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Abstract: Objective: Lung cancer remains the leading cause of cancer-related mortality worldwide, 
with significant resistance to conventional therapies, highlighting the urgent need for novel 
therapeutic strategies. Moringa oleifera (M. oleifera), a medicinal plant rich in diverse bioactive 
compounds, has shown promising potential for anti-lung carcinoma activity. This study investigates 
the molecular mechanisms underlying the therapeutic effects of M. oleifera bioactive compounds 
through an integrated systems biology and molecular docking approach. By constructing 
comprehensive compound-target-pathway networks, we aim to elucidate the multitarget 
pharmacology of M. oleifera compounds, providing valuable insights into their potential as 
therapeutic candidates. Methods: Bioinformatics tools were used to identify 180 phytochemicals 
from M. oleifera, filtered using Lipinski’s Rule of Five and ADMET properties, yielding 14 lead 
compounds. Protein-protein interaction (PPI) analysis identified 89 overlapping lung cancer targets, 
with EGFR being the most enriched in pathway enrichment analysis.  Results: In the analysis, 
Caffeic acid showed the highest binding affinity (-28.97 kcal/mol) with EGFR through molecular 
docking and maintained stability during molecular dynamics simulations. This interaction also 
modulates 12 pathways critical to lung cancer, including MAPK, JAK-STAT, and PI3K/AKT 
pathways. The overall result suggests that Caffeic acid is an EGFR-mediated oncogenic signalling 
inhibitor. Conclusion: Caffeic acid is a potential candidate for lung cancer therapy, warranting 
further experimental validation to translate these findings into clinical applications. 

Keywords: Lung cancer; Moringa oleifera; Network System Biology; Molecular docking; Molecular 
dynamics 
 

1. Introduction 

Lung cancer poses a substantial global public health challenge, representing the foremost cause 
of cancer-related fatalities worldwide, as reported by the World Health Organization (WHO). In 2022 
alone, lung cancer was accountable for an estimated 1.8 million deaths, underscoring its status as the 
primary contributor to cancer mortality globally (source: https://gco.iarc.fr/). The incidence of lung 
cancer exhibits regional disparities, with North America, Europe, and Asia reporting the highest rates 
[1]. Tobacco smoking is the primary contributor to lung cancer, accounting for roughly 85% of all 
case. However, other factors such as exposure to environmental pollutants, genetic susceptibility, and 
other risk factors also contribute. Despite strides in treatment modalities, lung cancer prognosis 
remains poor, with a 5-year survival rate of less than 20% [2]. Lung cancer treatment approaches may 
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differ based on cancer type and stage due to its complexity. Currently, lung cancer treatment options 
include surgery, radiation therapy, chemotherapy, targeted therapy, and immunotherapy. 
Chemotherapy, which employs drugs to eliminate cancer cells, is commonly administered to patients 
with advanced-stage lung cancer. Targeted therapy designed to pinpoint specific genes crucial for 
cancer cell proliferation has emerged as a promising approach. Various targeted therapies have 
demonstrated encouraging outcomes in the treatment of diverse forms of lung cancer [3,4]. Despite 
advancements in lung cancer treatment techniques, the issue of drug resistance and the growing 
number of lung cancer cases in the future highlights the pressing need for the development of new 
medications to combat this life-threatening disease [5]. Although existing treatment modalities have 
made progress, their efficacy varies among patients, and the emergence of drug resistance can 
compromise their effectiveness. Hence, the ongoing advancement of new and potent drugs for lung 
cancer treatment is imperative to address the escalating incidence of this condition. Natural 
compounds sourced from plants are increasingly recognized as a promising avenue for discovering 
novel alternative anticancer drugs owing to their enhanced structural diversity, low toxicity upon 
metabolism in the body, and complex nature. Secondary metabolites derived from plants are 
particularly important primary reservoirs of medicinal agents [6–11]. M. oleifera commonly referred 
as the drumstick tree and a staple vegetable in numerous countries since ancient times, originates 
from South Asia, primarily the foothills of the Himalayas, India, although it has also been cultivated 
and naturalized elsewhere. This tree boasts remarkable nutritional and medicinal properties [12–14]. 
M. oleifera has been traditionally employed to treat a myriad of ailments, including arthritis, asthma, 
hypertension, pain, coughs, diabetes, diarrhoea, dropsy, epilepsy, fever, headaches, hysteria, 
irritations, paralysis, skin infections, sores, tumors, weakness, wounds, among others, across various 
countries [15–17]. The bioactive constituents present in almost all parts of M. oleifera have been 
associated with their efficacy against various illnesses, including cancer [18]. Recent studies have 
revealed that natural compounds from M. oleifera can exert anticancer effects [19,20]. M. oleifera 
extracts offer substantial health benefits, particularly through alcoholic and aqueous extraction of leaf 
compounds emerging as the optimal source. Their effects vary with dosage, displaying cytotoxicity 
towards cancer cell lines while preserving normal cell lines [21,22]. M. oleifera roots have 
demonstrated inhibitory activity against various cancer cell lines by reducing cell proliferation and 
inducing apoptosis [23]. Leaf extracts have been shown to significantly induce apoptosis and reduce 
cell proliferation in a lung cancer cell line [24]. Studies on the alkaloid extract of M. oleifera indicate 
that inhibition of JAK2/STAT3 pathway activation is the mechanism by which the extract suppresses 
cell migration and proliferation, induces apoptosis, and halts cell cycle progression in lung cancer 
[25]. This study pioneered an innovative approach employing a network system biology-based 
strategy to identify active natural compounds from M. oleifera with potential therapeutic applications 
in lung cancer treatment. Molecular docking and simulation techniques were used to assess the anti-
lung cancer properties of these M. oleifera active compounds, initiating the exploration of promising 
drug candidates derived from this plant. From a broader perspective, network system biology 
enables the examination of the intricate interplay between identified phytochemicals and various 
targets within the pathways associated with lung cancer [26–28]. Molecular docking was employed 
to elucidate the binding patterns of selected phytochemicals from M. oleifera to molecular targets 
linked to lung cancer. These analyses shed light on how these phytochemicals may influence cancer-
related biological processes. Nevertheless, further validation of these findings through in vitro and 
in vivo studies is required. The detailed workflow of our study is shown in Figure 1. 
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Figure 1. This workflow identifies natural compounds from M. oleifera that target lung cancer cells. The methods 
were enhanced using various filters to refine the selection. Initially, natural compounds were retrieved from the 
databases and filtered based on parameters such as Lipinski's Rule of 5 and ADMET. The compounds were then 
input into the SwissTarget database to identify related proteins. Lung cancer-related proteins were obtained 
from DisGeNET and TCGA databases. Proteins common between the two datasets were identified. Using the 
STRING database, these shared proteins were analysed through a protein-protein interaction (PPI) network. The 
PPI network was further examined in Cytoscape using a network analyzer tool. The most promising proteins 
were subjected to enrichment analysis and a network-based approach was used to identify potential targets. 
Compound-protein-pathway networks were employed to identify the most suitable natural compounds. 
Molecular docking was performed to determine the optimal compounds. Finally, the stability of the lead 
compound was assessed using molecular dynamics (MD) simulations. 

2. Material and Methods 

2.1. Data Mining of M. oleifera Natural Constituents 

The phytochemical data of M. oleifera were obtained from publicly available databases such as 
Indian Medicinal Plants, Phytochemistry and Therapeutics 2.0 (IMPPAT 2.0) 
(https://cb.imsc.res.in/imppat/), Dr. Duke's Phytochemical and Ethnobotanical Databases 
(https://phytochem.nal.usda.gov/), and Phytochemical Interactions DB (PCIDB) 
(https://www.genome.jp/db/pcidb/). The search outcomes were consolidated, and duplicate entries 
were eliminated. 

2.2. 3D Structure Retrieval and Molecular Property Identification 

The 3D and 2D structures of the compounds were obtained from PubChem and prepared using 
Discovery Studio 2022 (DS2022) software. The compound dataset was optimized using the 
CHARMm-based smart minimizer, which performs 1500 steps of steepest descent followed by 
conjugate gradient algorithms, achieving a convergence gradient of 0.001 kcal/mol [29]. The retrieved 
natural compounds were screened for drug-likeness based on Lipinski's Rule of Five [30]. This rule 
is a guideline in drug discovery for evaluating the potential of compounds as effective orally 
administered drugs. Subsequently, we assessed the absorption, distribution, metabolism, excretion, 
and toxicity (ADMET) properties, which are critical for drug discovery and development, using the 
ADMET protocol in DS2022. These standard descriptors used in pharmaceutical characterization and 
drug selection indicate suitability for human administration [31]. 

2.3. Retrieval of Targets Related to Phytochemicals and Lung Cancer 

The study utilized the Swiss Target Prediction to identify the target genes of the phytochemicals 
present in the M. oleifera plant (http://www.swisstargetprediction.ch/). Swiss-Target Prediction is a 
web-based tool for predicting the targets of bioactive molecules [32].  The selection criteria for genes 
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contributing to lung cancer included a two-parameter threshold: a Gene-Disease Association (GDA) 
score of ≤ 0.1 from DisGeNET (https://www.disgenet.org/) [33] and Simple Somatic Mutation (SSM) 
affected cases with a mutation frequency of ≤ 1.06% from TCGA (https://portal.gdc.cancer.gov/). 
These parameters were used to identify genes for further analysis, and the target genes identified 
from these databases were combined to remove duplicates and to obtain a refined list of lung cancer 
genes. The final overlapping target genes between M. oleifera and lung cancer were identified and 
visualized using Venny 2.1(http://www.interactivenn.net/). 

2.4. Protein-Protein Interaction (PPI) Network and Core Targets Identification 

PPI networks are effective tools for discovering biological interactions among proteins. First, the 
intersected targets were considered potential therapeutic targets of the natural compounds of M. 
oleifera against Lung Cancer. Using the STRING database [34], the protein-protein interactions (PPI) 
network of shared genes was obtained. This database provides both experimental and predicted 
relationship information for network contraction. We investigated the functional associations 
between these targets using the STRING database. A high confidence threshold (>0.70) was 
established for the minimum interaction score. Network analysis visualization was conducted using 
Cytoscape software (version 3.9.0). In the PPI network, numerous nodes and edges represent proteins 
and their interactions. Nodes with a higher number of significant connections to other nodes were 
considered top-ranked. Three topological analyses (Degree, Closeness, and Betweenness) were 
employed in the PPI network to identify core targets [35]. 

2.5. Pathway Enrichment Analysis 

Gene enrichment analysis was performed using g: profiler (https://biit.cs.ut.ee/gprofiler/gost) to 
investigate the Kyoto Encyclopedia of Genes and Genomes (KEGG) to identify lung cancer-associated 
pathways. From the PPI and network analysis, identified the core proteins that were uploaded to the 
g: profiler tool using Homo sapiens as the species. We considered those pathways that played crucial 
roles in lung cancer and were selected from the KEGG pathways using default cutoff values (P<0.05) 
that were considered statistically significant [36]. 

2.6. Compound-Targets–Pathways Network Construction 

After enrichment analysis, the compound-target-pathway interaction network was constructed 
using Cytoscape 3.9.0. This network contained compounds, proteins, and pathways related to lung 
cancer enriched in KEGG pathway analysis and showed the hub proteins that contributed to pathway 
enrichment [37]. 

2.7. Molecular Docking 

Based on the Compound–Targets-Pathways interaction network analysis, we identified the top 
interacting proteins with different pathways, and after that, we also selected the top interacting 
compounds with proteins. The top proteins and compounds were subjected to molecular docking 
using DS2022. We extracted the 3D structure of the EGFR (epidermal growth factor receptor) protein 
using the RCSB PDB (https://www.rcsb.org/) (PDB ID: 1M17), and the ‘Prepare Protein’ protocol was 
used to prepare the EGFR protein with DS2022. The active site was selected using docked ligand into 
the active cavity of EGFR by creating a sphere of 5Å radius using “Define and Editing” Protocol of 
DS2022 [38]. For molecular docking, the ‘CDOCKER’ protocol was utilized to extract the CDOCKER 
energy and interaction pattern of the compounds involved in docking [39].  

2.8. Molecular Dynamics Simulation 

A molecular dynamics simulation was conducted to analyze the stability of the protein-ligand 
complex. The best-docked complex was subjected to molecular dynamics (MD) simulation. The MD 
simulation conducted in an implicit solvent environment to study the stability, conformational 
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changes, and dynamic behavior of the inhibitor within the binding cavity using the DS2022 protocol 
‘Standard Dynamics Cascade’. [40]. The steepest descent minimization algorithm was used with a 
maximum of 5000 steps, to minimized the energy of docked complex. Position restraints were applied 
to the receptor and ligand of each system for 5000 steps throughout heating (300 K) using NVT (No. 
of atoms, Volume, Temperature) and a production run of 50ns. For the analysis of the MD simulation 
extracted, the trajectory files to explore the root mean square deviation (RMSD), root mean square 
fluctuation (RMSF), and radius of gyration (Rg). 

3. Results and Discussion 

3.1. Screening of Active Components of M. oleifera 

The phytochemical compounds of M. oleifera were retrieved from these databases (Indian 
Medicinal Plants, Phytochemistry and Therapeutics 2.0 (IMPPAT 2.0) [41], Dr Duke's Phytochemical 
and Ethnobotanical Databases [42], and Phyto-Chemical Interactions DB [43]. The data retrieved from 
these databases were filtered after removing duplicate entries a total of 180 natural compounds were 
selected for further analysis. All the selected compounds were again subjected to Lipinski’s rule of 5 
for drug-likeness. 167 natural compounds that fulfilled the cut-off criteria with the following rules: 
molar refractivity value of 40–130, Log P less than 5, number of hydrogen bond acceptors less than 
10, number of hydrogen bond donors less than 10, and molecular mass less than 500 Da, as shown in 
Table S1. The compounds filtered from the Lipinski’s rule of 5. All (167 natural compounds) were 
subjected to another filtering process based on ADMET-based properties. In ADMET, we considered 
different properties for the filtration of compounds, such as absorption, water solubility, CYP2D6, 
Hepatotoxicity, and intestinal absorption. After the ADMET-based filtration, 14 natural compounds 
were identified as shown in Figure 2 and Table S2. Water solubility is a key factor in the drug 
bioavailability process; water solubility is categorized as the best if it is within the range of values 
less than 3 or 4. All selected compounds exhibited water solubility within the specified range. 
Concerning the next parameter, the intestinal absorption of all the compounds was 0, which is a good 
range, and shows that the intestine easily absorbs all the compounds and passes through the blood 
stream. The compounds showed no inhibition (false) of CYP2D6, which is an enzyme that plays a 
role in the digestive system and metabolic processes. Hepatotoxicity predictions revealed that all the 
predicted compounds were non-toxic.  

 

Figure 2. The 14 natural compounds were selected after ADMET filtration using DS 2022. The 2D images of these 
compounds and their names and PubChem IDs were shown. 
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3.2. The Potential Targets for Natural Compounds of M. oleifera and Lung Cancer 

The Swiss Target Prediction database identified 508 unique genes targeted for the 14 natural 
compounds of M. oleifera obtained from the ADMET analysis (Table S3). Additionally, genes related 
to lung cancer were retrieved from DisGeNET (380) and TCGA (492) databases, which were given in 
Tables S4 and S5, respectively. After removing duplicates, 819 genes were considered from both 
databases (DisGeNET and TCGA). Using Venny to find the intersection of 508 genes from M. oleifera 
related targets and 819 lung cancer-related targets, a total of 89 overlapping targets were obtained, as 
shown in Figure 3, and provided in Table S6.  

 

Figure 3. Venn diagram of lung cancer-associated genes and M. oleifera Associated Genes; 89 common genes 
were present in both domains. 

3.3. Protein-Protein Interaction and Network Analysis 

A set of 89 common proteins was subjected to the STRING database with a confidence score 
cutoff of 0.90, and a PPI network was generated and visualized, as shown in Figure 4(i). The PPI 
network included 80 nodes(proteins), 314 edges, and 9 nodes that did not contribute to PPI 
interactions based on the parameters for the PPI network and were excluded from further analysis.  
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Figure 4. The protein-protein interaction (PPI) analysis of 89 common targets between lung cancer and Moringa 
oleifera resulted in a network of 80 nodes and 314 edges. The screening process for the PPI network was 
conducted as follows: (i) The initial PPI network included 80 lung cancer targets.(ii) A refined PPI network was 
generated based on significant proteins with a degree median of ≤6.(iii) Another subset was created for targets 
with a closeness centrality median of ≤0.0295.(iv) Finally, a PPI network was constructed for targets with a 
betweenness centrality median of ≤0.4093.This networks highlight the most relevant targets for further analysis. 

These nodes represent target proteins, and the edges indicate interactions between the proteins. 
The finalized PPI network was exported to Cytoscape v3.10 for further analysis. The Cytoscape 
Network Analyzer tool was used to evaluate the topological parameters of proteins within the 
network, includes protein degree, betweenness centrality (BC), and closeness centrality (CC). The 
degree represents the number of direct connections with the nodes in the network. Similarly, BC 
quantifies how often a node lies on the shortest paths between other nodes, and CC evaluates the 
importance of a node based on its efficiency in interacting with other nodes. The Hub proteins in the 
PPI network were identified using median cutoff criteria: a degree value of ≤6, a CC value of ≤0.0295, 
and a BC value of ≤0.4093.  For more detail on the median-based cutoff criteria, we used the 
methodologies of Jie et al. and Ying et al. to identify significant proteins for our analysis [44,45]. Using 
all these parameters, selected 11 key proteins, namely STAT3, ESR1, EGFR, MAPK8, IGF1R, 
CTNNB1, CREBBP, HSP90AA1, HRAS, JAK2, and EP300 were identified as hub proteins, and the 
complete selection process were shown in the Figure 4. (ii-iv), and the information is given in Table 
S7. 

3.4. KEGG Pathway Enrichment Analysis 

A total of 56 KEGG pathways were enriched using 11 hub proteins obtained from PPI 
interactions and network analysis, of which 14 pathways were associated with lung cancers. A list of 
11 proteins involved in the enrichment of these 14 pathways is presented in Figure 5. These proteins 
enrich significant pathways that play an essential role in lung cancer progression. JAK-STAT (Janus 
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kinase-signal transducer and activator of transcription) signalling pathways are critical 
communication routes cells use to transmit extracellular signals to the nucleus. The gene participates 
in cell proliferation, differentiation, and apoptosis in lung cancer and can be used as a target for 
treating lung cancer [46]. The FoxO (Forkhead box O) signaling pathway is involved in various 
cellular processes, including apoptosis, cell cycle regulation, oxidative stress resistance, and 
metabolism. In lung cancer, deregulation of this pathway can contribute to the development and 
progression of cancer [47]. The mitogen-activated protein kinase (MAPK) signaling pathway, often 
due to mutations in upstream receptors like EGFR or in downstream components like KRAS, leads 
to continuous activation of MAPK signaling. This persistent activation drives uncontrolled cell 
division and tumor growth and enhances metastatic potential [48]. Ras signaling pathway stimulates 
angiogenesis by Ras proteins, which signal through the Ras/Raf/MAPK regulate various cellular 
functions. Deregulation of this pathway is a common event in cancer, as Ras is the most frequently 
mutated oncogene in lung cancer [49]. The GnRH (Gonadotropin-Releasing Hormone) signaling 
pathway, primarily known for its role in reproductive hormone regulation, has been implicated in 
lung cancer development through its influence on cellular proliferation and apoptosis [50]. The 
PI3K/AKT signaling pathway plays a significant role in the development and progression of lung 
cancer. It also plays a role in the tumor environment, such as in angiogenesis and inflammatory factor 
recruitment [51]. ErbB signaling pathway (erythroblastic oncogene B), often through mutations and 
overexpression, leads to the stimulation of downstream signaling cascades like the MAPK/ERK, 
PI3K/AKT and JAK/STAT pathways. In turn, they collectively contribute to uncontrolled cell growth, 
inhibition of apoptosis, angiogenesis, and metastasis in lung cancer [52]. The HIF-1 signaling 
pathway plays a crucial role in lung cancer progression by acting as a master regulator of cellular 
responses to hypoxia, enabling low oxygen conditions within the tumor microenvironment, 
promoting tumor growth, angiogenesis, invasion, and metastasis through the activation of various 
downstream genes [53]. The Rap1 signaling pathway impacts lung cancer progression by regulating 
cell adhesion, migration, and invasion, mainly through integrin-mediated interactions [54]. In lung 
cancer, PD-L1 expression helps tumors evade the immune system by activating the PD-1 checkpoint, 
effectively "putting the brakes" on immune responses and allowing cancer cells to grow unchecked 
[55]. Th17 cell differentiation pathways play a significant role in lung cancer progression by 
promoting tumor growth, angiogenesis, and inflammation [56]. The Wnt signaling pathway plays a 
significant role in lung cancer development and progression by promoting tumor cell proliferation, 
invasion and resistance to therapy [57]. Pathways in cancer and non-small-cell lung cancer pathways 
were also enriched by these proteins, which are important pathways for enhancing lung cancer. 
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Figure 5. Diagram showing Pathway-Protein interaction from the 11 key proteins. Within the network, all 
proteins underwent an analysis of enrichment pathways. Pathways are represented by green triangles, whereas 
proteins are represented by round nodes. A total of 14 pathways were enriched using different proteins in the 
network. From the analysis of this interactions, we observed that EGFR has the maximum interaction with the 
pathways, indicating that it has a greater impact than the other proteins. 

From the protein-pathways interaction the most prominent protein identified is EGFR, which 
significantly impacts disease pathways. It is a key player, interacting with 12 pathways out of 14 
pathways which is more than any other proteins, as indicated in Table 1. Inhibiting EGFR can 
significantly disrupt key pathways involved in lung cancer, including MAPK, JAK-STAT, PI3K/AKT, 
and HIF-1 signaling. 

Table 1. This table highlights 11 proteins identified through network analysis and their interconnection to 14 
pathways. The proteins present in the pathways are represented using tick marks, while blanks indicate no 
interaction with pathways. Among these, EGFR stands out as a key player, interacting with 12 pathways more 
than any other protein. Notably, these include major pathways associated with lung cancer, such as non-small 
cell lung cancer, Ras signaling, PI3K/AKT signaling, MAPK signaling, and JAK-STAT signaling. This suggests 
that inhibiting EGFR could potentially have a significant impact on reducing the activity of pathways linked to 
lung cancer. 
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3.5. Compounds-Targets–Pathways Network Construction 

We developed a Compounds-Targets–Pathways network comprising 14 natural compounds, of 
which two Furfural and Benzylamine did not form any interactions within the network. Then the 
network included 12 natural compounds, 11 target proteins and 14 lung cancer-related pathways. 
Our analysis revealed the interaction between the natural compounds and the target proteins, with 
some compounds demonstrating more extensive interactions than others. Notably, Gibberellin A29 
and Caffeic Acid were the most highly connected compounds, interacting with five proteins (EGFR, 
MAPK8, CTNNB1, IGF1R, CREBBP) and four proteins (EGFR, EP300, STAT3, ESRI), respectively as 
shown in Figure 6. For further analysis, we focused on Gibberellin A29 and Caffeic Acid due to their 
association with the highest number of proteins. Additionally, we selected EGFR, as it plays a pivotal 
role in regulating the largest number of pathways.  

 

Figure 6. Figure illustrates the network between natural compounds-target proteins-pathways interacting 
among themselves. Natural compounds are represented by the rectangle’s boxes, target proteins are represented 
by the circle and pathways are represented by the triangle nodes, respectively. Out of 14 natural compounds 
only 12 can interact with 11 target proteins. Eleven protein targets are making the interaction with the 14 
pathways which plays vital role in the lung cancer progression. We also highlight the connection showing 
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maximum compounds with the EGFR with dotted pink colour arrow and connection of EGFR targeting 
maximum pathways with dotted orange colour arrow. 

3.6. Molecular Docking 

To validate our findings from the compounds-proteins-pathways interactions, we conducted 
molecular docking to assess the interaction between the natural compounds (Gibberellin A29 and 
Caffeic Acid) with EGFR. Using the CDOCKER protocol in DS2022, we analysed the docking 
interaction. The docking complexe of Gibberellin A29 had CDOCKER energy of 46.3641 kcal/mol, 
this positive value indicates a week interaction.  Based on the energy parameter, dropping this target 
from the study. In contrast, Caffeic Acid exhibited a higher negative CDOCKER energy -28.972 
kcal/mol, suggesting a strong interaction with EGFR. EGFR-Caffeic Acid complex formed seven 
hydrogen bonds and one hydrophobic bond with active site residues. Caffeic acid established 
conventional hydrogen bonds with LYS721, MET769, GLU738, GLN767, LEU768, and THR830, and 
a hydrophobic interaction with LYS721. Caffeic acid forms conventional hydrogen bonds with 
LYS721, MET769, GLU738, GLN767, LEU768, and THR830, along with a hydrophobic interaction 
with LYS721, as detailed in Table S8. Notably, MET769, a key residue involved in EGFR inhibition, 
interacts with Caffeic acid, while LYS721 forms a hydrogen bond crucial for competing with ATP and 
blocking kinase activity. Additionally, GLU738 helps stabilize the inactive conformation of EGFR, 
preventing the kinase from transitioning to its active state and thereby inhibiting its binding 
capability [38,58–61]. To cross-validate the docking experiments, the CDOCKER energy of Caffeic 
acid was compared with Erlotinib, which was a known ligand of EGFR. Erlotinib exhibited a 
CDOCKER energy of -22.641 kcal/mol, whereas Caffeic acid had a higher CDOCKER energy of -
28.972 kcal/mol. This energy difference indicates a stronger binding affinity for Caffeic acid compared 
to Erlotinib. This comparative analysis was performed using the CDOCKER protocol of DS2022. This 
comparative analysis was performed using the CDOCKER protocol of DS2022, CDOCKER protocol 
of DS2022. The interactions of EGFR with Caffeic acid and Erlotinib are shown in Figure 7, and 
residue interaction (bond formed) was provided in S8. 

 

Figure 7. The figure illustrates the comparative molecular docking analysis interactions of the control ligand 
(Erlotinib) with the EGFR active site shown in Figure 7 (i) and the natural compound (Caffeic acid) with the 
EGFR active site in Figure 7 (ii). In both the figures EGFR is representing cyan colour and ligands are purple 
colour. 

3.7. Molecular Dynamics Simulation 

To evaluate the flexibility and overall stability of the docked complex, we performed 50ns time-
dependent MD simulation using DS2022, analysing the results through RMSD (Root Mean Square 
Deviation), RMSF (Root Mean Square Fluctuation), and Radius of Gyration (Rg). The Figure 8(i) 
demonstrates that after molecular dynamics (MD) simulation, key interacting residues remain in 
place, contributing to the inhibition of the EGFR. Specifically, LYS721 forms a hydrophobic bond that 
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stabilizes the interaction. Additionally, LEU768 and MET769 establish hydrogen bonds, as observed 
in the earlier molecular docking phase [38,39]. Notably, new hydrogen bonds also form with THR766, 
which is crucial for protein stabilization [62] and ASP831,which were not observed in the initial 
docking. The retention of these interactions, along with the formation of new stabilizing bonds, 
underscores the compound potential inhibitory effectiveness and stability in binding to the protein. 
During the MD simulation, five bonds were formed, three of which were retained while two were 
newly established. Meanwhile, four bonds Glu738, Met742, Gln767, and Thr830 initially observed in 
molecular docking, were lost. Detail information of bonds formed post MD stimulation is given in 
Table S9 and the table contained comparative information of bonds formed and loss during the 
docking and simulation in Table S10. The structural deviation of the EGFR in a complex with Caffeic 
acid was assessed using RMSD to evaluate the stability of the complex throughout the production 
run. Initially, the RMSD values of the EGFR in a complex with Caffeic acid increase rapidly at the 
beginning of the simulation. Initial conformation shows the RMSD values fluctuating within a range 
of 1.6 to 2.0 Å up to 10 nanoseconds, after which the complex achieved convergence, as illustrated in 
Figure 8 (ii). The RMSF values indicate the flexibility of residues, but we focused on the active site 
residues of EGFR which forms the bonds in simulations, the residues which play a significant role in 
the stability of the docked compound shows minimal fluctuation. Specifically, residues MET769, 
LYS721, THR766, LEU768, and ASP831 exhibited minimal fluctuations within a narrow range of 0.2 
to 0.3 Å This suggest that these residues remain stabilized within the active site cavity of EGFR, as 
shown in Figure 8 (iii). The low fluctuation values of these active site residues further indicate a 
favorable and stable interaction [63,64] with the Caffeic acid.  The radius of gyration (Rg) values was 
used to evaluate the compactness of the protein during MD simulation. Initially, the Rg value was 
22.12 Å, which subsequently decreased to 22.04 Å, as shown in Figure 8(iv). Although this reduction 
in compactness was small (0.08 Å), but it indicates that EGFR became slightly more compact upon 
Caffeic acid binding and achieved a stable conformation. Together, these analyses demonstrate that 
EGFR attained structural stability in the presence of the Caffeic acid, which may support its enhanced 
inhibitory potential. 

 
Figure 8. This illustration depicts data regarding the bonds established by Caffeic acid within the active site of 
the EGFR protein throughout MD simulation as shown in figure 8 (i). Figure 8 (ii) Illustrate the root mean square 
deviation (RMSD) of the docked complex of Caffeic Acid over a simulation period of 50 nanoseconds (ns). In the 
production run, the starting frame up to 10ns shows the increase in the trend of RMSD values ranging from 1.6 
to 2.0 Å in Caffeic Acid. After the equilibrium condition, the EGFR-Caffeic Acid complex exhibited less deviation. 
The overall MD result showed that Caffeic Acid complex had converged, and no deviations were observed in 
the protein. In Figure 8 (iii) RMSF, the graph illustrates the fluctuations of EGFR residues involved in bond 
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formation during the MD simulation. It was observed that all these residues exhibited minimal fluctuations 
within the active site cavity of EGFR. The graph indicates that most fluctuations remained within a range of 0.8 
Å. Figure 8 (iv) Illustrates the radius of gyration (Rg) of a docked complex of Caffeic Acid, which became more 
compact during the MD simulation. Initially, it measured around 22.12 Å, but after achieving a stable 
conformation during the MD simulation, it decreased to 22.04 Å. 

4. Discussion: 

Lung cancer is the leading cause of cancer-related deaths worldwide, claiming the highest 
mortality rates among all. Only about 20% of patients survive beyond five years after diagnosis. 
While significant progress has been made in understanding its genetic evolution, improving 
diagnostic techniques, and developing advanced treatments such as surgery, radiotherapy, 
chemotherapy, immunotherapy, and targeted therapies, the overall prognosis remains low [62,65]. 
Nature has provided medicinal ingredients for centuries, with many modern treatments rooted in 
natural sources [66]. For example, Morphine, derived from Papaver somniferum is used as an analgesic 
[67], while Taxol from Taxus brevifolia and Vinblastine and Vincristine from Catharanthus roseus are 
widely used as anticancer drugs [68,69]. Natural compounds are often favoured for their lower 
toxicity and reduced side effects compared to synthetic drugs. For instance, natural compound 
Galangin, which inhibits gastric cancer, is less toxic than the commonly used chemotherapy drug 
Fluorouracil [70]. Similarly, Luteolin is an excellent natural active compound with minimal toxicity 
compared to synthetic drugs used for liver disease treatment [71]. In the present study, we employed 
network system biology approach to investigate the mechanisms underlying the therapeutic effects 
of M. oleifera in treating lung cancer. This approach enabled a systematic evaluation by identifying 
key bioactive compounds from M. oleifera and their potential targets in lung cancer [72]. The multi-
component nature of M. oleifera's bioactive compound indicates its potential multi-targets to 
modulate diverse downstream signaling pathways involved in lung cancer progression and 
metastasis. In our study compounds from M. oleifera were collected from various databases and 
subsequently evaluated for their drug-likeness and ADMET profiles. Lipinski's Rule of Five and 
ADMET analysis are used in drug discovery to evaluate the potential oral bioavailability of a 
molecule by assessing its physicochemical properties, identify compounds with characteristics likely 
to be well absorbed, distributed, metabolized, excreted, and have low toxicity within the body, thus 
improving the chances of a successful drug candidate during early development stage [73]. The core 
active compound in our study was Caffeic acid, is a polyphenol known for its various positive effects 
on human health, including potential anticancer activity. Caffeic acid has been reported to reduce the 
viability of human non-small-cell lung cancer cells and inhibit cell proliferation, particularly when 
used in combination with paclitaxel [74,75]. Beyond its anticancer properties, Caffeic acid exhibits a 
range of biological and pharmacological activities, including antioxidant [76], anti-inflammatory [77], 
and neuroprotective effects [78]. Caffeic acid has been found to inhibit the PI3K/Akt and AMPK 
pathways, which play roles in cancer progression [79] , and the ERK1/2 pathway, which is involved 
in cell proliferation and survival [80]. It has also been observed to enhance apoptotic and 
antiproliferative activities, effectively inhibiting cancer progression [81]. The pathway analysis 
identified 16 pathways associated with lung cancer, with 14 linked to EGFR, 13 to HRAS, and 9 to 
STAT3. Further investigation revealed that all 13 HRAS-associated pathways were also present in the 
EGFR, and 8 out of the 9 STAT3-associated pathways overlapped with EGFR, thus excluding these 
pathways from subsequent analyses. Given the substantial overlap, we focused our analysis on 
EGFR, representing the most comprehensive set of common pathways related to lung cancer. EGFR 
is a crucial target for lung cancer treatment, as various structural aberrations and mutations in EGFR 
can lead to uncontrolled tumour cell proliferation and survival [82,83]. EGFR is activated through 
dimerization and subsequent auto-phosphorylation of its tyrosine kinase domain. This 
phosphorylation triggers downstream pathways, including the MAPK, PI3K/AKT, and STAT 
signaling pathways, ultimately promoting cell growth and proliferation [84,85]. Molecular docking 
was employed to investigate the interactions between EGFR and Caffeic acid and to explore the 
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binding affinity. The docking results showed that Caffeic acid forms hydrogen bonds with key 
residues that play an important role within the active site and enable effective interactions with 
essential functional groups critical for EGFR activity. Additionally, hydrophobic interactions were 
observed, further stabilizing the inhibitor within the binding site cavity. These hydrophobic 
interactions, primarily present in a docked complex, are submitted subject to MD simulations to 
investigate the stability and binding affinity of protein-ligand interactions, and the study suggests 
that Caffeic acid could serve as an effective inhibitor of EGFR. Molecular dynamics simulations 
assessed the EGFR-Caffeic acid complex for stability and fluctuations. Different MD simulation 
analyses were performed using RMSD, RMSF, and Rg [64,86]. The RMSD value of the EGFR indicates 
the structural stability of the complex during the simulation, and RMSF explores the residues 
behaviour during the production run time. The active site residues show minimal fluctuations, which 
means that the residues interact with the Caffeic acid. They also show minimal fluctuations and 
structural stability of the EGFR. The Rg explore the compactness of the protein during MD 
simulation. Our result indicates a decrease in the Rg value, suggesting that the EGFR folding 
stabilized and achieved compactness. This integrated computational approach underscores the 
potential of M. oleifera’s natural compound, Caffeic acid, as a therapeutic agent for lung cancer. 
However, further studies are needed to explore the potential impact of the Caffeic acid in lung cancer 
treatment. Unlike synthetic EGFR inhibitors, Caffeic acid demonstrates higher binding affinities 
while maintaining lower toxicity. This aligns with studies reporting natural compounds as adjuncts 
to conventional therapies, enhancing efficacy while mitigating side effects. The ability of Caffeic acid 
to modulate multiple pathways suggests its potential as a multitarget therapy, particularly against 
advanced-stage lung cancer, where single-target drugs often fail due to resistance mechanisms. 

5. Conclusion 

The research, utilizing system biology and bioinformatics processes, emphasizes the potential 
efficacy and molecular mechanisms of M. oleifera in treating lung cancer. Our findings provide 
preliminary evidence that compounds of M. oleifera interact with 89 protein targets, with compound 
such as Caffeic acid showing results in inhibiting EGFR and modulating critical signaling pathways 
associated with lung cancer. The experimental approach encompassed both in vitro assays using 
EGFR-expressing lung cancer cell lines and in vivo validation, providing a comprehensive 
understanding of their potential therapeutic implications. 
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