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Abstract: This study presents the evaluation of tools for weed analysis and management to support 

agroecological practices in organic farming, emphasizing agriculture digitalization and remote 

sensing. The main aim was to provide techniques for monitoring and prediction of weed spread using 

multispectral satellite and drone data, without the use of chemical inputs. Key findings indicate that 

VV and VH channels of Sentinel-1 and B2, B3, B4 and B8 channels of Sentinel-2 are not different 

regarding tillage, herbicide use, or sowing density. However, RE and NIR channels of drone detected 

significant variations and proved effectiveness for weediness monitoring. The NIR channel is 

sensitive to agrotechnical factors such as cultivation type, making it valuable for field monitoring. 

Correlation and regression analyses revealed that B2, B3, B8 channels of Sentinel-2 and RE and NIR 

drone channels are the most reliable for predicting weed levels. Conversely, Sentinel-1 showed 

limited predictive utility. Random effect models confirmed that Sentinel-2 and drone channels can 

accurately account for site characteristics and timing of weed proliferation. Taken together these tools 

provide effective organic weed monitoring systems, enabling rapid identification of problem areas 

and adjustments in agronomic practices. 

Keywords: Agroecological farming; Digitalization; Drone; Herbicide; Organic agriculture; Sentinel; 

Weediness 

 

1. Introduction 

Effective weed management is an important component of sustainable agricultural development 

in modern organic farming [1]. Organic production requires strong reduction or complete avoidance 

of the use of chemical herbicides, that stimulates development of alternative, environmentally safe 

methods of weed control [2–5]. The use of remote sensing (RS) data in precision agriculture is an 

important tool in modern agronomic management. Using RS technologies and geospatial data 

processing, it becomes possible to conduct accurate monitoring of the state of crops. Such analysis of 

images from Sentinel-1 and Sentinel-2 satellites and data from drones opens new opportunities for 

monitoring vegetation, including the assessment of the weediness [6]. 

RS data might be also used to identify areas with extensive weediness and analyze the 

effectiveness of herbicide-free agrotechnical methods. Remote sensing is the basis of modern 

approaches [7,8]. The use of spectral data from satellites or drones allows the analysis of light 

reflectance by vegetation in near-infrared (NIR) and mid-infrared (MIR) spectral ranges. In addition, 

the distribution of spectral reflectance can serve as useful indicator of different types of vegetation, 

including weeds [9–11]. 

The use of vegetation indices such as Normalized Difference Vegetation Index (NDVI), Soil-

Adjusted Vegetation Index (SAVI) and Green Normalized Difference Vegetation Index (GNDVI) 

showed high efficiency in separating weeds from crops [12–16]. Recent advances in machine learning 

and artificial intelligence have significantly improved the accuracy of weed identification [17,18]. 
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Algorithms such as Random Forest, Support Vector Machines (SVM) and neural networks are 

effectively used to analyze large amounts of RS data [18–21]. 

Maize is extensively used in such type of studies because it is one of the key agricultural crops 

where accurate determination of weed infestation level is critical to ensure high yields. According to 

earlier studies, the spectral properties of weeds are significantly different from those of maize, which 

allows effective RS using for their identification [10,22,23]. The use of unmanned aerial vehicles 

(UAVs) and satellite imagery combined with high-precision indices allows for the assessment of 

weed infestation levels over large areas with minimal cost [24–26]. 

Organic production of maize requires a tool that helps predict weed levels based on historical 

data. The model, which includes the coefficient of weediness such as integrated indicator that 

considers the density and height of grass, broadleaf, and root weeds, can be the basis for planning 

agrotechnical measures. This makes possible to evaluate the effectiveness of weed control measures 

and to improve management systems in agroecological farming. Thus, the goal of present study was 

to develop and substantiate new approaches to weed management based on agriculture digitalization 

and RS technologies. The study was designed in the way to evaluate the possibilities of analyzing the 

state of weeding using multispectral images from satellites and drones, to identify key factors 

affecting the level of weeding, and to create a model that will allow effective monitoring and 

forecasting of weeding without the use of chemicals. 

The outcomes of using remote sensing and drone data may be very different, though, depending 

on the crop being analyzed, the processing technologies, the density of the plantation, and other 

technological factors. Therefore, we elucidated the potential applications of Sentinel-1, Sentinel-2, 

and drone images taken at different spectral channels in determining the extent of weed infestation 

in areas with varying plowing methods, sowing density, and natural protection, among other factors. 

2. Materials and Methods 

Key characteristics of experimental field. The experimental plot was a part of larger the 

experimental field of the Polissia National University (N 50°26′; E 28°42). The site has predominantly 

Gleic Albic Luvisol (Endoclayic, Cutanic, Differentic, Katogleyic, Ochric type of soil according to 

WRB (2022). 

Weather conditions significantly affect the quality of space or drone shooting and shooting from 

drones, it should be noted that the weather of research area is moderately continental with humid 

conditions. The average annual air temperature is about 7–8 °C, and the average temperature in 

January is about 5 °C. The summer temperature usually ranges between 18–20 °C. The amount of 

precipitation varies between 600–700 mm per year, with the most part falling in the summer period. 

The relative humidity of the air is significantly raised. 

Analysis of variance is used to evaluate the effects of factors F1, F2, F3, and their interactions. 

Experiment was tested in three replications to minimize experimental error and improve result 

validity. 

Plot of about 1 hectare was divided into 12 experimental plots with three replications (Figure 1). 

The research employs a factorial experimental design where F1, F2, F3 were combined. Еach 

combination of F1 × F2 × F3 was implemented in three replicates. The study explored the impact of 

the following factors: F1 - tillage systems: S1- deep soil plowing on 18–20 cm (standard), S2 – soil 

disking on 10–12 cm (AES), S3 – soil milling on 5–7 cm (AES); F2 – sowing density: A1 – 1.1 sowing 

units/ha (standard); A2 – 1.3 sowing units/ha (AES); F3 - herbicide application: H1 – herbicide 

application (standard); H2 - herbicide nonapplication (AES). 
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Figure 1. Experiment design. 

Data were collected with a frequency of one week using each source. During field research, the 

parameters of main crops, cereal weeds, broadleaf, and short-leaved weeds were measured by height 

and density for each plot. 

To conduct aviation research copter-type DJI Mavic 3M drone was used with a multispectral 

camera of the following characteristics: image sensor – 1/2.8-inch CMOS, effective pixels: 5 Mn; Lens 

– FOV: 73.91° (61.2° x 48.10°); equivalent focal length – 25 mm; aperture – f/2.0; fixed focus; image 

format – TIFF; video resolution – H.264 FHD: 1920 x 1080@30 fps. 

Images were obtained in the following spectral ranges based on the results from aerial 

photography: Green (G): 560 ± 16 nm; Red (R): 650 ± 16 nm; Red Edge (RE): 730 ± 16 nm; Near infrared 

range (NIR): 860 ± 26 nm. We determined the average values of radiation intensity in the specified 

spectral ranges, made calculations, and determined the average values of the NDVI vegetation index 

for each site over a five-week time interval during the geoinformation analysis of the obtained 

images. 

Space research was conducted using data received from the Sentinel-1 and Sentinel-2 spacecraft. 

During Sentinel-1 measurements, space images were obtained in the radio wave range in the IWS 

mode with a resolution of 5 x 5 m, a bandwidth of 20 x 20 km with VV and VH polarization. As a 

result of data processing, the average values of the radiation intensity for the middle of each section 

were determined. 

The reception of images from the Sentinel-2 optical-electronic observation spacecraft was carried 

out in the Band 2 (Blue) spectral ranges of 490 nm; Band 3 (Green) 560 nm; Band 4 (Red) 665 nm; Band 

8 (NIR) 842 nm. The processing of the data from the space shooting was carried out according to the 

methodology like the processing of the data from the aerophotography by spectral channels with the 

determination of the vegetation index NDVI. 

Database description. To effectively conduct the experiment, we formed a panel database that 

incorporated the results of physical examinations of plants and soil, data from the Sentinel-1 and 

Sentinel-2 satellites, and indicators from a drone. We collected data for five time points at each 

experimental site. This ensures the two-dimensionality of the data, enabling the analysis of the object 

individual features and their changes over time. Additionally, we ensured the stability of the sample 

when forming the panel database. Observation took place in the same areas, which do not change 

over time in terms of size and type of observation. 
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The object of the sample was 36 plots, which were formed from one experimental field where 

maize was sown. The database formation process provides the sample depth, which determines the 

number of observations for a specific researched field. Indeed, we observed each of the 36 sites five 

times. Three indicators determine the type of plot cultivation, ten indicators stem from a visual 

survey, six indicators derive from data from the Sentinel-1 and Sentinel-2 satellites, five indicators 

come from a drone survey of experimental plots, and the remaining indicators come from soil tests 

at the experimental site (Table 1). 

Table 1. Database indicators. 

A group of indicators Indicators 

Type of processing Tillage_sy, Herbicides, Sowing_den 

Visual examination Maize_height_cm, Maize_density_m2, 

Grass_weeds_number, Grass_weeds_density_m2, 

I_Dicotyledoneae_weeds_number, 

I_Dicotyledoneae_weeds_density_m2, 

II_Dicotyledoneae_weeds_number, 

II_Dicotyledoneae_weeds_density_m2, 

Root_weeds_number, Root_weeds_density_m2, 

Int_weed 

Satellite data VV, VH, B2, B3, B4, B8 

Drone data G, R, RE, NIR, NDVI 

Data from various sources, including space and drone images, were processed as shown in 

Figure 2. The NDVI coefficients were used to create models that help identify how weedy the crops 

are. The measurements were carried out 5 times at different phases of the maize plant development. 

   

A B C 

Figure 2. The procedure for processing space images and images from drones. Flowering stage (shooting from 

a drone DJI Mavic 3M). A - image in pseudo-color; B - NDVI coefficient per pixel distribution; C - averaged 

values of the NDVI coefficient by fields. 

Consequently, the database using 8460 unique indicators for each research area was formed. 
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3. Results 

3.1. Employing Satellite and Drone Imagery for Weed Identification 

Since organic farming does are pesticide-free, effective weed management is crucial to ensuring 

high yields. Using agroecological methods like changing tillage practices, adjusting planting density, 

and adding natural pest controls might significantly affect weed growth. 

However, regional conditions often determine the effectiveness of these methods, this requires 

accurate measurements that are taken often. That can only be done by ground monitoring. Modern 

RS methods, like images from Sentinel-1 and Sentinel-2 satellites and data from drones, allow for 

rapid checks of field conditions. This research aims to find out if RS data can show how different 

farming methods, natural materials, and planting amounts affect crops, and if images from Sentinel-

1, Sentinel-2, and drones can show these differences. 

ANOVA was used to determine the differences in VV, VH, B2, B3, B4, B8, G, R, RE, and NIR 

channels within different types of tillage (Tillage_system), herbicide application (Herbicides), and 

sowing density (Sowing_density) (Table 2). An ANOVA test was used to see how important each 

factor was in the channels and to see if this information can be used to keep track of weediness levels 

in organic farming. 

Table 2. Variance analysis (ANOVA) for all channels of Sentinel-1, Sentinel-2 and drones for weed detection. 

Cha

nnel 

Df Su

m 

Sq Mean Sq F Value Pr(>F) 

VV Tillage_system    2 17.4    8.715    1.872   0.157 

Herbicides 1 2.0    1.990    0.427   0.514 

Sowing_density    1 4.2    4.248    0.912   0.341 

Residuals 175 814.9    4.656                 

VH Tillage_system    2 18.1    9.073    1.045   0.354 

 Herbicides 1 1.3    1.305    0.150   0.699 

 Sowing_density    1 1.5    1.528    0.176   0.675 

 Residuals 175 1519.7    8.684                 

B2 Tillage_system    2 49854 24927 0.991  0.373 

 Herbicides 1 2102 2102 0.084   0.773 

 Sowing_density    1 5571 5571 0.221   0.639 

 Residuals 175 4403990 25166   

B3 Tillage_system    2 109883 54942 1.550   0.215 

 Herbicides 1 10554 10554 0.298   0.586 

 Sowing_density    1 9437 9437 0.266   0.606 

 Residuals 175 6201606 35438   

B4 Tillage_system    2 255469 127734 0.963   0.384 

 Herbicides 1 8563 8563 0.065   0.800 

 Sowing_density    1 29341 29341 0.221 0.639 

 Residuals 175 23207253 132613   

B8 Tillage_system    2 485977 242989 1.577   0.209 

 Herbicides 1 129754 129754 0.842   0.360 

 Sowing_density    1 16495 16495 0.107   0.744 

 Residuals 175 26958475 154048   

G Tillage_system    2 22183221 11091610 6.184 0.003 

 Herbicides 1 1141370 1141370 0.636 0.426 

 Sowing_density    1 56954 56954 0.032 0.859 

 Residuals 175 313870661 1793547   

R Tillage_system    2 13020158 6510079 2.849. 0.061 

 Herbicides 1 18115158 18115158 7.927 0.005 
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 Sowing_density    1 1577901 1577901 0.690 0.407 

 Residuals 175 399912227 2285213   

RE Tillage_system    2 1740347      870174 0.313 0.732 

Herbicides 1 14970699 14970699 5.381 0.022 

Sowing_density    1 337323 337323 0.121 0.728 

Residuals 175 486873488 2782134   

NIR Tillage_system    2 15326079 7663039 11.86  <0.001 

Herbicides 1 18277361 18277361 28.29 <0.001 

Sowing_density    1 6644403 6644403 10.29   0.002 

Residuals 175 113050243 646001   

Df – degrees of freedom for each factor and residual values; Sum Sq – sums of each factor squares; Mean Sq – 

average squares; F value – the value of the F-statistic for each factor; Pr(>F) – p-value that allows to assess 

whether the effect of a factor is statistically significant. 

Consequently, the use VV and VH channels of Sentinel-1 for all three factors, reveals no changes. 

This indicates that these tools are not sufficiently effective for discerning variations in tillage systems, 

sowing density, and the application of herbicides. We also identified no statistically significant 

variations concerning all this factors for the Sentinel-2 channels. Sentinel-2 channels demonstrate 

restricted sensitivity to differing tillage practices and planting techniques. 

Using G, R, RE, NIR drone channels to study tillage systems shows a significant difference (p = 

0.003) indicating that the tillage system has a strong effect. Herbicide application and sowing density 

are not statistically significant. Variation in the R channel showed substantial impact of herbicide 

application with suggesting a possible impact of tillage (p = 0.061). 

The RE channel related to herbicides is significant (p = 0.022), demonstrating the impact of 

herbicide treatment, and three factors are statistically significant for NIR channel: tillage system (p < 

0.001), herbicides (p < 0.001), and sowing density (p = 0.002). Thus, the NIR drone channel is the most 

sensitive and appropriate for detecting of all three agrotechnical parameters effects. 

Thus, we can conclude, that the VV and VH channels of Sentinel-1 did not yield statistically 

significant findings for any of the three criteria, rendering them less useful in discerning differences. 

We found the same results for bands 2, 3, 4 and 8 of Sentinel-2; these channels also do not show any 

significant impact on tillage, herbicide, and sowing density parameters. 

The G drone channel exhibited sensitivity to the processing method employed. Channel R 

demonstrated importance for herbicides and approached significance about tillage system, while RE 

is significant solely for the herbicide component. The NIR channel is the most informative and 

exhibits high sensitivity to all three parameters, rendering it the most promising for weed monitoring. 

3.2. Estimation the Weediness Level in Maize Based on Sentinel-1, Sentinel-2 and Drone Images 

This study aims to find out if RS images from these sources can be used to check weed levels by 

using information from different channels. To meet this goal, we used the same dataset as in 3.1. 

To accomplish this, we computed the weed index (WI), a composite metric that considers the 

density and height of various weed species. Regression analysis was employed to assess the data and 

estimate the value of the RS channels of the landscape concerning the integrated WI, defined as the 

cumulative product of the height of all weed species on their projective coverage. Following the 

formulation of the WI variable, defined as: 

WI = (grass weeds, quantity  grass weeds density, m²) + (I Dicotyledoneae weeds, quantity  I 

Dicotyledoneae weeds density, m²) + (II Dicotyledoneae weeds, quantity  I Dicotyledoneae weeds density, 

m²) + (Root weeds, quantity  Root weeds density, m²). 

A correlation and regression analysis were conducted between Sentinel-1, Sentinel-2, and drone 

channels and the level of weediness. 
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Table 3. Correlation analysis between the channels and the level of weediness. 

Channel Weed correlations  

VV 0.1165 

VH 0.1365 

B2 -0.4276 
B3 -0.3307 

B4 -0.3584 
B8 0.3993 

G -0.1821 
R -0.2347 

RE -0.2440 

NIR 0.4007 

Residuals:Min -416.48, 1Q -116.54, Median -13.84, 3Q 70.59, Max 886.84. 

Sentinel-1: channels VV and VH have a weak correlation with WI (0.116 and 0.137, respectively). 

Channels B2, B3, B4, and B8 of Sentinel-2 exhibit an average correlation level, with B2 (-0.428) and B8 

(0.399) being the most informative. The RE drone channel (-0.244) and the NIR channel (0.401) have 

a more robust correlation with the weediness score, signifying their substantial informativeness 

(Table 3). 

The combined regression “Weed_model” reveals that B2, B3, B8, RE, and NIR are significant 

channels, with a p-value <0.05 (Table 4). Coefficient of determination: R² = 0.5406, indicating that the 

model explains approximately 54% of the variation in weed_index. 

Table 4. Regression analysis for Sentinel-1, Sentinel-2, and drone channels. 

Channel Estimate Std. Error t value Pr(>|t|) 

(Intercept) 4281.867 1229.373   3.483 0.001 

VV 0.154 8.950 0.017 0.986 

VH -18.581 7.300   -2.545 0.012 

B2 -9.145 1.070   -8.549 <0.001 
B3 8.481   1.449    5.853 <0.001 

B4 -0.977     0.648  -1.509 0.133 
B8 -0.358     0.108   -3.326 0.001 

G -0.033    0.047   -0.687 0.493  
R 0.020     0.044    0.451 0.652    

RE 0.033     0.013    2.570 0.011   

NIR 0.052    0.027    1.938 0.054  

Residual standard error: 206.5 on 169 degrees of freedom. Multiple R-squared: 0.5406, Adjusted R-squared: 

0.5134. F-statistic: 19.89 on 10 and 169 DF, p-value: < 0.001. 

Table 5. The Weed model. 

Residuals: 

 
Channel Coefficients: 

Estimate Std. 

Error 

t value Pr(>|t|) 

 

Call: lm(formula = weed_index ~ VV + VH, data = data) 

Min -313.04 (Intercept)   573.463     149.268    3.842   <0.001 

1Q   -171.20   VV 8.906      11.682    0.762   0.447     

Median -81.68    VH 10.543      8.618    1.223   0.223     

3Q 51.15  

Max  1426.12  Residual standard error: 294.5 on 177 degrees of freedom 
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  Multiple R-squared:   0.022 

  Adjusted R-squared:   0.011 

  F-statistic 1.977 on 2 and 177 DF 

  p-value 0.142 

 

Call: lm(formula = weed_index ~ B2 + B3 + B4 + B8, data = data) 

Min -353.10 (Intercept)  4144.249   1084.508   3.821 <0.001 

1Q   -132.90   B2 -7.851      0.828   -9.485   <0.001 

Median -25.40   B3 8.226     1.323    6.217 <0.001 

3Q 103.00   B4 -1.365      0.597   -2.288 0.023   

Max  971.00  B8 -0.366      0.090   -4.046 <0.001 

    

  Residual standard error: 218.6 on 175 degrees of freedom 

  Multiple R-squared:   0.467 

  Adjusted R-squared:   0.455 

  F-statistic 38.370 on 4 and 175 DF 

  p-value <0.001 

 

Call: lm(formula = weed_index ~ G + R + RE + NIR, data = data) 

Min -498.25 (Intercept)  

 

-845.610   400.432   -2.112 0.036   

1Q   -144.68   G -0.050     0.057   -0.874 0.383     

Median -47.57    R 0.047     0.054    0.880 0.380     

3Q 61.73 RE -0.046     0. 013   -3.705  0.000 

Max  1319.33  NIR 0.152     0.030    5.046 <0.001 

       

  Residual standard error: 261.2 on 175 degrees of freedom 

  Multiple R-squared:   0.239 

  Adjusted R-squared:   0.222 

  F-statistic 13.73 on 4 and 175 DF 

  p-value <0.001 

The Sentinel-1 model shows a very weak connection between changes in weediness and the VV 

and VH channels, with a correlation value of R² = 0.0218. Therefore, we can deduce that the VV and 

VH channels are not useful for weediness evaluation. 

Weediness changes in Sentinel-2 channels demonstrate statistical significance (p < 0.05), and R² 

= 0.467, indicate a strong correlation between the Sentinel-2 and WI channels. Consequently, the 

Sentinel-2 channels, particularly B2 and B3, are indicative for forecasting weed density. 

The models created with data from drones identified important channels, specifically RE and 

NIR, with a p < 0.05. The coefficient of determination R2 = 0.239 signifies the reasonable efficacy of the 

model utilizing drone channels for forecasting WI. 

Consequently, the RE and NIR channels substantially indicate the weediness level, validating 

their appropriateness for monitoring. 

The RE and NIR channels greatly affect how we measure weediness, proving they are useful for 

monitoring. All Sentinel-2 channels, RE and NIR drones channels exhibit the strongest association 

with weediness levels and show potential for predictive applications. Channels Sentinel-1 has shown 

little utility and is not advisable for application in weed assessment models. 

The model that uses the best channels, especially B2, B3, RE, NIR, can accurately predict weed 

growth, which will help agroecological farming. 

3.3. RS Factors for the Model Construction of Weediness 
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Models have to consider the unique characteristics of each plot and the individuality of temporal 

observations; thus, the addition of random effects (plm) is essential. 

The Table 6 displays the outcomes of modeling the assessment of weediness in maize crops 

utilizing the Sentinel-1 VV and VH channels. In research modeling, random factors account for the 

unique weediness features of each plot and the temporal specificity of observations. The coefficient 

values for VV and VH, similar to prior tasks of this study, were not statistically significant (p-value 

for VV = 0.446 and for VH = 0.221), indicating a modest correlation between these channels and 

weediness. R² = 0.0218, indicating a minimal capacity to explain differences in weediness levels. 

Table 6. Model for assessing the weediness of maize crops with VV and VH channels of Sentinel-1 (Random 

Effect Model with Swamy-Arora’s transformation, one-way individual effect). 

Call: plm(formula = weed_index ~ VV + VH, data = pdata, model = “random”) 

Effects: Var Std. dev Share   

idiosyncratic 91096.6 301.8 1   

individual 0.0 0.0 0   

theta: 0     

Residuals: Channel Coefficients: 

  Estimate, S Std. Error z-value   Pr(>|z|) 

Min -313.04 (Intercept)   573.463 149.268 3.842   0.000 

1Q   -171.20   VV 8.906 11.682 0.762   0.446 

Median -81.68    VH 10.543 8.618 1.223   0.221 

3Q 51.15  

Max  1426.12  Total Sum of Squares: 15692000 

  Residual Sum of Squares: 15349000 
  R-Squared:       0.022 

  Adj. R-Squared: 0.011 

  Chisq 3.953 on 2 DF 

  p-value 0.139 

As a result, the Sentinel-1 channels (VV and VH) do not provide sufficient information to 

forecast weediness assessments. 

The model used to detect weeds in maize fields with Sentinel-2 indicators (B2, B3, B4, B8) showed 

that all channels are important (p < 0.05), meaning they strongly relate to the amount of weed 

infestation (Table 7). 

Table 7. Model for determining weed infestation in maize based on Sentinel-2 channel indicators (Random Effect 

Model with Swamy-Arora’s transformation, one-way individual effect). 

Call: plm(formula = weed_index ~ B2 + B3 + B4 + B8, data = pdata, model = “random”) 

Effects: Var Std. dev Share   

idiosyncratic 43020.5 207.4 1   

individual 0.0 0.0 0   

theta: 0     

Residuals: Channel Coefficients: 

  Estimate, S Std. Error z-value Pr(>|z|) 

Min -353.061 (Intercept) 4144.249 1084.508 3.8213 0.000 

1Q -132.924 B2 -7.851 0.828 -9.4850 <0.001 
Median -25.397 B3 8.226 1.323 6.2167 <0.001 

3Q 102.976 B4 -1.365 0.597 -2.2881 <0.001 

Max 970.953 B8 -0.366 0.090 -4.0457 <0.001 
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  Total Sum of Squares: 15692000 

  Residual Sum of Squares: 8359900 
  R-Squared: 0.467 

  Adj. R-Squared: 0.455 

  Chisq 153.486 on 4 DF 

  p-value <0.001 

There is a strong negative relationship between weed_index and channel B2 (S = -7.85, p < 0.001). 

A substantial positive correlation was identified for B3 (S = 8.23, p < 0.001). The data from channels 

B4 and B8 are statistically significant as well, and R² = 0.467 signifies a satisfactory capacity to reflect 

fluctuations in weediness levels. 

Consequently, Sentinel-2 channels, particularly B2 and B3, serve as crucial indicators for 

weediness evaluation, rendering this set of channels appropriate for prediction. 

Table 8. Model to determine the weediness of maize crops with drone channel indicators (Random Effect Model 

with Swamy-Arora’s transformation, one-way individual effect). 

Call: plm(formula = weed_index ~ G + R + RE + NIR, data = pdata, model = “random”) 

Effects: Var Std. dev Share   

idiosyncratic 61203.4    247.4      1   

individual 0.0 0.0 0   

theta: 0     

Residuals: Channel Coefficients: 

  Estimate, S Std. Error z-value   Pr(>|z|) 

Min -498.25 (Intercept)   -845.611  400.432 -2.112 0.0350 
1Q   -144.68   G -0.050 0.057 -0.874 0.3820 

Median -47.57    R 0.047 0.054 60.880 0.3790 
3Q 61.73 RE -0.046 0.013 -3.705 0.0000 

Max  1319.33 NIR 0.152 0.030 5.047 <0.001 

       

  Total Sum of Squares: 15692000 

  Residual Sum of Squares: 11943000 
  R-Squared:       0.239 

  Adj. R-Squared: 0.222 

  Chisq 54.932 on 4 DF 

  p-value <0.001 

The method for checking weeds in maize crops using drone channels showed that the data of 

RE and NIR channels are significant. RE exhibits a substantial negative correlation with WI (S = -

0.046, p < 0.001), while NIR demonstrates a considerable positive correlation (S = 0.152, p < 0.001). The 

data from the G and R channels did not exhibit a significant correlation with the weediness indices 

of maize crops. The coefficient of determination R² = 0.239, signifying a moderate capacity to reflect 

fluctuations in weediness levels. Consequently, the RE and NIR channels from drones are proficient 

in evaluating the degree of weediness. 

Thus, the B2 and B3 Sentinel-2 channels and RE and NIR drone channels are the most 

informative approach for indicating the weediness level. Sentinel-1 channels did not show a 

statistically significant relationship with the level of weediness and are probably less useful for this 

task. The most promising channels can be used to develop a monitoring system that will allow 

effective management of weeding within the framework of agroecological farming. 

5. Conclusions 
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In this study, we assessed several key parameters employing satellite and drone imagery for 

weed identification and estimation of weediness level in maize fields. 

The obtained results indicated that RE and NIR drone channels effectively identified substantial 

changes and are more sensitive to all three factors, which makes it the best choice for weed 

identification. The NIR channel sensitivity to agrotechnical aspects, such as cultivation type, 

rendering it advantageous for field monitoring. Sentinel-1 and Sentinel-2 channels exhibit no 

statistical changes concerning the three investigated factors. 

Correlation and regression analysis indicate that B2, B3, B8 Sentinel-2 channels and RE, NIR 

drone channels have the strongest association with weediness, yielding precise forecasts of weediness 

levels. Conversely, Sentinel-1 channels exhibited minimal correlation and significance, suggesting its 

restricted utility for weed prediction. 

Panel models of random effects indicated that B2 and B3 channels of Sentinel-2, RE and NIR 

channels of drone were the most informative for prediction of weediness. They guarantee the 

precision of predictions by considering the unique attributes of each location and the temporal 

variations in weed proliferation. These channels can serve as the foundation for developing an 

efficient weed monitoring system for organic agriculture, enabling the prompt detection of 

problematic regions and the adjustment of agronomic practices. 

6. Patents 

Utility model patent No. 158094 (UKR) Station for Receiving Information from Space Apparatus 

for Remote Sensing of the Earth. https://iprop-ua.com/inv/3tjnh0sz/ 
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