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Abstract: In this work, we present a new way to study the genetic code mathematical and chemical structure, 

based on the use of mathematical computations involving some few recently designed Fibonacci-like se-

quences, the “seeds” (“initial conditions”) of which are chosen according to the chemical and physical data of 

the three amino acids serine, arginine and leucine, playing a prominent role in a recent symmetry classification 

scheme of the genetic code. It appears that these mathematical sequences, of the same kind as the famous 

Fibonacci series, apart from their usual recurrence relations, are highly interwinned by many useful linear 

relationships. Using these sequences and also various sums or linear combinations of them, we derive several 

physical and chemical quantities of interest, as the number of total coding codons, 61, obeying various de-

generacy patterns, the detailed number of hydrogen atoms, the detailed number of atoms (H/CNOS) and the 

integer molecular mass (or nucleon number), in the side chains of the 61 “amino acids”, also in various de-

generacy patterns, in agreement with those described in the literature. Also, unexpectedly but interestingly, we 

find, as a by-product, an accurate description of the very chemical structure of the four ribonucleotides uridine 

monophosphate (UMP), cytidine monophosphate (CMP), adenosine monophosphate (AMP) and guanosine 

monophosphate (GMP), the building blocks of RNA whose groupings, in three units, constitutes the triplet 

codons. In summary, we find a full mathematical and chemical connection with the “ideal sextet’s classifica-

tion scheme” mentioned above as well as with several others, notably, the Findley-Findley-McGlynn sym-

metrical classification. We organize the content of the text in such a way that, besides the presentation of 

several new research results, it has also an educational dimension. The paper could therefore be read and the 

computations easily worked out, also by non-experts with mathematical background. 

Keywords: genetic code; symmetries; Fibonacci-like sequences; amino acids; ribonucleotides; pat-

terns; hydrogen, atom; molecular mass 

 

1. Introduction 

In this paper, we present a new way to study the genetic code and its symmetries, 

using mathematics, more precisely, a small set of brand new Fibonacci-like sequences 

and, occasionally, some (useful) well known elementary functions from number theory. 

Using these sequences, the whole and detailed chemical content of the set of amino acids,  

as structured by several well known symmetry patterns, including their degeneracy, is 

revealed. Also, several other original applications, using the above sequences, are carried 

out. Before presenting all these results, let us begin by giving a brief summary of the ge-

netic code. This latter is the basis of life on Earth and was masterfully deciphered in the 

mid-sixties of the last century [1]. It is the great biological “dictionary” that translates the 

language of DNA/RNA, which transmit the inherited information located in the genes, to 

the language of proteins which carry out the biological constructions and functions. It is 

well known that the “alphabet” of the former language consists of four fundamental 

units, the nitrogenous bases T (thymine), C (cytosine), A (adenine) and G (guanine) for 

DNA and U (uracil), C, A and G for RNA. As for the “alphabet” of the second language, it 

comprises the set of 20 amino acids. In the process of translation between these two 

languages, in the ribosome for short, there are 64 = 43 “words”, the codons, which are 
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made of three nucleotides. In the standard genetic code, only 61 of such codons are 

translated into amino acids and three others serve as termination or stop codons. To a 

given codon, from the set of 61, corresponds one and only one amino acid. Now, it is well 

known that several codons could code for the same amino acid so that the genetic code is 

said degenerate and the 20 amino acids are organized into “multiplets”. These are as 

follows: 5 quartets, each, coded by four codons proline (P, Pro), alanine (A, Ala), threonine 

(T, Thr), valine (V, Val) and glycine (G, Gly); 9 doublets each coded by two codons phe-

nylalanine (F, Phe), tyrosine (Y, Tyr), cysteine (C, Cys), histidine (H, His), glutamine (Q, 

Gln), glutamic acid (E, Glu) and aspartic acid (D, Asp), asparagines (N, Asn) and lysine 

(K, Lys); 3 sextets each coded by 6 codons serine (S, Ser), arginine (R, Arg) and leucine (L, 

Leu); 1 triplet coded by three codons isoleucine (I, Ile) and finally 2 singlets each coded by 

one codon methionine (M, Met) and tryptophane (W, Trp). In the parentheses, the 

one-letter and three-letter codes of the amino acids are indicated. Below, in Table 1, we 

show the genetic code table (the three stop codons are indicated in green color back-

ground). 

 
Table 1. The genetic code table (format from Négadi, [2]) 

UUU (F) UUC (F) UCU (S) UCC (S) CUU (L) CUC (L) CCU (P) CCC (P) 

UUA (L) UUG (L) UCA (S) UCG (S) CUA (L) CUG (L) CCA (P) CCG (P) 

UAU (Y) UAC (Y) UGU (C) UGC (C) CAU (H) CAC (H) CGU (R) CGC (R) 

UAA (STP) UAG (STP) UGA (STP) UGG (W) CAA (Q) CAG (Q) CGA (R) CGG (R) 

AUU (I) AUC (I) ACU (T) ACC (T) GUU (V) GUC (V) GCU (A) GCC (A) 

AUA (I) AUG (M) ACA (T) ACG (T) GUA (V) GUG (V) GCA (A) GCG (A) 

AAU (N) AAC (N) AGU (S) AGC (S) GAU (D) GAC (D) GGU (G) GGC (G) 

AAA (K) AAG (K) AGA (R) AGG (R) GAA (E) GAG (E) GGA (G) GGG (G) 

 

In this work, the “anomalous” three amino acids serine, arginine and leucine, each coded 

by six codons, will play a prominent role. Contrary to all other 17 amino acids the codons 

of which share the same first base, the three mentioned amino acids have, each, their 6 

codons distributed into two different family boxes. (There are 16 such family boxes and 

each one of them is a set of four codons having the same first and second base (see Table 

1)). The structure of the three sextets is the following serine: {UCN, AGY}, arginine {CGN, 

AGR}, leucine {CUN, UUR} (N for any base, Y for pyrimidine U or C and R for purine A 

or G). There are more and more voices rising to underline or put emphasis on the singu-

lar nature of the three sextets and also to bring experimental data which tend to show it [3, 

4]. On the other side, people have always taken for granted that the number of amino 

acids encoded by the (standard) genetic code is 20. Yes, this is true but this view is 

evolving. Some few years ago, a published work, [5], claimed that this number has to be 

increased to 23 by considering that the quartet part and the doublet part of each one of 

the 3 sextets as distinct. In this work, the authors present a new “effective number of codons”, 

called Nc , to characterize codon usage bias in the analyzes of protein-coding genes, 

which improves existing ones. Here, Nc is shown to be a better predictor when its value 

is increased from 20 to 23 with, in particular, each 6-fold codon set (each sextet as it is 

called in this work) is considered to be composed of separate 4-fold and 2-fold parts. These 

six entities are SerII,IV, ArgII,IV, LeuII,IV which, added to the 17 remaining amino acids 

with no “degeneracy” at the first base position, as mentioned above, give a total of 23. This 

number, together with the remaining degenerate codons, 38, constitutes the pattern 

“23 + 38” the importance of which not only has been established in our recent works (see 

[2] and the references therein) but is also again established all along the present work. 

One of these kind of approaches is particularly relevant to the present work, the “Ideal” 

symmetry classification scheme, introduced some few years ago in [6]. It will be summa-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 June 2023                   doi:10.20944/preprints202306.1230.v1

https://doi.org/10.20944/preprints202306.1230.v1


 

 

rized in section 2.3 and we present its numerous links with the present work in section 

4.2. In section 2, we summarize three important symmetries of the genetic code, including 

the above mentioned one. In section 3, we present our new Fibonacci-like sequences and 

their properties, which are the main mathematical tools used in this paper. In section 4, 

we apply these sequences to derive the degeneracy structure of the 61 amino acids, their 

hydrogen atom, atom and nucleon number content, as structured by the symmetries 

mentioned in section 2 and various other remarkable patterns. In section 5, still using 

some elements of our sequences, we make contact with the work by shCherbak, [7], 

concerning the singular structure of proline and derive, in a totally original way, the 

mathematical form of the shCherbak-Makukov “activation key, [8], which, as is well 

known, lead to many remarkable and beautiful nucleon number patterns comprising, in 

particular, those related to Rumer’s symmetry (see below about this latter). In section 6, 

using the “seeds” of our Fibonacci-like sequences, that is their “initial conditions”, and 

only these, we find that they are capable, on their own, to provide the very hydrogen atom 

content of the 61 amino acids, derived in the various patterns considered in section 4. We 

strongly recommend the reader, at this point, before going to the next sections and get a 

comfortable reading of them, to take a look at Appendix A, which summarizes the 

chemical data of all 20 amino acids, including also the degeneracies and Appendix B, 

where a few other mathematical tools, used in this paper, are defined with the visualiza-

tion of some computation examples. 

  

2. The symmetries of the genetic code 

2.1. Rumer’s symmetry 

The oldest known symmetry of the genetic code has been discovered by Rumer in 1966,  

[9]. This symmetry, which is defined by the transformation U  G, A  C, divides the 

genetic code 88 table into two equal halves of 32 codons each, we call them here M1 

and M2. The set M1 (shown in grey background in Table 1) comprises 8 quartets of co-

dons, each, having the same two first-bases and coding for the same amino acid, the third 

base being irrelevant. In this set, among the 8 quartets, 3 correspond to the quartet part of 

the 3 sextets serine, arginine and leucine. The set M2 comprises group-I amino acids (2 

singlets), group-II amino acids (9 doublets), group-III amino acid (1 triplet) and also 3 

stops or termination codons (see Table 1). The point here, concerning symmetry, is that 

under Rumer’s transformation, performed on all three bases, the sets M1 and M2 are 

exchanged: M1  M2.  

2.2. The 3rd base symmetry classification 

In 1982, Findley et al., [10], by viewing the genetic code as a relation, rather than a map-

ping, extracted a fundamental symmetry for the doubly degenerate codons (group-II). 

The 64-codons set is partitioned into four disjoint sub-sets and each one of them contains 

only codons having the same third base (see Table 2, below). These authors establish rela-

tions which define a one-to-one correspondence between one member of a doubly degener-

ate codon pair to the other member (see the reference above for details). These relations 

could be stated, in words, as follows: (i) if a codon for an amino acid has 3rd base U, then 

there is a codon for the same amino acid having 3rd base C and vice versa OR (ii) if a co-

don for an amino acid has 3rd base A, then there is a codon for the same amino acid hav-

ing 3rd base G and vice versa. For a doubly degenerate codon pair (i) and (ii) are mutually 

exclusive. For order-4, or quartets, (i) and (ii) hold simultaneously. For order-6, the sex-

tets, the quartet part obeys (i) AND (i) and, for the doublet part one has (i) OR (ii). For the 

odd-order degenerate codons (Ile, Met and Trp), however, there is a slight deviation from 

symmetry. Below, in Table 2, we show this classification 

 
Table 2. The 3rd base classification of the 64 codons, [10]. 

UCU Ser (6) UCC Ser (6) UCA Ser (3) UCG Ser (3) 
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AGU AGC AGA 
Arg (20) 

AGG 
Arg (20) 

CGU  Arg (10) CGC Arg (10) CGA CGG 

CUU Leu (9) CUC Leu (9) CUA 
Leu (18) 

CUG 
Leu (18) 

GCU Ala (4) GCC Ala (4) UUA UUG 

GUU Val (7) GUC Val (7) GCA Ala (3) GCG Ala (3) 

CCU Pro (5) CCC Pro (5) GUA Val (7) GUG Val (7) 

GGU Gly (1) GGC Gly (1) CCA Pro (5) CCG Pro (5) 

ACU Thr (5) ACC Thr (5) GGA Gly (1) GGG Gly (1) 

UUU Phe (7) UUC Phe (7) ACA Thr (5) ACG Thr (5) 

UAU Tyr (7) UAC Tyr (7) CAA Gln (6) CAG Gln (6) 

UGU Cys (3) UGC Cys (3) AAA Lys (10) AAG Lys (10) 

CAU His (5) CAC His (5) GAA Glu (5) GAG Glu (5) 

GAU Asp (3) GAC Asp (3) UAA 
STOP 

UAG STOP 

AAU Asn (4) AAC Asn (4) UGA UGG Trp (8) 

AUU Ile (9) AUC Ile (9) AUA Ile (9) AUG Met (7) 

Hydrogen 84  84  92  98 

Nucleons             1728 1676 

 

2.3. The weak/strong, purine/pyrimidine and keto/amino symmetries 

   The main idea behind the “ideal” symmetry classification scheme by Rosandić and 

Parr, [6], mentioned above, is to consider the three sextets serine, arginine and leucine, 

each encoded by six codons, as “initial generators” with serine playing the central role. 

This scheme divides the 64 codons table into two groups of 32 codons each, the “leading” 

group and the “nonleading” group and each one of them consists of A+U rich and G+C 

rich (equal) parts. The “ideal” classification scheme is generated by combining the six 

codons of serine, arginine and leucine in the following manner: serine, the “initial” gen-

erator with its six codons, arginine also with its six codons and leucine with only the 

quartet part of its six codons part define the “leading” group (with 32 codons). The re-

maining doublet part of leucine, on the other hand, constitutes a “seed” for the construc-

tion of the “nonleading” group (with 32 codons). The whole set {SerIV−II,  ArgIV−II,

LeuIV−II} is called by the above authors the “core”; its members are underlined in Table 3 

below. 

  
     Table 3. The “ideal” symmetry classification scheme, [6]. 

UUU (F) UUC (F) UCU (S) UCC (S) CUU (L) CUC (L) CCU (P) CCC (P) 

UUA (L) UUG (L) UCA (S) UCG (S) CUA (L) CUG (L) CCA (P) CCG (P) 

UAU (Y) UAC (Y) UGU (C) UGC (C) CAU (H) CAC (H) CGU (R) CGC (R) 

UAA (STP) UAG (STP) UGA (STP) UGG (W) CAA (Q) CAG (Q) CGA (R) CGG (R) 

AUU (I) AUC (I) ACU (T) ACC (T) GUU (V) GUC (V) GCU (A) GCC (A) 

AUA (I) AUG (M) ACA (T) ACG (T) GUA (V) GUG (V) GCA (A) GCG (A) 

AAU (N) AAC (N) AGU (S) AGC (S) GAU (D) GAC (D) GGU (G) GGC (G) 

AAA (K) AAG (K) AGA (R) AGG (R) GAA (E) GAG (E) GGA (G) GGG (G) 

 

As explained, at length, by the authors, the genetic code table in this new scheme is cre-

ated by codons sextets based on exact purine/pyrimidine symmetries (YR: (U, C, A, G) → 

(C, U, G, A)), A+U-rich/C+G-rich symmetries, strong/weak, or complementary, symme-

tries (SW: (U, C, A, G) → (A, G, U, C)) and keto/amino symmetries (KM: (U, C, A, G) → (G, 

A, C, U)) (see [6]). By starting with serine, the initial generator with its 6 codons, the whole 

“leading” group (32 codons) is created using transformations among those mentioned 

above and some mapping rules. In an analogous manner, starting from the two codons of 

leucine, as “seeds”, the whole “nonleading” group is constructed. There is also a simple 

relation between the “leading” group and the “nonleading” group (see the reference 6 

mentioned above). We show, in Table 3, for visualization, these two groups by using our 
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own format of the genetic code table (the “leading” group is shown in grey background). 

It is also interesting to note that, under Rumer’s transformation U  G, A  C ,, the 

“leading” group remains globally invariant whether the transformation is applied to the 

first base , only, to the first two bases, only, or to all the three bases, and same for the 

“nonleading” group.  

Below, in section 4.2, we will show, that the three amino acids serine, arginine and leu-

cine, will also play a prominent role, as mathematical (and chemically inspired) “seeds” 

to compute the chemical content of the twenty amino acids, including degeneracy.   

3. A rich set of Fibonacci-like sequences and their properties 

Let us introduce now, as stated in the introduction, four Fibonacci-like sequences 

which will prove resourse-rich and very interesting in their applications throughout this 

work. (Another fifth sequence, just as interesting, will be introduced later, in Equ.(26).) 

They are also called (p, q)-Fibonacci sequences and are defined by the following com-

mon defining relation 

pFn−1 + qFn−2, (1) 

where Fn is the ordinary Fibonacci number. These four sequences differ only by the data 

of the numbers p and q which, here, play the role of “initial conditions” or “seeds”, as we 

will call them throughout this paper. Below, in the next section, we shall explain and 

justify the choice of these “seeds” but, for the moment, we introduce the four mentioned 

sequences by giving a name to each one of them and their “seeds”: (i) an: p = 1, q = 6, (ii) 

𝑎𝑛
′ : p = 6, q = 1, (iii) bn: p = 9, q = 13, (iv) cn: p = 5, q = 30. In Table 4 below, we give the 

first few terms  

   
Table 4. The first few terms of the Fibonacci-like sequences an, 𝑎𝑛

′ , bn and cn 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 

an 6 1 7 8 15 23 38 61 99 160 259 419 678 

𝑎𝑛
′  1 6 7 13 20 33 53 86 139 225 364 589 953 

bn 13 9 22 31 53 84 137 221 358 579 937 1516 2453 

cn 30 5 35 40 75 115 190 305 495 800 1295 2095 3390 

 

These sequences obey several linear relations, some of which will prove very interesting 

in view of their applications in this work. They are presented below, in Equ.(2), and could 

be easily checked 

(i)   an, + bn+1 = an+4, 

(ii)  an, + an+6 = 2bn+2, 

(iii)  bn, + bn+2 = cn+2, 

(iv)  bn + cn+1 = 2bn+1, 

         (v)   cn + 2bn−1 = bn+2, 

                          (vi)  bn + cn+3 = bn+4, 

(vii)  an + cn+3 = 2an+5, 

                        (viiii)  an + an+2 = bn, 

                          (ix)  cn + bn−1 = 2bn, 

(x)   an + bn+2 = 4an+2. 

(2) 

 

 

It is interesting to note here that the difference 
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an − an−1
′ , (3) 

gives the (slightly modified) Fibonacci sequence noted 𝐅𝐧
′  

Fn
′ :  1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, … , (4) 

in an unusual but interesting form: its “seeds” here are inverted with respect to the usual 

Fibonacci sequence. Also, the sum of any of its first members until a certain index gives a 

Fibonacci number, exactly, contrary to the usual Fibonacci sequence with seeds 0, 1 

which always gives one unit less than a Fibonacci number. For example, in our case, for 

𝒏 = 𝟗, we get ∑ 𝐅𝐧
′ = 𝟑𝟒𝟗

𝟏 . (Note that the indexing is here shifted but the recurrence rela-

tion is still valid.) There is also another relation linking the sequences 𝐚𝐧
′  and 𝐛𝐧. It 

writes 

an
′ − bn−2 = 2Fn−7. (5) 

For 𝑛 = 7, the sequences 𝑎′and b take the same value: a7
′ − a5 = 0. Also, for 𝑛 = 8, 

a8
′ = 86 and 𝑏6 = 84 and their difference is 2. The case n = 9 is also interesting, see 

below. These relations will have applications in the following sections. Importantly, the 

sequences in Table 4 together with the one defined in Equ.(26), below, display several 

numbers highly relevant in this work, either directly as members in Table 4 (shown in 

bold) or as sums to be evaluated in the following sections. We have also discovered that 

the above sequences, including the one defined in Equ.(26), can all be shown to exhibit a 

striking bilateral symmetry and other symmetry properties, in the line of thought of those 

established for the Fibonacci sequence by Edge, [11]. These findings will be reported 

elsewhere, in a forthcoming publication. 

4. The symmetries of the genetic code revealed 

4.1. The multiplet structure 

Let us consider, in this section, the first sequence an. Is is full of interesting numbers and 

sums. First, we have a4 = 8, a5 = 15 and their sum a4 + a5 = 8 + 15 = 23. This is the 

number of codons in Rumer’s sets M1 and M2, respectively. Second, we have a6 + a7 =

23 + 38 = a8 = 61. This is the pattern, “23 + 38”, for 23 amino acids (the sextets counted 

two times) and 38 amino acids corresponding to 38 degenerate codons. This latter pattern 

will be mentioned, frequently, in this paper. In fact, the above relations will also let us to 

derive the detailed multiplet structure of the genetic code. As a matter of fact, consider 

the following sum, which will be used, occasionally, in this paper  

∑ an
k
1 = ak+2 − 1. (6) 

It is the analog of the one for the Fibonacci sequence. For 𝑘 = 5, we have 6 + 1 + 7 + 8 +

15 = 38 − 1. Grouping the first three terms, on the one hand, and the remaining two, on 

the other, we have by transferring the unit to the left 

(6 + 1 + 7) + (8 + 1 + 15) = 14 + 24 = 38. (7) 

 

Using the sum mentioned above (a4 + a5 = 8 + 15 = a6 = 23) and adding it to the pre-

ceding relation gives (by appropriately arranging the terms) 

(15 + 14) + (8 + 24) = 29 + 32 = 61. (8) 

It appears that there are 15 amino acids and 14 degenerate codons in Rumer’s set M2 

while there are 8 amino acids and 24 degenerate codons in Rumer’s set M1. Let us now go 

into the details by examining, first, the set M2. The number 15 could be partitioned in 

two ways. The first, consists in using the above sum for k=3 to get: 6 + (1 + 7 + 1) = 6 +

9 = 15. Using the second way, we can apply the useful 𝐴0-function and its properties 
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(see below and Appendix B) to the number 15 (35): 𝐴0(15) = 𝐴0(3) + 𝐴0(5) = 6 + 9 =

15 which gives the same result as above where we have used the additivity property.  

Finally, the number 6, a perfect number, could be written as the sum of its proper divi-

sors: 6 = 1 + 2 + 3, so that 15 = 1 + 2 + 3 + 9. Here, we have 1 triplet, 2 singlets, 3 dou-

blet parts of the 3 sextets, and 9 doublets. On the other hand, for the degeneracy part, 14, 

which writes 6 + 1 + 7 (see above), we can, again, write 6 as the sum of its divisors, ar-

range the terms and obtain 14 = 3 + (1 + 1) + (2 + 7) = 3 + 2 + 9. Here, we have 3 de-

generate codons for the 3 doublet parts of the 3 sextets, 2 degenerate codons for the triplet 

and 9 degenerate codons for the 9 doublets. For the set M1, things are simpler. The de-

generacy part from Equ.(8) above writes 24 = (8 + 1) + 15 = 9 + 15. As for the number 

of amino acids, 8, as a Fibonacci number, it could simply be written as 5 + 3. This is the 

structure of the set M1. The table below summarizes all these results for the two Rumer’s 

sets which are thus completely described using the Fibonacci-like sequence an. 

 

 

M1 

multiplets 

quartets 

quartet parts of the sextets 

# amino acids # degenerate codons total 

5 15 20 

3          9             12 

 total 8         24             32 

 
            

 

 

M2 

multiplets 

doublets 

doublet parts of the sextets 

# amino acids # degenerate codons total 

9 9 18 

3            3              6 

 triplet 1            2              3 

 singlets 2            0              2 

 total 15           14             29 

  

4.2. Hydrogen atom content and the symmetries  

 

In this section, we examine the hydrogen atom content in each one of the symmetry cases 

summarized in section 2: Rumer’s symmetry (section 2.1), the 3rd base symmetry (section 

2.2) and the weak/strong, purine/pyrimidine and keto/amino symmetries (section 2.3). 

Before developing these topics, let us consider, first, the hydrogen atom content in the 61 

amino acids side chains, as partitioned by the degeneracy. (Please note that when we say, 

here and below, “61 amino acids”, we are of course taking into account the degeneracy of 

each one of the 20 amino acids.) From the table in the Appendix A, we have that the total 

number of hydrogen atoms in the 61 amino acids side chains is equal to 358. Let us note 

from the start that in this count, we take for the (singular) imino acid proline, as a special 

case, 5 hydrogen atoms in its side chain. We will return to this important point later, in 

section 5, with brand new results. A quick look at Table 4 of our Fibonacci-like sequences, 

reveals that the number of hydrogen atoms, mentioned above, is showing itself in mul-

tiple instances. First, ostensibly, as the ninth member of the sequence bn (b9 = 358). 

Second, from the relation (viii) in Equ.(2) which, we recall, is valid for any n, in particular 

for 𝑛 = 9: 𝑎9 + 𝑎11 = 99 + 259 = 358 = b9. Third, from the recurence relation of the se-

quence bn:  b7 + b8 = 137 + 221 = b9 = 358. Fourth, from the sum 

∑ an
′ = 3589

1 . (9) 

This last equation will be considered in detail below as it has a great importance con-

cerning the computation of the degeneracy of the genetic code, in various formats. By 

isolating the last term a9
′ , we have 

∑ an
′8

1 + a9
′ = 219 + 139 = 358. (10) 
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This relation is important and will play a prominent role is this section, and later (in sec-

tion 6); it gives the number of hydrogen atoms in the amino acids side chains, distributed 

into two parts: 139 hydrogen atoms in 23 amino acids (17 amino acids with no “degen-

eracy” at the first base position and the six entities SerIV−II, ArgIV−II and LeuIV−II), on the 

one hand, and 219 hydrogen atoms in the 38 remaining amino acids corresponding to 

the 38 degenerate codons, on the other (see the introduction, below and also the Ap-

pendix A for the calculations). This is the pattern “23 + 38”. Now, as we have 139 =

53 + 86 = 22 + 31 + 86 from the recurrence relation of the sequence bn, we can cast the 

relation above as follows 

(219 + 22) + (31 + 86) = 241 + 117 = 358. (11) 

This is the hydrogen atom in the usual pattern “20 + 41" (20 amino acids and 41 degen-

erate codons). Note that 22 is the number of hydrogen atoms in serine, arginine and leu-

cine, corresponding to one codon for each one of them (see the table in Appendix A). By 

restricting the sum in Equ.(10) as shown below, we have 

∑ an
′7

1 + (a8
′ + a9

′ ) = 133 + 225 = 358. (12) 

This pattern corresponds to Rakocevic’s Cyclic Invariant Periodic System (CIPS) classifica-

tion of the 20 amino acids where there are 133 (225) hydrogen atoms in the amino acids 

side chains in the secondary superclass (primary superclass), see [12] and [13]. The above 

hydrogen atom pattern, 133 + 225, is only one unit from another one which is twice 

relevant. By transferring the all first member of the sequence, a1
′ = 1, from the sum to the 

other factor, we get 

∑ an
′7

2 + (a1
′ + a8

′ + a9
′ ) = 132 + 226 = 358. (13) 

First, this hydrogen atom pattern corresponds to 132 hydrogen atoms in the 3 sextets, on 

the one hand, and 226 hydrogen atoms in the remaining 17 amino acids, on the other (see 

below). Here, we see, the 3 sextets are set apart and this has, we think, a link with the 

subject of this section, see below. Second, this pattern describes also the partition of the 20 

amino acids into 10 amino acids in the Class-I aminoacyl t-RNA synthetases (226 hy-

drogen atoms) and 10 amino acids in the Class-II aminoacyl t-RNA synthetases (132 hy-

drogen atoms), see [14]. Here, of course, the degeneracy is taken into account. 

Now, in the following, we consider the hydrogen atom content for the three symmetry 

cases mentioned in sections 2.1, 2.2 and 2.3. As the case of section 2.3, the “ideal” sym-

metry classification scheme, [6], occupies an important place in this work, inasmuch as it 

has a tight relation with our “seeds” of Fibonacci-like series, we begin by considering it, 

first. As mentioned and promised in the introduction, it is here the right place to explain 

and justify the choice of the “seeds”, or “initial conditions” of our Fibonacci-like se-

quences defined in section 3, more precisely those of the sequences bn and cn. Con-

cerning the former, the “seeds” are 13 and 9 (see Table 4). These are, respectively the 

number of hydrogen atoms in serine and arginine (10 + 3) and in leucine (9) and their 

sum, that is the recurrence relation, b1 + b2 = 13 + 9 = b3 = 22, is the number of hy-

drogen atoms in the side chains of these three amino acids. As for the latter, the “seeds” 

are 30 and 5, respectively the number of atoms in the side chains of arginine and leucine 

(17 + 13) and in the side chain of serine (5). Here also, as for hydrogen, c1 + c2 = 17 +

13 = c3 = 30, is the number of atoms in the side chains of these three amino acids. We 

show, below in this paper, using all the resources offered by our Fibonacci-like series and 

their properties, that these 3 sextets, more precisely, their hydrogen and atoms numbers, 

as “seeds”, will create the entire hydrogen atom, atom and even nucleon content of the 

whole set of amino acids, including the degeneracy, much like the creation of the 64 co-

dons from the three sextets in the “ideal” symmetry scheme mentioned above, [6]. Let us, 

here in this section, begin with the hydrogen atom content. First, using the relation (v) 
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cn + 2bn−1 = bn+2 in Equ.(2), we can derive the hydrogen atom content in the two sets: 

the “leading” group and the “nonleading” group. As a matter of fact, for 𝑛 = 7 (see Ta-

ble 4), we have 

190 + 284 = 358. (14) 

 

It could be seen, from Table 3 and computed from the data in the table in Appendix A, 

that there are 190 and 168 hydrogen atoms in the”leading” group and in the “non-

leading” group, respectively. Moreover, concerning the latter, we have that there are 84 

hydrogen atoms in the amino acids the codons of which have the same first two bases 

UU, CC, AA and GG (in the four corners of Table 3) and 84 hydrogen atoms in the 

amino acids located in the four boxes in the center of the table which have as first two 

(different) bases UG, GU, AC and CA. The equation (14) above describes therefore, 

faithfully, this pattern. Now, we move further to describe accurately the hydrogen atom 

content involving the amino acids of the “core” comprising serine, arginine and leucine. 

To see this, we invoke the following two relations 

5an + 2bn−1 = bn+2, (15) 

 

3an + 4an+1 = bn+2. (16) 

  

It could be easily verified that they give the same result and both hold for any n. They can 

also be transformed into each other, using the relation (viii) in Equ.(2), an + an+2 = bn. 

Now, for 𝑛 = 7, they give 190 + 168 and 114 + 244, respectively, with common value 

358, the total number of hydrogen atoms in the 61 amino acids side chains. These are very 

interesting results for what follows. In the first case, as we have seen above, 190 is the 

number of hydrogen atoms in the “leading” group and 168 is the number of hydrogen 

atoms in the “nonleading” group. In the second case, 114 is the number of hydrogen 

atoms in the part of the “core” belonging to the “leading” group (SerIV/II,  ArgIV/II, LeuIV) 

and 244 is the number of hydrogen atoms in the rest, comprising, in particular, the part 

of the “core” belonging to the “nonleading” group, that is, LeuII. The authors write in 

their paper “the sextets as initial building blocks for creation of their new scheme of the 

genetic code generate by themselves the patterns of A+U rich/C+G rich, pu-

rine/pyrimidine, weak-strong and amino-keto symmetries.” They also add that, in their 

approach, “the symmetries are a consequence of sextet’s dynamics”. Here, below, we can 

use our Fibonacci-like sequences to reveal the exact hydrogen atom content of the “core”, 

constituted by the 3 sextets. As mentioned above, the “core” has two parts: the one which 

belongs to the “leading” group and the other belonging to the “nonleading” group. Let 

us consider the former with 114 hydrogen atoms. Using Euler’s totient function  and 

also so-called “reduced” totient function or Carmichael’s function (n), see Appendix B, 

we have for the number 114 (114) = 36 and (114) = 18. Subtracting these from the 

number 114, we get 114 − 36 − 18 = 60 and, rearranging, we get 

114 = 60 + 36 + 18.  (17) 

This is the correct content of the part of the “core” in the “leading” group: 60 hydrogen 

atoms (610) in arginine (ArgIV/II), 36 hydrogen atoms (49) in leucine (LeuIV) and 18 

hydrogen atoms (63) in serine (SerIV/II). Let us, alternatively, add the above mentioned 

two functions to the number 114. We get 

114 + 36 + 18 = (114 + 36) + 18 = 150 + 18 = 168.  (18) 
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This is the number of hydrogen atoms in the “nonleading” group where the isolated 

number 18 is now re-interpreted as the number of hydrogen atoms (29) in the “seed” of 

the “nonleading” group, that is, LeuII (see above). We have thus established the exact 

hydrogen atom content of the “ideal” symmetry scheme of the genetic code where the 

sextets play a prominent role. Note, finally, that, as (114) = 18 has been used two 

times, one time as the number of hydrogen atoms in SerIV/II and one time as as the 

number of hydrogen atoms in LeuII, we can summarize all what has been said above by 

adding (114)=18 to Equ.(17) and write the exact hydrogen atom structure of the entire 

“core” 60 + (36 + 18) + 18 = 132 constituted by ArgIV/II, (LeuIV + LeuII) and SerIV/II , 

respectively. (The 18 codons of the “core” are undelined in Table 3.) Of course, sub-

tracting the number 132 from the total sum 358, in Equ.(14) above, we are left with 226 

which is the number of hydrogen atoms in the other part of the 17 amino acids outside 

the “core”. We have seen above that the “seeds” of the sequences bn and cn are capable 

of creating the hydrogen atom structure of the “ideal” symmetry classification scheme. 

Now, what about the other sequences of Table 4 in this respect, that is the link to the 

“ideal” symmetry scheme? In fact, in turns out that they also house something interest-

ing. Here, we consider only the sequence an but more will be said later in Section 4.3 

(Equs.(34-35)), concerning the sequence gn, defined below in Equ.(26). We have for the 

sequence an , using Equ.(6): 6 + 1 + 7 + 8 + 1 = 23. First, from the Fibonacci relation 

F2n = Fn+1
2 − Fn−1

2  with 𝑛 = 3, we have 8 = 9 − 1 or 8 + 1 = 9. Second, it could be eas-

ily shown that the sequence Fn
′ , in Equ.(4), is related to the Lucas sequence, Ln = Fn

′ +

Fn+2
′  so that, for 𝑛 = 5, we have 7 = 2 + 5. Finally, we call, exceptionally, the term 𝑎0 =

−5 which also obeys the recurrence relation 𝑎1 + 𝑎0 = 𝑎2, that is 6 − 5 = 1 or, equiva-

lently, 6 = 5 + 1. Putting together all these results, we end up with (5 + 1) + 1 + 2 + 5 +

9 = 23. The last four terms could be easily interpreted as 1 triplet, 2 singlets, 5 quartets 

and 9 doublets, that is the 17 amino acids outside the “core”. As for the first two terms, in 

the parenthesis, they are just enough to describe the 5 entities SerIV/II,  ArgIV/II and LeuIV 

forming the part of the “core” belonging to the “leading” group, on the one hand, and 1 

for LeuIV, the part of the “core” belonging to the “nonleading” group, on the other. 

As an interesting by-product of the results in this section, we have found, unexpectedly, a 

way to derive from the number of hydrogen atoms in the part of the “core” in the 

“leading” group, 114, and in the rest, 244,  comprising the part of the “core” in the 

“nonleading” group (see above), and only from these, the very chemical structure of the 

building blocks of RNA; the four ribonucleotides uridine monophosphate (UMP), cytidine 

monophosphate (CMP), adenosine monophosphate (AMP) and guanosine monophosphate 

(GMP). As a matter of fact, using the functions 𝐴0 and  (see Appendix B), we have 

𝐴0(114) = 38, 𝐴0(244) = 88 = 61 + 1 + 18 + 4 + 4 and (114) = 18  (see Appendix B 

where the details of the computations are given as examples). First, we have from these 

three quantities [𝐴0(114) + (114)] + 𝐴0(244) = 56 + 88 = 144. This is the total number 

of atoms in the four ribonucleotides, 56 in the four nucleotides U (12 atoms), C (13 atoms), 

A (15 atoms) and G (16 atoms) and 88 in the four identical “blocks” each with 22 atoms 

(see [12], for the details of the calculation, which includes also a mathematical derivation 

of the number 22 above which is part of the “condensation” equation for the assembly of a 

ribonucleotide from the three units a nucleotide, a ribose and a phosphate group with the 

release of two water molecules, also derived). Now, as there are 30 codons in the “lead-

ing” group (two stop codons not counted) and 31 codons in the “nonleading” group (one 

stop codon also not counted), see Table 3, we can use this decomposition for the number 

61 above and finally write the relations above in the form (30 + 4) + (31 + 4) +

(218 + 1) + 38 = 34 + 35 + 37 + 38. Note that the above decomposition of the number 

61 could also be obtained another way, by using directly the properties of the sequence 

an, see Table 4. We have a8 = 61 = 23 + 38, 𝑎7 = 38 = 23 + 15 and 𝑎5 = 15 = 7 + 8 so 

that by combining them, we get 61 = (23 + 7) + (23 + 8) = 30 + 31. The above com-

puted quantities 34, 35, 37 and 38 are respectively the number of atoms in the four 

ribonucleotides UMP, CMP, AMP and GMP (see [14]).  
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Now, we return to the symmetries and examine the second case, Rumer’s symmetry 

(section 2.1). Let us reconsider Equ.(10) and write it in the form 

∑ an
′7

1 + a8
′  +  a9

′ = (133 + 53) + 286 = 186 + 286 = 358, (19) 

where we have used the recurrence relation of the sequence an
′ , to write the number 139  

as 86 + 53 (see Table 4). Now, we have already mentioned in the examples following 

Equ.(5) that, for 𝑛 = 8, one has 86 − 84 = 2 or 86 = 84 + 2.  Inserting, this quantity in 

the above equation results in  

186 + (84 + 88) = 358.  (20) 

 

This is the hydrogen atom content in Rumer’s division: 186 hydrogen atoms in M2 and 

172 hydrogen atoms in M1 where, in this latter, we have the correct partition into 84 

hydrogen atoms (421) in the 5 quartets and 88 hydrogen atoms (422) in the 3 quar-

tets of the 3 sextets. To get the details concerning the number of hydrogen atoms in M2, 

186, we first isolate the sum of the first four numbers in the sum in Equ.(19), that is 1 +

6 + 7 + 13 = 27 = 33 = 39. This is equal to the number of hydrogen atoms in the triplet 

isoleucine (see below). We are left, in the sum, with the three terms 353. Writing one 

time the number 53 as 15 + 38 from the relation (viii) in Equ.(2) with n=5 and two 

times as 22 + 31 from the recurrence relation of the sequence bn we obtain finally 

 250 + 222 + 27 + 7 + 8 = 186.  (21) 

 

Here, 250 = 231 + 38 = 2(31 + 19) and 15 = 7 + 8 from the recurrence relation of 

the sequence an. We have therefore, in the detail, the correct number of hydrogen atoms 

in M2: 100 = 250 in the 9 doublets, 44 = 222 in the doublets of the 3 sextets, 27 =

39 in the triplet, 7 in the singlet methionine and 8 in the singlet tryptophane.  Below, 

we consider the third and last case of symmetry. In section 2.2, we explained that the 

authors extracted an inherent basic symmetry linked to the third base by portioning  the 

64-codons set into four pair-wise sub-sets where each one of them contains only codons 

having the same third base. In this way, a one-to-one correspondence between one 

member of a doubly degenerate codon pair to the other member. Here also, for this 

symmetry, we could describe the hydrogen atom content, using our Fibonacci-like series. 

Take the relation (v) in Equ.(2), the one we already considered above in Equ.(14) 

284 + 190 = 358. (22) 

This relation, as it is, is the pattern shown in Table 2 for the gross third-base division 

UC/AG. Here, we note that this relation already describes, nicely, the equality of the 

number of hydrogen atoms in the columns 3rd base U and 3rd base C where the amino 

acids are exactly the same (see the penultimate row in Table 2). In fact, we can do better 

by invoking two more relations. First, the relation (x) in Equ.(2): an + bn+2 = 4an+2 

which, for 𝑛 = 4, gives 8 + 84 = 92. Second, the relation 2bn + bn+1 = cn+2, which also 

holds and gives, for 𝑛 = 5, 253 + 84 = 190. Inserting the number 84 = 92 − 8, from 

the relation just above, in the second one, results in 190 = 92 + 98. Collecting these re-

sults in Equ.(22) above gives, finally 

284 + 92 + 98 = 358. (23) 

 

This last relation describes, therefore, completely, the hydrogen atom content pattern of  

Table 2. It is interesting that the 3rd base classification mentioned above can be supported 

by the following calculation. We know, from section 2.2, that the doubly degenerate co-

dons (group-II) obey a fundamental symmetry, so they must play a basic role including, 
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we will show, in the hydrogen atom content too. As a matter of fact, we have, using the 

sequence an 

∑ 𝑎𝑛

9

1

= 258. (24) 

Subtracting this sum from Equ.(22) above, which gives the total number of hydrogen 

atoms in the 61 amino acids, we get by arranging 

100 + 258 = 358. (25) 

 

This is quite interesting as 100 and 258 are respectively the number of hydrogen atoms 

in the 9 doublets, on the one hand, and in the remaining 11 amino acids (5 quartets, 3 

sextets, two singlets and 1 triplet), on the other, see below Equ.(21). In fact, this same re-

lation could also be obtained, another way, from the relation mentioned in section 4.1, 

a9 + a11 = 99 + 259 = b9 = 358 and noting that the sum in Equ.(24) above is equal, in 

fact, to 259 − 1 (recall ∑ 𝑎𝑛 = ak+2 − 1𝑘
1 , with k=9), we get back to our result: (1 + 99) +

258 = 100 + 258 . Note also that 2(258) = 284  and 358 − 2(258) = 190  or 

284 + 190 which is nothing but the hydrogen atoms pattern of the present classification 

(see Equ.(22) and Table 2). (The function  is defined in Appendix B and the factor 2 

which has been introduced is for “doubly” degenerate codons.) 

 

4.3. The atom content and degeneracy 

 

In the course of writing this paper, we have discovered one more Fibonacci-like se-

quence, tailor-made for the description of the number of atoms in the 61 amino acids (see 

Equ.(29) below). It is defined as follows 

gn = −3Fn−1 + 23Fn−2. (26) 

The first few terms are shown below 

gn:  23, −3, 20, 17, 37, 54, 91, 145, 𝟐𝟑𝟔, 381, … (27) 

This sequence is related to the sequences an and bn as follows 

bn +  gn = 6an, (28) 

which holds for any n. The case 𝑛 = 9 is particularly interesting. As a matter of fact, we 

have 

358 +  236 = 594, (29) 

and we see that it gives the total number of atoms in the 61 amino acids distributed into 

358 hydrogen atoms (see above) and 236 atoms (C/N/O/S), see the table in Appendix A 

(180 carbon atoms and 56 N/O/S atoms). Now, from the relation 

∑ gn
k
1 = gn+2 − g2 = gn+2 − (−3) = gn+2 + 3, (30) 

which holds for any 𝑘 and is the analog relation for the sum of the first k Fibonacci 

numbers. For 𝑛 = 7,  it gives 236 + 3 or 236 = 239 − 3 and, by inserting this latter in 

the above equation, we obtain  

239 + (358 − 3) = 239 + 355 = 594. (31) 
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We have here the number of atoms in 23 amino acids, 239 (the sextets with 35 atoms  

are counted two times) and 355 is the number of atoms in the 38 amino acids corre-

sponding to the 38 degenerate codons (see the table in Appendix A). Let us, at this stage, 

remember the sequence cn, especially its “seeds” 30 and 5 with sum 𝑎1 + 𝑎2 = 35. Let 

us also remember that these “seeds” were chosen, intentionally, as the sum of the number 

of atoms in Arginine and Leucine (30), on the one hand, and the number of atoms in 

Serine (5), on the other. They are therefore, together, exactly the right thing to add and 

subtract from Equ.(31) above to obtain 

(239 − 35) + (355 + 35) = 204 + 390 = 594, (32) 

which is the correct partition of the number of atoms: 204 atoms in the 20 amino acids, 

on the one hand, and 390 atoms in the 41 amino acids corresponding to the 41 degenerate 

codons (see the table in Appendix A). Now, the use of the above sum in Equ(30), for 𝑘 =

8, gives ∑ gn = 3848
1  which number appears also doubly significant, see below. By sub-

tracting this latter number from the total sum, 594, and arranging, we have  

210 + 384 = 594. (33) 

 

This partition of the number of atoms is interesting as 210 is equal to the number of 

atoms in the six amino acids (sextets) SerIV−II, ArgIV−II and LeuIV−II (356) and 384 is 

the number of atoms in the remaining 17 amino acids, of course, taking into account the 

degeneracy. It is striking that the first two recurrence relations of the sequence gn  23 −

3 = 20 and 20 − 3 = 17, together, lead to the relation 

23 = 17 + (3 + 3),  (34) 

which is in line with the above result for the atom numbers and also with the “ideal” 

symmetry scheme (as depicted below): 

(3 + 3)      (SerIV, ArgIV, LeuIV) + (SerII, ArgII, LeuII).  (35) 

        

Finally, we could also derive the partition of the number of atoms for Rumer’s sets M1 

and M2 . Consider, again, the equation above, 210 + 384 = 594, more precisely, the 

number 384 which was calculated from Equ.(30) with 𝑛 = 8. By partitioning this sum in 

two parts, for 𝑛 = 1. .4 and 𝑛 = 5. .8, we have 54 − (−3) = 54 + 3, on the one hand, and 

327, on the other. By gathering both terms in Equ.(33) and arranging, we obtain 

(210 + 54) + (327 + 3) = 264 + 330 = 594. (36) 

 

This is the content of atoms 264 in M1 and 330 in M2, see the table in Appendix A. We 

can also go to the details for the multiplets. Considering, first, M1, let us present the fol-

lowing (new) relation connecting the sequences bn and cn: 

cn + bn+2 = 4bn, (37) 

which, for 𝑛 = 3, gives 35 + 53 = 422 = 88. Using the recurrence relation for bn, we 

have 53 = 31 + 22 and, by combining the above two relations, we get 35 + 31 + 22 =

422 or 31 + 35 = 322 = 66. Multiplying this latter equality by any number does not 

change it, in particular by 4, having in mind that the 8 quartets composing the set M1 

have each 4 codons, and we have 431 + 435 = 264. This is exactly the number of 

atoms in M1: 431 in the 5 quartets and 435 in the 3 quartet parts of the three sextets 

(see the table in Appendix A). The above equality, 31 + 35 = 66, which was used as an 

intermediate of the calculation above, could also be exploited for the set M2. As a matter 

of fact, consider Equ.(5), an
′ − bn−2 = 2Fn−7, for 𝑛 = 6: 33 − 31 = 2. Inserting this dif-

ference in the above equality gives 33 + 35 = 68. Now, the following relation linking 

Fibonacci and Lucas numbers: Ln + 3Fn = 2Fn+2  is interesting as, for 𝑛 = 7, it gives 
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29 + 313 = 234 = 68. If, moreover, we use the recurrence relation for the Lucas num-

ber 29 as 11 + 18, we get 313 + 11 + 18 = 68. This matches perfectly the number of 

atoms in the triplet isoleucine (313), in the singlet methionine (11) and in the other sin-

glet tryptophane (18), see the table in Appendix A. We showed above that there are 330 

atoms in the set M2. Subtracting the above number of atoms, 68, in the triplet and in the 

two singlets, we have 262 atoms left. To get the right partition of these, it suffices to take 

the sum of the three first members of the sequence cn:  30 + 5 + 35 = 235 = 70 which 

appears to be the right number of atoms in the doublet parts of the three singlets. Adding 

and subtracting this latter from 262 gives 192 which is the number of atoms in the nine 

doublets, 296 = 192 (see the table in Appendix A). In summary, we have 

M1: 431 + 435 = 264, 

M2: 192 + 235 + 313 + 11 + 18 = 330, 

(38) 

 

which is the very precise partition. Finally, let us note that the number 384, mentioned 

above (see below Equ.(32)), has also another relevant interpretation. As a matter of fact, it 

is equal to the number of atoms in the 20 amino acids, this time including to their side 

chains their 20 identical “blocks” with 9 atoms each: 204 + 920 = 384.     

                       

4.4. Derivation of several nucleon number patterns 

In this section, we use our Fibonacci-like series to derive several interesting patterns for 

the nucleon number (or integer molecular mass) content in the 61 amino acids. Before 

starting, let us make an important remark about the sequence cn (see Table 4).. In fact, 

there is a simple relation between the sequences an and cn, the latter is simply five times 

the former: cn = 5an. One may wonder how the use of cn would bring something sig-

nificant as it is simply related to an? In fact, it does and we will show that below. First, let 

us consider the following sum 

∑ 𝑎𝑛 + 2
9

1
∑ 𝑏𝑛 +

9

1
∑ 𝑐𝑛

9

1
= 3404. (39) 

 

It appears that this number, 3404, is the number of nucleons, or integer molecular mass, 

contained in the 61 amino acids (see the table in Appendix A). This is nice but we could 

do more. Consider the “seeds” of the sequence cn, 30 and 5 with sum 35, the number of 

atoms in the 3 sextets serine (5), arginine (17) and leucine (13). (It is not difficult to show, 

using the Zekendorf representation1 of the number 30 (= 21 + 8 + 1) in terms of Fibo-

nacci numbers and the fact that 21 = 13 + 8, that the sum of the “seeds” takes the form 

13 + 17 + 5 = 35, i.e., the correct atom numbers in the three sextets, mentioned above.)  

Now, by isolating the sum of the above two “seeds” of cn from the third sum in Equ.(39) 

and include it in the two other sums, we get 

2149 + 1255 = 3404. (40) 

Here also, we have another interesting result: there are 1255 nucleons in the 20 amino 

acids (see the table in Appendix A) and 2149 nucleons in the 41 amino acids corre-

sponding to 41 degenerate codons. Let us now exploit the relation between the two se-

quences an and cn (cn = 5an), mentioned above, and write the sum in Equ(39) as fol-

lows 

 
1 The Zeckendorf theorem states that every positive integer can be represented uniquely as the sum of one or more non-consecutive Fibonacci 

numbers.  
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[4 ∑ 𝑎𝑛

9

1

+ ∑ 𝑏𝑛

9

1

] + [2 ∑ 𝑎𝑛

9

1

+ ∑ 𝑏𝑛

9

1

] = 1960 + 1444 = 3404. (41) 

 

Now, recall the sum ∑ an = ak+2 − 1k
1 , mentioned in Equ.(6) of section 4.1. In our present 

case for its use in Equ.(41), we have ∑ 𝑎𝑛 = 259 − 19
1  for 𝑘 = 9. By considering this latter 

relation in only one such sum in the first bracket of the above equation and transfer the 

unit, − 1, to the second bracket, we obtain 

1961 + 1443 = 3404.  (42) 

One recognizes here the nucleon number in the pattern “38 + 23" (see above and Ap-

pendix A): 1443 nucleons in the 23 amino acids side chains and 1961 nucleons in the  

38 amino acids side chains corresponding to the 38 degenerate codons (see above). As 

another, also interesting finding, we can, from the above relations, make contact with the 

“ideal” symmetry mentioned above in section 4.2, at the level of the nucleon numbers. To 

do this, let us, first, remark that the number 114 appears two times, one time as the 

number of hydrogen atoms in the “core” of the “ideal” symmetry scheme (see above) and 

one time as the number of nucleons in LeuII (257), see the table in Appendix A). This 

will prove significant in the following. Consider now the sum 

∑ 𝑎𝑛
9
1 + 2 ∑ 𝑏𝑛

9
1 = 2114. (43) 

 

The number 2114, by itself, is not very interesting but its -function is. As a matter of 

fact, we have (2114) = 900 and, adding to it two times the number 114 gives 900 +

2114 = 1128. This is the number of nucleons in the “core”: 316 + 1006 + 576 =

1128. Isolating one time the number 114 in the sum, that is (900 + 114) + 114 = 1014 +

114 gives us the partition of the nucleon numbers between the two parts of the “core”, 

316 + 1006 + 574 = 1014 in the “leading” group, on the one hand, and  572 = 114 

in the “nonleading” group, on the other: 

1128 = 1014 + 114.  (44) 

In the following, we can also derive three more results by “watering three plants with one 

hose”, so to speak. As a matter of fact, consider again the sum in Equ.(39) and cut it as 

follows 

[∑ 𝑎𝑛 +
9

1
∑ 𝑏𝑛 +

9

1
∑ 𝑐𝑛

7

1
]  + [∑ 𝑏𝑛 +

9

1
∑ 𝑐𝑛

9

8

] = 1676 + 1728 = 3404. (45) 

 

Here, we have the nucleon number pattern of the 3rd-base classification of section 2.2: 

1728 nucleons in the U/C third-base division and 1676 nucleons in the A/G third-base 

division (see Table 2, last row). Now, by borrowing from the first bracket above the sum 

of the first three members of the sequence cn:  30 + 5 + 35 = 235 = 70, the one we used 

earlier (see above Equ.(38)), to the benefit of the second bracket, we get2 

1606 + 1798 = 3404.  (46) 

Here, we recognize the number of nucleons in the “leading”group/”nonleading” group,  

1606 and 1798, respectively. Finally, we could also establish the nucleon number pat-

 
2 As an example of the computations, here is the one for the « nonleading » group which goes as follows: 316 + 574 + 1006 + 154 + 592 +

732 + 1072 + 573 + 75 = 1798, see Table 3 and the table in Appendix B.  
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tern corresponding to Rumer’s division. Consider again Equ.(39) by partitioning it as 

follows 

[∑ 𝑎𝑛 + 28
1 ∑ 𝑏𝑛 +8

1 ∑ 𝑐𝑛
8
1 ] + (𝑎9 +  2𝑏9 + 𝑐9) = 2094 + 1310 = 3404. (47) 

 

It suffices now, analogously to what we did in Equ. (40) above, to subtract, one time, the 

sum of the “seeds” of the sequence 𝐛𝐧 in the bracket, that is, 𝟏𝟑 + 𝟗 = 𝟐𝟐, and add it to 

the three terms in the parenthesis to obtain 

2072 + 1332 = 3404.  (48) 

We have, as promised above, 1332 nucleons in M1 and 2072 nucleons in M2 (see the 

table in Appendix A). 

5. On proline’s singularity and a derivation of the shCherbak-Makukov “activation” 

key 

 

In this section, we use our Fibonacci-like sequences to shed light, by giving concrete re-

sults, on a question relative to the special amino (more exactly imino) acid, proline, which 

is an exception among the set of 20 amino acids. As a matter of fact, it is the only amino 

acid where its side chain is connected to its block twice. shCherbak, [7], in order to 

“standardize” the common block of the amino acids, with 74 nucleons, proposed an im-

aginary “borrowing” of one nucleon (in fact one hydrogen atom) from the side chain of 

proline, which has only 73 nucleons in its block, to the benefit of its block, to reach 74, as 

the 19 other amino acids. In his next work with Makukov, [8], the above “borrowing”, or 

transfert of one nucleon, has been termed the “activation key”. Activating the key, i.e., 

standardizing, leads to an innumerable number of remarkable and beautiful arithmetical 

patterns. These authors say in their paper, [8], “Applied systematically without exceptions, 

the artificial transfer in proline enables holistic and arithmetically precise order in the code”. Here, 

in this section, we establish,, not only a mathematical version of the “activation key”, it-

self, but also its action on the (new) total hydrogen atom content, with simple possible 

extension to the atom and nucleon content. Let us begin by examining the action of the 

“activation key”). Consider, again, the sequence an
′  and the following sum 

∑ 𝑎𝑛
′ = 𝑎𝑘+2

′ − 6𝑘
1 . (49) 

 

It could be easily shown and verified that the above relation holds for any k. For k=9, it 

gives 358 = 364 − 6. As established and mentioned many times previously, 358 is the 

number of hydrogen atoms in the 61 amino acids side chains, where the special amino 

acid proline has 5 hydrogen atoms in its side chain. If, instead, one considers that pro-

line’s side chain has now 6 hydrogen atoms, at the cost of its block, i.e., no standardiza-

tion made, or the “activation key” off (see below), and taking into account the number of 

its coding codons, which is 4, then we have now 362 = 358 + 4 hydrogen atoms in the 

61 amino acids side chains. Let us reconsider Equ.(10)) for the hydrogen atoms partition 

between 38 amino acids corresponding to the 38 degenerate codons (219) and 23 amino 

acids (139) but, now, using the above relation (358 = 364 − 6):   

∑ an
′

8

1

+ a9
′ = 219 + 139 = 364 − 6. (50) 

 

To get a correct partition, let us consider the perfect number 6 which is, as such, equal to 

the sum of its proper divisors: 𝟔 = 𝟏 + 𝟐 + 𝟑. These are just the right numbers we need. 

Inserting these in the above equation by selecting the odd divisors 𝟏 and 3 and shifting 
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them to the left while leaving the even one, 2, to the right and finally arranging properly, 

we get 

∑ an
′8

1 + a9
′ = (219 + 3) + (139 + 1) = 364 − 2 = 362,  (51) 

so that we have something quite correct: one more hydrogen atom in the 23 amino acids 

part (proline, a quartet, has now one more hydrogen atom in its side chain) and 3 more 

hydrogen atoms for its 3 degenerate codons. (Note that, the action of the “activation key” 

could easily be extended to the total number of atoms and the total number of nucleons, 

as it applies only to the hydrogen atom number content.) Taking a look at the 6th term in 

the sequence cn, 115 = 40 + 75, we have that it appears to be equal to the number of 

nucleons in proline side chain and block, see below about this latter sum. This number, 115, 

is invariant whether we make shCherbak’s “borrowing” of one nucleon or not. To get 

more insight, we consider another invariant number, the total number of hydrogen atoms 

in the 61 amino acids, including the blocks (with 4 hydrogen atoms in each), that is 358 +

244 = 362 + 240 = 602. Without borrowing one nucleon from the side chain of proline 

in favour of its block there are 362 hydrogen atoms in the 61 amino acids and 240 hy-

drogen atoms, 574 + 43 = 240, in the 61 blocks. Applying the “borrowing”, there are 

358 hydrogen atoms in the 61 amino acids side chains and 244(= 614) hydrogen atoms 

in the 61 blocks. Note, in passing, the following nice relations seemingly linking the two 

views: (240) + (362) = 244  and (240 + 362) − [(240) + (362)] = 358 . Now, let 

us examine the former point,, the derivation of the “activation key”. Considering the 

above mentioned invariant numbers, 115 (= 523)) and 602 (= 2743), we have, us-

ing their A0 function (see Appendix B):  

115 − 𝐴0(115) = 115 − 42 = 73,  (52) 

 

115 − 𝐴0(602) = 115 − 74 = 41.  (53) 

 

From which we deduce that 115 = 42 + 73 = 41 + 74 which are seen to describe, fully  

and precisely, the two views: 42 + 73 (“activation key” off) and 41 + 74 (“activation 

key” on). From  (41) = 42 = 41 + 1, where  is the sum of the divisors, we can also 

write 115 = (41 + 1) + 73 = 41 + (73 + 1). Also, from (41) = 40 = 41 − 1, we can also 

make contact with the sequence cn through the relation 𝑐6 = 115 = 40 + 75, mentioned 

above: 41 + (75 − 1) = 41 + 74. Moreover, we can, alternatively, exploit the number 75, 

itself. As a matter of fact, calling Legendre’s sum of three squares theorem3, we have that 

the number 75 do not satisfy the theorem and can therefore be written as the sum of the 

following three squares: 12 + 52 + 72 or 1 + (25 + 49) = 1 + 74. This latter form gives 

us again (40 + 1) + 74 = 41 + 74. Finally, using (41) = 40 = 41 − 1 and the decom-

position of the number 75 as the sum of three squares, mentioned above, we can write, 

by allocating the two units in two ways: 41 − 1 + 1 + 74 = 41 + 74 = 42 + 73. This is, 

again, what we found above from Equs.(52-53). 

 

6. A striking imprint in the “seeds” 

We invite the reader, here, before starting this section, to remember what has been said 

about the three sextets in section 4.2 when using the “seeds” 6 and 1 of our fifth se-

quence 𝐠𝐧. In the “ideal” symmetry classification scheme, mentioned in section 2.3, the 

authors explain that, in their approach, the symmetries are a consequence of sextet’s 

dynamics and the whole set of amino acids is created starting from these three sextets 

 
3 This theorem states that a natural number n can be represented as a sum of three squares if and only if it is not of the form 4𝑎(8𝑏 + 7) for a and b 

two positive integers. It could be easily verified that the number 75 cannot be written in this form so it can be represented as the sum of three 

squares. 
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where, serine, plays a prominent role. In our own approach, relying on the use of Fibo-

nacci-like series, on the other hand, we have chosen, as already mentioned, for two of 

them, bn and cn, the hydrogen atom numbers and atom numbers of the three sextets 

(see section 4.2) as “seeds”. It appears, while the writing of this paper goes to its end, that 

the “seeds” of, in fact, all the Fibonacci-like sequences used in this paper, and only these, 

by themselves, can “create”, strikingly and remarkably, the main hydrogen number pat-

terns derived in this paper. As a matter of fact, the sum and product of the “seeds” of the 

sequence bn, alone, gives 

b1b2  +  (b1 + b2) = 117 + 22 = 139. (54) 

One recognize here the number of hydrogen atoms in 20 amino acids, 117, augmented by  

the number of hydrogen atoms in the three sextets, 22. The total, 139, corresponds to 23 

amino acids (the sextets counted two times). Now, let us compute the following expres-

sion, using the sum and product of the “seeds” of the sequence 𝐜𝐧 and only the sum of the 

“seeds” of the other three remaining sequences an, an
′ , and gn  (the latter defined in 

Equ.(26). We have 

c1c2  +  (c1 + c2)  +  (a1 + a2  + a1
′ + a2

′ ) + (g1 + g2) = 

 

= 150 + 35 + 14 + 20 = 219. 

(55) 

Here, we have the number of hydrogen atoms in the 38 amino acids corresponding to the 

38 degenerate codons. Equs.(54-55), together, constitute the “23 + 38” hydrogen atom 

pattern established in section 4.1). Now, taking the sum of the above equations and bor-

rowing the number 22 from Equ.(54) to the benefit of Equ.(55) gives 117 + 241 = 358 

which corresponds to the other pattern “20 + 41” (20 amino acids and 41 degenerate 

codons), see Equ.(11) in section 4.1. Next, we arrange Equs.(54) and (55) as follows 

 

(150 + 22) + (117 + 35 + 14 + 20) = 172 + 186 = 358. (56) 

Here, we have again the hydrogen atom content in Rumer’s division: 172 hydrogen at-

oms in M1 and 186 hydrogen atoms in M2, see section 4.2 Equ.(20). To get the other 

patterns, we call, exceptionally, the Fibonacci ( 0, 1, 1, 2, 3, 5, … ) and Lucas 

(2, 1, 3, 4, 7, 11, …) series, which, as well known, are linked by the relation Fn + Ln+2 =

Fn+4. For n=5, we have 5 + 29 = 34 so that we can take this latter as the term 14 + 20 =

34 in the above equations, arrange and get 

 

(150 + 35 + 5) + (22 + 117 + 29) = 190 + 168 = 358. (57) 

This is the hydrogen atom pattern for (i) the 3rd base classification of section (4.2), 

Equ.(14), and (ii) the “ideal” symmetry classification scheme in the same section, Equ. 

(22). Finally, we consider Zekendorf’s theorem (see footnote 1) and apply it to the num-

ber 117 giving 89 + 21 + 5 + 2. Writing 89, a Fibonacci number, as 55 + 34, we can re-

arrange the content of the second parenthesis in Equ.(57) above as 55 + 29 = 84 and 

34 + 21 + 22 + 5 + 2 = 84, so that 168 = 284, which describes again the pattern 190 +

284 = 358. The fact of having used, here, the Fibonacci and Lucas sequences is all the 

more interesting in that it can, also, give us another remarkable result. As a matter of fact, 

adding the two “seeds” of the Fibonacci and Lucas sequences, 0 and 1 and 2 and 1, re-

spectively, to the above sum of Equs.(54) and (55) and arranging, we obtain 

 

(139 + 1) + (219 + 2 + 1) = 140 + 222 = 362. (58) 
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This is, exactly, the hydrogen atom pattern found in section (5), devoted to the special 

imino acid proline and the shCherbak-Makukov “activation” key, when this latter is 

“off”, see Equ.(51) and below it, in section 5.  

Conclusion 

In this work, we have strayed a little off the beaten paths in the genetic code 

mathematical research. Starting with a handful of Fibonacci-like sequences, we have 

derived not only the degeneracy structure of the genetic code but also the hydrogen 

atom content, the atom number content and also the integer molecular mass (nucleon) 

content of the set of 20 amino acids as strutured in the 64-codon table. What made this 

possible is a judicious choice of the intial conditions, or “seeds”, of the above mentioned 

sequences. For two of these, they are chosen as the hydrogen atom numbers and atom 

numbers of the three enigmatic and intriguing amino acids serine, arginine and leucine. 

Our results, using these sequences, led us to reveal, as mentioned above, the elemental 

content of the 61 amino acids set as structured by various well-known symmetries, as 

Rumer’s symmetry, the “ideal” symmetry classification scheme and the basic symmetry 

associated to order-2 degeneracy. Moreover, as a by-product of our mathematical 

formalism, we derived the atomic (elemental) content of the building-blocks of RNA, the 

four ribonucleotides UMP, CMP, AMP and GMP. Also, still using the above 

mathematics, we bring, for the first time, an additional brick to shCherbak’s theory 

concerning the role of the special imino acid proline whose virtual “double” struture 

renders possible, via the use of the “activation key”, a large number of remarkable and 

beautiful arithmetical patterns. Let us stress, as a last word, that the content of this paper 

is, we believe, inovative. To the best of our knowledge, we have never seen such a kind 

of quantitative derivation of the chemical characteristics of the genetic code as 

structured by the degeneracy and also by several well known symmetries. Our main 

findings, as the total hydrogen atom content, the total atom content, the total molecular 

mass content of the 20 amino acids, including the degeneracy, as well as other relevant 

quantities related to the symmetries of the genetic code are found directly, either as 

ostensible members of the Fibonacci-like sequences or obtained from the summation 

properties of these latter. Other slighly more sophisticated quantities, also having 

something to do with the symmetries, are obtained with the help of some well known 

arithmetic functions. 

Appendix A 

In the table of this appendix, we give the detailed elemental composition of the side 

chains of the 20 amino acids. H stands for hydrogen, C for carbon, N for nitrogen, O for 

oxygen and S for sulfur. The calculated values of some important quantities, taking into 

account the degeneracies, are indicated in the last five rows; they are useful to know 

when reading the main text (those shown in bold, and others, are all mathematically derived in 

this paper). In the table, the first column, M, gives the number of codons which code for an 

amino acid (4 for a quartet, 6 for a sextet, 2 for a doublet, 3 for a triplet and 1 for a singlet). 

In column 6 we provide the number of atoms in the side chains and the number of nu-

cleons (protons and neutrons), which is also the integer molecular mass of an amino acid, 

is displayed in column 7. Below the table, we offer hints for computing some of them. The 

table is in the “standardized” form, that is, proline has 5 hydrogen atoms in its side chain 

and all the twenty amino acids, including proline, have 74 nucleons in each of their 

blocks, see section 5. The general chemical (linear) formula of an amino acid is 

 
R − 𝐂H(NH2) − COOH,  

where R is the radical, also called the side chain, and the rest of the molecule constitutes 

what we call here the block. The carbon C, linked to R, is called -carbon. In the special 

case of proline, its side chain from the -carbon connects to the nitrogen N forming a 
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pyrrolidine loop. (It is the side chain which gives an amino acid its specific functional  

properties.). To calculate, for example, the nucleon numbers, or the integer molecular 

mass of an amino acid, the molecular mass of the chemical elements are those of the most 

abundant isotopes: hydrogen (1), carbon (12), nitrogen (14), oxygen (16) and sulfur (32). 

From the formula above, one computes easily the integer molecular mass of the block: 

212 + 114 + 216 + 41 = 74. In the (unique) case of proline, as mentioned above, 

there is one less hydrogen atom in the block and the nucleon number is 73 = 74 − 1; this 

is the non-standardized form (“activation key” off), (see section 5).  

 
M amino acid # H # C # N/O/S # atoms # nucleons 

4 

Proline (P) 5 3 0 8 41 

Alanine (A) 3 1 0 4 15 

Threonine (T) 5 2 0/1/0 8 45 

Valine (V) 7 3 0 10 43 

Glycine (G) 1 0 0 1 1 

6 

Serine (S) 3 1 0/1/0 5 31 

Leucine (L) 9 4 0 13 57 

Arginine (R) 10 4 3/0/0 17 100 

2 

Phenylalanine (F) 7 7 0 14 91 

Tyrosine (Y) 7 7 0/1/0 15 107 

Cysteine (C) 3 1 0/0/1 5 47 

Histidine (H) 5 4 2/0/0 11 81 

Glutamine (Q) 6 3 1/1/0 11 72 

Asparagine (N) 4 2 1/1/0 8 58 

Lysine (K) 10 4 1/0/0 15 72 

Aspartic Acid (D) 3 2 0/2/0 7 59 

Glutamic Acid (E) 5 3 0/2/0 10 73 

3 Isoleucine (I) 9 4 0 13 57 

1 Methionine (M) 7 3 0/0/1 11 75 

1 Tryptophane (W) 8 9 1/0/0 18 130 

Total (20) 117 67 20 204 1255 

Total (23) 139 76 24 239 1443 

Total (38) 219 104 32 355 1961 

Total (61) 358 180 56 594 3404 

M1/M2 172/186   264/330 1332/2072 

 

The get the results in the second of the last five rows from the first one, it suffices to count 

the values of the sextets two times. For the rest, to ease the calculations, one can use the 

following pre-calculated sums for the hydrogen atom content: 5 quartets 21, 3 sextets 

22, 9 doublets 50, 1 triplet 9, 2 singlets 15 = 7 + 8. For the atom number: 5 quartets 31, 

3 sextets 35, 9 doublets 96, 1 triplet 13, 2 singlets 29 = 11 + 18. For the nucleon num-

bers: 5 quartets 145, 3 sextets 188, 9 doublets 660, 1 triplet 57, 2 singlets 205 = 75 +

130.    

In the calculations, the reader needs also to know what we mean by degeneracy. This 

latter is defined as the number of codons coding for an amino acid minus one. Therefore, 

for a quartet, the degeneracy is 3 = 4 − 1, for a doublet it is 1 = 2 − 1, for a triplet it is 

2 = 3 − 1 and for singlet it is 0 = 1 − 1. For the special case of the sextets, there are two 

possibilities, related to the two patterns mentioned several times in this paper: “20 +

41 = 61" and "23 + 38 = 61". In the first case, the degeneracy is 3 + 2 = 5 (3 for the 

quartet part and 2 for the doublet part whose two codons are considered both degener-

ate). In the second case, the quartet part and the doublet part of each sextet are consid-

ered as separate entities (ex. SerIV and SerII) so the degeneracy is equal to 3 + 1 = 4, 3 

for the quartet part and 1 for the doublet part which is here considered as a doublet. In 

this way, we have for the number of amino acids and total number of coding codons 

20 = 5 + 3 + 9 + 1 + 2 , 41 = 53 + 35 + 91 + 12 , in the first case, and 23 = 5 +

(3 + 3) + 9 + 1 + 2 , 38 = 53 + 3(3 + 1) + 91 + 12  in the second one. With these 

definitions, it is not difficult to do the rest of the computations. Let us give some few 
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examples from the table above for the number of hydrogen atoms for the pattern"23 +

38: 139 = 21 + 222 + 50 + 9 + 7 + 8, 219 = 213 + 224 + 501 + 92, 358 = 214 +

226 + 502 + 93 + 7 + 8. 

Appendix B 

In this appendix, we mention some few other additional mathematical elements used in 

this paper. First, Euler’s totient function for an inger n, (n), which is extensively used in 

many scientific areas as cryptography and graph theory, as a few examples. It counts the 

number of positive integers less than or equal to n which are relatively prime to n (also 

called coprimes). For example 24 has 8 coprimes (1, 5, 7, 11, 13, 17, 19, 23):  (24) = 8. 

Second, Carmichael -function, also called reduced totient function, which is, in fact,  

used only one time in section 4.2 where it appears to be very useful. It is defined as the 

smallest positive divisor of Euler’s totient function that satisfies Euler’s Theorem. For 

example (24) = 2. (The reader could easily find good online calculators for these 

functions to check.) Next, the 𝐴0 function which has been used, successfully, by us 

many times in our recent works on the genetic code, see for example [13]. It is define by 

 
𝐴0(𝑛) ≔ 𝑎0(𝑛) + 𝑆𝑃𝐼(𝑛) + (𝑛),  

where 𝑎0(𝑛) is the sum of the prime factors, (p1n1 + p2n2 + ⋯ +pknk) of the integer 

n (written as p1
n1p2

n2 … pk
nk  (by the Fundamental Theorem of Arithmetic), including the 

multiplicities, 𝑆𝑃𝐼(𝑛)  is the Sum of the Prime Indices PI(p1)n1 + PI(p2)n2 +

⋯ +PI(pk)nk where PI(2)=1, PI(3)=2, PI(5)=3 and so on, also including the multiplicities 

and (n), so-called Big Omega function, is the number of the prime factors 𝑛1 + 𝑛2 +

⋯ + 𝑛𝑘. Consider, as an example, the number 192  whose prime fctorization is 2631. 

We have 
𝐴0(192) = 𝑎0(2631) + 𝑆𝑃𝐼(2631) + (2631) 

 

                              = (62 + 13) + (61 + 12) + (6 + 1) = 30. 

 

The function 𝐴0  enjoys also the useful additivity (“logarithmic”) property 

A0(nmp… ) = A0(n) + A0(m) + A0(p) + ⋯ . Let us also give some few other 

illustration examples, taken from section 4.2, concerning the computation of 𝐴0(114) 

and 𝐴0(244). For the first, we have 114 = 2131191 so that 𝐴0(114) = (2 + 3 + 19) +

(1 + 2 + 8) + 3 = 38 . For the second, we have 244 = 22611 . To get the result 

established in the end of section 4.2, it makes sense to use the additivity property 

mentioned above: 𝐴0(244) = 𝐴0(21) + 𝐴0(21) + 𝐴0(611) = 4 + 4 + (61 + 18 + 1) = 88 . 

This form, which sets apart the two factors 4 proved useful to reveal the structure of the 

four ribonucleotides (in section 4.2).   
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