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Abstract: Idiopathic pulmonary fibrosis, a chronic and fatal condition with no effective cure, is a
challenging disease within the group of interstitial lung diseases. The pathogenic mechanisms of
this disease are still not fully understood. In this context, the research on miRNAs, which are small
non-coding RNAs that regulate messenger RNAs, is of utmost importance. These miRNAs, released
into the circulation outside the cell through exosomes, play a crucial role in the pathogenic pathways
and mechanisms involved in IPF development. The analysis of miRNAs in the serum/plasma of IPF
patients has opened up new possibilities in the search for biomarkers. This review focuses on
circulating miRNAs validated by real-time PCR in IPF and the evidence reported about the
pulmonary fibrotic process.

Keywords: microRNAs; biomarkers; idiopathic pulmonary fibrosis

1. Introduction

Interstitial lung diseases (ILDs) are a complex set of heterogeneous chronic lung diseases that
are difficult to diagnose and classify and affect the lung parenchyma due to inflammation and
fibrosis. They can be divided into two groups: ILDs of known cause, such as those related to systemic
diseases of connective tissue, environmental exposure, radiation, occupational exposure, or allergens,
and those classified as Idiopathic Interstitial Pneumonia (IIP). The most common and with the worst
prognosis of these is idiopathic pulmonary fibrosis (IPF), which is characterized by progressive
remodeling of the lung parenchyma, excess deposition of the extracellular matrix, and irreversible
scarring, which prevents an adequate gas exchange [1-3].

2. Idiopathic Pulmonary Fibrosis

IPF is a chronic, progressive, and lethal disease with a survivor mean of 3-5 years after diagnosis.
The causes and mechanisms of the development of IPF are unknown. It has been proposed that it is
characterized by an epithelial-dependent process that starts with micro-injuries over time in alveolar
epithelial cells (AECs), with subsequent aberrant activation of these cells. The disruption of the
alveolar epithelial barrier causes hyperplasia of pneumocytes type II (cuboidalization) and apoptosis
of AECs. The damage of AECs produces many kinds of profibrotic mediators like transforming
growth factor beta 1(TGF-{31), connective tissue growth factor (CTGF), platelet-derived growth factor
(PDFG), etc., that promote profibrotic micro ambient in the lung of IPF patients. The above promotes
an increase in migration, proliferation of lung fibroblasts, and differentiation in myofibroblast
(activation). These cells produce excessive quantities of extracellular matrix (ECM) proteins like
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collagens type I and III, which finalize with the destruction of the pulmonary architecture (Figure 1).
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Figure 1. Model of developing IPF. A) Normal alveolar epithelium composed of alveolar epithelial.

Risk factors associated with the development of IPF include a history of smoking,
gastroesophageal reflux, chronic viral infections such as Epstein Barr and hepatitis C, a family history
of interstitial lung diseases (rare variants in some genes such as MUC5B, TERT SFTPC, etc.), and
aging. Symptoms begin insidiously with chronic exertional dyspnea, cough, inspiratory bibasilar
crackles, and digital clubbing without symptoms that suggest a multisystem disease[9-11].

The natural history of IPF is heterogeneous; it can present chronic stable symptoms up to an
acute respiratory exacerbation, with worsening dyspnea from days to weeks, which is associated with
a poor prognosis, causing 40% of the deaths in patients with IPF. [12]

One of the presentations of IPF is rapidly progressive, in which patients present a decrease in
forced vital capacity (FVC) and diffusion capacity of the lung for carbon monoxide (DLCO) of 210%
and >15%, respectively, within the first 12 months after diagnosis, whose prognosis is severe. The
diagnosis of this disease and its differentiation from other ILDs is challenging. It is essential to
differentiate it accurately and promptly since inadequate treatment can increase the morbidity and
mortality of patients. [10,13]

3. Serum/Plasma Biomarkers in IPF

Several proteins have been measured in the serum of patients with IPF to discover biomarkers
to diagnose and prognostic for IPF. It is necessary to find a biomarker due to the difficulty in
diagnosing IPF from other interstitial lung diseases like hypersensitivity pneumonitis, sarcoidosis,
etc. In this context, some proteins evaluated as possible biomarkers of IPF include surfactant proteins
A and D (SP-A and SP-D), Krebs von den lungen 6 ( KL6), C-C motif chemokines (CCL16, CCL18),
matrix metalloproteinases (MMP7, and MMP28), renin and soluble (pro) renin receptor. [14-17]. The
only promising molecule was MMP7, which has different levels between IPF and other ILDs. Another
kind of molecule that has been measured in the serum of patients is micro RNAs, which are opening
new ways to identify biomarkers for IPF (Figure 2).
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Figure 2. The miRNAs reported in the serum/plasma of patients with IPF are summarized below; the
list includes those miRNAs with real-time PCR-validated.

4. miRNAs, Biogenesis, and Mechanism of Action

miRNAs are small RNAs of a length of 12-18 nucleotides (mature miRNA). This RNA regulates
many RNA messengers (nRNA) post-transcriptionally in two ways: inhibition of mRNA translation
or inducing its elimination. The miRNAs are non-coding RNAs found in the genome [18]. The
miRNAs are transcribed by RNA polymerase II (RNA pol II), generating an immature miRNA termed
pri-miRNA, which needs to be processed until it becomes a mature miRNA[19]. The mechanism
described to produce a mature miRNA begins when miRNA is transcripted by RNA pol II. This pri-
miRNA is processed by the RNAse type III Drosha and DGCRS8 (DiGeorge syndrome critical region
8) complex, producing pre-miRNA of the 70 nucleotides in length [20-22]. Pre-miRNA is exported
outside the nucleus using the nuclear pore complex RAN GTP/exportin 5[23,24]. In the cytoplasm,
this pre-miRNA is taken by a complex formed by Dicer/ protein kinase R/ PACT that cut, generating
the mature miRNA (Figure 3). Subsequently, mature miRNA is directed to its

RNAm target through the miRISC protein complex that consists of transactivating response
RNA binding protein (TRBP) that, in turn, recruits Argonaute 2 (AGO2), followed by the coupling of
GW182[25-29]. The miRISC, through AGO?2, selects one of the two strands and then is directed to the
RNAm target [30].

miRISC leads to the miRNA at the 3’untranslated region (3'UTR) of the RNAm, where the seed
region is joined through Watson and Crick complementarity. This process has two results. 1)
Depending on the kind of RNAm, the translation of the RNAm will be inhibited either at the level of
preventing the formation of the complex of pre-initiation of translation (eIF4G, ribosomal subunit
formation) or once the translation process has been started the miRISC complex plus miRNA joined
to the 3’'UTR region will promote decoupling of the translation machinery[26]. 2) The interaction of
miRNA with target RNAm will produce the degradation of RNAm [25,31].
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Figure 3. miRNA biogenesis pathway. 1) The miRNA gene is transcribed through RNA polymerase
II/IIL; this transcript is named pri-miRNA. 2) The pri-miRNA is matured by the protein complex
formed by Drosha/DGCRS, producing a pre-miRNA. 3) The pre-miRNA is directed from the nucleus
via the nuclear pore complex exportin-5 to the cytoplasm. 4) The Dicer/TRBP complex processes the
pre-miRNA. 5) The mature miRNA is directed to its target mRNA through the RNA-induced
silencing complex (miRISC), formed by the miRNA and the AGO2 protein.

5. Circulation of Exosomes and Their Mechanism of Action

Exosomes can host different biomolecules, including nucleic acids (mRNA and miRNA) and
various proteins, including enzymes, receptors, and transcription factors [32-36].

The biogenesis of exosomes begins through the endocytosis of biomolecules inside the cell
through the invagination of the plasma membrane, forming the early-staging endosome (ESE)[37].
However, they can follow two routes; the first is to form “recycling endosomes,” and the second
consists of subsequently undergoing a process of maturation to become late-classification endosomes
(LSE) [38,39], which finally leads to the formation of multivesicular bodies (MVBs). Its formation
consists of a second intussusception within the endosomal membrane, thus forming the intraluminal
vesicles (ILVs)[40].

Therefore, MVBs are ILV-rich compartments that will eventually become exosomes upon
released into the extracellular space. While there must be a fusion between the MVB and the plasma
membrane to release the ILVs, there is also degradation by lysosome fusion or autophagosomes
(Figure 4) [41,42].
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Figure 4. 1, 2) The biogenesis of exosomes begins with the endocytosis of biomolecules, forming the
early endosome (ESE). 3, 4) Formation of late endosome (LSE), 5) maturation of multivesicular bodies
(MVB), and formation of intraluminal vesicles (ILVs). 6) Fusion of ILVs with the plasma membrane
and release of ILVs to the extracellular space as exosomes or 7) degraded by fusion with lysosomes
or autophagosomes.

The molecules internalized in exosomes do not appear random; instead, the load is characteristic
of the conditions of origin[43]. We will focus on microRNAs because they are in post-transcriptional
regulation[44]. The expression levels of these exosomal microRNAs have been reported in
pathophysiologies or different tissues of origin[45].

The machinery by which microRNAs are internalized in exosomes and subsequently released
depends on the machinery of the endosomal sorting complex required for transport (ESCRT), a
protein complex involved in packaging biomolecules in the LVIs of MVBs [46].

MYVBs can release exosomes through several systems, the main one being via fusion with the
plasma membrane and subsequent release of the exosomes into the extracellular space. In addition,
by exosomal binding to and endocytosis of target cell receptors (Figure 5). [47]
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Figure 5. Release of exosomes. 1) Exosomes are released into the extracellular space and could
internalize their contents to the recipient cell through 2) Endocytosis, 3) membrane fusion between
the exosome and the recipient cell, and 4) receptor-ligand interaction. 5 and 6) The miRNAs released
from the exosome will continue in the miRNA pathway, binding to the AGO2 protein (miRISC),
where the miRNA will be directed to the target mRNA.

6. Upregulated Serum/Plasma miRNAs in Idiopathic Pulmonary Fibrosis

miR-21

Many circulating miRNAs have been reported in IPF (serum/plasma); some are overexpressed,
and others are downregulated. One of the more constant miRNAs with scientific evidence in IPF is
miR-21, which has been found elevated in serum/plasma samples from IPF patients inclusive of
proposed like predictor prognosis [48-50]. miR-21 The TGF-f1 signaling induces a positive loop
because it increases the expression of miR-21; it has been reported that the SMADS (2,3,4) regulate
the promoter activity of miR-21[51].

miR-155

Levels of serum miR-155 in IPF are elevated compared with the control group [48,50]. miR-155
is related to the development of pulmonary fibrosis in several models in vitro and in vivo. It has been
reported that miR-155 increases in mice bleomycin model and lung fibroblasts increase migration
through Keratinocyte Growth Factor[52]. Besides in the silicosis model in mice, miR-155 has
profibrotic effects by inhibition of mephrin a; this protein has antifibrotic effects because stimulation
with mephrin a decreases expression of TGF-f1, and the receptors of TGF-p1 (TGFBRI and
TGFBRII)[53]. The inhibition of miR-155 in a bleomycin model resulted in diminished profibrotic
effects that downregulated the TGF-{31 and IL4 (interleukin 4) [54]. In the same way, as in other types
of pulmonary fibrosis derived from systemic sclerosis, miR-155 is also elevated and is required for
collagen synthesis during the fibrotic process[55]. It has been proposed that this mechanism is
promoted by miR-155 inhibition of the protein forkhead box O3 (FOXO3a), resulting in the activation
of the NLR family pyrin domain containing 3 (NLRP3)[56]. However, there is contrary evidence
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about the role of miR-155 in the development of pulmonary fibrosis, where it has been reported that
miR-155 inhibits epithelial-mesenchymal transition (EMT) by targeting the glycogen synthase 3 beta
(GSK-3p) and its interaction with liver X receptor (LXR) to exert antifibrotic effects [57].

miR-590-3p

miR-590-3p is elevated in the plasma of patients with IPF, but there is no direct evidence in some
models of pulmonary fibrosis. However, reports in other tissues suggest that the effect of this miRNA
depends on the location[58]. For example, in heart fibroblasts, miR-590-3p regulates the proliferation,
migration, and collagen synthesis by regulating the protein zinc finger E-box-binding homeobox
1(ZEB1) [59]. In contrast, miR-590-3p inhibits the protein mouse double minute 2 homolog (MDM?2)
in hepatocellular carcinoma, blocking EMT[60]. It is not clear the effect of miR-590-3p in the
development of pulmonary fibrosis. Perhaps the effects depend on the location; this effect has been
reported in other molecules in IPF, like matrix metalloproteinase 1 (MMP1), where the cellular
location is important. MMP1 is over-expressed in epithelial cells of IPF but not in Iung fibroblasts,
where it is diminished[61]. It has SMADY as a target, an important protein in the signaling pathway
of TGF-f-1 due to SMADY? being an inhibitory protein of the SMAD2/3[62,63]. This regulation is
crucial because TGF-P1 signaling can trigger several molecular events in IPF, like an increased
expression of ECM proteins (collagen I type I, collagen III, etc.), induce fibroblast proliferation, EMT,
etc. [64-66]. miR-21 has been consistently observed to promote lung fibrosis in fibroblasts and AECs.
Another target of miR-21 is the protein phosphatase and tensin homolog (PTEN), which miR-21
induces EMT in a fibrosis model of ionizing radiation[67-69]. Resveratrol has been reported as an
antifibrotic agent, and miR-21 could reverse the effects of resveratrol in a bleomycin model in rats,
and in a contrary sense, treatment in rats with bleomycin diminished the expression of miR-21[70].

miR-199a-5p and miR-200c

miR-199a-5p had the more consistent results because it was first reported elevated in a
bleomycin model of lung fibrosis and tissues from IPF. Second, serum IPF levels of miR-199a-5p are
elevated; interestingly, exosomes extracted from urine have the same result[71]. miR-199a-5p is
elevated in the mouse bleomycin model, and the reported targets of miR-199a-5p are caveolin-1 and
sestrin-2 (SESN2). Loss of caveolin expression has been associated with lung fibrogenesis, and levels
of caveolin-1 are downregulated in the Iung tissue of IPF patients[72-76]. SESN2 has been reported
to have an anti-fibrotic effect in a model of stimuli with eupatilin; TGF[31 induces the reduction in the
production of the protein of SESN2 sestrin2[77]. In addition, miR-199a-5p has been related to
regulating the mesenchymal stem cell senescence in IPF[78]. Another effect was reported in liver
fibrosis, in which the inhibition of miR-199a-5p diminished fibrosis[79].

miR-199a-5p has targets like activating transcription factor 6 a (ATF6a) and inositol requiring
enzyme 1 (IRE1); both have been reported to be sensors of endoplasmic reticulum stress (ERS) [80,81].
Levels of ATF6a and IRE1 are elevated in lung fibrosis (bleomycin and silica models) and in tissue
sections of IPF, which is contradictory according to elevated levels of miR-199a-5p. However, in mice
models of cardiac fibrosis, the absence of ATF6a in cardiac fibroblasts contributes to the augment of
profibrotic fibroblast markers like collagen 1 and alpha-smooth muscle actin in mice model [82].

miR-200c is elevated in serum from IPF patients and is associated with interstitial lung
abnormalities[71]. In contrast, miR-200c is reduced in the lung fibrosis of the bleomycin model, and
epithelial cells after treatment with TGF-B1 and diminished of miR-200c was related to the
development of EMT and loss of ability to alveolar epithelial cells type II to differentiate into alveolar
epithelial cells type I [83-85]. The process correlates with another target of mir 200c, cadherin 11
(CDH11), which is elevated in lung fibrosis and is related to fibroblast migration, myofibroblast
differentiation, and the EMT process during lung injury [86-88]. Another example in which reduced
miR-200c expression is relevant is because it regulates fibronectin, a component of the MEC that
accumulates in the lung fibrotic process[89,90]. miR-200c seems to participate in regulating EMT
through ZEB1[91]. These examples suggest that miR-200c levels are downregulated in IPF.
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7. Downregulated Serum/Plasma miRNAs in Idiopathic Pulmonary Fibrosis

Let-7a and Let-7d.

Let-7a and Let-7d are downregulated in serum samples from patients with IPF and have the
same targets related to the development of lung fibrosis via TGF-{31 signaling pathway like protein
high mobility group AT-hook 2 (HMGA2). HMGA?2 is a chromatin protein that regulates gene
transcription, participating as a co-factor for other transcription factors. Have been reported that let-
7a and let-7d could suppress EMT and fibroblast proliferation by blocking HMGAZ2[71,92-94]. In the
same signaling pathway, the targets of let-7a and let-7d are the receptors of TGF-$1 (TGFBR1 and
TGFBR3) [95-97]. Let-7a and let-7d play important roles in developing pulmonary fibrosis by
regulating several components of the TGF-f31 signaling pathway.

Then decreased expression levels of let-7a and let-7d suggest that they participate in promoting
pulmonary fibrosis in IPF because they have other profibrotic targets like insulin-like growth factor
receptor (IGFIR), platelet-derived growth factor B (PDGEFB), both receptors are increased in lung
fibrosis. Another profibrotic target of let-7a is the activin A receptor type 1B (ACVR1B), which has
been implicated in the pathogenesis of cardiac fibrosis through activation by Activin A. Human lung
fibroblasts express the receptors of activin A (ACVRI1B included) and have a profibrotic effect by
promoting collagen contraction, which is a crucial event inside of development of lung fibrosis [98—
102].

miR-16

Serum miR-16 is downregulated in IPF, and this miRNA has antifibrotic activity[103]. miR-16
inhibits the activity of TGF-1 and collagen I expression in dermal fibroblast; this inhibition is
attributed to the target of miR-16 being SMAD3[104]. In hepatic stellate cells, miR-16 suppresses
proliferation and fibrogenesis provoked by TGF- 1 regulating lysyl oxidase homolog 1 (LOX
L1)[105]. Other evidence about the antifibrotic effects of miR-16 is found in systemic sclerosis, where
it suppresses myofibroblast activation by inhibiting neurogenic locus homolog protein 2(NOTCH2)
[106]. HMGA1 and HMGA?2 also are targets of miR-16, fibroblast growth factor receptor 1 (FGFR-1),
IGFIR [107-109]

miR-25-3p and miR-142-5p

miR-25-3p is downregulated in pulmonary fibrosis, but there is no data about its role in lung
fibrosis; it has been reported that miR-25-3p expression is increased in cardiac fibrosis, and its
expression is related to the augmentation of alpha-smooth muscle actin[110,111]. In a contrary sense,
in hepatic stellate cells, the overexpression of miR25-3p has a positive effect because of the Notch 1
signaling pathway and profibrotic results in the induction of collagen expression through TGF-31
[112]. Additionally, there is a report that the inhibition of miR-25-3p indirectly caused the elevation
of TGF-B1. These findings reinforce the relationship between miR-25 and the TGF-f1 signaling
pathway [113]. miR-142-5p is downregulated in serum from IPF, but in macrophages from broncho-
alveolar lavage fluid (BALF) of patients with IPF, miR-142-5p seems to be elevated, boosting
profibrotic actions in vitro like M2 polarization, production of profibrotic cytokines like C-C motif
chemokines (CCL18, CCL17, CCL13), TGF-p1, IL4 that in turn influence neighboring
fibroblast[50,114].In the same sense, a blank reported of miR-142-5p is the nuclear factor erythroid 2-
related factor 2 (Nrf2) transcription factor, which is considered antifibrotic because its actions
negatively regulate the TGF-p1 signaling pathway[115-117]

miR-101-3p

miR-101-3p is downregulated in serum and lung tissue sections of patients with IPF. This is
important because miR-101-3p has been reported to regulate the WNT5a signaling pathway, which
reduces proliferation in lung fibroblasts by regulating the receptor frizzled-4,6 (FZD4/6). WNT5a is
elevated in IPF, and its signaling pathway has many profibrotic effects, such as inducing fibroblast


https://doi.org/10.20944/preprints202407.2519.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2024 d0i:10.20944/preprints202407.2519.v1

9

proliferation, increasing resistance to apoptosis, and increasing fibronectin expression. miR-101-3p
also has like blank to the TGFBRI receptor of the TGF-f1 signaling pathway, and it seems that
miR101-3p regulates both signaling pathways WNT5a and TGF{31 in a coordinated manner [50,118-
121]. Another target of miR-101 with profibrotic effects is endothelin-1; this protein is elevated in the
serum of patients with IPF and has many profibrotic effects like inducing production of collagen I
and III, overproduction of CTGF, fibronectin, a-smooth-muscle actin[122-125]

8. Common Targets in TGF beta-1 Signaling Pathways

TGEF-B1 is a profibrotic molecule that triggers various molecular events in the development of
pulmonary fibrosis, and such events affect both alveolar epithelial cells and lung fibroblasts [126]. In
the case of epithelial cells, TGF-f31 induces EMT, and activation of the AECs results in the production
of many profibrotic molecules like plasminogen activator inhibitor 1 (PAI-1), CTGF, PDGEF,
etc.[66,101,127,128]. Lung pulmonary fibroblasts affected by the TGF-f1 signaling pathway are
activated, which causes an increase in the expression levels of collagen type I and III, induced
proliferation, and fibroblast differentiation to myofibroblast (augmentation of a-smooth muscle
actin) that is more aggressive in collagen deposition, and this stimulus gives them resistance to
apoptosis[129-136].

miRNAs let-7a, let-7d, miR-16, and miR-25-3p are downregulated in serum samples from
patients with IPF and PCR-validated, according to Tarbase 9.0 is a database to deliver experimentally
supported miRNA targets on RNAm from AGO-CLIP-seq protocols that included for example HITS-
CLIP, PAR-CLIP. Interestingly, this miRNA shares targets of the TGF-31 signaling pathway [137].
For example, let-7a, let-7d, miR-16, and miR-25-3p aim at the same target: histone acetyltransferase
CREBBP. This protein has been related to promoting an increase in the expression of collagen VI,
which is augmented in lung fibrosis and participates in EMT, an important process in developing
IPF.[138-140]. Let-7d and miR-16 share SMAD3 as a target [70]. SMAD 2 is regulated by let 7d, miR25
and miR 16[141,142]. Let-7d, Let-7a, and miR-25-3p regulate the receptor TGFBR1[97]. Let 7a and Let
7d have like targets of TGFBR2 and AVR1B receptor are regulated by Let 7a, Let 7d and miR16 (Figure
6)[143,144]

Figure 6. Four miRNAs decreased in the serum of patients with IPF share target messenger RNAs
that have an important role in developing IPF. .

9. Discussion and Conclusions

Serum/plasma biomarkers in IPF have been investigated several decades ago[145]. The
importance of finding noninvasive biomarkers is due to the characteristics shared between IPF and
other ILDs (like hypersensitivity pneumonitis), and therefore, the differential diagnosis is
complicated for clinicians[9,146]. miRNAs have emerged as another molecule that could be evaluated
in the serum/plasma of IPF patients a few years after the first report about miRNAs and vesicles like
exosomes [35,48]. Due to the miRNAs, they could move through the bloodstream protected by
exosomes and with protein Argonaute 2 complexes and posteriorly detected by their isolation
through the total RNA extraction and its subsequent real-time PCR evaluation. In the field of ILDs,
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miRNAs in the serum /plasma of IPF patients have only been evaluated compared with the control
group[147,148].

Generally, let-7a and let-7d are downregulated, and miR-21 is elevated in IPF. The results have
been reported consistently in serum and lung fibroblasts compared to other miRNAs evaluated in
serum/plasma. But today, there is no report about serum miRNAs levels in other ILDs like
hypersensitivity pneumonitis to find some miRNA differentially expressed with IPF[48-51,71,92].

The search for miRNAs in serum/plasma is to correlate the expression levels with the clinical
characteristics of the patients to find a relationship with the pulmonary state of IPF and to identify a
biomarker that could serve as diagnostic or prognostic [149,150]. Additional information obtained
indirectly from the serum/plasma miRNAs profile is to link signaling pathways in which they are
involved through the in-silico analysis of reported target mRNAs[151]. In addition to the above, the
serum miRNA analysis provides new signaling pathways that could participate in the pathogenesis
of IPF by using software that predicts new targets of this type of RNA[152].

The contradictory results regarding miRNAs levels in serum/plasma compared with levels in
lung tissue sections and fibroblasts from patients with IPF could be explained by the effect of
regulation of long non-coding RNAs that have the function of regulating (sequester) the
miRNAs[153]. The above responses partially explain why a miRNA is elevated in serum/plasma, but
its target is unaffected. Another aspect to consider in regulating the function of miRNAs is the RNA
edition mechanism carried out by ADAR proteins. This process could affect 1) the rate of the miRNA
processing and redirection of miRNA to another target mRNA[154].
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