

Review

Not peer-reviewed version

Unlocking the Potential of Liquid Biopsy: A Paradigm Shift in Endometrial Cancer Care

[Nannan Gui](#) , [Chalong Cheewakriangkrai](#) ^{*} , [Parunya Chaiyawat](#) , Sasimol Udomruk

Posted Date: 24 June 2025

doi: [10.20944/preprints202506.1856.v1](https://doi.org/10.20944/preprints202506.1856.v1)

Keywords: liquid biopsy; endometrial cancer; biomarkers; non-invasive; personalized medicine; early diagnosis

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Unlocking the Potential of Liquid Biopsy: A Paradigm Shift in Endometrial Cancer Care

Nannan Gui ^{1,2}, Chalong Cheewakriangkrai ^{1,*}, Parunya Chaiyawat ³ and Sasimol Udomruk ³

¹ Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand

² Department of Obstetrics and Gynecology, Faculty of Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China

³ Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand

* Correspondence: chalong.c@cmu.ac.th

Abstract

Endometrial cancer is one of the most prevalent gynecologic malignancies in developed countries, with its incidence steadily increasing each year. Early diagnosis is crucial for a favorable prognosis; however certain patients experience recurrence and distant metastasis after surgery, similar to advanced cancer patients, with limited treatment options. Therefore, effective strategies for early screening, diagnosis, predicting local recurrence, and guiding rapid treatment interventions are essential for improving survival rates and prognosis. Liquid biopsy, a method known for being non-invasive, safe, and effective, has attracted widespread attention for cancer diagnosis and treatment. Although its clinical application in endometrial cancer is less established than in other cancers, research on biomarkers using liquid biopsy in endometrial cancer patients is currently in progress. This review examines the latest advancements in non-invasive biomarkers identified through liquid biopsy and provides a comprehensive overview of their clinical applications in endometrial cancer. Additionally, it discusses the challenges and future prospects of liquid biopsy, offering valuable insights into the diagnosis and personalized treatment of endometrial cancer.

Keywords: liquid biopsy; endometrial cancer; biomarkers; non-invasive; personalized medicine; early diagnosis

1. Introduction

Endometrial cancer (EC), a malignant epithelial tumor of the uterus, ranks sixth among the most common cancers in women from developed countries [1]. Despite our expanding understanding about EC over time, both incidence and mortality rates continue to rise steadily [1, 2]. Prognosis in EC largely depends on the tumor stage at diagnosis. The 5-year survival rate for Stage I patients is approximately 92%, but declines significantly in more advanced stages, dropping to 74%, 48%, and 15% for Stages II, III and IV, respectively [3]. Current EC guidelines recommend surgery for early-stage, low-risk cases, and a combination of surgery and postoperative adjuvant therapy for high-risk or advanced cases [4]. Notably, since the International Federation of Gynecology and Obstetrics (FIGO) incorporated molecular typing into the EC staging system in August 2023 [5], molecular profiling has become an increasingly valuable tool for guiding treatment decisions. However, despite these advances, the prognosis for patients with advanced or recurrent EC remains poor [6]. This may be attributed to the limited sensitivity of current imaging techniques in detecting early metastases, while molecular subtyping does not aid in the early diagnosis. Within molecular subtype-guided therapy, patients with the copy-number low (NSMP) subtype, particularly those who are estrogen receptor-negative, tend to have a significantly worse prognosis [7, 8]. Notably, patients with P53-abnormal EC have the poorest outcomes; even without chemotherapy, approximately 40% of those

with TP53-mutations remain disease-free for five years [9]. These challenges highlight the ongoing need for improved risk stratification and guidance in adjuvant therapy. Therefore, finding more reliable tools and sensitive biomarkers is crucial for early diagnosis and personalized treatment. Recently, liquid biopsy has gained significant attention as a promising tool for precision medicine, cancer diagnosis, and therapy [10]. This technique involves analyzing non-solid biological materials such as blood, urine, cervical fluid, uterine aspirate, and peritoneal lavage fluid. Compared to conventional tissue biopsies, liquid biopsies are non-invasive, repeatable, and allow for real-time monitoring of treatment response and disease progression. They also overcome challenges related to anatomical sampling, patient age, cost, reproducibility, and clinical complications. Furthermore, they offer a more comprehensive view of heterogeneous and multifocal metastatic tumors [11]. Although the use of liquid biopsy in EC is still developing compared to other malignancies, research in this area is expanding. It is expected to play an important role in early detection, risk assessment, treatment selection, and real-time disease monitoring in EC. While recent reviews have primarily focused on blood-based biomarkers in liquid biopsies for EC [12–14], this review takes a broader perspective. It examines studies that utilize a variety of biosources, including both blood-based and non-blood-based specimens from EC patients. Additionally, we explore the advantages, limitations, and future developments of liquid biopsy technologies, offering new insights and directions for the personalized diagnosis and management of EC.

2. Methods

For this review, we searched PubMed (MEDLINE) in February 2025 for full-text, English-language articles on liquid biopsy in endometrial cancer published between January 2019 and January 2025. The search used the keywords “liquid biopsy,” “endometrial cancer,” and “clinical relevance.” We screened 720 titles for relevance to liquid biopsy, ultimately selecting 82 articles focused on endometrial cancer for detailed analysis. Additionally, foundational studies published before 2019 were included if they were frequently cited in recent research, particularly those describing key classifications, methods, or biomarkers.

3. Biological Components of Liquid Biopsy

Liquid biopsy targets can be broadly categorized into two groups based on their biological nature. The first includes cell-free molecules such as proteins, lipids, carbohydrates, metal ions, nucleic acids, and small metabolites. The second consists of cellular or subcellular components, including extracellular vesicles, circulating mitochondria [12], circulating tumor cells, peripheral blood mononuclear cells (PBMCs), circulating cancer-associated fibroblasts (CAF) [13], and tumor-educated platelets (TEP) [14]. Detection methods vary depending on the specific target type in the sample.

3.1. Circulating Tumor Cells

Circulating tumor cells (CTCs), originating from primary solid tumors or metastatic sites, enter the peripheral circulation through processes such as cellular invasion, matrix degradation, and angiogenesis. Only a small subset of CTCs—those with stem cell-like properties or epithelial-mesenchymal transition (EMT) features—can survive and migrate. Most CTCs are quickly eliminated by the immune system or destroyed by shear forces [15]. CTCs have a very short half-life, ranging from 1 to 2.4 hours [16], and are extremely rare, with only 0 to 28 cells typically detected in 7.5 milliliters of blood [17]. Their high heterogeneity leads to variable surface biomarker expression [18], making detection and the development of standardized treatment guidelines challenging. CTC detection typically involves three main stages: enrichment, detection, and analysis. Enrichment methods use physical properties—such as density, size and electrical charge—or biological approaches based on specific binding to cell surface antigens, or a combination of both. Molecular detection methods for CTCs include: (i) Nucleic acid analysis: Techniques such as fluorescence in situ hybridization (FISH) [19], microarrays [20] and Polymerase Chain Reaction (PCR)-based techniques [21], and sequencing-based techniques [22] are employed to detect genomic DNA or RNA signatures from CTCs in various body fluids. While these methods offer high sensitivity, their accuracy can be

affected by background substances, including non-specific DNA/RNA, PCR inhibitors, and cross-hybridization, potentially leading to false positives or reduced accuracy. (ii) Protein Analysis: This approach focuses on identifying and characterizing surface or intracellular proteins of CTCs using techniques such as microfluidic technology [23] and enzyme-linked immunosorbent assay (ELISPOT) [24, 25]. While this approach reduces extensive or invasive manipulation of the target cells, thereby minimizing potential cellular interference, it can be time-consuming. (iii) Cellular function analysis: Culturing CTCs in vitro allows for the study of their proliferation, transformation, and invasion capabilities. Although this method offers high specificity, it is prone to cultivation failure due to the low viability and heterogeneity of CTCs, as well as factors such as initial cell count, cancer type, and culture conditions. [26].

3.2. Circulating Tumor DNA and Cell-Free DNA

Extracellular DNA fragments known as cell-free DNA (cfDNA) are discharged into the bloodstream by a number of cellular processes, including necrosis, apoptosis, and secretion [27]. These fragments, which may be single- or double-stranded, gain stability in circulation by binding to cell membranes and extracellular proteins, protecting them from nuclease-mediated degradation and rapid clearance. Circulating tumor DNA (ctDNA), released by cancer cells, reflects the tumor genomes from various sites, including primary tumors, CTCs, and metastases. Unlike a single tissue biopsy, ctDNA captures the molecular heterogeneity of cancer. It contains key genetic alterations found in tumor tissues, such as chromosomal rearrangements, point mutations, copy number variations, epigenetic modifications, insertions, and deletions [28]. In cancer patients, ctDNA levels range from 0.01% and 10% [29]. It is typically shorter than cfDNA—about 134 to 144 base pairs—with a half-life of approximately 114 minutes, making it a valuable tool for real-time tumor monitoring and assessing treatment response [29, 30].

The concentration of ctDNA in plasma is relatively low, but due to less contamination from white blood cell DNA, it is typically the preferred choice in clinical tests [31]. PCR-based methods, including droplet digital PCR (ddPCR), digital PCR (dPCR), and quantitative PCR (qPCR), are commonly used for detecting cfDNA and ctDNA due to their cost-effectiveness and high sensitivity. However, their limited ability to detect multiple mutations has led to the growing use of Next-Generation Sequencing (NGS) techniques for more comprehensive analysis, such as Cancer Personalized Profiling by deep Sequencing (CAPP-Seq) [32].

Epigenetic modifications, particularly ctDNA methylation patterns, have emerged as important biomarkers for cancer diagnosis and prognosis. Detection methods for ctDNA genomic regions, and genome-wide methods that enable comprehensive analysis [33]. PCR-based assays such as methylation-specific PCR (MSP-PCR) [34] and droplet digital MSP-PCR (ddMSP-PCR) [35], as well as target bisulfite sequencing, are examples of targeted approaches. Whole-genome bisulfite sequencing (WGBS) [36], TET-assisted pyridine borane sequencing (TAPS) [37], reduced representation bisulfite sequencing (RRBS) [38], and Infinium methylation arrays (HM450, HM850) [39] are examples of technologies used in genome-wide approaches, which include both site-specific and region-wide analysis. Advanced techniques, such as cfMeDIP-seq and nanopore sequencing, further enhance methylation profiling and are especially well-suited for analyzing the low-abundance, fragmented ctDNA found in liquid biopsies [33].

3.3. Circulating Tumor RNA and Cell-Free RNA

Cell-free RNA (cfRNA), including circulating tumor RNA (ctRNA) derived from cancer cells, consists of various types such as circular RNA (circRNA), microRNA (miRNA), and long non-coding RNA (lncRNA). cfRNA is released through passive mechanisms like normal cellular activity or cell death [40], as well as active secretion by cells. Although cfRNA has a plasma half-life of just 15 seconds, its stability is enhanced through interactions with proteins [41], proteolipid complexes, and extracellular vesicles [42]. Detection methods for cfRNAs and ctDNAs are similar and include quantitative reverse transcription PCR (qRT-PCR), reverse transcription PCR (RT-PCR), and RNA sequencing using NGS. Among these, qRT-PCR stands out for its high sensitivity, reproducibility, and accuracy in quantifying cfRNA [43].

Individual cfRNA profiles vary significantly, and the lack of standardized clinical protocols often leads to false positive and false negative results. Consequently, researchers have tried to focus on RNA methylation. Common techniques for detecting RNA methylation include antibody-based immunoprecipitation combined with deep sequencing, mass spectrometry (MS), thin-layer chromatography, radioactive isotope incorporation, and bisulfite modification followed by sequencing [44]. Among these, methylated RNA immunoprecipitation sequencing (MeRIP-seq) remains a key method for identifying RNA methylation modifications [45].

3.4. Extracellular Vesicles

Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, are distinguished by their size, surface properties, biogenesis pathways, and molecular content. Exosomes, first discovered in the late 1960s [46], are the tiniest nanoscale EVs, typically ranging from 40 to 200 nm in diameter and having a density of 1.13 to 1.18 g/mL [47]. Produced by nearly all cell types under both healthy and diseased conditions, these vesicles facilitate the transfer of proteins, lipids, and nucleic acids, playing a key role in intercellular communication [47]. In cancer, EVs are involved in nearly every stage of disease progression, including the transformation of normal cells [48], tumor growth [49], angiogenesis [50], modulation of tumor microenvironment [51], invasion and metastasis [52], drug resistance [53], and EMT [54]. As such, EVs are considered promising candidates for cancer diagnosis, prognosis, and the development of therapeutic biomarkers.

Methods for EV enrichment and detection leverage their inherent properties, such as size, density, surface composition, and precipitation behavior. Currently, commonly used techniques include ultracentrifugation, ultrafiltration, precipitation, immunoaffinity capture, and lipid-based isolation [55]. Advanced approaches—such as microbeads, microfluidic chips, and thermal methods—are also being explored to enhance enrichment efficiency. Traditional detection methods like enzyme-linked immunosorbent assay (ELISA) [56] and Western blot analysis [57] remain reliable. However, emerging techniques, including colorimetry [58], fluorescence [59], flow cytometry [60] electrochemical analysis [61], electron microscopy [62], nanoparticle tracking analysis (NTA) [63], CRISPR/Cas-assisted methods [64], and single exosome detection [65], are enhancing the sensitivity and specificity of exosome research, particularly in the context of liquid biopsies.

3.5. Proteomics

Proteomics complements genomics, transcriptomics, and metabolomics by analyzing protein distribution, structure, interactions, and alterations within biological systems to offer a thorough understanding of biological processes [66]. Unlike the static nature of genomes, proteomes dynamically vary across different life stages and functional states. Early liquid biopsies efforts in cancer focused on identifying protein biomarkers in blood. Although over a hundred biomarkers, such as HE4 for ovarian cancer and SCC for cervical cancer, are used for treatment monitoring and recurrence assessment, their effectiveness in early detection is limited by insufficient specificity and sensitivity [67], underscoring the need for more advanced diagnostic approaches.

Technological advancements have revolutionized proteomics, shifting from traditional moderate-throughput methods such as ELISA and CLIA to high-throughput techniques like antibody/antigen arrays, proximity extension assays (PEA), reverse phase protein arrays (RPPA), and aptamer-based platforms [68]. MS now plays a central role, offering rapid protein sequencing, precise molecular weight determination, and quantitative detection of post-translational modifications [69]. In liquid biopsy analysis, MS is often integrated with liquid chromatography (LC), enzymatic digestion, and desalting, followed by electrospray ionization (ESI) and tandem MS scanning to enhance detection accuracy and sensitivity [70]. Recent advancements in MS instrumentation, including improved ion transmission efficiency and advanced noise-reduction algorithms, have significantly boosted single-cell and targeted proteomics.

While high-throughput methods support large-scale profiling, single-cell proteomics technologies address cellular heterogeneity. Techniques like mass cytometry for CTC immunophenotyping [71], microfluidics-based CTC isolation [72], and single-cell Western blotting [73] enable detailed protein expression analysis at the single-cell level, providing critical insights into

cancer cell heterogeneity. However, antibody-based detection still faces limitations in specificity and throughput, necessitating further optimization to reduce cross-reactivity and enhance multiplexing capabilities.

3.6. Metabolomics

Metabolomics, systematically defined by Nicholson et al. in 1999 [74], focuses on the comprehensive analysis of low-molecular-weight metabolites (<1500 Da) using advanced spectroscopic, electrochemical, and computational techniques. Because metabolites rapidly respond to microenvironmental changes, they offer dynamic insights into physiological and pathological states, making metabolomics a highly sensitive approach for biomarker discovery [75]. As a non-invasive tool in liquid biopsy, metabolomics enables the identification of disease-associated biomarkers in biofluids; however, its clinical specificity still requires further validation to account for potential confounding factors. Metabolomics analyses typically follow two complementary strategies: non-targeted approaches, which explore global metabolite profiles for hypothesis generation, and targeted approaches, which quantitatively assess predefined metabolites in a hypothesis-driven manner [76]. Key analytical platforms for metabolomics include nuclear magnetic resonance (NMR) [77] and MS. NMR offers rapid, non-destructive analysis with high reproducibility; however, conventional ¹H NMR is limited in sensitivity and spectral resolution, especially for low-abundance metabolites or complex mixtures [77]. Emerging NMR technologies—such as two-dimensional spectroscopy [77] and cryogenic probe-assisted ¹³C detection [78]—show promise in addressing these limitations.

MS-based technologies, including gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS), offer broader metabolite coverage and superior sensitivity [79]. LC-MS is ideal for non-volatile compounds, while GC-MS is suited for volatile metabolites. Recent advancements, such as ultra-performance LC-MS/MS (UPLC-MS/MS) [80] and nanoparticle-enhanced laser desorption/ionization MS (NPELDI-MS) [81], have further improved detection limits and ionization efficiency, enabling high-throughput metabolomics.

4. Application of Liquid Biopsy in EC

Liquid biopsies are increasingly recognized as valuable tools in EC management, with applications spanning early detection, prognosis, recurrence monitoring, and therapy guidance. In the following discussion, original research articles published on PubMed between January 2019 and January 2025, focusing on the use of liquid biopsy in EC, will be compiled and presented in a summary table along with relevant commentary. This analysis will be organized from two perspectives: studies based on blood-derived samples and those utilizing non-blood-derived specimens.

4.1. Blood-Based Liquid Biopsy in EC

Blood is the primary and most significant source for liquid biopsy. While tumor heterogeneity poses a major challenge in tissue-based sampling, liquid biopsy using blood allows for a more comprehensive and dynamic assessment of EC patients (Table 1).

Table 1. Application of liquid biopsy in blood samples.

Author and Year	Biomarkers	Detection Method	No. of participants (EC/control)	Clinical Significance/Findings	Accuracy	Ref.
CTCs						
Jiang et al., 2019	TOPO48 AAb, Survivin-expressing PCR-ELISA CCC	ELISA, RT-PCR-ELISA	80/ 80	Combination of TOPO48 AAb and survivin-expressing CCC improves early diagnosis (93.3% sensitivity) and prognostic	AUC:0.927 (0.871-0.984) for combined biomarkers; Sensitivity:74.5%	[160]

					stratification (survival outcomes) in early-stage EC.	(TOPO48 AAb); Specificity: 100%(TOPO48 AAb)	
Herrero et al., 2021	ANXA2	qPCR and High-Throughput Screening	57 EC		ANXA2 expression in CTCs predicts EC recurrence and progression. Daunorubicin was identified as inhibiting ANXA2+ tumor cells. CTCs were detected in ovarian vein samples (8/10 patients) during surgery, but not in peripheral blood	N/A	[122]
Francini, et al., 2023	ER	CellSearch® System	10 stage I-II EC		samples. The potential prognostic value for recurrence risk requires validation in a larger cohort. EC patients had preoperative expression of all four markers. CD13 was identified as an alternative prognostic marker for both cervical and CE.	N/A	[102]
Law et al., 2023	Pan-CK, GATA3, HER2, HE4, CD13	V-BioChip Microfluidic Device	8 EC/9 other cancers		cfDNA or ctDNA	N/A	[105]
Bolivar et al., 2019	PTEN, KRAS, CTNNB1, PIK3CA	NGS	48 EC		Mutations in plasma were significantly associated with advanced stage, deep myometrial invasion, lymphatic/vascular invasion, and larger tumor size.	N/A	[82]
Benati et al., 2020	cfDNA, RTL	qRT-PCR	40/ 31		cfDNA RTL analysis may be a diagnostic tool for EC detection at an early stage, while its diagnostic performance seems unsatisfactory for cancer progression, staging, and grading.	AUC (95% CI): 0.87 (0.79-0.95); Sensitivity (95% CI): 80.0% (64.35%-90.95%); Specificity (95% CI): 80.65% (62.53%-92.55%)	[84]
Gressel et al., 2020	Low molecular weight cfDNA	Fluorometric quantification	91/22		The concentration of LMW cfDNA was significantly higher in women with uterine cancer and associated with advanced stage, aggressive histology and worse OS.	N/A	[83]
Shintani et al., 2020	PIK3CA, KRAS	ddPCR	199 EC		ctDNA detection in pre-operative plasma was linked to advanced FIGO stage, aggressive histology,	N/A	[110]

Łukasiewicz et al., 2021	TEPs RNA, ctDNA	RNA-Seq and DNA Sequencing	53 EC, 38 benign gynecologic conditions, 204 healthy	ctDNA and TEPs presented the potential for EC diagnosis and tumor histology evaluation preoperatively.	LVSI, and shorter RFS and OS.	
					TEPs AUC: 97.5% (vs. healthy), 84.1% (vs. benign); ctDNA AUC: 96% (tumor tissue); 69.8% (blood). [14]	CtDNA Sensitivity: 77.8%; CtDNA Specificity: 58%

Author and Year	Biomarkers	Detection Method	No. of participants (EC/control)	Clinical Significance/Findings	Accuracy	Ref.
Feng et al., 2021	PTEN, TP53, FAT4, ARID1A, ZFHX3, ATM, FBXW7	ddPCR	9 EC	Post-operative ctDNA detection predicted tumor relapse. DFS was shorter for ctDNA-positive cases.	AUC: N/A; Sensitivity: 100%; Specificity: 83.3	[103]
Grassi et al., 2021	Tumor-specific DNA junctions	qPCR	11 EC	Pre-surgical ctDNA was detected in 60% (6/10), and correlated with advanced stage and aggressive disease features. Post-surgical ctDNA detected in 27% (3/11), 2/3 experienced recurrence.	N/A	[111]
Beinse et al., 2022	ZSCAN12, OXT	Methylation-specific ddPCR	108 tumor tissues; 33 / 55	ZSCAN12 and OXT methylation in plasma offered high specificity and sensitivity for EC prediction.	AUC: 0.99; Sensitivity: 98%; Specificity: 97%	[86]
Kodada et al., 2023	DNMT3A, TET2, and others	NGS	21 EC	A poorer prognosis may be correlated with mutations related to ARCH (DNMT3A and TET2). Presence of ctDNA at baseline or post-surgery was significantly associated with reduced PFS.	N/A	[85]
Ashley et al., 2023	129 genes with molecular barcoding	NGS	44 EC	Correlation with disease stage, progression, and treatment response.	N/A	[112]
Recio et al., 2024	16 somatic single nucleotide variants (SNVs)	mPCR-NGS	101 stage I uterine malignancies (88% EC)	Post-surgical ctDNA detection is prognostic of poor RFS in patients with stage I EC.	N/A	[104]

Blanc-Durand et al., 2024	TP53, DNMT3A, PIK3CA, PTEN, ERBB2, CTNNB1, PPP2R1A	NGS	61 EC	cfDNA sequencing in advanced EC provided 90% informative results and 87.5% accuracy in molecular subclassification.	N/A	[121]
Pamela et al., 2024	TP53, PIK3CA, PTEN, ARID1A, KRAS, CCNE1, ERBB2, FBXW7, MSI, bTMB, PTEN, PIK3CA, TP53, ARID1A, KRAS, CTNNB1, PIK3R1, FBXW7, PPP2R1A, FGFR2	Hybrid capture NGS for SNVs, indels, CNVs, fusions, ddPCR, Targeted sequencing, Qubit fluorometry	1,988 advanced / recurrent EC	TP53 mutations associated with worse OS.	N/A	[114]
Casas-Arozamena et al., 2024	TP53, PIK3CA, PTEN, ARID1A, KRAS, CTNNB1, PIK3R1, FBXW7, PPP2R1A, FGFR2	ddPCR, Targeted sequencing, Qubit fluorometry	198 EC	High pre-surgery cfDNA and detectable ctDNA correlate with poor DFS and DSS.	N/A	[115]

Author and Year	Biomarkers	Detection Method	No. of participants (EC/control)	Clinical Significance/Findings	Accuracy	Ref.
Jamieson et al., 2025	TP53, PIK3CA, PTEN, KRAS, CTNNB1, AKT1, BRAF, ERBB2	NGS	24 EC, 17 OC, 2 synchronous endometrial / ovarian carcinomas (SEOC), 1 endocervical adenocarcinoma	Preoperative ctDNA detection was associated with advanced stage, elevated CA125, and recurrence.	N/A	[113]
Shan et al., 2020	lncRNA DLEU1	RT-qPCR	128 / 50 endometrial hyperplasia / 50 controls	<p>cfRNA or ctRNA</p> <p>Higher lncRNA DLEU1 levels were associated with advanced clinicopathological features and worse overall DFS in EC patients.</p>	<p>AUC (95% CI): [EC vs. controls: 0.883 (0.826-0.926), EC vs. hyperplasia: 0.766 (0.697-0.826)]; Sensitivity: [EC vs. controls: 77.3%, EC vs. hyperplasia: 60.9%]; Specificity: [EC vs. controls: 92.0%, EC vs. hyperplasia: 90.0%]</p>	[117]

						AUC: [Training: 0.748, Testing: 0.833, External Validation: 0.967]; Sensitivity: [Training: 78.4%, Testing: 77.1%, External Validation: 83.3%]; [87]
Fan et al., 2021	miR-20b-5p, miR- 143-3p, miR-195-5p, miR-204-5p, miR-423-3p, miR- 484	qRT-PCR	92 / 102	The 6-miRNA signature demonstrated very consistent diagnostic performance in three datasets across cohorts.		
Wu et al., 2022	miR-204-5p	RT-qPCR	52 / 60	Metastasis of lymph nodes was associated with down-regulation of serum miR-204-5p.	AUC (95% CI): 0.923 (0.847-1.000); Sensitivity: [116] 87.2%; Specificity: 80%	[118]
Salim et al., 2022	miRNA133a-2, miRNA-21, miRNA-205	qRT-PCR	36 /15	These miRNAs could serve as potential prognostic biomarkers for endometrial carcinoma.	N/A	[118]
Kumari et al., 2023	miR-20a, miR-145, miR-143, miR- 125a	qRT-PCR	10 /10	miR-16, miR-99b, miR-125a, and miR-145 could serve as diagnostic indicators for endometrioid EC. These RNAs hold potential as early biomarkers for EC, which could facilitate timely interventions.	AUC: 0.957 (miR-145); Sensitivity: 90% (miR-145); Specificity: 100% (miR-145)	[161]
Rostami et al., 2024	miR-155-5p, miR- 200b-3p, miR-589-5p, and others	Small RNA Sequencing	316 / 316	Relationships between EC and miRNAs were modified by body mass index, physical activity, and smoking status.	N/A	[88]

EVs

Author and Year	Biomarkers	Detection Method	No. of participants (EC/control)	Clinical Significance/Findings	Accuracy	Ref.
Song et al., 2020	LGALS3BP	TMT Labelling, AEH ELISA	87 EC / 12 / 42 controls	Plasma exosomal LGALS3BP levels correlated with EC progression and poor prognosis.	AUC (95% CI): 0.7406 (0.6506– 0.8305)	[120]
Zhou et al., 2021	miR-15a-5p, miR- 106b-5p, miR-107	ddPCR	115 / 87	Exosomal miR-15a-5p was highly predictive of the aggressiveness and p53 mutation status of EC	AUC: 0.813 (miR-15a-5p); 0.899 miR-15a-5p	[162]

	Sommella et al., 2022	APOA1, HBB, CA1, HBD, LPA, SAA4, PF4V1, APOE	LFQ-MS	36 / 36	tumours and markedly elevated in early-stage EC.	combined serum tumor markers (CEA and CA125)
					Identified eight proteins significantly upregulated in serum exosomes, indicating potential as early- stage EC biomarkers.	AUC (95% CI): 0.98 (0.95-1) (Stage 1 EC); Sensitivity: 100% [163] (Stage 1 EC); Specificity: 86.11% (Stage 1 EC)
Proteomics						
	CM et al., 2019	CFB, TF, CAT, PSMB6, B2M, PCDH18	HPLC-MS/MS	112 / 112	Six proteins could distinguish EC cases from the control group, with strongest performance ≤ 2 years pre-diagnosis.	AUC (95% CI): 0.800.72–0.88; Sensitivity: 45.2% (cutoff: 0.5); [90] Specificity: 96.4% (cutoff: 0.5)
					Study identified 16 proteins with diagnostic potential for EC. Validation showed upregulation of CLU, ITIH4, SERPINC1, C1RL in EC serum and exosomes.	AUC: 0.9289; Sensitivity: 100%; [89] Specificity: 86.67%
	Ura et al., 2021	CLU, SERPINC1, ITIH4, C1RL, APOC3, DSG1	2D-DIGE, WB, LC-MS/MS	15 / 15	Combined proteins from the Immuno-oncology panel and the Target 96 Oncology III panel showed differential expression in early-stage Type I EC with high diagnostic accuracy	AUC (95% CI): 0.969 (0.939–0.999); Sensitivity: 97.67%; Specificity: 83.72%
					Proteomic:	
	Ura et al., 2022	Gal-1, Gal-9, MMP7, FASLG, COL9A1	Proximity extension assay (PEA)	44 / 44	10	
					Suprabasin (SBSN) and MS, Validation: (isoforms 1 & 2) by WB	In serum or tissue, SBSN, particularly isoform 2, may be a novel biomarker for EC.
	Celsi et al., 2022	FABP-1, α -2 macroglobulin, ZAG, Ero1- α , haptoglobin, and others	2D-DIGE, MALDI-TOF- MS	/10, 8 diabetic EC / 8 non-diabetic EC	Downregulation of FABP-1 and haptoglobin, and upregulation of ERO1- α , α -2-macroglobulin, and ZAG in EC with diabetes indicated severe disease and poor prognosis.	AUC: [Isoform 2 (serum): 0.75, (tissue): 0.79] [99]
					Metabolomics	N/A [119]
	Strand et al., 2019	183 metabolites	LC-MS	40 EC	Metabolite patterns were associated with survival. Methionine sulfoxide elevation was linked to poor prognosis.	AUC: [Model3: 0.965 (0.913–1)] [106]

Author and Year	Biomarkers	Detection Method	Training: 120 (50 / 70), Validation: 1430	The EC screening of postmenopausal women using an ensemble EML algorithm achieved an accuracy rate of > 99%.	Sensitivity: 100%; Specificity: [100] 99.86%	
					No. of participants (EC/control)	Clinical Significance/Findings
Forsse et al., 2020	17-OHP, 11-DOC, A4, E1, E2	LC-MS/MS	100 EC	Low levels of 17-OHP, 11-DOC, and A4 were associated with aggressive EC phenotypes and poor disease-specific survival.	N/A	[107]
Kozar et al., 2021	Ceramides, acylcarnitines, 1-methyladenosine	HPLC-TQ/MS	15 / 21	Combined panel identified as superior to individual biomarkers for early disease detection.	AUC (95% CI): 0.925 (0.905–0.945); Sensitivity: 94%; Specificity: 75%	[92]
Njoku et al., 2021	Phospholipids, sphingolipids	MS	67 / 69	Lipid metabolites effectively discriminated EC in women with BMI \geq 30 kg/m ² .	AUC: 0.95	[93]
Dossus et al., 2021	Amino acids, sphingolipids, carnitine	LC-MS/MS	853 / 853	Identified metabolites were associated with EC risk	N/A	[164]
Trabert et al., 2021	Pregnenolone, progesterone, 17-hydroxypregnene, and others	LC-MS/MS	EC: 65 / 345; OC: 67 / 413	17-hydroxypregnene was inversely associated with EC risk and positively associated with ovarian cancer risk.	N/A	[165]
Yan et al., 2022	6-keto-PGF1 α , PA (37:4), LysoPC (20:1), PS (36:0)	UPLC-Q-TOF/MS	326 / 225	Specific biomarkers for endometrial polyps were identified to distinguish them from EC or hyperplasia.	AUC: [EP vs. EC: 0.915; EP vs. EH: 1.000]; Sensitivity: [EP vs. EC: 100%; EP vs. EH: 100%]; Specificity: [EP vs. EC: 72.41%; EP vs. EH: 100%]	[96]
Roškar et al., 2022	Leptin, IL-8, sTie-2, Follistatin,	Luminex xMAP TM	91 / 111	Leptin was significantly higher in EC patients, especially in Type 1 EC.		[97]

Breeur et al., 2022	Neuropilin-1, G-CSF	Multiplexing Technology	117 metabolites	LC-MS/MS, FIA-MS/MS	1706 EC	IL-8 levels were elevated in Type 2 EC, poorly differentiated G3 tumors and those with vascular invasion. An inverse association between EC risk and a glycine/serine metabolite cluster was found.	AUC: [Training: 0.94 Test: 0.81]	N/A	[166]
Cheng et al., 2023	Ursodeoxycholic acid, PC (O-14:0_20:4), Cer (d18:1/18:0)	UHPLC-MS/MS	Discovery: 18 / 20, Validation: 20 EC / 20 atypical endometrial hyperplasia	Lipid biomarkers differentiated early-stage EC from healthy controls and AEH patients.			AUC: [Discovery: 0.903 Validation: 0.928]; Sensitivity: [Discovery: 83.3% Validation: 85%]; Specificity: [Discovery: 85% Validation: 85%]		
Dahman et al., 2023	11-oxygenated androgens (11KAST, 11OHAST, etc.)	LC-MS/MS	272 EC			Higher preoperative free 11KAST and postoperative 11OHAST levels were associated with increased risk of recurrence and poor DFS.		N/A	[108]
Hishinuma et al., 2023	LysoPC, TGs, amino acids	UHPLC-MS/MS	142 / 154			Histidine and tryptophan levels decreased with disease progression and recurrence risk.	AUC: [Top 5 metabolites: 0.997 (0.986-1)]		

Author and Year	Biomarkers	Detection Method	No. of participants (EC/control)	Clinical Significance/Findings	Accuracy	Ref.
Benabdellah et al., 2024	338 metabolites	LC-HRMS	20 EC, 20 hyperplasia, 19 controls	Plasma metabolic signatures distinguished EC and hyperplasia from healthy controls.	AUC: [15 metabolic variation: 0.821]	[95]
Hao et al., 2023	Metabolites and lncRNAs	LC-MS/MS, LncRNA sequencing	Endometrial dysplasia: 4, Stage I EC: 4, Stage III EC: 4, controls: 4	Metabolites and lncRNAs correlated with EC progression.	AUC: 2,3- Pyridinedicarboxylic acid: 0.69, hematommic acid,	[167]

Shen et al., 2024	Various metabolites and proteins	GWAS and Mendelian Randomization	121,885 participants (12,906 EC)	Key metabolites and proteins influenced EC subtypes.	N/A	[168]
Ding et al., 2024	CTCs, lncRNAs, and DNA methylation markers	Microfluidic CTC isolation, RT-qPCR, MSP/qMSP	71 / 14	Combined biomarkers improved diagnostic accuracy for EC compared to individual biomarkers alone.	AUC (95% CI): 0.94 (0.89–0.98); Sensitivity (95% CI): 89% (82–94%); Specificity (95% CI): 92% (85–96%)	[169]
Liu et al., 2024	CNV, FSD, NF	WGS	Training: 133 (66/67) Validation: 89 (44/45)	ML model was developed and maintained high performance in independent validation with stage I EC.	AUC: [Training: 0.991; Validation: 0.994]; Sensitivity: [Training: 98.5%; Validation: 97.8%]; Specificity: [Training: 95.5%; Validation: 95.5%]	[170]

4.1.1. Early Diagnosis

The utility of cfDNA and cfRNA in the diagnosis of EC has been demonstrated [82]. Compared to cfRNA, cfDNA is generally preferred by researchers due to its greater stability and the more advanced state of detection technologies. Researchers have investigated cfDNA from various perspectives. For instance, in terms of concentration, Gressel et al. [83] found that the median concentration of low-molecular-weight (LMW) cfDNA was significantly higher in EC patients compared to healthy controls. In contrast, Benati et al. [84] examined relative telomere length (RTL) in cfDNA and found EC patients had markedly shorter RTL than healthy individuals with promising early diagnostic accuracy (AUC = 0.87). More commonly, studies focus on gene mutations [14, 85] or DNA methylation [86], utilizing either PCR-based or sequencing technologies. For example, Beinse et al. [86] identified hypermethylation of the ZSCAN12 and OXT genes in the ctDNA of EC patients. Using ddPCR, they achieved high diagnostic sensitivity and specificity (both 97%), successfully detecting ctDNA in 14 of 31 plasma samples collected before surgery or chemotherapy, including cases from both early and advanced stages. These findings highlight the potential of ctDNA methylation analysis as a non-invasive and personalized tool for monitoring and managing EC.

Similarly, cfRNA is being explored as a potential diagnostic biomarker. Fan et al. [87] identified six miRNAs that were overexpressed in the serum of EC patients. The diagnostic performance of this six-miRNA signature yielded AUCs of 0.748, 0.833, and 0.967 in training, testing, and external validation cohorts, respectively. Moreover, the expression levels of miR-143-3p and miR-195-5p in tissues, as well as miR-20b-5p in serum exosomes, were consistent with their serum levels, further supporting their diagnostic relevance. In addition to verifying the potential of miRNAs as early biomarkers, Rostami et al. found that the association between EC and miRNA expression is modulated by factors such as body mass index, physical activity, and adherence to a Western diet [88].

An increasing number of studies have demonstrated that the plasma protein profiles or metabolomic features can aid in the early diagnosis of EC [89–97]. However, the specificity of these diagnostic approaches remains limited, underscoring the need to combine multiple biomarkers—such as cfDNA, cfRNA, proteins, and metabolites—to enhance accuracy [95, 98]. With the advancement of

artificial intelligence (AI), machine learning (ML) has been increasingly applied for biomarker screening and model development to enhance diagnostic performance diagnostic performance [99-101]. For instance, Troisi et al. applied an ensemble machine learning (EML) algorithm to screen and detect EC in postmenopausal women, achieving an accuracy rate of 99% [100]. Despite these advances, interpreting the results from such “black box” models remains a key challenge for researchers moving forward. In terms of sample collection site, Francini et al. [102] offered a novel perspective. In their preliminary study on CTC detection during early-stage EC surgery, 80% of patients had detectable CTCs in the ovarian vein, whereas none were found in peripheral blood samples. This suggests that ovarian vein sampling may offer greater sensitivity for CTC detection. In contrast, Kodada et al. [85] identified DNMT3A and TET2 mutations in ctDNA from peripheral plasma that were absent in tumor tissue, indicating challenges in distinguishing tumor-specific mutations from age-related clonal hematopoiesis (ARCH). Their findings suggest that background noise in EC diagnostics might be reduced by analyzing ctDNA from non-blood specimens such as uterine lavage fluid.

4.1.2. Recurrence Monitoring

Surgical removal of the tumor remains the primary approach in EC treatment, often followed by personalized adjuvant therapies based on postoperative assessment. Recurrence monitoring typically relies on radiographic imaging and serum tumor markers. However, these conventional methods often lack the sensitivity to detect minimal residual disease (MRD) or micrometastases after surgery. As a result, there is a critical need for more sensitive and specific biomarkers to enable early detection of recurrence and metastasis, which could significantly improve patient outcomes.

Emerging evidence suggests that ctDNA is a more accurate biomarker for monitoring EC recurrence. Feng et al. [103] used ddPCR to track common tumor-specific mutations, including PTEN, FAT4, ARID1A, and TP53, in the plasma of EC patients, achieving 100% sensitivity and 83.3% specificity. Their findings highlight ctDNA’s superior predictive value over traditional markers like CA125 and HE4. Recio et al. [104] further confirmed this through longitudinal ctDNA monitoring post-surgery. They demonstrated that patients with positive ctDNA at both the initial time point and longitudinally had significantly worse recurrence-free survival (RFS) (HR = 6.2; $p = 0.0006$ and HR = 15.5; $p < 0.0001$, respectively), with recurrence rates of 58% and 52%, compared to 6% and 0% in ctDNA-negative individuals. This suggests that postoperative ctDNA detection is a strong predictor of outcomes and a key risk factor for recurrence. Similar conclusions were drawn by Grassi et al. [103]. Likewise, Law et al. [105] used microfluidic technology to investigate CTC-related markers in gynecologic malignancies. Although the study encompassed various cancer types, the findings in EC were particularly notable. Markers such as PanCK, GATA3, HER2, and HE4 were consistently detected in preoperative samples. During follow-up, the reappearance of these markers was strongly associated with disease recurrence in EC patients, often preceding clinical symptoms. This suggests these molecular markers could serve as early indicators of relapse, offering a critical window for timely intervention.

4.1.3. Prognostic Prediction

Prognostic biomarkers help identify patients with aggressive tumors and offer valuable insights into long-term outcomes, independent of treatment strategies. Their main purpose is to predict prognosis and guide treatment intensity to improve survival in EC patients. With advancements in MS technology, many researchers have applied non-targeted metabolomics to identify prognostic metabolites in EC [106-109]. However, the predictive value of these metabolites is evident only when assessed in combination, as no highly specific individual markers have been identified. With growing insights into genomics, attention has increasingly shifted toward cfDNA and cfRNA. Studies show that cfDNA is associated with tumor size, disease stage and classification, invasive characteristics, cancer progression, lymphovascular invasion [82, 85, 110-115], and overall survival (OS), supporting its potential as a prognostic marker. Similarly, cfRNA holds promise. [116-118]. For example, Wu et al. [116] found that reduced serum miR-204-5p levels correlate with lymph node metastases, while

Shan et al. [117] proposed serum lncRNA DLEU1 as a prognostic biomarker linked to adverse clinical features and poor survival outcomes in EC.

In addition to free protein biomarkers in the blood [99, 119], exosomal proteins are also being investigated. Song et al. [120] examined exosomal LGALS3BP as a potential biomarker for EC and found it significantly elevated in plasma exosomes from EC patients. Higher LGALS3BP levels were associated with increased cell proliferation, migration, angiogenesis, and poor prognosis. These findings highlight the potential of non-invasive markers from various sources, but further validation is needed to confirm their prognostic value and clinical utility in guiding treatment for EC.

4.1.4. Treatment Guidance

Modern treatment options such as molecular targeted therapy and immunotherapy have improved survival in patients with advanced or metastatic EC. However, systemic anti-cancer treatments face challenges like primary resistance, lack of initial response, and acquired resistance. Additionally, tumor molecular profiles often change during therapy, necessitating continuous monitoring to evaluate treatment response and predict resistance. Blanc-Durand et al. [121] demonstrated that cfDNA profiling in advanced EC provided 89% molecular information and 87.5% concordance with tissue biopsies. This method guided targeted therapy in 16% of patients, yielding a median PFS of 7.7 months and a 56% response rate. These findings highlight the potential of cfDNA analysis to enhance personalized treatment strategies for advanced EC.

In CTCs from high-risk EC patients, Herrero et al. [122] identified overexpression of Annexin A2 (ANXA2), which was associated with reduced OS and PFS. High-throughput screening identified daunorubicin as a potential therapeutic agent that inhibits ANXA2-driven metastasis by reducing the invasiveness of ANXA2-overexpressing cells. For non-endometrioid EC subtypes, Shen et al. used multi-omics analysis to identify proteins such as IL32 and GRB7, which are involved in key oncogenic pathways like MAPK signaling and cytokine-cytokine receptor interactions. These findings not only deepen our understanding of EC pathogenesis but also provide potential targets for molecularly tailored therapies.

4.2. Non-Blood-Based Liquid Biopsy in EC

Non-blood-based liquid biopsies offer a promising alternative to traditional blood sampling in EC. Blood-based biomarker detection can be challenging, particularly in early-stage tumors, due to the low abundance of circulating signals [123]. Alternatively, the close anatomical connection between the uterine cavity, lower reproductive tract, and urinary system presents new opportunities for biomarker discovery in EC [124]. Examples of these findings are detailed in Tables 2 and 3.

Table 2. Application of liquid biopsy in urine samples.

Author and Year	Category of Liquid Biopsy	Biomarkers	Method	n (EC/contro)	s (1)	No. of participant	Clinical Significance/Findings	Accuracy	Ref.
Kacírová et al., 2019	Proteomic	CDH1, VTN, HSPG2	Nano HPLC-ESI-MS/MS	5 / 7		Down-regulation of key proteins suggested potential urinary biomarkers for early detection of EC.	N/A	[171]	
Ritter et al., 2020	miRNA	miR-3973; -4426; -5089-5p and -6841	RT-qPCR	10 / 30		These biomarkers served as promising candidates for urine-based liquid biopsies in detecting EC.	N/A	[127]	

Costas et al., 2023	cfDNA	47-gene panel (POLE, TP53)	NGS	19 / 20	Evaluating urine for somatic mutations offered a non-invasive, accurate approach for detecting EC and molecular classification.	AUC: 0.99; Sensitivity (95% CI): 100.0% (82.4%-100.0%); [126 Specificity (95% CI): 95.0% (75.1%-99.9%)
Njoku et al., 2023	Proteomics	SPRR1B, CRNN, CALML3, TXN, FABP5, C1RL, MMP9, ECM1, S100A7, CFI	SWATH - MS with ML	50 / 54	Discriminated EC patients from symptomatic controls suggested its potential as a non-invasive diagnostic tool.	AUC (95% CI): 0.92 (0.86-0.97); [128 Sensitivity: 83.7%; Specificity: 83.9%
Chen et al., 2023	Metabolomics	Baicalin, 5beta-1,3,7(11)-Eudesmatrien-8-one, Indolylacryloylglycine, Edulitine, Physapuberonolide	UPLC-PT MS	42 EC (22 / 20 CR)	The predictive biomarkers presented great potential diagnostic value in fertility-sparing treatments for EC patients.	AUC: [Training: 0.982, Validation: 0.851]; Sensitivity: [Training: 97.5%, Validation: 86.4%]; Specificity: [Training: 96.7%, Validation: 90.0%]
Chen et al., 2024	Metabolomics	ADP-mannose, docosatrienoic acid, hippuric acid	UPLC-MS	146 / 59	Combined urine-serum metabolomics effectively distinguished EC from controls, high-risk from low-risk EC, and type I vs II EC.	AUC: [Training: 0.953; Validation: 0.972]; Sensitivity: [Training: 0.857; Validation: 0.846]; Specificity: [Training: 0.876; Validation: 0.974]
Fu et al., 2024	Metabolomics and Transcriptomics	10 metabolites (histamine, 1-methylhistamine, methylimidazole acetaldehyde, etc.)	LC-MS	110 / 110	The combination of these biomarkers demonstrated enhanced diagnostic accuracy	AUC: Combined: 0.90; Sensitivity: [131 Combined:]

and 3 hub genes (RRM2, TYMS, TK1)	compared to individual markers.	>0.85; Specificity: Combined: >0.85
--------------------------------------	------------------------------------	--

Table 3. Application of liquid biopsy in other samples.

Author and Year	Category of Liquid Biopsy	Biomarkers	Detection Method	No. of participant s (EC/contro l)	Clinical Significance/Findings	Accuracy	Ref.
Uterine lavage fluid/ Uterine aspirates							
Casas-Arozamena et al., 2020	cfDNA, CTCs	PTEN, PIK3CA, TP53, CTNNB1, KRAS, etc.	NGS, ddPCR, CellSearch system	60 EC	Genetic alterations were detected in 93% of EC through UAs. ctDNA was associated with high-risk tumors and disease progression.	N/A	[134]
Casas-Arozamena et al., 2023	cfDNA	BAT26, BAT25, NR24, NR21, Mono27	ddPCR	90 EC	A high concordance (96.67%) between MSI determinations in cfDNA and the standard of care was confirmed.	N/A	[135]
Yang et al., 2023	cfRNA	miR-146a-5p, miR-183-5p, miR-429	Real-time PCR	42 / 40	miR-146a-5p, miR-183-5p, miR-429 were significantly upregulated in EC.	AUC: miR-183-5p: 0.675, miR-429: 0.709, miR-146a-5p: 0.685	[136]
Cervicovaginal fluid / Cervicovaginal lavage							
Cheng et al., 2019	Metabolomics	Phosphocholin, e, Malate, Asparagine	NMR Spectroscopy	21 / 33	Metabolomic biomarkers in CVF for non-invasive detection of EC were identified and validated using ML algorithms.	AUC: [Training: 0.88-0.92; Test: 0.75-0.80]; Sensitivity (95% CI): Forests: 0.75 (0.19-0.99); Specificity (95% CI): Forests: 0.80 (0.28-1.00)	[148]
O'Flynn et al., 2021	Cytology	Malignant endometrial cells	Cytologic al analysis	103 / 113	Vaginal cytology demonstrated higher sensitivity (90.2%) compared to urine cytology (72.0%) but lower specificity.	Sensitivity: [Vaginal: 90.2%, urine: 72.0%, combined: 91.7%]; Specificity: [Vaginal: 88.7%,	[138]

Łaniewski et al., 2022	Proteomics	72 proteins (TIM-3, VEGF, TGF- α , IL-10, CA19-9, CA125, etc.)	Multiplex Immunoassays	66 / 126	Identified lavage proteins could discriminate EC from benign conditions.	urine: 94.9%, combined: 88.8 %] AUC (95% CI): Combined: 0.91 (0.78-0.97) Sensitivity: 86.1% [144 (combined);] Specificity: 87.9% (combined) AUC: 0.808 (urine) 0.847 (intrauterine brushing); Sensitivity: Urine: 74.7% (top 5 metabolites) AUC: 0.83 (self-collected); Sensitivity:
Yi et al., 2022	Metabolomics & Proteomics	Amino acid and nucleotide metabolism biomarkers	LC-MS/MS	44 / 43	Urine/intrauterine brushing metabolites correlate with tissue pathways (amino acid/nucleotide metabolism).	Urine: 74.7% (top 5 metabolites) AUC: 0.83 (self-collected); Sensitivity:
Pelegrina et al., 2023	Somatic mutations	47 genes panel (POLE, TP53, PTEN, etc.)	NGS	139 / 107	POLE mutations indicated excellent prognosis, TP53 mutations were associated with significant DFS differences among molecular subtypes.	73% (clinician and self-collected); Specificity: [80% (clinician-collected), 90% (self-collected)] AUC (95% CI): WID-qEC test demonstrated superior diagnostic accuracy compared to transvaginal ultrasound in detecting uterine cancers.
Evans et al., 2023	DNA methylation	ZSCAN12, GYPC	WID-qEC	12 / 375	Sensitivity (95% CI): 90.9% (62.3-98.4); Specificity (95% CI): 92.1% (88.9-94.4)	Sensitivity (95% CI): 90.9% (62.3-98.4); Specificity (95% CI): 92.1% (88.9-94.4)

Author and Year	Category of Liquid Biopsy	Biomarkers	Detection Method	No. of participants (EC/control)	Clinical Significance/Findings	Accuracy	Ref.
Martinez-Garcia et al., 2023	Proteomics	SERPINH1, VIM, TAGLN, PPIA, CSE1L, CTNNB1	MS	22 / 19	6 protein biomarkers in cervical fluids were identified to distinguish women with abnormal uterine bleeding who are EC and those who are non-EC.	AUC: [UF: > 0.71, LDHA, ENO1, PKM: > 0.9; M1: up to 0.83 (SERPINH1); M3: up to 0.84	[145]

Illah et al., 2024	DNA methylation	ZSCAN12, GYPC	WID-qEC	28 / 74	(TAGLN)]; Sensitivity: [M1: up to 83%; M3: up to 89%]; Specificity: [M1: up to 81%; M3: up to 78%]
Zhao et al., 2024	DNA methylation	CDO1m, CELF4m	qMSP	21 / 275	The WID-qEC test reliably detected uterine cancers (endometrial and cervical) across sampling devices and collection methods (gyn. vs. patient self-sampling). AUC (95% CI): 0.96 (0.91–1.00); Sensitivity: 92.9% (gyn)、 75.0% (self); Specificity: 98.6% (gyn)、 100.0% (self) AUC (95% CI): 0.867 (0.788–0.946)
Cai et al., 2024	DNA methylation	CDO1, CELF4	qPCR	40 / 98	Dual-gene methylation showed high sensitivity (85.7%) and specificity (87.6%) for EC screening. for dual methylation; Sensitivity (95% CI): 85.7% (0.707–1.000); Specificity: 87.6% (0.837–0.915) AUC (95% CI): 0.917 (0.853–0.91) for combined test; Sensitivity (95% CI): 87.5% (73.2–95.8); Specificity: 95.9% (89.9–98.9) AUC (95% CI): [Cervico-vaginal: 0.95 (0.91–0.98), Plasma: 0.87 (0.81–0.93)]; Sensitivity: [Cervico-vaginal: 91%
Njoku et al., 2024	Proteomics	HPT, LG3BP, FGA, LY6D, IGHM	SWATH-MS	53 / 65	Cervico-vaginal fluid protein signatures showed superior accuracy over plasma in detecting stage I EC and advanced tumors, effectively

	Harris et al., 2024	Proteomics	Angiopoietin-2, Endoglin, FAP, MIA, VEGF-A	Multiplex immunoassays	66 EC / 108 benign	<p>5 key biomarkers significantly elevated in EC. Multivariate model showed prognostic value for tumor grade, size, invasion, and MMR status.</p> <p>AUC: 0.918; Sensitivity: 87.8%; Specificity: 90.7%</p>	(83%–98%), Plasma: 75% (64%–86%); Specificity: [Cervico-vaginal: 86% (78%–95%), Plasma: 84% (75%–93%)]
Lorentzen et al., 2024		Metabolomics	Lipids, amino acids, and other metabolites	UPLC-MS	66 / 108	Metabolic dysregulation linked to tumor characteristics (size, myometrial invasion); improved noninvasive detection and risk stratification; multivariate models achieved high diagnostic accuracy.	AUC: 0.800–0.951 (25-feature model); Sensitivity: 78.6% (for EC); Specificity: 83.3% for EC, 79.6% for benign
Tampons							
Bakkum-Gamez et al., 2023		DNA methylation	28 Methylated DNA markers	qMSP	100 / 92	The sensitivity to detect EC was high even when vaginal fluid samples were collected before endometrial sampling.	AUC (95% CI): 0.91 (0.85–0.97); Sensitivity (95% CI): 82% (70%–91%); Specificity (95% CI): 96% (87%–99%)
Cervical scrapings and Vaginal swabs							
Kim et al., 2022	Genomic DNA	100 EC-related genes	NGS	39 / 11	Cervical swab-based gDNA genomic data demonstrated enhanced detection ability and enabled patient classification.	Sensitivity: 67%; Specificity: 100%	[157]

Author and Year	Category of Biomarker	No. of Detection participants	Clinical Significance/Finding	Accuracy	Ref.
	Liquid Biopsy	s	(EC/control)	s	

Wen et al., 2022	DNA methylation	BHLHE22, CDO1	MPap	494 EC	MPap test showed high sensitivity and specificity for EC detection.	AUC (95% CI): [Stage 1: 0.91 (0.87–0.94), Stage 2: 0.90 (0.84–0.95)]; Sensitivity (95% CI): [Stage 1: 92.9% (80.5–98.5%), Stage 2: 92.5% (82.9–100.0%)]; Specificity (95% CI): [Stage 1: 71.5% (64.8–77.5%), Stage 2: 73.8% (67.6–79.4%)] AUC: 0.94 (Barcelona); Sensitivity: [97.2% (FORECEE), 90.1% (Barcelona), 100% (PMB Cohort)]; Specificity: [75.8% (FORECEE), 86.7% (Barcelona), 89.1% (PMB Cohort)] AUC: [Urine: 0.95, Self-samples: 0.94, Scrapes: 0.97]; Sensitivity: [Urine: 90%, Self-samples: 89%, Scrapes: 93%]; Specificity: [Urine: 90%, Self-samples: 92%, Scrapes: 90%]	[153]
Herzog et al., 2022	DNA methylation	GYPC, ZSCAN12	qPCR	562 (various invasive EC screening groups)	The WID-qEC test offered a non-invasive EC screening and triage with high sensitivity and specificity.	(Barcelona), 100% (PMB Cohort); Specificity: [75.8% (FORECEE), 86.7% (Barcelona), 89.1% (PMB Cohort)] AUC: [Urine: 0.95, Self-samples: 0.94, Scrapes: 0.97]; Sensitivity: [Urine: 90%, Self-samples: 89%, Scrapes: 93%]; Specificity: [Urine: 90%, Self-samples: 92%, Scrapes: 90%]	[154]
Wever et al., 2023	DNA methylation	ADCYAP1, BHLHE22, CDH13, CDO1, GALR1, GHSR, HAND2, SST, ZIC1	qMSP	103 / 317	DNA methylation marker analysis in urine, cervicovaginal self-samples, and clinician-taken cervical scrapes achieved high diagnostic accuracy for EC detection.	DNA methylation marker analysis in urine, cervicovaginal self-samples, and clinician-taken cervical scrapes achieved high diagnostic accuracy for EC detection.	[155]
Wang et al., 2024	DNA methylation	RASSF1A, HIST1H4F	qPCR	19 / 75	Methylation levels of RASSF1A/HIST1H4F increased with endometrial lesion severity.	Methylation levels of RASSF1A/HIST1H4F increased with endometrial lesion severity.	AUC: RASSF1A: 0.938; HIST1H4F: 0.951
Mayo-de-las-	cfDNA	KRAS, PIK3CA	NGS, qPCR	50 / 7	Other samples	KRAS/PIK3CA mutations were detected in 47.4% of	N/A [158]

Casas et al., 2020			peritoneal lavages and correlated with tumor tissue.	
Ayyagari et al., 2023	Metabolomics & Proteomics	SOAT1, CE	ELISA, colorimet ric assay, RT-qPCR, IHC	32 / 16 SOAT1 and CE may be associated with malignancy, aggressiveness, and poor prognosis. AUC: Peritoneal fluid SOAT1: 0.767; Sensitivity: 80%; Specificity: 67%

4.2.1. Urine Samples

Urine contains diverse components, including malignant cells, tumor-derived nucleic acids, peptides/proteins, endogenous metabolites, and secretory organelles [125]. Costas et al. [126] evaluated the utility of somatic mutation analysis in urine for non-invasive EC detection and molecular classification. Using NGS, they achieved a 100% mutation detection rate in EC cases, showing high concordance between urine and tumor samples, particularly when applying the Proactive Molecular Risk Classifier for EC (ProMisE) algorithm. These results suggest that urine-derived cfDNA, such as transrenal ctDNA (TR-ctDNA), may serve as a reliable biomarker for early EC diagnosis and prognosis. Similarly, Ritter et al. [127] identified miRNAs, such as miR-10b-5p and miR-205-5p in urine, with miR-10b-5p demonstrating diagnostic potential in EC patients. While additional validation is required, these studies highlight the promise of urine-based miRNA profiling for non-invasive screening.

Beyond nucleic acid biomarkers, urine proteins and metabolites have also been investigated. Unlike Ritter et al. [127], who relied on case-control studies to detect protein concentration differences, Njoku et al. [128] applied machine learning to develop a diagnostic model using 10 urinary markers, achieving an accuracy of 0.92. Similarly, instead of analyzing urine metabolites alone, Chen et al. [129], [130] combined serum and urine data, yielding an AUC of 0.922, demonstrating a valuable model-building approach for EC. Furthermore, Fu et al. [131] integrated metabolomics with transcriptomics, identifying differential metabolites and hub genes in urine associated with EC. This multi-omics strategy suggests that combining urine-based biomarkers with transcriptomic profiles could improve early EC detection.

As a distinct and promising sample source for liquid biopsy, urine offers a non-invasive, easily accessible, and disease-specific tool for EC diagnosis and management—potentially overcoming several limitations of blood-based sampling.

4.2.2. Uterine Lavage Fluid and Uterine Aspirates

Uterine lavage fluid or uterine aspirates (UAs) represent a promising source for liquid biopsy due to their direct contact with tumors. Since Maritschnegg et al. [132] first detected shed EC cells in uterine lavage fluid, subsequent studies have further explored the diagnostic potential of these samples [133]. Casas-Arozamena et al. [134] provided the first comprehensive characterization of UAs, ctDNA, and CTCs. Their NGS analysis revealed genetic mutations in 93% of tumor samples, predominantly in genes such as PTEN, PIK3CA, and TP53. Notably, CTCs and ctDNA were found in 38.9% and 41.2% of cases, respectively, particularly among patients with high-risk tumor, suggesting their value as biomarkers for aggressive disease. Furthermore, they also demonstrated strong concordance between MSI results from UAs and cfDNA samples and those from traditional tissue, highlighting UAs as a viable tool for personalized monitoring and management [135].

Further supporting the utility of endometrial fluid analysis, Yang et al. [136] used real-time PCR to analyze specific miRNAs –miR-429, miR-146a-5p, and miR-183-5p—in endometrial fluid, underscoring their diagnostic potential for EC. This miRNA profiling offers a less invasive alternative to traditional diagnostic procedures, potentially improving early detection and intervention. However, uterine lavage collection can cause notable patient discomfort and requires specialized equipment and trained personnel, limiting its routine clinical use [137].

4.2.3. Cervicovaginal Fluid and Cervicovaginal Lavage Fluid

Cervicovaginal fluid, which contains shed tumor cells originating from the lower reproductive tract, serves as an additional effective screening tool for minimally invasive sample collection compared to uterine lavage fluid, which has more limitations in its application. In recent years, researchers have carried out extensive studies on cervicovaginal fluid or cervicovaginal lavage fluid based on cytological analysis [138], somatic mutations [139], DNA methylation [140-143], proteomics [144-147], metabolomics [148, 149], and multiomics [150] approaches.

In contrast to the limited specificity of traditional cytology tests [138], growing attention has turned to DNA methylation as a more accurate diagnostic approach. Evans et al. [140] assessed the methylation status of ZSCAN12 and GYPC in cervicovaginal samples using the WID-qEC test. Compared to conventional ultrasound, WID-qEC demonstrated superior performance, achieving 92.1% specificity, 90.9% sensitivity, and an AUC of 94.3%. These results were further validated by Illah et al. [141], confirming WID-qEC as a highly sensitive and specific diagnostic method. Collectively, these studies suggest that cervicovaginal lavage offers a practical, minimally invasive alternative to traditional diagnostic procedures.

Beyond non-targeted approaches that screen proteins or metabolites for diagnostic [144-146, 148, 150] or stratification models [147, 149]. Pelegrina et al. [139] made a significant advancement by applying NGS to assess somatic mutations in cervicovaginal samples for non-invasive EC detection and molecular classification. The ClassEC test identified mutations in 73% of EC cases, with 80% specificity in clinician-collected samples and 90% in self-collected ones. Importantly, the test stratified EC into four molecular subtypes with distinct prognoses: POLE mutations were linked to favorable outcomes, while TP53 mutations predicted poor prognosis. This integration of molecular profiling with non-invasive sampling offers a promising alternative to traditional invasive diagnostics and represents a major step forward in personalized treatment for EC.

4.2.4. Tampons

Tampons, as widely accepted and non-invasive intravaginal hygiene products, present a promising method for EC detection. Fiegl et al. [151] demonstrated that DNA methylation analysis of tampon-collected samples could distinguish EC from benign conditions with 100% sensitivity and 97.2% specificity in women aged 50–75, excluding CIN III and cervical cancer. Similarly, Bakkum-Gamez et al. [152] used tampons to collect vaginal pool samples and identified hypermethylation in nine genes in EC patients, achieving an AUC of 0.88, 76% sensitivity, and 96% specificity. This approach not only allows for convenient self-collection, improving patient compliance, but also enables repeated sampling for long-term monitoring in high-risk populations.

4.2.5. Cervical Scrapings and Vaginal Swabs

In addition to tampons, vaginal swabs and cervical scrapings are valuable sources for molecular DNA testing in EC. These low-cost, minimally invasive methods can be easily incorporated into routine outpatient visits. Multiple studies have demonstrated high diagnostic sensitivity and specificity in detecting tumor driver gene methylation through vaginal swabs [153-156]. Notably, Herzog et al. [154] evaluated methylation of the GYPC and ZSCAN12 gene regions in cervical, vaginal, and self-collected swab samples from patients with EC symptoms, reporting EC detection sensitivities of 100%, 90.1%, and 97.2%, respectively. This highlights the potential of self-sampling to support early detection while reducing the need for in-person visits. Interestingly, cervical lavage fluid also revealed abnormal methylation in these genes, validating the reliability of vaginal swabs and cervical smears. Furthermore, Kim et al. [157] successfully detected key gene mutations—such as PTEN, PIK3CA, TP53, and ARID1A—from genomic DNA in cervical smear samples with 100% specificity, aiding the optimization of ProMisE-based molecular classification for EC.

However, future research should prioritize pre-diagnostic sampling. Since most existing studies have focused on already-diagnosed individuals, earlier sampling could better reflect real-world diagnostic scenarios and reduce bias from tumor cell shedding during clinical procedures.

4.2.6. Peritoneal Surgical Lavage Fluid and Peritoneal Fluid

Peritoneal surgical lavage fluid and peritoneal fluid have emerged as promising sources for detecting mutations and other genetic alterations associated with EC, offering diagnostic and prognostic value among various biopsy fluids. To validate the utility of peritoneal lavage fluid, Mayo-de-las-Casas et al. [158] used a highly sensitive qPCR method and found that, in EC cases with known hotspot mutations, cfDNA from peritoneal lavage had a significantly higher detection rate (47%) compared to plasma (10.5%). This indicates that peritoneal lavage may better reflect the tumor mutational landscape, particularly in early-stage disease. Similarly, Ayyagari et al. (159) evaluated sterol-O-acyl transferase 1 (SOAT1) and cholesterol ester (CE) levels in plasma, peritoneal fluid, and endometrial tissue from EC patients and controls. Elevated levels were observed in tumor tissues and peritoneal fluid from EC patients, while plasma levels were comparable between groups. The strong correlation between SOAT1, CE, and poor overall survival suggests these markers are linked to tumor aggressiveness and unfavorable prognosis. Thus, SOAT1 and CE may serve as prognostic biomarkers and potential therapeutic targets, with peritoneal fluid offering a more informative medium than blood for detection.

5. Future Directions and Prospects

Liquid biopsy is poised to become an essential component of EC management in the near future. Techniques involving cervicovaginal fluids, uterine aspirates, and circulating biomarkers—combined with genomic, proteomic, metabolomic, and multi-omics analyses—offer transformative potential for early detection and personalized treatment. These technologies promise to improve diagnostic accuracy, reduce reliance on invasive procedures, and enable more targeted therapeutic strategies. Early detection through such methods could significantly enhance patient outcomes by allowing timely, individualized interventions. Integrating multi-omics approaches offers a comprehensive view of EC, uncovering potential therapeutic targets and providing deeper insights into tumor behavior, treatment response, and resistance mechanisms. Successfully translating these innovations into clinical practice will require close interdisciplinary collaboration among gynecologists, oncologists, geneticists, data scientists, and bioinformaticians. Such collaboration is key to developing integrated diagnostic platforms that improve diagnostic precision and enable personalized treatment strategies tailored to each patient's molecular and clinical profile. Recent advancements in imaging, histopathology, and molecular diagnostics emphasize the importance of an integrated approach that combines various testing methods to enhance cancer diagnosis and treatment. AI technology, among the fastest-growing fields, holds limitless potential for integrating and optimizing these diverse diagnostic modalities, particularly in liquid biopsy [173]. Furthermore, as we advance in this field, it is imperative to carefully manage ethical considerations regarding patient data privacy, and the potential of misinterpretation of genetic information. Ensuring the accessibility of these technologies in high- and low-resource settings is essential to broaden their impact and address disparities in cancer care [174]. The clinical application of liquid biopsy necessitates large-scale validation before it can be adopted as routine practice. Although studies in other cancers have shown promising results [175-178], EC presents unique challenges that require dedicated clinical trials. Large-scale validation is crucial for transitioning liquid biopsy into routine clinical use. We advocate for EC-specific trials to confirm the clinical utility of these innovations and establish new standards that improve prognosis and quality of life for EC patients.

6. Conclusions

Liquid biopsy is a minimally invasive and effective tool for cancer management, enabling real-time molecular profiling of tumors and capturing their dynamic complexity. Its ability to allow repeat sampling makes it especially valuable for monitoring tumor progression, particularly when traditional biopsies are not feasible. While liquid biopsy has demonstrated clinical utility in other cancers and is already integrated into practice, its application in EC is only now gaining broader recognition.

To fully integrate liquid biopsy into standard EC care, several challenges must be addressed, including standardization, development of external quality control programs tailored to specific biomarkers, and accreditation of laboratories conducting these analyses. Additionally, a robust regulatory framework is needed to guide clinical use, address ethical concerns, and ensure responsible implementation. Expanded research and large-scale clinical trials are crucial for validating its effectiveness and refining its role in patient care. Taken together, these efforts are essential to unlock the full potential of liquid biopsy, paving the way for more personalized, precise, and effective treatment strategies in EC.

Author Contributions: C.C. and N.G. conceptualised this review and provided the idea for an article. N.G. and C.C. prepared original draft and wrote the entire manuscript. N.G. conducted the literature search and selection. N.G., C.C., P.C., and S.U. conducted research visualization. N.G. and C.C. edited the whole manuscript. C.C., P.C., and S.U. supervised the manuscript thoroughly and revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin.* 2021;71(3):209-49.
2. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. *CA Cancer J Clin.* 2024;74(1):12-49.
3. Crosbie EJ, Kitson SJ, McAlpine JN, Mukhopadhyay A, Powell ME, Singh N. Endometrial cancer. *Lancet.* 2022;399(10333):1412-28.
4. Yamagami W, Mikami M, Nagase S, Tabata T, Kobayashi Y, Kaneuchi M, et al. Japan Society of Gynecologic Oncology 2018 guidelines for treatment of uterine body neoplasms. *J Gynecol Oncol.* 2020;31(1):e18.
5. Berek JS, Matias-Guiu X, Creutzberg C, Fotopoulou C, Gaffney D, Kehoe S, et al. FIGO staging of endometrial cancer: 2023. *Int J Gynaecol Obstet.* 2023;162(2):383-94.
6. Papathemelis T, Ortmann O, Kohl C, Neuser P, Tol KK, Klinkhammer-Schalke M, et al. Treatment of endometrial cancer from 2000 to 2020 in Germany: a retrospective population based cohort study. *J Cancer Res Clin Oncol.* 2024;150(5):279.
7. Vermij L, Jobsen JJ, León-Castillo A, Brinkhuis M, Roothaan S, Powell ME, et al. Prognostic refinement of NSMP high-risk endometrial cancers using oestrogen receptor immunohistochemistry. *Br J Cancer.* 2023;128(7):1360-8.
8. Jamieson A, Huivila J, Chiu D, Thompson EF, Scott S, Salvador S, et al. Grade and Estrogen Receptor Expression Identify a Subset of No Specific Molecular Profile Endometrial Carcinomas at a Very Low Risk of Disease-Specific Death. *Mod Pathol.* 2023;36(4):100085.
9. León-Castillo A, De Boer SM, Powell ME, Mileskin LR, Mackay HJ, Leary A, et al. Molecular classification of the PORTEC-3 trial for high-risk endometrial cancer: impact on prognosis and benefit from adjuvant therapy. *Journal of Clinical Oncology.* 2020;38(29):3388-97.
10. Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, et al. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. *Mol Cancer.* 2022;21(1):79.
11. Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, et al. Exosome-based liquid biopsies in cancer: opportunities and challenges. *Ann Oncol.* 2021;32(4):466-77.
12. Dache ZAA, Otandault A, Tanos R, Pastor B, Meddeb R, Sanchez C, et al. Blood contains circulating cell free respiratory competent mitochondria. *Faseb Journal.* 2020;34(3):3616-30.
13. Ao Z, Shah SH, Machlin LM, Parajuli R, Miller PC, Rawal S, et al. Identification of cancer-associated fibroblasts in circulating blood from patients with metastatic breast cancer. *Cancer research.* 2015;75(22):4681-7.
14. Łukasiewicz M, Pastuszak K, Łapińska-Szumczyk S, Różański R, Veld S, Bierkowski M, et al. Diagnostic Accuracy of Liquid Biopsy in Endometrial Cancer. *Cancers (Basel).* 2021;13(22).
15. Alix-Panabières C, Pantel K. Challenges in circulating tumour cell research. *Nature Reviews Cancer.* 2014;14(9):623-31.
16. Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, et al. Circulating tumor cells in patients with breast cancer dormancy. *Clin Cancer Res.* 2004;10(24):8152-62.
17. Kulasinghe A, Kenny L, Perry C, Thiery J-P, Jovanovic L, Vela I, et al. Impact of label-free technologies in head and neck cancer circulating tumour cells. *Oncotarget.* 2016;7(44):71223.
18. Gires O, Stoecklein NH. Dynamic EpCAM expression on circulating and disseminating tumor cells: causes and consequences. *Cellular and molecular life sciences.* 2014;71:4393-402.
19. Gao Y, Zhu Y, Zhang Z, Zhang C, Huang X, Yuan Z. Clinical significance of pancreatic circulating tumor cells using combined negative enrichment and immunostaining-fluorescence in situ hybridization. *J Exp Clin Cancer Res.* 2016;35:66.
20. Obermayr E, Sanchez-Cabo F, Tea MK, Singer CF, Krainer M, Fischer MB, et al. Assessment of a six gene panel for the molecular detection of circulating tumor cells in the blood of female cancer patients. *BMC Cancer.* 2010;10:666.

21. Ma J, Chen Y, Ren J, Zhou T, Wang Z, Li C, et al. Purification of Circulating Tumor Cells Based on Multiantibody-Modified Magnetic Nanoparticles and Molecular Analysis toward Epithelial Ovarian Cancer Detection. *ACS Sens.* 2023;8(10):3744-53.
22. Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. *Nat Biotechnol.* 2014;32(5):479-84.
23. Chen J, Li J, Sun Y. Microfluidic approaches for cancer cell detection, characterization, and separation. *Lab on a Chip.* 2012;12(10):1753-67.
24. Alix-Panabières C, Vendrell JP, Slijper M, Pellé O, Barbotte E, Mercier G, et al. Full-length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer. *Breast Cancer Res.* 2009;11(3):R39.
25. Alix-Panabières C, Vendrell JP, Pellé O, Rebillard X, Riethdorf S, Müller V, et al. Detection and characterization of putative metastatic precursor cells in cancer patients. *Clin Chem.* 2007;53(3):537-9.
26. Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. *Science.* 2014;345(6193):216-20.
27. Mandel P, Mettais P. [Nuclear Acids In Human Blood Plasma]. *C R Seances Soc Biol Fil.* 1948;142(3-4):241-3.
28. Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. *Cancer discovery.* 2016;6(5):479-91.
29. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. *Nat Med.* 2008;14(9):985-90.
30. Underhill HR, Kitzman JO, Hellwig S, Welker NC, Daza R, Baker DN, et al. Fragment length of circulating tumor DNA. *PLoS genetics.* 2016;12(7):e1006162.
31. Lee JS, Kim M, Seong MW, Kim HS, Lee YK, Kang HJ. Plasma vs. serum in circulating tumor DNA measurement: characterization by DNA fragment sizing and digital droplet polymerase chain reaction. *Clin Chem Lab Med.* 2020;58(4):527-32.
32. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. *Nat Med.* 2014;20(5):548-54.
33. Galardi F, Luca F, Romagnoli D, Biagioni C, Moretti E, Biganzoli L, et al. Cell-Free DNA-Methylation-Based Methods and Applications in Oncology. *Biomolecules.* 2020;10(12).
34. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. *Proc Natl Acad Sci U S A.* 1996;93(18):9821-6.
35. Uehiro N, Sato F, Pu F, Tanaka S, Kawashima M, Kawaguchi K, et al. Circulating cell-free DNA-based epigenetic assay can detect early breast cancer. *Breast Cancer Res.* 2016;18(1):129.
36. Beltran H, Romanel A, Conteduca V, Casiraghi N, Sigouros M, Franceschini GM, et al. Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer. *J Clin Invest.* 2020;130(4):1653-68.
37. Liu Y, Siejka-Zielińska P, Velikova G, Bi Y, Yuan F, Tomkova M, et al. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. *Nat Biotechnol.* 2019;37(4):424-9.
38. Wang J, Xia Y, Li L, Gong D, Yao Y, Luo H, et al. Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing. *BMC Genomics.* 2013;14:11.
39. Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. *Genome Biol.* 2016;17(1):208.
40. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. *Nucleic acids research.* 2011;39(16):7223-33.
41. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. *Proc Natl Acad Sci U S A.* 2011;108(12):5003-8.

42. Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer--a survey. *Biochim Biophys Acta*. 2007;1775(1):181-232.

43. Cheung KWE, Choi SR, Lee LTC, Lee NLE, Tsang HF, Cheng YT, et al. The potential of circulating cell free RNA as a biomarker in cancer. *Expert Rev Mol Diagn*. 2019;19(7):579-90.

44. Yoluc Y, Ammann G, Barraud P, Jora M, Limbach PA, Motorin Y, et al. Instrumental analysis of RNA modifications. *Critical Reviews in Biochemistry and Molecular Biology*. 2021;56(2):178-204.

45. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. *Cell*. 2012;149(7):1635-46.

46. Bonucci E. Fine structure of early cartilage calcification. *J Ultrastruct Res*. 1967;20(1):33-50.

47. Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New Technologies for Analysis of Extracellular Vesicles. *Chem Rev*. 2018;118(4):1917-50.

48. Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. *Cancer cell*. 2014;26(5):707-21.

49. Matei I, Kim HS, Lyden D. Unshielding exosomal RNA unleashes tumor growth and metastasis. *Cell*. 2017;170(2):223-5.

50. Qin Y, Sun R, Wu C, Wang L, Zhang C. Exosome: a novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis. *International journal of molecular sciences*. 2016;17(5):712.

51. Wendler F, Favicchio R, Simon T, Alifrangis C, Stebbing J, Giamas G. Extracellular vesicles swarm the cancer microenvironment: from tumor-stroma communication to drug intervention. *Oncogene*. 2017;36(7):877-84.

52. Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. *Nature*. 2015;527(7578):329-35.

53. Milman N, Ginini L, Gil Z. Exosomes and their role in tumorigenesis and anticancer drug resistance. *Drug Resistance Updates*. 2019;45:1-12.

54. Gopal SK, Greening DW, Rai A, Chen M, Xu R, Shafiq A, et al. Extracellular vesicles: Their role in cancer biology and epithelial-mesenchymal transition. *Biochemical Journal*. 2017;474(1):21-45.

55. van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. *Nat Rev Mol Cell Biol*. 2018;19(4):213-28.

56. Logozzi M, De Milito A, Lugini L, Borghi M, Calabro L, Spada M, et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. *PLoS One*. 2009;4(4):e5219.

57. Sódar BW, Kittel Á, Pálóczi K, Vukman KV, Osteikoetxea X, Szabó-Taylor K, et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. *Sci Rep*. 2016;6:24316.

58. He F, Liu H, Guo X, Yin BC, Ye BC. Direct Exosome Quantification via Bivalent-Cholesterol-Labeled DNA Anchor for Signal Amplification. *Anal Chem*. 2017;89(23):12968-75.

59. Zhu S, Ma L, Wang S, Chen C, Zhang W, Yang L, et al. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. *ACS nano*. 2014;8(10):10998-1006.

60. Nolan JP. Flow cytometry of extracellular vesicles: potential, pitfalls, and prospects. *Current protocols in cytometry*. 2015;73(1):13.4. 1-4. 6.

61. Cao Y, Zhou L, Zhou G, Liu W, Cui H, Cao Y, et al. Proximity labeling-assisted click conjugation for electrochemical analysis of specific subpopulations in circulating extracellular vesicles. *Biosens Bioelectron*. 2024;255:116245.

62. Pan B-T, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. *The Journal of cell biology*. 1985;101(3):942-8.

63. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. *Nanomedicine: Nanotechnology, Biology and Medicine*. 2011;7(6):780-8.

64. Huang X, Li A, Xu P, Yu Y, Li S, Hu L, et al. Current and prospective strategies for advancing the targeted delivery of CRISPR/Cas system via extracellular vesicles. *J Nanobiotechnology*. 2023;21(1):184.

65. Su J. Label-free single exosome detection using frequency-locked microtoroid optical resonators. *AcS Photonics*. 2015;2(9):1241-5.
66. Tyers M, Mann M. From genomics to proteomics. *Nature*. 2003;422(6928):193-7.
67. Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. *Nature*. 2008;452(7187):571-9.
68. Cui M, Cheng C, Zhang L. High-throughput proteomics: a methodological mini-review. *Lab Invest*. 2022;102(11):1170-81.
69. Martin DB, Nelson PS. From genomics to proteomics: techniques and applications in cancer research. *Trends in Cell Biology*. 2001;11(11):S60-S5.
70. Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research. *Clin Proteomics*. 2020;17:17.
71. Payne K, Brooks J, Batis N, Khan N, El-Asrag M, Nankivell P, et al. Feasibility of mass cytometry proteomic characterisation of circulating tumour cells in head and neck squamous cell carcinoma for deep phenotyping. *British Journal of Cancer*. 2023;129(10):1590-8.
72. Descamps L, Le Roy D, Deman A-L. Microfluidic-based technologies for CTC isolation: a review of 10 years of intense efforts towards liquid biopsy. *International Journal of Molecular Sciences*. 2022;23(4):1981.
73. Abdulla A, Zhang T, Li S, Guo W, Warden AR, Xin Y, et al. Integrated microfluidic single-cell immunoblotting chip enables high-throughput isolation, enrichment and direct protein analysis of circulating tumor cells. *Microsystems & nanoengineering*. 2022;8(1):13.
74. Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. *Xenobiotica*. 1999;29(11):1181-9.
75. Hu L, Liu J, Zhang W, Wang T, Zhang N, Lee YH, et al. FUNCTIONAL METABOLOMICS DECIPHER BIOCHEMICAL FUNCTIONS AND ASSOCIATED MECHANISMS UNDERLIE SMALL-MOLECULE METABOLISM. *Mass Spectrom Rev*. 2020;39(5-6):417-33.
76. Patti GJ, Yanes O, Siuzdak G. Metabolomics: the apogee of the omics trilogy. *Nature reviews Molecular cell biology*. 2012;13(4):263-9.
77. Markley JL, Brüschweiler R, Edison AS, Eghbalnia HR, Powers R, Raftery D, et al. The future of NMR-based metabolomics. *Curr Opin Biotechnol*. 2017;43:34-40.
78. Keun HC, Beckonert O, Griffin JL, Richter C, Moskau D, Lindon JC, et al. Cryogenic probe ¹³C NMR spectroscopy of urine for metabonomic studies. *Anal Chem*. 2002;74(17):4588-93.
79. Alseekh S, Aharoni A, Brotman Y, Contrepois K, D'Auria J, Ewald J, et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. *Nat Methods*. 2021;18(7):747-56.
80. Wang L, Zheng X, Wang W, Hu P, Jiang J. An LC-MS/MS method for quantification of AC0010, a novel mutant-selective epidermal growth factor receptor (EGFR) inhibitor, and its metabolites in human plasma and the application to a pharmacokinetic study. *J Pharm Biomed Anal*. 2017;141:9-18.
81. Xu Z, Huang Y, Hu C, Du L, Du YA, Zhang Y, et al. Efficient plasma metabolic fingerprinting as a novel tool for diagnosis and prognosis of gastric cancer: a large-scale, multicentre study. *Gut*. 2023;72(11):2051-67.
82. Bolivar AM, Luthra R, Mehrotra M, Chen W, Barkoh BA, Hu P, et al. Targeted next-generation sequencing of endometrial cancer and matched circulating tumor DNA: identification of plasma-based, tumor-associated mutations in early stage patients. *Mod Pathol*. 2019;32(3):405-14.
83. Gressel GM, Maggi EC, Harmon BE, Ye KQ, Kuo DYS, Dolan SM, et al. Low molecular weight serum cell-free DNA concentration is associated with clinicopathologic indices of poor prognosis in women with uterine cancer. *J Transl Med*. 2020;18(1):323.
84. Benati M, Montagnana M, Danese E, Mazzon M, Paviati E, Garzon S, et al. Aberrant Telomere Length in Circulating Cell-Free DNA as Possible Blood Biomarker with High Diagnostic Performance in Endometrial Cancer. *Pathol Oncol Res*. 2020;26(4):2281-9.
85. Kodada D, Hyblová M, Krumpolec P, Janostíková N, Barath P, Grendar M, et al. The Potential of Liquid Biopsy in Detection of Endometrial Cancer Biomarkers: A Pilot Study. *Int J Mol Sci*. 2023;24(9).

86. Beinse G, Borghese B, Métairie M, Just PA, Poulet G, Garinet S, et al. Highly Specific Droplet-Digital PCR Detection of Universally Methylated Circulating Tumor DNA in Endometrial Carcinoma. *Clin Chem.* 2022;68(6):782-93.

87. Fan X, Zou X, Liu C, Cheng W, Zhang S, Geng X, et al. MicroRNA expression profile in serum reveals novel diagnostic biomarkers for endometrial cancer. *Biosci Rep.* 2021;41(6).

88. Rostami S, Rounge TB, Pestarino L, Lyle R, Fortner RT, Haaland Ø A, et al. Differential levels of circulating RNAs prior to endometrial cancer diagnosis. *Int J Cancer.* 2024.

89. Ura B, Biffi S, Monasta L, Arrigoni G, Battisti I, Di Lorenzo G, et al. Two Dimensional-Difference in Gel Electrophoresis (2D-DIGE) Proteomic Approach for the Identification of Biomarkers in Endometrial Cancer Serum. *Cancers (Basel).* 2021;13(14).

90. Tarney CM, Wang G, Bateman NW, Conrads KA, Zhou M, Hood BL, et al. Biomarker panel for early detection of endometrial cancer in the Prostate, Lung, Colorectal, and Ovarian cancer screening trial. *Am J Obstet Gynecol.* 2019;221(5):472.e1-e10.

91. Ura B, Capaci V, Aloisio M, Di Lorenzo G, Romano F, Ricci G, et al. A Targeted Proteomics Approach for Screening Serum Biomarkers Observed in the Early Stage of Type I Endometrial Cancer. *Biomedicines.* 2022;10(8).

92. Kozar N, Kruusmaa K, Dovnik A, Bitenc M, Argamasilla R, Adsuar A, et al. Identification of novel diagnostic biomarkers in endometrial cancer using targeted metabolomic profiling. *Adv Med Sci.* 2021;66(1):46-51.

93. Njoku K, Campbell AE, Geary B, MacKintosh ML, Derbyshire AE, Kitson SJ, et al. Metabolomic Biomarkers for the Detection of Obesity-Driven Endometrial Cancer. *Cancers (Basel).* 2021;13(4).

94. Cheng F, Fan W, Gui L, Liu Y, Ling Y, Huang R, et al. Serum lipidomic profiling by UHPLC-MS/MS may be able to detect early-stage endometrial cancer. *Anal Bioanal Chem.* 2023;415(10):1841-54.

95. Benabdelkamel H, Jaber MA, Akkour K, AlMalki RH, Alfadda AA, Masood A, et al. Metabolomic Profiling of Blood Plasma in Females with Hyperplasia and Endometrial Cancer. *Metabolites.* 2024;14(2).

96. Yan X, Zhao W, Wei J, Yao Y, Sun G, Wang L, et al. A serum lipidomics study for the identification of specific biomarkers for endometrial polyps to distinguish them from endometrial cancer or hyperplasia. *Int J Cancer.* 2022;150(9):1549-59.

97. Roškar L, Pušić M, Roškar I, Kokol M, Pirš B, Smrkolj Š, et al. Models including preoperative plasma levels of angiogenic factors, leptin and IL-8 as potential biomarkers of endometrial cancer. *Front Oncol.* 2022;12:972131.

98. Ding H, Wang J, Zhao X, Xiu S, Cai H, Ma J, et al. Combination of circulating tumor cells, lncRNAs and DNA methylation for the diagnosis of endometrial carcinoma. *Oncology Letters.* 2024;28(5):545.

99. Celsi F, Monasta L, Arrigoni G, Battisti I, Licastro D, Aloisio M, et al. Gel-Based Proteomic Identification of Suprabasin as a Potential New Candidate Biomarker in Endometrial Cancer. *Int J Mol Sci.* 2022;23(4).

100. Troisi J, Raffone A, Travaglino A, Belli G, Belli C, Anand S, et al. Development and Validation of a Serum Metabolomic Signature for Endometrial Cancer Screening in Postmenopausal Women. *JAMA Netw Open.* 2020;3(9):e2018327.

101. Troisi J, Mollo A, Lombardi M, Scala G, Richards SM, Symes SJK, et al. The Metabolomic Approach for the Screening of Endometrial Cancer: Validation from a Large Cohort of Women Scheduled for Gynecological Surgery. *Biomolecules.* 2022;12(9).

102. Francini S, Duraes M, Rathat G, Macioce V, Mollevi C, Pages L, et al. Circulating Tumor Cell Detection by Liquid Biopsy during Early-Stage Endometrial Cancer Surgery: A Pilot Study. *Biomolecules.* 2023;13(3).

103. Feng W, Jia N, Jiao H, Chen J, Chen Y, Zhang Y, et al. Circulating tumor DNA as a prognostic marker in high-risk endometrial cancer. *J Transl Med.* 2021;19(1):51.

104. Recio F, Scalise CB, Loar P, Lumish M, Berman T, Peddada A, et al. Post-surgical ctDNA-based molecular residual disease detection in patients with stage I uterine malignancies. *Gynecol Oncol.* 2024;182:63-9.

105. Law KS, Huang CE, Chen SW. Detection of Circulating Tumor Cell-Related Markers in Gynecologic Cancer Using Microfluidic Devices: A Pilot Study. *Int J Mol Sci.* 2023;24(3).

106. Strand E, Tangen IL, Fasmer KE, Jacob H, Halle MK, Hoivik EA, et al. Blood Metabolites Associate with Prognosis in Endometrial Cancer. *Metabolites.* 2019;9(12).

107. Forsse D, Tangen IL, Fasmer KE, Halle MK, Viste K, Almås B, et al. Blood steroid levels predict survival in endometrial cancer and reflect tumor estrogen signaling. *Gynecol Oncol*. 2020;156(2):400-6.
108. Dahmani C, Caron P, Simonyan D, Turcotte V, Grégoire J, Plante M, et al. Circulating adrenal 11-oxygenated androgens are associated with clinical outcome in endometrial cancer. *Front Endocrinol (Lausanne)*. 2023;14:1156680.
109. Hishinuma E, Shimada M, Matsukawa N, Shima Y, Li B, Motoike IN, et al. Identification of predictive biomarkers for endometrial cancer diagnosis and treatment response monitoring using plasma metabolome profiling. *Cancer Metab*. 2023;11(1):16.
110. Shintani D, Hihara T, Ogasawara A, Sato S, Yabuno A, Tai K, et al. Tumor-related mutations in cell-free DNA in pre-operative plasma as a prognostic indicator of recurrence in endometrial cancer. *Int J Gynecol Cancer*. 2020;30(9):1340-6.
111. Grassi T, Harris FR, Smadbeck JB, Murphy SJ, Block MS, Multinu F, et al. Personalized tumor-specific DNA junctions to detect circulating tumor in patients with endometrial cancer. *PLoS One*. 2021;16(6):e0252390.
112. Ashley CW, Selenica P, Patel J, Wu M, Nincevic J, Lakhman Y, et al. High-Sensitivity Mutation Analysis of Cell-Free DNA for Disease Monitoring in Endometrial Cancer. *Clin Cancer Res*. 2023;29(2):410-21.
113. Jamieson A, McConechy MK, Lum A, Senz J, Dowhy T, Huntsman DG, et al. Selective utilization of circulating tumor DNA testing enables disease monitoring in endometrial and ovarian carcinomas. *J Gynecol Oncol*. 2025;36(1):e5.
114. Soberanis Pina P, Clemens K, Bubie A, Grant B, Haynes G, Zhang N, et al. Genomic Landscape of ctDNA and Real-World Outcomes in Advanced Endometrial Cancer. *Clin Cancer Res*. 2024;30(24):5657-65.
115. Casas-Arozamena C, Vilar A, Cueva J, Arias E, Sampayo V, Diaz E, et al. Role of cfDNA and ctDNA to improve the risk stratification and the disease follow-up in patients with endometrial cancer: towards the clinical application. *J Exp Clin Cancer Res*. 2024;43(1):264.
116. Wu C, Zhou X, Li J, Xiao R, Xin H, Dai L, et al. Serum miRNA-204-5p as a potential non-invasive biomarker for the diagnosis of endometrial cancer with sentinel lymph node mapping. *Oncol Lett*. 2022;24(2):248.
117. Shan L, Zhao T, Wang Y. Upregulation of Serum lncRNA DLEU1 Predicts Progression of Premalignant Endometrial Lesion and Unfavorable Clinical Outcome of Endometrial Cancer. *Technol Cancer Res Treat*. 2020;19:1533033820965589.
118. Salim EI, Beltagy DM, Elmashad NM, Abodonia MA. Prognostic Role of Oncogenic and Tumor-Suppressing miRNA Types in Egyptian Uterine Cancer Patients. *Asian Pac J Cancer Prev*. 2022;23(8):2607-15.
119. Mujammami M, Rafiullah M, Akkour K, Alfadda AA, Masood A, Joy SS, et al. Plasma Proteomic Signature of Endometrial Cancer in Patients with Diabetes. *ACS Omega*. 2024;9(4):4721-32.
120. Song Y, Wang M, Tong H, Tan Y, Hu X, Wang K, et al. Plasma exosomes from endometrial cancer patients contain LGALS3BP to promote endometrial cancer progression. *Oncogene*. 2021;40(3):633-46.
121. Blanc-Durand F, Camilleri GM, Bayle A, Aldea M, Vasseur D, Ouali K, et al. Clinical utility of comprehensive liquid molecular profiling in patients with advanced endometrial cancer. *Cancer*. 2024.
122. Herrero C, Brea J, Pérez-Díaz A, Cuadrado E, Ferreño N, Moiola CP, et al. Modeling ANXA2-overexpressing circulating tumor cells homing and high throughput screening for metastasis impairment in endometrial carcinomas. *Biomed Pharmacother*. 2021;140:111744.
123. Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: current technology and clinical applications. *J Hematol Oncol*. 2022;15(1):131.
124. Costas L, Frias-Gomez J, Guardiola M, Benavente Y, Pineda M, Pavón M, et al. New perspectives on screening and early detection of endometrial cancer. *Int J Cancer*. 2019;145(12):3194-206.
125. Njoku K, Chiasserini D, Jones ER, Barr CE, O'Flynn H, Whetton AD, et al. Urinary Biomarkers and Their Potential for the Non-Invasive Detection of Endometrial Cancer. *Front Oncol*. 2020;10:559016.
126. Costas L, Onieva I, Pelegrina B, Marin F, Carmona Á, López-Querol M, et al. Evaluation of Somatic Mutations in Urine Samples as a Noninvasive Method for the Detection and Molecular Classification of Endometrial Cancer. *Clin Cancer Res*. 2023;29(18):3681-90.

127. Ritter A, Hirschfeld M, Berner K, Jaeger M, Grundner-Culemann F, Schlosser P, et al. Discovery of potential serum and urine-based microRNA as minimally-invasive biomarkers for breast and gynecological cancer. *Cancer Biomark.* 2020;27(2):225-42.

128. Njoku K, Pierce A, Geary B, Campbell AE, Kelsall J, Reed R, et al. Quantitative SWATH-based proteomic profiling of urine for the identification of endometrial cancer biomarkers in symptomatic women. *Br J Cancer.* 2023;128(9):1723-32.

129. Chen J, Liu J, Cao D. Urine metabolomics for assessing fertility-sparing treatment efficacy in endometrial cancer: a non-invasive approach using ultra-performance liquid chromatography mass spectrometry. *BMC Womens Health.* 2023;23(1):583.

130. Chen J, Lu H, Cao D, Sun J, Qi F, Liu X, et al. Urine and serum metabolomic analysis of endometrial cancer diagnosis and classification based on ultra-performance liquid chromatography mass spectrometry. *Metabolomics.* 2024;20(1):18.

131. Fu Y, Wang C, Wu Z, Zhang X, Liu Y, Wang X, et al. Discovery of the potential biomarkers for early diagnosis of endometrial cancer via integrating metabolomics and transcriptomics. *Comput Biol Med.* 2024;173:108327.

132. Maritschnegg E, Wang Y, Pecha N, Horvat R, Van Nieuwenhuysen E, Vergote I, et al. Lavage of the Uterine Cavity for Molecular Detection of Müllerian Duct Carcinomas: A Proof-of-Concept Study. *J Clin Oncol.* 2015;33(36):4293-300.

133. Nair N, Camacho-Vanegas O, Rykunov D, Dashkoff M, Camacho SC, Schumacher CA, et al. Genomic Analysis of Uterine Lavage Fluid Detects Early Endometrial Cancers and Reveals a Prevalent Landscape of Driver Mutations in Women without Histopathologic Evidence of Cancer: A Prospective Cross-Sectional Study. *PLoS Med.* 2016;13(12):e1002206.

134. Casas-Arozamena C, Díaz E, Moiola CP, Alonso-Alconada L, Ferreirós A, Abalo A, et al. Genomic Profiling of Uterine Aspirates and cfDNA as an Integrative Liquid Biopsy Strategy in Endometrial Cancer. *J Clin Med.* 2020;9(2).

135. Casas-Arozamena C, Moiola CP, Vilar A, Bouso M, Cueva J, Cabrera S, et al. Noninvasive detection of microsatellite instability in patients with endometrial cancer. *Int J Cancer.* 2023;152(10):2206-17.

136. Yang J, Barkley JE, Bhattacharai B, Firouzi K, Monk BJ, Coonrod DV, et al. Identification of Endometrial Cancer-Specific microRNA Biomarkers in Endometrial Fluid. *Int J Mol Sci.* 2023;24(10).

137. Bagaria M, Shields E, Bakkum-Gamez JN. Novel approaches to early detection of endometrial cancer. *Curr Opin Obstet Gynecol.* 2017;29(1):40-6.

138. O'Flynn H, Ryan NAJ, Narine N, Shelton D, Rana D, Crosbie EJ. Diagnostic accuracy of cytology for the detection of endometrial cancer in urine and vaginal samples. *Nat Commun.* 2021;12(1):952.

139. Pelegrina B, Paytubi S, Marin F, Martínez JM, Carmona Á, Frias-Gomez J, et al. Evaluation of somatic mutations in cervicovaginal samples as a non-invasive method for the detection and molecular classification of endometrial cancer. *EBioMedicine.* 2023;94:104716.

140. Evans I, Reisel D, Jones A, Bajrami A, Nijjar S, Solangon SA, et al. Performance of the WID-qEC test versus sonography to detect uterine cancers in women with abnormal uterine bleeding (EPI-SURE): a prospective, consecutive observational cohort study in the UK. *Lancet Oncol.* 2023;24(12):1375-86.

141. Illah O, Scott M, Redl E, Barrett JE, Schreiberhuber L, Herzog C, et al. High performance of the DNA methylation-based WID-qEC test for detecting uterine cancers independent of sampling modalities. *Int J Cancer.* 2024;155(5):800-6.

142. Zhao X, Yang Y, Fu Y, Lv W, Xu D. DNA methylation detection is a significant biomarker for screening endometrial cancer in premenopausal women with abnormal uterine bleeding. *Int J Gynecol Cancer.* 2024;34(8):1165-71.

143. Cai B, Du J, Wang Y, Liu Z, Wang Y, Li L, et al. The endometrial cancer detection using non-invasive hypermethylation of CDO1 and CELF4 genes in women with postmenopausal bleeding in Northwest China. *Cytojournal.* 2024;21:15.

144. Łaniewski P, Cui H, Mahnert ND, Mourad J, Borst MP, Willmott L, et al. Protein biomarkers in cervicovaginal lavages for detection of endometrial cancer. *Biomark Res.* 2022;10(1):88.

145. Martinez-Garcia E, Coll-de la Rubia E, Lesur A, Dittmar G, Gil-Moreno A, Cabrera S, et al. Cervical Fluids Are a Source of Protein Biomarkers for Early, Non-Invasive Endometrial Cancer Diagnosis. *Cancers (Basel)*. 2023;15(3).

146. Njoku K, Pierce A, Chiasseroni D, Geary B, Campbell AE, Kelsall J, et al. Detection of endometrial cancer in cervico-vaginal fluid and blood plasma: leveraging proteomics and machine learning for biomarker discovery. *EBioMedicine*. 2024;102:105064.

147. Harris HJ, Łaniewski P, Cui H, Roe DJ, Chase DM, Herbst-Kralovetz MM. Cervicovaginal lavages uncover growth factors as key biomarkers for early diagnosis and prognosis of endometrial cancer. *Mol Biomed*. 2024;5(1):55.

148. Cheng SC, Chen K, Chiu CY, Lu KY, Lu HY, Chiang MH, et al. Metabolomic biomarkers in cervicovaginal fluid for detecting endometrial cancer through nuclear magnetic resonance spectroscopy. *Metabolomics*. 2019;15(11):146.

149. Lorentzen GM, Laniewski P, Cui H, Mahnert ND, Mourad J, Borst MP, et al. Cervicovaginal metabolome and tumor characteristics for endometrial cancer detection and risk stratification. *Clin Cancer Res*. 2024.

150. Yi R, Xie L, Wang X, Shen C, Chen X, Qiao L. Multi-Omic Profiling of Multi-Biosamples Reveals the Role of Amino Acid and Nucleotide Metabolism in Endometrial Cancer. *Front Oncol*. 2022;12:861142.

151. Fiegl H, Gattringer C, Widschwendter A, Schneitter A, Ramoni A, Sarlay D, et al. Methylated DNA collected by tampons--a new tool to detect endometrial cancer. *Cancer Epidemiol Biomarkers Prev*. 2004;13(5):882-8.

152. Bakkum-Gamez JN, Wentzensen N, Maurer MJ, Hawthorne KM, Voss JS, Kroneman TN, et al. Detection of endometrial cancer via molecular analysis of DNA collected with vaginal tampons. *Gynecol Oncol*. 2015;137(1):14-22.

153. Wen KC, Huang RL, Chen LY, Wu TI, Lu CH, Chu TY, et al. Endometrial Cancer Detection Using a Cervical DNA Methylation Assay (MPap) in Women with Abnormal Uterine Bleeding: A Multicenter Hospital-Based Validation Study. *Cancers (Basel)*. 2022;14(17).

154. Herzog C, Marín F, Jones A, Evans I, Reisel D, Redl E, et al. A Simple Cervicovaginal Epigenetic Test for Screening and Rapid Triage of Women With Suspected Endometrial Cancer: Validation in Several Cohort and Case/Control Sets. *J Clin Oncol*. 2022;40(33):3828-38.

155. Wever BMM, van den Helder R, van Splunter AP, van Gent M, Kasius JC, Trum JW, et al. DNA methylation testing for endometrial cancer detection in urine, cervicovaginal self-samples and cervical scrapes. *Int J Cancer*. 2023;153(2):341-51.

156. Wang SF, Du CY, Li M, Wen B, Shen QJ, Ma F, et al. Endometrial Cancer Detection by DNA Methylation Analysis in Cervical Papanicolaou Brush Samples. *Technol Cancer Res Treat*. 2024;23:15330338241242637.

157. Kim N, Kim YN, Lee K, Park E, Lee YJ, Hwang SY, et al. Feasibility and clinical applicability of genomic profiling based on cervical smear samples in patients with endometrial cancer. *Front Oncol*. 2022;12:942735.

158. Mayo-de-Las-Casas C, Velasco A, Sanchez D, Martínez-Bueno A, Garzón-Ibáñez M, Gatius S, et al. Detection of somatic mutations in peritoneal lavages and plasma of endometrial cancer patients: A proof-of-concept study. *Int J Cancer*. 2020;147(1):277-84.

159. Ayyagari VN, Li M, Diaz-Sylvester P, Groesch K, Wilson T, Pasman Z, et al. Evaluation of sterol-o-acyl transferase 1 and cholesterol ester levels in plasma, peritoneal fluid and tumor tissue of patients with endometrial cancer: A pilot study. *Oncol Lett*. 2023;25(6):231.

160. Jiang XH, Yao ZY, He X, Zhang JB, Xie K, Chen J, et al. Clinical significance of plasma anti-TOPO48 autoantibody and blood survivin-expressing circulating cancer cells in patients with early stage endometrial carcinoma. *Arch Gynecol Obstet*. 2019;299(1):229-37.

161. Kumari P, Sharma I, Saha SC, Srinivasan R, Bhardwaj P. Role of serum microRNAs as biomarkers for endometriosis, endometrioid carcinoma of ovary & endometrioid endometrial cancer. *Indian J Med Res*. 2022;156(3):516-23.

162. Zhou L, Wang W, Wang F, Yang S, Hu J, Lu B, et al. Plasma-derived exosomal miR-15a-5p as a promising diagnostic biomarker for early detection of endometrial carcinoma. *Mol Cancer*. 2021;20(1):57.

163. Sommella E, Capaci V, Aloisio M, Salviati E, Campiglia P, Molinario G, et al. A Label-Free Proteomic Approach for the Identification of Biomarkers in the Exosome of Endometrial Cancer Serum. *Cancers (Basel)*. 2022;14(24).
164. Dossus L, Kouloura E, Biessy C, Viallon V, Siskos AP, Dimou N, et al. Prospective analysis of circulating metabolites and endometrial cancer risk. *Gynecol Oncol*. 2021;162(2):475-81.
165. Trabert B, Geczik AM, Bauer DC, Buist DSM, Cauley JA, Falk RT, et al. Association of Endogenous Pregnenolone, Progesterone, and Related Metabolites with Risk of Endometrial and Ovarian Cancers in Postmenopausal Women: The B~FIT Cohort. *Cancer Epidemiol Biomarkers Prev*. 2021;30(11):2030-7.
166. Breeur M, Ferrari P, Dossus L, Jenab M, Johansson M, Rinaldi S, et al. Pan-cancer analysis of pre-diagnostic blood metabolite concentrations in the European Prospective Investigation into Cancer and Nutrition. *BMC Med*. 2022;20(1):351.
167. Hao C, Lin S, Liu P, Liang W, Li Z, Li Y. Potential serum metabolites and long-chain noncoding RNA biomarkers for endometrial cancer tissue. *J Obstet Gynaecol Res*. 2023;49(2):725-43.
168. Shen Y, Tian Y, Ding J, Chen Z, Zhao R, Lu Y, et al. Unravelling the molecular landscape of endometrial cancer subtypes: insights from multi-omics analysis. *Int J Surg*. 2024.
169. Ding H, Wang J, Zhao X, Xiu S, Cai H, Ma J, et al. Combination of circulating tumor cells, lncRNAs and DNA methylation for the diagnosis of endometrial carcinoma. *Oncol Lett*. 2024;28(5):545.
170. Liu J, Hu D, Lin Y, Chen X, Yang R, Li L, et al. Early detection of uterine corpus endometrial carcinoma utilizing plasma cfDNA fragmentomics. *BMC Med*. 2024;22(1):310.
171. Kacírová M, Bober P, Alexovič M, Tomková Z, Tkáčiková S, Talian I, et al. Differential Urinary Proteomic Analysis of Endometrial Cancer. *Physiol Res*. 2019;68(Suppl 4):S483-s90.
172. Bakkum-Gamez JN, Sherman ME, Sletterdahl SW, Mahoney DW, Lemens MA, Laughlin-Tommaso SK, et al. Detection of endometrial cancer using tampon-based collection and methylated DNA markers. *Gynecol Oncol*. 2023;174:11-20.
173. Jiang Y, Wang C, Zhou S. Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology. *Semin Cancer Biol*. 2023;96:82-99.
174. Price WN, 2nd, Cohen IG. Privacy in the age of medical big data. *Nat Med*. 2019;25(1):37-43.
175. van 't Erve I, Medina JE, Leal A, Papp E, Phallen J, Adleff V, et al. Metastatic Colorectal Cancer Treatment Response Evaluation by Ultra-Deep Sequencing of Cell-Free DNA and Matched White Blood Cells. *Clin Cancer Res*. 2023;29(5):899-909.
176. Malorni L, Bianchini G, Caputo R, Zambelli A, Puglisi F, Bianchi GV, et al. Serum thymidine kinase activity in patients with HR-positive/HER2-negative advanced breast cancer treated with ribociclib plus letrozole: Results from the prospective BioItaLEE trial. *Eur J Cancer*. 2023;186:1-11.
177. Leal T, Kotchek R, Ramlau R, Zhang L, Milanowski J, Cobo M, et al. Tumor Treating Fields therapy with standard systemic therapy versus standard systemic therapy alone in metastatic non-small-cell lung cancer following progression on or after platinum-based therapy (LUNAR): a randomised, open-label, pivotal phase 3 study. *Lancet Oncol*. 2023;24(9):1002-17.
178. Hedayat S, Cascione L, Cunningham D, Schirripa M, Lampis A, Hahne JC, et al. Circulating microRNA Analysis in a Prospective Co-clinical Trial Identifies MIR652-3p as a Response Biomarker and Driver of Regorafenib Resistance Mechanisms in Colorectal Cancer. *Clin Cancer Res*. 2024;30(10):2140-59.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.