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Abstract: Regression models are highly popular in empirical research and come in many different
forms to fit virtually any distribution, variable, or research question. Usually, these models also
compute how much variation in the outcome variable can be explained by all predictors, which is
relevant to understanding whether the predictors are, in sum, able to explain the outcome or
whether other potentially unobserved factors are more relevant. This aspect is crucial for
interventions and policy as even statistically significant regression coefficients can be meaningless
if they have little influence on the outcome overall. Besides having a measurement to judge the
overall goodness of fit, ranking predictors by their relative importance is also relevant. For such
analyses, it is necessary to decompose the total explanatory power of a model and partition it so that
each explanatory variable is assigned a share. This enables the computation of a predictor variable's
absolute and relative influence. Dominance analysis is a statistical approach to achieve this goal.
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1. Why Do We Need Dominance Analysis?

Regression models are vastly popular in empirical research. Researchers can choose from dozens
of regression types depending on the distribution of the dependent variable (the outcome). For
continuous and approximately normally distributed variables, linear models such as OLS (ordinary
least squares) are often the most appropriate. However, many more potential models are available
(binary logistic, ordered logistic, multinomial, Poisson, etc....). These models are also generalized and
extended to work with panel data (panel regressions) or clustered data (multilevel models) to suit
many research questions. Normally, these models also provide a measure of statistical fit or goodness,
which can be used to judge a model's overall quality and validity. If the model fit is bad, the results
reported by a model might be meaningless. Hence, researchers are motivated to compute suitable
models with a good overall fit. For OLS models, the most popular measurement of model fit is R?,
which is easy to compute and understand since it ranges from 0 to 1, with higher values indicating a
better model fit. For R?, this fit directly translates to explained variation in the outcome. If R? is large,
the predictor variables can explain much variation in the outcome. This is especially relevant for
interventions and policy as it demonstrates that changing certain variables will influence the outcome
(if one believes the regression model can be seen as a causal model, which is quite a different
question). Sometimes, R? is small, even if some or all variables in a model are statistically highly
significant, which is indicated by small p-values. In these cases, making changes to the predictors
might not be enough to influence the outcome meaningfully as other, more relevant predictors are
not observed, and their influence remains unclear.

When multiple predictors are in a regression model, and R? is large, researchers are often
interested in decomposing this total explained variance to understand better which predictor is the
most relevant. By doing so, predictors can be ranked by their importance or influence. This enables
researchers to state which predictors are the most promising for a potential intervention. Dominance
analysis (DA) is a statistical approach to achieve this goal (Azen & Budescu, 2006; Budescu, 1993). DA
enables researchers to disentangle the total explained variation in the outcome and assign a share of
explained variance to each predictor variable. While the approach is statistically simple, it can be a

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202404.1606.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 April 2024 d0i:10.20944/preprints202404.1606.v1

challenge to compute if the datasets are large or if there are many predictors included. This draft will
give a short and intuitive explanation of how DA works.

2. A Simple Example

Assume one outcome variable (y) and three independent variables (predictors; x1, x2, x3). In the
most basic case, these explanatory variables are uncorrelated with each other (while this can be tested
easily, it is usually not the case). We assume all four variables are continuous and approximately
normally distributed, so OLS is the appropriate modeling choice. We compute a model that includes
all three predictors to compute the total variation explained by all predictors. This can be visualized
as follows (Figure 1):

x1 x3

Figure 1. Explained variance by three uncorrelated predictors (x1, X2, x3).

The total explained variance is the sum of the intersections with the y-circle. The share that is
explained by x1 alone is shown in red. Let us give a numerical example. First, we compute a
correlation matrix to demonstrate that the three predictors are uncorrelated (Table 1, N = 15,000).

Table 1. Correlation matrix (uncorrelated predictors).

y x1 x2 x3
y 1
x1 0.496™ 1
x2 0.501™ 0.00523 1
x3 0.508™ -0.00586 0.0120 1

"p<0.05," p<0.01,™ p<0.001.

As we see, while each explanatory variable is correlated with the dependent variable, they are
uncorrelated with each other. In this simple case, the decomposition of the total explained variance
is simple. After having computed a model with all three predictors, we compute three additional ones
where only one predictor is included. We can summarize this as follows (Table 2).

Table 2. Regression table (uncorrelated predictors).

M1 M2 M3 M4
x1 0.989™ 0.989™
x2 1.005™ 0.988™
x3 1.010™ 1.004™
R2 0.246 0.251 0.258 0.749

"p<0.05," p<0.01,™ p<0.001.

We report unstandardized regression coefficients and R? for each model from M1 to M4. As we
can see, the total R?, shown in M4, is just the sum of the R? values from M1 to M3 (except for rounding
errors). Decomposing the importance of the predictors is straightforward. As absolute importance is
already reported in the table, the relative one is easy to compute (for x1, it is 0.246 / 0.749, which is
0.328 or about 33% of the total explained variance by the model.
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3. Correlated Predictors

However, as soon as predictors are correlated, ranking them becomes a challenge. Suppose we
have other data and the following correlation matrix (Table 3, N = 15,000):

Table 3. Correlation matrix (correlated predictors).

y x1 x2 x3
y 1
x1 0.695™ 1
x2 0.572™ 0.100™ 1
x3 0.774™ 0.600™ 0.300™ 1

"p<0.05"p<0.01, ™ p<0.001.

If we were to compute the same regression models as before, we would note that the R would
not add up to the total share, reported by the saturated model (M7, Table 4) with all three predictors.
This is because the explanatory variables now share explained variance. We can visualize this as
follows (Figure 2):

x1

X2
x3

Figure 2. Variance decomposition by three correlated predictors. The red area is the share of variance
that is unique to x1.

Since x1, x2, and x3 overlap, three regression models are insufficient to decompose the total
variance. Before starting, we note that each explanatory variable still has a share of explained variance
that is unique to it, meaning that no other variable explains this part. For x1, this share is depicted in
red. However, reporting only this part, the uniquely explained variance by each explanatory variable
is usually insufficient. It ignores the shared variances, meaning that the unique shares never sum up
to the total R? of the saturated model, which is unsatisfactory. DA helps us solve the problem.

4. How Does Dominance Analysis Work?

The idea of DA is to form all possible combinations of all predictors and use each set in a separate
regression. By doing so, the share unique to each predictor can be summed up and averaged over all
potential models. While this is potentially much work, it is a highly flexible approach that works with
virtually any regression model or fit statistic. Before discussing the benefits and downsides, let us
continue with the numerical example. Note that three predictors form a set of all potential
combinations as follows: A | B | C | A+B | A+C | B+C. The saturated model (A+B+C) is only useful
for computing the variance that is explained by all predictors together. For three predictors, we need
to compute a total of seven models. We have done that and report the results in Table 4.
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Table 4. Regression table (correlated predictors).

M1 M2 M3 M4 M5 Me M7
x1 1.685™ 1.561™ 0.852" 0.976™
x2 1.392™ 1.236™ 0.904 0.989™
x3 1.899™ 1.388™ 1.628™ 1.017
R2 0.478 0.326 0.607 0.732 0.685 0.732 0.833

"p<0.05," p<0.01,™ p<0.001.

We will demonstrate how to compute the relative importance of x1 in the following numerical
example. As we can see, x1 is included in four models (M1, M4, M5, M7). We compute the share of
unique additional variance by x1 for each model and average the results separately by the total
number of predictors. As a visual aid, we can utilize Figure 3.

Y

Y
x1 X2
x1
Y
)
x1 x3
X2
x3

Figure 3. All models to consider to compute the contribution of x1.

In the upper left corner, we see that there is one model in which x1 is the sole predictor. This
corresponds to M1. The unique share of variance explained by x1 is 0.478. Next, we continue with the
two models on the right side of the figure, where exactly two variables are present. In both cases, we
must subtract the share from the other variable to arrive at the unique share by x1. This is 0.732 —
0.326 = 0.406 and 0.685 — 0.607 = 0.078. Since these are all models with exactly two variables, we form
the arithmetic mean of both values (0.406 + 0.078) / 2 = 0.242. Finally, we go to the model with three
predictors. Again, we want to compute the share in red by taking the total explained variance and
removing the share from x2 and x3. For this, we need models M7 and M6. The unique share of x1 is
0.833 -0.732=0.101. We have now computed the explanatory power unique to x1 for all subsets. Now
we average these results: (0.478 +0.242 + 0.101) / 3 = 0.274. This gives the final result, which is the part
of the total explained variance we can assign to x1. If we repeat these computations for x2 and x3, we
get their values: 0.221 and 0.338. If we add these shares, we arrive at the total explained variance
(reported in M7): 0.833. We have successfully decomposed the explained variances, so it is clear which
variable contributes the most (x3) and the least (x2). If desired, we could also standardize these shares
to add up to 100%.

4. Advantages of Dominance Analysis

As we have just demonstrated, conducting DA is simple and only requires the computation of
the original regression model with subsets of predictor variables. This routine is implemented in
many modern statistical software packages, as shown below. The second main benefit is that this
approach is highly flexible. While we have used OLS models and R? for a demonstration, it is simple
to generalize the approach to virtually any fit measure. For example, in logistic regression models,
we could use Pseudo-R? instead. Other model fit measures, such as AIC or BIC, and can also be


https://doi.org/10.20944/preprints202404.1606.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 April 2024 d0i:10.20944/preprints202404.1606.v1

utilized to be even more general. As long as the statistic of the model fit is reported by a regression
model, we can decompose it. Some caution is necessary when using statistics such as adjusted R?,
computed by adding information on the number of predictors. This can mean the decomposed shares
do not add to the total.

5. Downsides of Dominance Analysis

The main problem with DA is that computational requirements grow exponentially with the
number of predictors. The general rule is that 2r-1 models are required, where p is the number of
predictor variables used. We need 1,023 regression models for ten predictors, for 15 already 32,767,
and for 20 more than a million. Even modern systems cannot compute DA if the number of predictors
is very large. One solution is to simplify the models or group predictors as sets. For example, assume
that your model has 20 predictors. However, five of these predictors measure a person's health, and
six measure a person's financial means. If one groups the predictors as such, the total number of
models is reduced from more than a million to only 2,047. This can also be beneficial for the
interpretation as one can interpret the health influences together.

It's crucial to approach causal analysis and interpretations with caution when it comes to DA.
Contrary to popular belief, DA does not possess a magical ability to render your results causal.
Similar to a standard regression model, introducing additional variables to the model can help
approximate causal effects by ruling out confounding (Pearl, 2009). However, it's important to
remember that the primary aim of DA is not to estimate causal effects but to decompose variances,
which can lead to interpretations that are entirely distinct from a causal perspective.

6. Inference

If one wants to compare the decomposed shares rigorously, more than DA is required. Suppose
one variable explains 21% of the total variance, and a second predictor explains 23%. While the point
estimate for variable two is higher, it remains to be seen whether this difference is statistically
significant (that means whether one can generalize the findings from the sample to the population).
To enable such statements, DA can be combined with bootstrapping or the jackknife, which are forms
of resampling (Bittmann, 2021; Efron & Tibshirani, 1994). Bootstrapping generates confidence
intervals for each share. If these intervals do not overlap, one can state that the shares are statistically
different. One form to visualize this is as follows (example with five predictors):

Outcome
19.2
Total
3.2
Vari EE—
2.8

Var2 —

2.3
Var3 =—=]

5.0
Var4 [———Di1———1
5.9
Var5 ]
0.0 5.0 10.0 15.0 20.0

Explained variance (%)
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Figure 4. Computing confidence intervals enables statistical inference.

As we see, Var5 explains more variance than Var3. Since these 95% confidence intervals do not
overlap, the difference between the two variables is statistically significant on the 5% level. However,
as the confidence intervals overlap between Var4 and Var5, this difference is statistically insignificant.

7. Software Implementations

+  Stata provides the package domin (Luchman, 2021).

+ R provides the package domir (https://cran.r-
project.org/web/packages/domir/vignettes/domir_basics.html)
*  SPSS also has solutions available (Lorenzo-Seva et al., 2010).
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