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Abstract

Endometrial cancer is one of the most prevalent gynecologic malignancies in developed countries,
with its incidence steadily increasing each year. Early diagnosis is crucial for a favorable prognosis;
however certain patients experience recurrence and distant metastasis after surgery, similar to
advanced cancer patients, with limited treatment options. Therefore, effective strategies for early
screening, diagnosis, predicting local recurrence, and guiding rapid treatment interventions are
essential for improving survival rates and prognosis. Liquid biopsy, a method known for being non-
invasive, safe, and effective, has attracted widespread attention for cancer diagnosis and treatment.
Although its clinical application in endometrial cancer is less established than in other cancers,
research on biomarkers using liquid biopsy in endometrial cancer patients is currently in progress.
This review examines the latest advancements in non-invasive biomarkers identified through liquid
biopsy and provides a comprehensive overview of their clinical applications in endometrial cancer.
Additionally, it discusses the challenges and future prospects of liquid biopsy, offering valuable
insights into the diagnosis and personalized treatment of endometrial cancer.

Keywords: liquid biopsy; endometrial cancer; biomarkers; non-invasive; personalized medicine;
early diagnosis

1. Introduction

Endometrial cancer (EC), a malignant epithelial tumor of the uterus, ranks sixth among the most
common cancers in women from developed countries [1]. Despite our expanding understanding
about EC over time, both incidence and mortality rates continue to rise steadily [1, 2]. Prognosis in
EC largely depends on the tumor stage at diagnosis. The 5-year survival rate for Stage I patients is
approximately 92%, but declines significantly in more advanced stages, dropping to 74%, 48%, and
15% for Stages II, Il and IV, respectively [3]. Current EC guidelines recommend surgery for early-
stage, low-risk cases, and a combination of surgery and postoperative adjuvant therapy for high-risk
or advanced cases [4]. Notably, since the International Federation of Gynecology and Obstetrics
(FIGO) incorporated molecular typing into the EC staging system in August 2023 [5], molecular
profiling has become an increasingly valuable tool for guiding treatment decisions. However, despite
these advances, the prognosis for patients with advanced or recurrent EC remains poor [6]. This may
be attributed to the limited sensitivity of current imaging techniques in detecting early metastases,
while molecular subtyping does not aid in the early diagnosis. Within molecular subtype-guided
therapy, patients with the copy-number low (NSMP) subtype, particularly those who are estrogen
receptor-negative, tend to have a significantly worse prognosis [7, 8]. Notably, patients with P53-
abnormal EC have the poorest outcomes; even without chemotherapy, approximately 40% of those
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with TP53-mutations remain disease-free for five years [9]. These challenges highlight the ongoing
need for improved risk stratification and guidance in adjuvant therapy. Therefore, finding more
reliable tools and sensitive biomarkers is crucial for early diagnosis and personalized treatment.
Recently, liquid biopsy has gained significant attention as a promising tool for precision medicine,
cancer diagnosis, and therapy [10]. This technique involves analyzing non-solid biological materials
such as blood, urine, cervical fluid, uterine aspirate, and peritoneal lavage fluid. Compared to
conventional tissue biopsies, liquid biopsies are non-invasive, repeatable, and allow for real-time
monitoring of treatment response and disease progression. They also overcome challenges related to
anatomical sampling, patient age, cost, reproducibility, and clinical complications. Furthermore, they
offer a more comprehensive view of heterogeneous and multifocal metastatic tumors [11]. Although
the use of liquid biopsy in EC is still developing compared to other malignancies, research in this
area is expanding. It is expected to play an important role in early detection, risk assessment,
treatment selection, and real-time disease monitoring in EC. While recent reviews have primarily
focused on blood-based biomarkers in liquid biopsies for EC [12-14], this review takes a broader
perspective. It examines studies that utilize a variety of biosources, including both blood-based and
non-blood-based specimens from EC patients. Additionally, we explore the advantages, limitations,
and future developments of liquid biopsy technologies, offering new insights and directions for the
personalized diagnosis and management of EC.

2. Methods

For this review, we searched PubMed (MEDLINE) in February 2025 for full-text, English-
language articles on liquid biopsy in endometrial cancer published between January 2019 and

i

January 2025. The search used the keywords “liquid biopsy,” “endometrial cancer,” and “clinical
relevance.” We screened 720 titles for relevance to liquid biopsy, ultimately selecting 82 articles
focused on endometrial cancer for detailed analysis. Additionally, foundational studies published
before 2019 were included if they were frequently cited in recent research, particularly those

describing key classifications, methods, or biomarkers.

3. Biological Components of Liquid Biopsy

Liquid biopsy targets can be broadly categorized into two groups based on their biological
nature. The first includes cell-free molecules such as proteins, lipids, carbohydrates, metal ions,
nucleic acids, and small metabolites. The second consists of cellular or subcellular components,
including extracellular vesicles, circulating mitochondria [12], circulating tumor cells, peripheral
blood mononuclear cells (PBMCs), circulating cancer-associated fibroblasts (CAF) [13], and tumor-
educated platelets (TEP) [14]. Detection methods vary depending on the specific target type in the
sample.

3.1. Circulating Tumor Cells

Circulating tumor cells (CTCs), originating from primary solid tumors or metastatic sites, enter
the peripheral circulation through processes such as cellular invasion, matrix degradation, and
angiogenesis. Only a small subset of CTCs—those with stem cell-like properties or epithelial-
mesenchymal transition (EMT) features —can survive and migrate. Most CTCs are quickly eliminated
by the immune system or destroyed by shear forces [15]. CTCs have a very short half-life, ranging
from 1 to 2.4 hours [16], and are extremely rare, with only 0 to 28 cells typically detected in 7.5
milliliters of blood [17]. Their high heterogeneity leads to variable surface biomarker expression [18],
making detection and the development of standardized treatment guidelines challenging. CTC
detection typically involves three main stages: enrichment, detection, and analysis. Enrichment
methods use physical properties-such as density, size and electrical charge-or biological approaches
based on specific binding to cell surface antigens, or a combination of both. Molecular detection
methods for CTCs include: (i) Nucleic acid analysis: Techniques such as fluorescence in situ
hybridization (FISH) [19], microarrays [20] and Polymerase Chain Reaction (PCR)-based techniques
[21], and sequencing-based techniques [22] are employed to detect genomic DNA or RNA signatures
from CTCs in various body fluids. While these methods offer high sensitivity, their accuracy can be
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affected by background substances, including non-specific DNA/RNA, PCR inhibitors, and cross-
hybridization, potentially leading to false positives or reduced accuracy. (ii) Protein Analysis: This
approach focuses on identifying and characterizing surface or intracellular proteins of CTCs using
techniques such as microfluidic technology [23] and enzyme-linked immunospot (ELISPOT) [24, 25].
While this approach reduces extensive or invasive manipulation of the target cells, thereby
minimizing potential cellular interference, it can be time-consuming. (iii) Cellular function analysis:
Culturing CTCs in vitro allows for the study of their proliferation, transformation, and invasion
capabilities. Although this method offers high specificity, it is prone to cultivation failure due to the
low viability and heterogeneity of CTCs, as well as factors such as initial cell count, cancer type, and
culture conditions. [26].

3.2. Circulating Tumor DNA and Cell-Free DNA

Extracellular DNA fragments known as cell-free DNA (cfDNA) are discharged into the
bloodstream by a number of cellular processes, including necrosis, apoptosis, and secretion [27].
These fragments, which may be single- or double-stranded, gain stability in circulation by binding to
cell membranes and extracellular proteins, protecting them from nuclease-mediated degradation and
rapid clearance. Circulating tumor DNA (ctDNA), released by cancer cells, reflects the tumor
genomes from various sites, including primary tumors, CTCs, and metastases. Unlike a single tissue
biopsy, ctDNA captures the molecular heterogeneity of cancer. It contains key genetic alterations
found in tumor tissues, such as chromosomal rearrangements, point mutations, copy number
variations, epigenetic modifications, insertions, and deletions [28]. In cancer patients, ctDNA levels
range from 0.01% and 10% [29]. It is typically shorter than cfDNA —about 134 to 144 base pairs—with
a half-life of approximately 114 minutes, making it a valuable tool for real-time tumor monitoring
and assessing treatment response [29, 30].

The concentration of ctDNA in plasma is relatively low, but due to less contamination from
white blood cell DNA, it is typically the preferred choice in clinical tests [31]. PCR-based methods,
including droplet digital PCR (ddPCR), digital PCR (dPCR), and quantitative PCR (qPCR), are
commonly used for detecting cfDNA and ctDNA due to their cost-effectiveness and high sensitivity.
However, their limited ability to detect multiple mutations has led to the growing use of Next-
Generation Sequencing (NGS) techniques for more comprehensive analysis, such as CAncer
Personalized Profiling by deep Sequencing (CAPP-Seq) [32].

Epigenetic modifications, particularly ctDNA methylation patterns, have emerged as important
biomarkers for cancer diagnosis and prognosis. Detection methods for tDNA genomic regions, and
genome-wide methods that enable comprehensive analysis [33]. PCR-based assays such as
methylation-specific PCR (MSPCR) [34] and droplet digital MSPCR (ddMSPCR) [35], as well as target
bisulfite sequencing, are examples of targeted approaches. Whole-genome bisulfite sequencing
(WGBS) [36], TET-assisted pyridine borane sequencing (TAPS) [37], reduced representation bisulfite
sequencing (RRBS) [38], and Infinium methylation arrays (HM450, HM850) [39] are examples of
technologies used in genome-wide approaches, which include both site-specific and region-wide
analysis. Advanced techniques, such as cfMeDIP-seq and nanopore sequencing, further enhance
methylation profiling and are especially well-suited for analyzing the low-abundance, fragmented
ctDNA found in liquid biopsies [33].

3.3. Circulating Tumor RNA and Cell-Free RNA

Cell-free RNA (cfRNA), including circulating tumor RNA (ctRNA) derived from cancer cells,
consists of various types such as circular RNA (circRNA), microRNA (miRNA), and long non-coding
RNA (IncRNA). cfRNA is released through passive mechanisms like normal cellular activity or cell
death [40], as well as active secretion by cells. Although ¢fRNA has a plasma half-life of just 15
seconds, its stability is enhanced through interactions with proteins [41], proteolipid complexes, and
extracellular vesicles [42]. Detection methods for ¢fRNAs and ctDNAs are similar and include
quantitative reverse transcription PCR (qRT-PCR), reverse transcription PCR (RT-PCR), and RNA
sequencing using NGS. Among these, qRT-PCR stands out for its high sensitivity, reproducibility,
and accuracy in quantifying cfRNA [43].
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Individual cfRNA profiles vary significantly, and the lack of standardized clinical protocols
often leads to false positive and false negative results. Consequently, researchers have tried to focus
on RNA methylation. Common techniques for detecting RNA methylation include antibody-based
immunoprecipitation combined with deep sequencing, mass spectrometry (MS), thin-layer
chromatography, radioactive isotope incorporation, and bisulfite modification followed by
sequencing [44]. Among these, methylated RNA immunoprecipitation sequencing (MeRIP-seq)
remains a key method for identifying RNA methylation modifications [45].

3.4. Extracellular Vesicles

Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, are
distinguished by their size, surface properties, biogenesis pathways, and molecular content.
Exosomes, first discovered in the late 1960s [46], are the tiniest nanoscale EVs, typically ranging from
40 to 200 nm in diameter and having a density of 1.13 to 1.18 g/mL [47]. Produced by nearly all cell
types under both healthy and diseased conditions, these vesicles facilitate the transfer of proteins,
lipids, and nucleic acids, playing a key role in intercellular communication [47]. In cancer, EVs are
involved in nearly every stage of disease progression, including the transformation of normal cells
[48], tumor growth [49], angiogenesis [50], modulation of tumor microenvironment [51], invasion
and metastasis [52], drug resistance [53], and EMT [54]. As such, EVs are considered promising
candidates for cancer diagnosis, prognosis, and the development of therapeutic biomarkers.

Methods for EV enrichment and detection leverage their inherent properties, such as size,
density, surface composition, and precipitation behavior. Currently, commonly used techniques
include ultracentrifugation, ultrafiltration, precipitation, immunoaffinity capture, and lipid-based
isolation [55]. Advanced approaches—such as microbeads, microfluidic chips, and thermal
methods—are also being explored to enhance enrichment efficiency. Traditional detection methods
like enzyme-linked immunosorbent assay (ELISA) [56] and Western blot analysis [57] remain reliable.
However, emerging techniques, including colorimetry [58], fluorescence [59], flow cytometry [60]
electrochemical analysis [61], electron microscopy [62], nanoparticle tracking analysis (NTA) [63],
CRISPR/Cas-assisted methods [64], and single exosome detection [65], are enhancing the sensitivity
and specificity of exosome research, particularly in the context of liquid biopsies.

3.5. Proteomics

Proteomics complements genomics, transcriptomics, and metabolomics by analyzing protein
distribution, structure, interactions, and alterations within biological systems to offer a thorough
understanding of biological processes [66]. Unlike the static nature of genomes, proteomes
dynamically vary across different life stages and functional states. Early liquid biopsies efforts in
cancer focused on identifying protein biomarkers in blood. Although over a hundred biomarkers,
such as HE4 for ovarian cancer and SCC for cervical cancer, are used for treatment monitoring and
recurrence assessment, their effectiveness in early detection is limited by insufficient specificity and
sensitivity [67], underscoring the need for more advanced diagnostic approaches.

Technological advancements have revolutionized proteomics, shifting from traditional
moderate-throughput methods such as ELISA and CLIA to high-throughput techniques like
antibody/antigen arrays, proximity extension assays (PEA), reverse phase protein arrays (RPPA), and
aptamer-based platforms [68]. MS now plays a central role, offering rapid protein sequencing, precise
molecular weight determination, and quantitative detection of post-translational modifications [69].
In liquid biopsy analysis, MS is often integrated with liquid chromatography (LC), enzymatic
digestion, and desalting, followed by electrospray ionization (ESI) and tandem MS scanning to
enhance detection accuracy and sensitivity [70]. Recent advancements in MS instrumentation,
including improved ion transmission efficiency and advanced noise-reduction algorithms, have
significantly boosted single-cell and targeted proteomics.

While high-throughput methods support large-scale profiling, single-cell proteomics
technologies address cellular heterogeneity. Techniques like mass cytometry for CTC
immunophenotyping [71], microfluidics-based CTC isolation [72], and single-cell Western blotting
[73] enable detailed protein expression analysis at the single-cell level, providing critical insights into
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cancer cell heterogeneity. However, antibody-based detection still faces limitations in specificity and
throughput, necessitating further optimization to reduce cross-reactivity and enhance multiplexing
capabilities.

3.6. Metabolomics

Metabolomics, systematically defined by Nicholson et al. in 1999 [74], focuses on the
comprehensive analysis of low-molecular-weight metabolites (<1500 Da) using advanced
spectroscopic, electrochemical, and computational techniques. Because metabolites rapidly respond
to microenvironmental changes, they offer dynamic insights into physiological and pathological
states, making metabolomics a highly sensitive approach for biomarker discovery [75]. As a non-
invasive tool in liquid biopsy, metabolomics enables the identification of disease-associated
biomarkers in biofluids; however, its clinical specificity still requires further validation to account for
potential confounding factors. Metabolomics analyses typically follow two complementary
strategies: non-targeted approaches, which explore global metabolite profiles for hypothesis
generation, and targeted approaches, which quantitatively assess predefined metabolites in a
hypothesis-driven manner [76]. Key analytical platforms for metabolomics include nuclear magnetic
resonance (NMR) [77] and MS. NMR offers rapid, non-destructive analysis with high reproducibility;
however, conventional 'H NMR is limited in sensitivity and spectral resolution, especially for low-
abundance metabolites or complex mixtures [77]. Emerging NMR technologies—such as two-
dimensional spectroscopy [77] and cryogenic probe-assisted *C detection [78] —show promise in
addressing these limitations.

MS-based technologies, including gas chromatography-MS (GC-MS) and liquid
chromatography-MS (LC-MS), offer broader metabolite coverage and superior sensitivity [79]. LC-
MS is ideal for non-volatile compounds, while GC-MS is suited for volatile metabolites. Recent
advancements, such as ultra-performance LC-MS/MS (UPLC-MS/MS) [80] and nanoparticle-
enhanced laser desorption/ionization MS (NPELDI-MS) [81], have further improved detection limits
and ionization efficiency, enabling high-throughput metabolomics.

4. Application of Liquid Biopsy in EC

Liquid biopsies are increasingly recognized as valuable tools in EC management, with
applications spanning early detection, prognosis, recurrence monitoring, and therapy guidance. In
the following discussion, original research articles published on PubMed between January 2019 and
January 2025, focusing on the use of liquid biopsy in EC, will be compiled and presented in a
summary table along with relevant commentary. This analysis will be organized from two
perspectives: studies based on blood-derived samples and those utilizing non-blood-derived
specimens.

4.1. Blood-Based Liquid Biopsy in EC

Blood is the primary and most significant source for liquid biopsy. While tumor heterogeneity
poses a major challenge in tissue-based sampling, liquid biopsy using blood allows for a more
comprehensive and dynamic assessment of EC patients (Table 1).

Table 1. Application of liquid biopsy in blood samples.

Author Detection No. of

. . linical
and Year Biomarkers Method participants Clinica

A Ref.
(EC/control) Significance/Findings ccuracy e

CTCs
TOPO48 Combination of TOPO48 AUC:0.927 (0.871-
AAD, AAD and survivin- 0.984) for
Jiang et Survivin- ELISA, RT- 80/ 80 expressing CCC improves combined [160]
al., 2019 expressing PCR-ELISA early diagnosis (93.3% biomarkers;
CCC sensitivity) and prognostic Sensitivity:74.5%
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gPCRand
High-
Throughput
Screening

Herrero
etal,
2021

ANXA2

Francini,

etal., 2023 ER

System

Pan-CK,
GATA3,
HER?2,
HE4, CD13

Law etal,,

2023 Microfluidic

Device

PTEN,
Bolivaret KRAS,
al.,, 2019 CTNNBI,

PIK3CA

NGS

Benatiet cfDNA.

al, 2020  RTL qRT-PCR

Low
Gressel et molecular Fluorometric
al., 2020  weight quantification
cfDNA

Shintani
tal.,
2020

PIK3CA,

KRAS ddPCR

57 EC

CellSearch® 10 stage I-1I

EC

V-BioChip 8 EC/9 other

cancers

(TOPO48 AAD);
Specificity:
100%(TOPO48
AAD)

stratification (survival
outcomes) in early-stage
EC.

ANXA2 expression in
CTCs predicts EC

recurrence and

N/A [122]

progression. Daunorubicin
was identified as inhibiting
ANXA2+ tumor cells.
CTCs were detected in
ovarian vein samples (8/10
patients) during surgery,
but not in peripheral blood
samples. The potential
prognostic value for
recurrence risk requires

N/A [102]

validation in a larger
cohort.
EC patients had
preoperative expression of

all four markers. CD13 was

N/A [105]

identified as an alternative
prognostic marker for both
cervical and CE.

cfDNA or ctDNA

48 EC

40/ 31

91/22

199 EC

Mutations in plasma were
significantly associated
with advanced stage, deep
myometrial invasion,
lymphatic/vascular
invasion, and larger tumor
size.

N/A [82]

AUC (95% CI): 0.87
(0.79-0.95);
Sensitivity (95%
CI):80.0%
(64.35%-90.95%);
Specificity
(95% CI): 80.65%
(62.53%—
92.55%)

cfDNA RTL analysis may

be a diagnostic tool for EC

detection at an early stage,
while its diagnostic
performance seems

unsatisfactory for cancer

progression, staging, and

grading.

(84]

The concentration of LMW
cfDNA was significantly
higher in women with

uterine cancer and

N/A [83]

associated with advanced
stage, aggressive histology
and worse OS.
ctDNA detection in pre-
operative plasma was
linked to advanced FIGO
stage, aggressive histology,

N/A [110]
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LVSI, and shorter RFSand
OS.
TEPs AUC: 97.5%
(vs. healthy),
84.1% (vs. benign);

Si;i;S ctDNA and TEPs ctDNA AUC: 96%
Lukasiewi RNA-Seq looic presented the potential for  (tumor tissue);
czetal, TEPsRNA, and DNA gcf) EZ‘_;;OES EC diagnosis and tumor  69.8% (blood).  [14]
2021 ctDNA  Sequencing 204 health;/ histology evaluation = CtDNA Sensitivity:
preoperatively. 77.8%;
CtDNA Specificity:
58%
Author Detection NO,' of ..
and Year Biomarkers Method participants .. ,Chmcﬁ . Accuracy Ref.
(EC/control) Significance/Findings
PTEN,
TP53
’ Post-operative ctDN A
Feng et FATY, dethtigr}: predicted tumor AUC N/A; o .
al., 2021 ARID1A, ddPCR 9 EC relapse. DFS was shorter for Sen51t.1\.71’Fy.100 e [103]
ZFHX3, . Specificity:83.3
ATM, ctDNA-positive cases.
FBXW7
Pre-surgical ctDNA was
detected in 60% (6/10),and
correlated with advanced
Tumor- . .
Grassiet  specific stage and aggressive 41sease
al. 2001 DNA qPCR 11 EC features. Post-surgical N/A [111]
’ - ctDNA detected in 27%
junctions (3/11), 2/3 experienced
recurrence.
Retrospective:
108 tumor ZS5CAN12 and OXT
Beinse et ZSCANT12, Methyl'at-ion— tissues.,' methyl'ation in 'plla.sma AUC 0.99;
al. 2022 OXT specific ~ Prospective: offered high specificity and Sensitivity: 98%; [86]
’ ddPCR 33/ sensitivity for EC Specificity: 97%
55 prediction.
Kodadaet PNMTA Comelted it mutations
al., 2023 anzlf){}i’ers NGS 21 EC related to ARCH (DNMT3A N/A [85]
and TET2).
Presence of ctDNA at
baseline or post-surgery was
129 genes significantly associated with
Ashleyet  with reduced PFS.
al., 2023 molecular NGS 44 EC Correlation with disease N/A [112]
barcoding stage, progression, and
treatment response.
16 somatic
single 101 stége ! Post-surgical ctDNA
Recioet nucleotide uterine detection is prognostic of N/A
. mPCR-NGS malignancies . ) . [104]
al,, 2024  variants (88% EC) poor RFSin patients with
(SNVs) stage I EC.
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TP53,
DNMT3A, cfDNA sequencing in
Blanc-  PIK3CA, advanced EC provided 90%
Durand et PTEN, informative results and
al.,, 2024 ERBB2, NG5 61 EC 87.5% accuracy in molecular N/A [121]
CTNNBI, subclassification.
PPP2R1A
TP53, Hybrid
PIK3CA,  capture
PTEN, NGS for 1,988
ARIDI1A, SNVs, . .
Pamela et . advanced TP53 mutations associated
al., 2024 KRAS, indels, / recurrent with worse OS. N/A [114]
! CCNEL1, CNVs, BC
ERBB2, fusions,
FBXW?7 MSI, bTMB
PTEN,
PIK3CA,
TP53,
Casas- ARIDIA, ddPCR, .
Targeted High pre-surgery c¢fDNA
Arozamen KRAS, .
aetal, CTNNBL sequenc.:mg, 198 EC and dete.ctable ctDNA N/A (115]
Qubit correlate with poor DFS and
2024 PLIGRI, fluorometry DSS.
FBXW?7,
PPP2R1A,
FGFR2
Author . No. of
and . Detection participants Clinical
Year Biomarkers  Method (EC/control)  Significance/Findings Accuracy Ref.
P53, 24 EC, 17 OC, 2
PIK3CA, synchron(?us
PTEN, endome'ztrlal / Preoperative ctDNA
Jamieson KRAS, ov'arlan detection was associated
etal, CTNNBI, NGS carcinomas with advanced stage, N/A [113]
2025 AKT1, (SEOC)', 1 elevated CA125, and
BRAF, endocerchal recurrence.
ERBBD adenocarcinoma
cfRNA or ctRNA
AUC (95% CI): [EC
vs. controls: 0.883
(0.826-0.926), EC
vs.
hyperplasia: 0.766
Higher IncRNA DLEU1 (0.697-0.826)];
128 /50 . -
et s et 19 e S £€
ane nc . with advan ntrols: 77.3%,
al.,, 2020 DLEU1 RT-qPCR hYPi:)};’lltizllz/w clinicopathological vs. hyperplasia: (1171

features and worse overall 60.9%]; Specificity:

and DFS in EC patients.

[EC vs. controls:
92.0%, EC vs.
hyperplasia:

90.0%]
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AUC: [Training:

0.748, Testing:
0.833, External
miR-20b-5p, Validati.ol.'u 9.967] ;
miR- 143-3p, . . Sén.smwty:
) The 6-miRNA signature [Training: 78.4%,
miR-195- .
) demonstrated very Testing: 77.1%,
Fanet 5p, miR-204- consistent diagnostic External
al, 2021 . 2P, qRT-PCR 92/102 performance in three  Validation: 83.3%]; (871
miR-423-3p, pe
miR- 484 datasets across cohorts. Specificity:
[Training: 63.0%,
Testing: 66.7%,
External
Validation100% ]
Metastasis of lymph nodes AUC (95% Cl):
Wu et was associated with 0.923 (0.847-
miR-204-5p RT-qPCR 52 /60 . 1.000); Sensitivity: [116]
al., 2022 down-regulation of serum 87.2%;
miR-204-5p. Specificity: 80%
miRNA133a- These miRNAs could
Salimet 2, miRNA- serve as potential
al,, 2022 21, miRNA- RT-PCR 36 15 prognostic biIc))markers for N/A [118]
205 endometrial carcinoma.
miR-16, AUC: 0.957 (miR-
miR-99b, miR-16, miR-99b, miR- 145);
Kumari miR-20a, 125a, and miR-145 could  Sensitivity: 90%
etal, miR-145, qRT-PCR 10 /10 serve as diagnostic (miR- [161]
2023  miR-143, indicators for 145);Specificity:
miR- 125a endometrioid EC. 100% (miR-145)
These RNAs hold
potential as early
biomarkers for EC, which
miR-155-5p, could facilitate timely
Rostami miR- 200b- interventions.
etal, 3p, miR-589- g::;lifiz 316 /316 Relationships between EC N/A [88]
2024 5p, and and miRNAs were
others modified by body mass
index, physical activity,
and smoking status.
EVs
Author Detection 1\!0.' of ..
and Year Biomarkers Method participants .. .C11n1ca¥ . Accuracy Ref.
(EC/control)  Significance/Findings
Plasma exosomal
TMT 87EC/12 AUC (95% CI):
Songetal, |- .1s3BP Labelling, ~AEH CChLS3BPlevelscorrelated o0 6a0s  (100)
2020 ELISA /42 controls "1 EC progression and 0.8305)
poor prognosis.
. EX(?somal mlI.{—l.Sa—Sp was AUC: 0.813
Zhou et rr.uR—15a—5p, highly Predlctlve of the (miR-15a-5p);
al, 2021 miR- 106b-5p, ddPCR  115/87 aggressiveness and p53 0.899 miR-15a-5p [162]

miR-107

mutation status of EC
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tumours and markedly =~ combined serum

elevated in early-stage EC. tumor markers

(CEA and CA125)
AUC (95% CI):
eedeiprin 090D
Sommella - CA1 HBD, :efumC:xos}c;rlrllEseild?cztin Sens;ti?it : 10(’)‘7
etal., 2022 LPA,SAA4, LFQ-MS 36/36 . ’ 5 Y ’ [163]
potential as early- stage EC  (Stage 1 EC);
PF4V1, APOE . e
biomarkers. Specificity: 86.11%
(Stage 1 EC)
Proteomics
Six proteins could A()[;(():o(gg /5 g;)
Tarney CFB, TF, CAT, distinguish EC cases from S ' 9 "t _ 4'5 éo/
CMetal.,, PSMB6, B2M, HPLC- 112112 the control group, with erzs1 ?Hffyo 5)'. ? [90]
2019 PCDHI18 MS/MS strongest performance <2 g}l)lei:)iﬁ'ci;fy-,
years pre-diagnosis.  g¢ 4o, itoff: 0.5)
Study identified 16 proteins
with diagnostic potential
CLU, for EC. Validation sh d
Usaetal, SERPINCI, 2D-DIGE, Y omotlation o CLL. | AUC:09289;
S0l ITIH4 CIRL, WB,LC-  15/15 ITIHIZ ngRPIKI C(i C1RL ip, Sensitivity: 100%; [89]
APOC3, DSG1 MS/MS ! ’ Specificity: 86.67%
EC serum
and exosomes.
Combined proteins from
Gal-1, Gal-9, Proximity the Immuno-oncology AUC (95% CI):
. panel and the Target 96 0.969 (0.939-
Uraetal, MMP7, extension Oncology III panel showed 0.999); Sensitivity:
2022 FASLG,  assay  44/44 .0 0B ipancisnowed BIE) Y o1
differential expression in 97.67%;
COLY9A1 (PEA) . i
early-stage Type I EC with Specificity: 83.72%
high diagnostic accuracy
Proteomic:
10
. Suprabasin 2D-DIGE / 10,' In s.erurn or' tissue, SBSN, AUC: [Isoform 2
Celsietal,  (SBSN) and MS, Validation: particularly isoform 2, may (serum): 075
2022 (isoforms 1 & validated  30/30 be a novel biomarker for (tissue)'. 0 79]' [99]
2) by WB  (serum), EC. o
30/30
(tissue)
Downregulation of FABP-1
FABP-1, a-2 and haptoglobin, and
Mujamma macroglobulin,2D-DIGE, 8 diabetic upregulation of ERO1-a, a-
mietal., ZAG, Erol-a, MALDI- EC /8 non 2-macroglobulin, and ZAG N/A [119]
2024  haptoglobin, TOF-MS . . in EC with diabetes
diabeticEC . . .
and others indicated severe disease
and poor prognosis.
Metabolomics
Metabolite patterns were
associated with survival.
Strand et 183 . . AUC: [Model3:
al, 2019  metabolites LC-MS 40 EC Methionine sulfoxide 0.965 (0.913-1)] [106]

elevation was linked to
poor prognosis.
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Training: The EC screening of
.. 120 postmenopausal women  Sensitivity: 100%;
er Olzsazeg ;ifaf;‘ilgs GC-MS  (50/70), usinganensemble EML  Specificity:  [100]
7 Validation:  algorithm achieved an 99.86%
1430 accuracy rate of > 99%.
Author . Detection parﬁ(c)i.::nts Clinical
and Year Biomarkers Method (EC/control) Significance/Findings Accuracy Ref.
Low levels of 17-OHP,
11-DOC, and A4 were
Forsseet 17-OHP, 11-DOC, associated with
al., 2020 Ad, E1 E2 LC-MS/MS 100 EC aggressive EC N/A [107]
phenotypes and poor
disease-specific
survival.
AUC (95% CI):
Combined panel 0.925 (0.905-
Kozar et Cerarr.lifies, HPLC- i‘den.tified as superior to 0.9‘4‘5) ;
al. 2001 acylcarnitines, 1- TQMS 15/21  individual biomarkers Sensitivity: [92]
’ methyladenosine for early disease 94%;
detection. Specificity:
75%
Lipid metabolites
. . effectively
:]Ol;g;t z};ﬁigﬁgﬁz MS 67/69  discriminated ECEC ~ AUC:095 [93]
N in women with BMI > 30
kg/m2.
Dossus et Amino acids, Identified metabolites
al. 2021 sphingolipids, = LC-MS/MS 853 /853 were associated with EC N/A [164]
’ carnitine risk
17-
Pregnenolone won mverely svsoised
rogesterone, 17- EC: 65/ 345; . .
Trabertet hl;ldrixypregnenolo LC-MS/MS OC: 67 /413 W,lt,h EC risk an d N/A [165]
al., 2021 positively associated
ne, and others . .
with ovarian cancer
risk.
AUC: [EP vs.
EC: 0.915; EP
vs.
Specific biomarkers for S;;tﬁgf}]”
6-keto-PGF1a, PA endometrial polyps [EP vs. EC:
Yanetal, (37:4), LysoPC UPLC-Q- 326 /225 were identified to 100%: éP v's (9]
2022 (20:1), PS (36:0) TOE/MS distinguish them from ELL '1 00% ];'
EC or hyperplasia. Specificity: [EP
vs. EC: 72.41%;
EP vs. EH:
100%]
y . . . Leptin was significantly
Roskar et Leptin, IL-8, sTie- Luminex higher in EC patients
al., 2022 2, Follistatin, xMAP™ 91/111 ’ [97]

especially in Type 1 EC.
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Neuropilin-1, G- Multiplexing

IL-8 levels were AUC:

CSF Technology elevated in Type 2 EC, [Training: 0.94
poorly differentiated G3 ~ Test: 0.81]
tumors and those with
vascular invasion.
An inverse association
between EC risk and a
zrie;)rz‘;t 117 metabolites ;&hﬁs/lwﬂ\fs 1706 EC glyeine/serine N/A  [166]
metabolite cluster was
found.
AUC:
[Discovery:
0.903
Discovery: Validation:
18/ 02
Ursodeoxycholic 20, Lipid biomarkers [SSI;S:::;?;
Cheng et acid, PC (O- Validation: ~ differentiated early- 83.3% '
al. 2023 14:0_20:4), Cer UHPLC- 20EC/20 stage EC from healthy Validation:  [94]
/ (d18:1/18:0) MS/MS atypical controls and AEH 85%];
endometrial patients. e
hvperplasia Specificit:
yperp [Discovery:
85%
Validation:
85%]
Higher preoperative
11-oxygenated free 11KAST and
. postoperative 110HAST
Dahmani androgens levels were associated
etal., 2023 (11KAST, LC-MS/MS 272 EC 1 . N/A [108]
110HAST, etc.) with increased risk of
recurrence and poor
DES.
Histidine and
Hishinuma LysoPC, TGs UHPLC tryptophan levels fnlit(;b[;iotle)s?
etal., 2023 amino acids MS/MS 142/154  decreased W,lth disease 0.997 [109]
progression zjmd (0.986-1)]
recurrence risk.
Author Detection parlz(c)i.::nts Clinical
and Year Biomarkers = Method (EC/control) Significance/Findings Accuracy Ref.
Plasma metabolic
Benabdelk 20 EC, signatures . .
amel et 338 . LC-HRMS 20hyperplasia, distinguished EC and AUC,' [1_5 metabolic [95]
metabolites . variation: 0.821]
al., 2024 19 controls ~ hyperplasia from
healthy controls.
Multi-
omics
Endometrial
. AUC: 2,3-
Metabolites LC-MSMS, - dysplasia: 4, Metabolitesand  Pyridinedicarboxylic
Haoetal,, LncRNA Stage I EC: 4, .
2023 and sequencing Stage I EC: 4, IITCRNAS correla’Fed acid: 0.?9, . [167]
IncRNAs with EC progression. hematommic acid,

controls: 4
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ethyl ester: 0.69,
maltitol: 0.69, 13 (S)-
HODE: 0.88, D-
mannitol:0.69
Various

Shenet metabolites GWAS and 121,885 Key metabolites and

Mendelian  participants ~ proteins influenced

al, 2024 anc? Randomization (12,906 EC) EC subtypes. N/A [168]
proteins
Combined biomarkers AUC (95% CD): 0.94
CTCs, . . . . . (0.89-0.98);
Microfluidic improved diagnostic N
IncRNAs, . . Sensitivity (95% CI):
. CTCisolation, accuracy for EC o
Dinget and DNA 89% (82—
. RT-qPCR, 71/14 compared to . [169]
al., 2024 methylation MSP/qMSP individual biomarkers 94%); Specificity
markers 4 alone (95% CI): 92%
’ (85-96%)
AUC: [Training:
ML model was oo 0y
Training: 133 developed and ' [T, raining: v
7 intained high )
Liuetal, CNV, FSD, (66/67)  maintained high 5 oo -\ i dation:
WGS Validation: 89 ~ performance in [170]
2024 NF . 97.8%];
(44/45) independent e
. . Specificity:
validation with stage I ..
EC [Training: 95.5%;

Validation: 95.5%]

4.1.1. Early Diagnosis

The utility of cfDNA and cfRNA in the diagnosis of EC has been demonstrated [82]. Compared
to cfRNA, cfDNA is generally preferred by researchers due to its greater stability and the more
advanced state of detection technologies. Researchers have investigated cfDNA from various
perspectives. For instance, in terms of concentration, Gressel et al. [83] found that the median
concentration of low-molecular-weight (LMW) cfDNA was significantly higher in EC patients
compared to healthy controls. In contrast, Benati et al. [84] examined relative telomere length (RTL)
in cfDNA and found EC patients had markedly shorter RTL than healthy individuals with promising
early diagnostic accuracy (AUC = 0.87). More commonly, studies focus on gene mutations [14, 85] or
DNA methylation [86], utilizing either PCR- based or sequencing technologies. For example, Beinse
et al. [86] identified hypermethylation of the ZSCAN12 and OXT genes in the ctDNA of EC patients.
Using ddPCR, they achieved high diagnostic sensitivity and specificity (both 97%), successfully
detecting ctDNA in 14 of 31 plasma samples collected before surgery or chemotherapy, including
cases from both early and advanced stages. These findings highlight the potential of ctDNA
methylation analysis as a non-invasive and personalized tool for monitoring and managing EC.

Similarly, cfRNA is being explored as a potential diagnostic biomarker. Fan et al. [87] identified
six miRNAs that were overexpressed in the serum of EC patients. The diagnostic performance of this
six-miRNA signature yielded AUCs of 0.748, 0.833, and 0.967 in training, testing, and external
validation cohorts, respectively. Moreover, the expression levels of miR-143-3p and miR-195-5p in
tissues, as well as miR-20b-5p in serum exosomes, were consistent with their serum levels, further
supporting their diagnostic relevance. In addition to verifying the potential of miRNAs as early
biomarkers, Rostami et al. found that the association between EC and miRNA expression is
modulated by factors such as body mass index, physical activity, and adherence to a Western diet
[88].

An increasing number of studies have demonstrated that the plasma protein profiles or
metabolomic features can aid in the early diagnosis of EC [89-97]. However, the specificity of these
diagnostic approaches remains limited, underscoring the need to combine multiple biomarkers-such
as cfDNA, cfRNA, proteins, and metabolites-to enhance accuracy [95, 98]. With the advancement of
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artificial intelligence (AI), machine learning (ML) has been increasingly applied for biomarker
screening and model development to enhance diagnostic performance diagnostic performance [99-
101]. For instance, Troisi et al. applied an ensemble machine learning (EML) algorithm to screen and
detect EC in postmenopausal women, achieving an accuracy rate of 99% [100]. Despite these
advances, interpreting the results from such “black box” models remains a key challenge for
researchers moving forward. In terms of sample collection site, Francini et al. [102] offered a novel
perspective. In their preliminary study on CTC detection during early-stage EC surgery, 80% of
patients had detectable CTCs in the ovarian vein, whereas none were found in peripheral blood
samples. This suggests that ovarian vein sampling may offer greater sensitivity for CTC detection. In
contrast, Kodada et al. [85] identified DNMT3A and TET2 mutations in ctDNA from peripheral
plasma that were absent in tumor tissue, indicating challenges in distinguishing tumor-specific
mutations from age-related clonal hematopoiesis (ARCH). Their findings suggest that background
noise in EC diagnostics might be reduced by analyzing ctDNA from non-blood specimens such as
uterine lavage fluid.

4.1.2. Recurrence Monitoring

Surgical removal of the tumor remains the primary approach in EC treatment, often followed by
personalized adjuvant therapies based on postoperative assessment. Recurrence monitoring typically
relies on radiographic imaging and serum tumor markers. However, these conventional methods
often lack the sensitivity to detect minimal residual disease (MRD) or micrometastases after surgery.
As aresult, there is a critical need for more sensitive and specific biomarkers to enable early detection
of recurrence and metastasis, which could significantly improve patient outcomes.

Emerging evidence suggests that ctDNA is a more accurate biomarker for monitoring EC
recurrence. Feng et al. [103] used ddPCR to track common tumor-specific mutations, including PTEN,
FAT4, ARID1A, and TP53, in the plasma of EC patients, achieving 100% sensitivity and 83.3%
specificity. Their findings highlight ctDNA’s superior predictive value over traditional markers like
CA125 and HE4. Recio et al. [104] further confirmed this through longitudinal ctDNA monitoring
post-surgery. They demonstrated that patients with positive ctDNA at both the initial time point and
longitudinally had significantly worse recurrence-free survival (RFS) (HR = 6.2; p = 0.0006 and HR =
15.5; p < 0.0001, respectively), with recurrence rates of 58% and 52%, compared to 6% and 0% in
ctDNA-negative individuals. This suggests that postoperative ctDNA detection is a strong predictor
of outcomes and a key risk factor for recurrence. Similar conclusions were drawn by Grassi et al.
[103]. Likewise, Law et al. [105] used microfluidic technology to investigate CTC-related markers in
gynecologic malignancies. Although the study encompassed various cancer types, the findings in EC
were particularly notable. Markers such as PanCK, GATA3, HER2, and HE4 were consistently
detected in preoperative samples. During follow-up, the reappearance of these markers was strongly
associated with disease recurrence in EC patients, often preceding clinical symptoms. This suggests
these molecular markers could serve as early indicators of relapse, offering a critical window for
timely intervention.

4.1.3. Prognostic Prediction

Prognostic biomarkers help identify patients with aggressive tumors and offer valuable insights
into long-term outcomes, independent of treatment strategies. Their main purpose is to predict
prognosis and guide treatment intensity to improve survival in EC patients. With advancements in
MS technology, many researchers have applied non-targeted metabolomics to identify prognostic
metabolites in EC [106-109]. However, the predictive value of these metabolites is evident only when
assessed in combination, as no highly specific individual markers have been identified. With growing
insights into genomics, attention has increasingly shifted toward ¢fDNA and cfRNA. Studies show
that cfDNA is associated with tumor size, disease stage and classification, invasive characteristics,
cancer progression, lymphovascular invasion [82, 85, 110-115], and overall survival (OS), supporting
its potential as a prognostic marker. Similarly, cfRNA holds promise. [116-118]. For example, Wu et
al. [116] found that reduced serum miR-204-5p levels correlate with lymph node metastases, while
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Shan et al. [117] proposed serum IncRNA DLEUT as a prognostic biomarker linked to adverse clinical
features and poor survival outcomes in EC.

In addition to free protein biomarkers in the blood [99, 119], exosomal proteins are also being
investigatied. Song et al. [120] examined exosomal LGALS3BP as a potential biomarker for EC and
found it significantly elevated in plasma exosomes from EC patients. Higher LGALS3BP levels were
associated with increased cell proliferation, migration, angiogenesis, and poor prognosis. These
findings highlight the potential of non-invasive markers from various sources, but further validation
is needed to confirm their prognostic value and clinical utility in guiding treatment for EC.

4.1.4. Treatment Guidance

Modern treatment options such as molecular targeted therapy and immunotherapy have
improved survival in patients with advanced or metastatic EC. However, systemic anti-cancer
treatments face challenges like primary resistance, lack of initial response, and acquired resistance.
Additionally, tumor molecular profiles often change during therapy, necessitating continuous
monitoring to evaluate treatment response and predict resistance. Blanc-Durand et al. [121]
demonstrated that cfDNA profiling in advanced EC provided 89% molecular information and 87.5%
concordance with tissue biopsies. This method guided targeted therapy in 16% of patients, yielding
a median PFS of 7.7 months and a 56% response rate. These findings highlight the potential of cfDNA
analysis to enhance personalized treatment strategies for advanced EC.

In CTCs from high-risk EC patients, Herrero et al. [122] identified overexpression of Annexin
A2 (ANXA2), which was associated with reduced OS and PFS. High-throughput screening identified
daunorubicin as a potential therapeutic agent that inhibits ANXA2-driven metastasis by reducing the
invasiveness of ANXA2-overexpressing cells. For non-endometrioid EC subtypes, Shen et al. used
multi-omics analysis to identify proteins such as IL32 and GRB7, which are involved in key oncogenic
pathways like MAPK signaling and cytokine-cytokine receptor interactions. These findings not only
deepen our understanding of EC pathogenesis but also provide potential targets for molecularly
tailored therapies.

4.2. Non-Blood-Based Liquid Biopsy in EC

Non-blood-based liquid biopsies offer a promising alternative to traditional blood sampling in
EC. Blood-based biomarker detection can be challenging, particularly in early-stage tumors, due to
the low abundance of circulating signals [123]. Alternatively, the close anatomical connection
between the uterine cavity, lower reproductive tract, and urinary system presents new opportunities
for biomarker discovery in EC [124]. Examples of these findings are detailed in Tables 2 and 3.

Table 2. Application of liquid biopsy in urine samples.

No. of
A:I:I:lor ffa]tei:(glzli'g Detrelctlo partlcslpant Clinical
Year Biopsy Biomarkers Method (EC/contro Slgmﬁcan:e/Fmdln Accuracy  Ref.
0 &
Down-regulation of
Kacirov Nano key proteins .
4 etal. Proteomic HPLC- suggested potential [171
201 9" CDH1, VIN, HSPG2 ESI- 5/7  urinary biomarkers N/A |
MS/MS for early detection
of EC.
These biomarkers
served as promising
Ritteret . miR-3973; -4426; - RT- candidates for [127
al, 2020 TIRNA - 5oe0 spand 6841 qPCR 0730 rine-based liquid N/A ]
biopsies in
detecting EC.
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. . AUC: 0.99;
Evaluating urine for o
somatic mutations Sensitivity
offered a non- (95% CI):
Costas 47-gene panel invasive, accurate 100'0% o
°tal,  ONA  (POLE,TP53)  NGS  19/20  approachfor Co4%100.0%);[126
2023 . Specificity (95% ]
detecting EC and Iy,
lecular :
cl::s)ification. 95.0% (75.1%-
99.9%)
Discriminated EC
SPRR1B, CRNN, SWATH patients fror'n AUC (95% CI):
. CALMLS3, TXN, symptomatic
Njoku . - 0.92 (0.86-0.97);
etal, Proteomic  FABP5, C1RL, MSwith 50 /54 C(.)ntrols suggested Sensitivity: [128
S MMP9, ECM1, its potential as a o]
2023 ML . . 83.7%;Specificit
S100A7, CFI non-invasive
. . y: 83.9%
diagnostic tool.
AUC:
[Training:
0.982,
Validation:
Baicalin, 5beta-1,3,7 The predictive 0.851];
(11)-Eudesmatrien-8- biomarkers Sensitivity:
one, 42 EC (22  presented great [Training:
;hezr(l) ; ; Miilzslo Indolylacryloylglyci UPLC- PT potential diagnostic 97.5%, [129
i ne, Edulitine, MS /20 CR)  value in fertility- Validation: ]
Physapubenolide sparing treatments 86.4%];
for EC patients. Specificity:
[Training:
96.7%,
Validation:
90.0%]
AUC:
[Training:
0.953;
Combined urine-  Validation:
serum 0.972];
metabolomics Sensitivity:
ADP-mannose, effectively [Training:
Chen et Metabolo docosatrienoic acid, UPLC- 146 /59 distinguished EC 0.857; [130
al,, 2024 mics hippuric acid MS from controls, high-  Validation: ]
risk from low-risk 0.846 ];
EC, and typeIvs I  Specificity:
EC. [Training:
0.876;
Validation:
0.974]
10 metabolites o
Fuet ™ ics and methy]l.usjcamme, demonstrated Combined:0.90; (131
AL 200 4Transcript methylimidazole LC-MS 110/110 enhanced Sensitivity: |
i omics acetaldehyde, etc.) Combined:

diagnostic accuracy
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and 3 hub genes compared to >0.85;
(RRM2, TYMS, TK1) individual markers.  Specificity:
Combined:
>0.85
Table 3. Application of liquid biopsy in other samples.
No. of
Author Cfa]tde.gm"ﬁ Detection participant Clinical
and Year °© . MM Biomarkers Method S Significance/Findin ~ Accuracy Ref.
Biopsy (EC/contro
) 8°
Uterine lavage fluid/ Uterine aspirates
Genetic alterations
were detected in
Casas- PTEN, NGS, 93% of EC through
Arozamen CfDNA, PIK3CA, TP53, ddPCR, UAs. C.tDNA Was (134
aetal., CTCs CTNNB1, CellSearc 60 EC associated with N/A |
2020 KRAS, etc. hsystem high-risk tumors
and disease
progression.
A high concordance
Casas- 96.67%) between
Arozamen BAT26, BAT25, NiSI detei‘minations [135
cfDNA NR24,NR21, ddPCR  90EC . N/A
aetal, Mono27 in cfDNA and the ]
2023 standard of care was
confirmed.
. miR-146a-5p, miR- AUC: miR-183-
Yanget o rﬁg}fgg” Real-time ., 183-5p,miR429  5p: 0.675, miR- [136
al., 2023 MiR-429 ’ PCR were significantly 429:0.709, miR- ]
upregulated in EC. 146a-5p: 0.685
Cervicovaginal fluid / Cervicovaginal lavage
AUC:
[Training: 0.88-
. 0.92; Test: 0.75-
Metabolomic
: . 0.80];
biomarkers in CVF L
. . . Sensitivity
Phosphocholin  NMR for non-invasive (95% CI)-
Chenget Metabono e, Malate, Spectrosc 21/33 detection of EC Forests: 0.75 [148
al., 2019 mi ¢s Asparagine opy were identified and (0.19-0.99);
validated using ML e
algorithms. Specificity
(95% CI):
Forests: 0.80
(0.28-1.00)
Sensitivity:
Vaginal cytology [Vaginal:
demonstrated 90.2%,
O'Flynn et Malignar}t Cytologic hig?er sensitivity urine:7.2.0%, 138
al. 2021 Cytology endometrial al 103 /113 (90.2%) compared to  combined: |
’ cells analysis urine cytology 91.7%];
(72.0%) but lower  Specificity:
specificity. [Vaginal:
88.7%,
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urine: 94.9%,

combined:88.8
%]
AUC (95% CI):
72 proteins Combined: 0.91
.78-0.97
(TIM- Multinlex Identified lavage S((e)nssit?v? ).

. . 3, VEGF, TGEF- P proteins could ty:
Laniewski . Immunoa s 86.1% [144
otal. 2002 Proteomics a, s savs 66 /126 discriminate EC (combined); |

v IL-10,CA19-9, ° "% from benign Specificty:

CA125, etc.) conditions. 87.9%
(combined)
. . AUC: 0.808
Urine/intrauterine .
. (urine) 0.847
. . brushing ) .
Amino acid . (intrauterine
. Metabolom ) metabolites .
Yietal., s & and nucleotide LC- correlate with tissue brushing); [150
2022 . metabolism MS/MS 44 /43 . Sensitivity:
Proteomics . pathways (amino . ]
biomarkers . . Urine: 74.7%
acid/nucleotide
metabolism) (top 5
’ metabolites)
AUC: 0.83
POLE mutations (Sesli;fggeiefj);
indicated excellent Vi
Pelegrina  Somatic 47 genes panel Eﬁtg;?jz ;FVI:Z) 73% (clinician
et al., 2023 mutations (POLE, TP53, NGS 139 /107 associated with and self-  [139
PTEN, etc.) . collected); ]
significant DFS .
. Specificity:
differences among .
molecular subtypes [80% (clinician-
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4.2.1. Urine Samples

Urine contains diverse components, including malignant cells, tumor-derived nucleic acids,
peptides/proteins, endogenous metabolites, and secretory organelles [125]. Costas et al. [126]
evaluated the utility of somatic mutation analysis in urine for non-invasive EC detection and
molecular classification. Using NGS, they achieved a 100% mutation detection rate in EC cases,
showing high concordance between urine and tumor samples, particularly when applying the
Proactive Molecular Risk Classifier for EC (ProMisE) algorithm. These results suggest that urine-
derived cfDNA, such as transrenal ctDNA (TR-ctDNA), may serve as a reliable biomarker for early
EC diagnosis and prognosis. Similarly, Ritter et al. [127] identified miRNAs, such as miR-10b-5p and
miR-205-5p in urine, with miR-10b-5p demonstrating diagnostic potential in EC patients. While
additional validation is required, these studies highlight the promise of urine-based miRNA profiling
for non-invasive screening.

Beyond nucleic acid biomarkers, urine proteins and metabolites have also been investigated.
Unlike Ritter et al. [127], who relied on case-control studies to detect protein concentration
differences, Njoku et al. [128] applied machine learning to develop a diagnostic model using 10
urinary markers, achieving an accuracy of 0.92. Similarly, instead of analyzing urine metabolites
alone, Chen et al. [129], [130] combined serum and urine data, yielding an AUC of 0.922,
demonstrating a valuable model-building approach for EC. Furthermore, Fu et al. [131] integrated
metabolomics with transcriptomics, identifying differential metabolites and hub genes in urine
associated with EC. This multi-omics strategy suggests that combining urine-based biomarkers with
transcriptomic profiles could improve early EC detection.

As a distinct and promising sample source for liquid biopsy, urine offers a non-invasive, easily
accessible, and disease-specific tool for EC diagnosis and management—potentially overcoming
several limitations of blood-based sampling.
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4.2.2. Uterine Lavage Fluid and Uterine Aspirates

Uterine lavage fluid or uterine aspirates (UAs) represent a promising source for liquid biopsy
due to their direct contact with tumors. Since Maritschnegg et al. [132] first detected shed EC cells in
uterine lavage fluid, subsequent studies have further explored the diagnostic potential of these
samples [133]. Casas-Arozamena et al. [134] provided the first comprehensive characterization of
UAs, ctDNA, and CTCs. Their NGS analysis revealed = genetic mutations in 93% of tumor samples,
predominantly in genes such as PTEN, PIK3CA, and TP53. Notably, CTCs and ctDNA were found
in 38.9% and 41.2% of cases, respectively, particularly among patients with high-risk tumor,
suggesting their value as biomarkers for aggressive disease. Furthermore, they also demonstrated
strong concordance between MSI results from UAs and cfDNA samples and those from traditional
tissue, highlighting UAs as a viable tool for personalized monitoring and management [135].

Further supporting the utility of endometrial fluid analysis, Yang et al. [136] used real-time PCR
to analyze specific miRNAs —miR-429, miR-146a-5p, and miR-183-5p—in endometrial fluid,
underscoring their diagnostic potential for EC. This miRNA profiling offers a less invasive alternative
to traditional diagnostic procedures, potentially improving early detection and intervention.
However, uterine lavage collection can cause notable patient discomfort and requires specialized
equipment and trained personnel, limiting its routine clinical use [137].

4.2.3. Cervicovaginal Fluid and Cervicovaginal Lavage Fluid

Cervicovaginal fluid, which contains shed tumor cells originating from the lower reproductive
tract, serves as an additional effective screening tool for minimally invasive sample collection
compared to uterine lavage fluid, which has more limitations in its application. In recent years,
researchers have carried out extensive studies on cervicovaginal fluid or cervicovaginal lavage fluid
based on cytological analysis [138], somatic mutations [139], DNA methylation [140-143], proteomics
[144-147] , metabolomics [148, 149], and multiomics [150] approaches.

In contrast to the limited specificity of traditional cytology tests [138], growing attention has
turned to DNA methylation as a more accurate diagnostic approach. Evans et al. [140] assessed the
methylation status of ZSCAN12 and GYPC in cervicovaginal samples using the WID-qEC test.
Compared to conventional ultrasound, WID-qEC demonstrated superior performance, achieving
92.1% specificity, 90.9% sensitivity, and an AUC of 94.3%. These results were further validated by
Illah et al. [141], confirming WID-qEC as a highly sensitive and specific diagnostic method.
Collectively, these studies suggest that cervicovaginal lavage offers a practical, minimally invasive
alternative to traditional diagnostic procedures.

Beyond non-targeted approaches that screen proteins or metabolites for diagnostic [144-146, 148,
150] or stratification models [147, 149]. Pelegrina et al. [139] made a significant advancement by
applying NGS to assess somatic mutations in cervicovaginal samples for non-invasive EC detection
and molecular classification. The ClassEC test identified mutations in 73% of EC cases, with 80%
specificity in clinician-collected samples and 90% in self-collected ones. Importantly, the test stratified
EC into four molecular subtypes with distinct prognoses: POLE mutations were linked to favorable
outcomes, while TP53 mutations predicted poor prognosis. This integration of molecular profiling
with non-invasive sampling offers a promising alternative to traditional invasive diagnostics and
represents a major step forward in personalized treatment for EC.
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4.2.4. Tampons

Tampons, as widely accepted and non-invasive intravaginal hygiene products, present a
promising method for EC detection. Fiegl et al. [151] demonstrated that DNA methylation analysis
of tampon-collected samples could distinguish EC from benign conditions with 100% sensitivity and
97.2% specificity in women aged 50-75, excluding CIN III and cervical cancer. Similarly, Bakkum-
Gamez et al. [152] used tampons to collect vaginal pool samples and identified hypermethylation in
nine genes in EC patients, achieving an AUC of 0.88, 76% sensitivity, and 96% specificity. This
approach not only allows for convenient self-collection, improving patient compliance, but also
enables repeated sampling for long-term monitoring in high-risk populations.

4.2.5. Cervical Scrapings and Vaginal Swabs

In addition to tampons, vaginal swabs and cervical scrapings are valuable sources for molecular
DNA testing in EC. These low-cost, minimally invasive methods can be easily incorporated into
routine outpatient visits. Multiple studies have demonstrated high diagnostic sensitivity and
specificity in detecting tumor driver gene methylation through vaginal swabs [153-156]. Notably,
Herzog et al. [154] evaluated methylation of the GYPC and ZSCANI12 gene regions in cervical,
vaginal, and self-collected swab samples from patients with EC symptoms, reporting EC detection
sensitivities of 100%, 90.1%, and 97.2%, respectively. This highlights the potential of self-sampling to
support early detection while reducing the need for in-person visits. Interestingly, cervical lavage
fluid also revealed abnormal methylation in these genes, validating the reliability of vaginal swabs
and cervical smears. Furthermore, Kim et al. [157] successfully detected key gene mutations —such
as PTEN, PIK3CA, TP53, and ARID1A —from genomic DNA in cervical smear samples with 100%
specificity, aiding the optimization of ProMisE-based molecular classification for EC.

However, future research should prioritize pre-diagnostic sampling. Since most existing studies
have focused on already-diagnosed individuals, earlier sampling could better reflect real-world
diagnostic scenarios and reduce bias from tumor cell shedding during clinical procedures.

4.2.6. Peritoneal Surgical Lavage Fluid and Peritoneal Fluid

Peritoneal surgical lavage fluid and peritoneal fluid have emerged as promising sources for
detecting mutations and other genetic alterations associated with EC, offering diagnostic and
prognostic value among various biopsy fluids. To validate the utility of peritoneal lavage fluid, Mayo-
de-las-Casas et al. [158] used a highly sensitive qPCR method and found that, in EC cases with known
hotspot mutations, cfDNA from peritoneal lavage had a significantly higher detection rate (47%)
compared to plasma (10.5%). This indicates that peritoneal lavage may better reflect the tumor
mutational landscape, particularly in early-stage disease. Similarly, Ayyagari et al. (159) evaluated
sterol-O-acyl transferase 1 (SOAT1) and cholesterol ester (CE) levels in plasma, peritoneal fluid, and
endometrial tissue from EC patients and controls. Elevated levels were observed in tumor tissues and
peritoneal fluid from EC patients, while plasma levels were comparable between groups. The strong
correlation between SOAT1, CE, and poor overall survival suggests these markers are linked to tumor
aggressiveness and unfavorable prognosis. Thus, SOAT1 and CE may serve as prognostic biomarkers
and potential therapeutic targets, with peritoneal fluid offering a more informative medium than
blood for detection.
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5. Future Directions and Prospects

Liquid biopsy is poised to become an essential component of EC management in the near future.
Techniques involving cervicovaginal fluids, uterine aspirates, and circulating biomarkers—
combined with genomic, proteomic, metabolomic, and multi-omics analyses—offer transformative
potential for early detection and personalized treatment. These technologies promise to improve
diagnostic accuracy, reduce reliance on invasive procedures, and enable more targeted therapeutic
strategies. Early detection through such methods could significantly enhance patient outcomes by
allowing timely, individualized interventions. Integrating multi-omics approaches offers a
comprehensive view of EC, uncovering potential therapeutic targets and providing deeper insights
into tumor behavior, treatment response, and resistance mechanisms. Successfully translating these
innovations into clinical practice will require close interdisciplinary collaboration among
gynecologists, oncologists, geneticists, data scientists, and bioinformaticians. Such collaboration is
key to developing integrated diagnostic platforms that improve diagnostic precision and enable
personalized treatment strategies tailored to each patient’s molecular and clinical profile. Recent
advancements in imaging, histopathology, and molecular diagnostics emphasize the importance of
an integrated approach that combines various testing methods to enhance cancer diagnosis and
treatment. Al technology, among the fastest-growing fields, holds limitless potential for integrating
and optimizing these diverse diagnostic modalities, particularly in liquid biopsy [173]. Furthermore,
as we advance in this field, it is imperative to carefully manage ethical considerations regarding
patient data privacy, and the potential of misinterpretation of genetic information. Ensuring the
accessibility of these technologies in high- and low-resource settings is essential to broaden their
impact and address disparities in cancer care [174]. The clinical application of liquid biopsy
necessitates large-scale validation before it can be adopted as routine practice. Although studies in
other cancers have shown promising results [175-178], EC presents unique challenges that require
dedicated clinical trials. Large-scale validation is crucial for transitioning liquid biopsy into routine
clinical use. We advocate for EC-specific trials to confirm the clinical utility of these innovations and
establish new standards that improve prognosis and quality of life for EC patients.

6. Conclusions

Liquid biopsy is a minimally invasive and effective tool for cancer management, enabling real-
time molecular profiling of tumors and capturing their dynamic complexity. Its ability to allow repeat
sampling makes it especially valuable for monitoring tumor progression, particularly when
traditional biopsies are not feasible. While liquid biopsy has demonstrated clinical utility in other
cancers and is already integrated into practice, its application in EC is only now gaining broader
recognition.

To fully integrate liquid biopsy into standard EC care, several challenges must be addressed,
including standardization, development of external quality control programs tailored to specific
biomarkers, and accreditation of laboratories conducting these analyses. Additionally, a robust
regulatory framework is needed to guide clinical use, address ethical concerns, and ensure
responsible implementation. Expanded research and large-scale clinical trials are crucial for
validating its effectiveness and refining its role in patient care. Taken together, these efforts are
essential to unlock the full potential of liquid biopsy, paving the way for more personalized, precise,
and effective treatment strategies in EC.
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