solution to slightly different environments, such as waste water treatment 

plants, brings new possibilities regarding development directions that have potential in optimizing 

the respective processes. 
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