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Abstract: This study presents the evaluation of tools for weed analysis and management to support
agroecological practices in organic farming, emphasizing agriculture digitalization and remote
sensing. The main aim was to provide techniques for monitoring and prediction of weed spread using
multispectral satellite and drone data, without the use of chemical inputs. Key findings indicate that
VV and VH channels of Sentinel-1 and B2, B3, B4 and B8 channels of Sentinel-2 are not different
regarding tillage, herbicide use, or sowing density. However, RE and NIR channels of drone detected
significant variations and proved effectiveness for weediness monitoring. The NIR channel is
sensitive to agrotechnical factors such as cultivation type, making it valuable for field monitoring.
Correlation and regression analyses revealed that B2, B3, B8 channels of Sentinel-2 and RE and NIR
drone channels are the most reliable for predicting weed levels. Conversely, Sentinel-1 showed
limited predictive utility. Random effect models confirmed that Sentinel-2 and drone channels can
accurately account for site characteristics and timing of weed proliferation. Taken together these tools
provide effective organic weed monitoring systems, enabling rapid identification of problem areas
and adjustments in agronomic practices.

Keywords: Agroecological farming; Digitalization; Drone; Herbicide; Organic agriculture; Sentinel;
Weediness

1. Introduction

Effective weed management is an important component of sustainable agricultural development
in modern organic farming [1]. Organic production requires strong reduction or complete avoidance
of the use of chemical herbicides, that stimulates development of alternative, environmentally safe
methods of weed control [2-5]. The use of remote sensing (RS) data in precision agriculture is an
important tool in modern agronomic management. Using RS technologies and geospatial data
processing, it becomes possible to conduct accurate monitoring of the state of crops. Such analysis of
images from Sentinel-1 and Sentinel-2 satellites and data from drones opens new opportunities for
monitoring vegetation, including the assessment of the weediness [6].

RS data might be also used to identify areas with extensive weediness and analyze the
effectiveness of herbicide-free agrotechnical methods. Remote sensing is the basis of modern
approaches [7,8]. The use of spectral data from satellites or drones allows the analysis of light
reflectance by vegetation in near-infrared (NIR) and mid-infrared (MIR) spectral ranges. In addition,
the distribution of spectral reflectance can serve as useful indicator of different types of vegetation,
including weeds [9-11].

The use of vegetation indices such as Normalized Difference Vegetation Index (NDVI), Soil-
Adjusted Vegetation Index (SAVI) and Green Normalized Difference Vegetation Index (GNDVI)
showed high efficiency in separating weeds from crops [12-16]. Recent advances in machine learning
and artificial intelligence have significantly improved the accuracy of weed identification [17,18].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Algorithms such as Random Forest, Support Vector Machines (SVM) and neural networks are
effectively used to analyze large amounts of RS data [18-21].

Maize is extensively used in such type of studies because it is one of the key agricultural crops
where accurate determination of weed infestation level is critical to ensure high yields. According to
earlier studies, the spectral properties of weeds are significantly different from those of maize, which
allows effective RS using for their identification [10,22,23]. The use of unmanned aerial vehicles
(UAVs) and satellite imagery combined with high-precision indices allows for the assessment of
weed infestation levels over large areas with minimal cost [24-26].

Organic production of maize requires a tool that helps predict weed levels based on historical
data. The model, which includes the coefficient of weediness such as integrated indicator that
considers the density and height of grass, broadleaf, and root weeds, can be the basis for planning
agrotechnical measures. This makes possible to evaluate the effectiveness of weed control measures
and to improve management systems in agroecological farming. Thus, the goal of present study was
to develop and substantiate new approaches to weed management based on agriculture digitalization
and RS technologies. The study was designed in the way to evaluate the possibilities of analyzing the
state of weeding using multispectral images from satellites and drones, to identify key factors
affecting the level of weeding, and to create a model that will allow effective monitoring and
forecasting of weeding without the use of chemicals.

The outcomes of using remote sensing and drone data may be very different, though, depending
on the crop being analyzed, the processing technologies, the density of the plantation, and other
technological factors. Therefore, we elucidated the potential applications of Sentinel-1, Sentinel-2,
and drone images taken at different spectral channels in determining the extent of weed infestation
in areas with varying plowing methods, sowing density, and natural protection, among other factors.

2. Materials and Methods

Key characteristics of experimental field. The experimental plot was a part of larger the
experimental field of the Polissia National University (N 50°26'; E 28°42). The site has predominantly
Gleic Albic Luvisol (Endoclayic, Cutanic, Differentic, Katogleyic, Ochric type of soil according to
WRB (2022).

Weather conditions significantly affect the quality of space or drone shooting and shooting from
drones, it should be noted that the weather of research area is moderately continental with humid
conditions. The average annual air temperature is about 7-8 °C, and the average temperature in
January is about 5 °C. The summer temperature usually ranges between 18-20 °C. The amount of
precipitation varies between 600-700 mm per year, with the most part falling in the summer period.
The relative humidity of the air is significantly raised.

Analysis of variance is used to evaluate the effects of factors F1, F2, F3, and their interactions.
Experiment was tested in three replications to minimize experimental error and improve result
validity.

Plot of about 1 hectare was divided into 12 experimental plots with three replications (Figure 1).
The research employs a factorial experimental design where F1, F2, F3 were combined. Each
combination of F1 x F2 x F3 was implemented in three replicates. The study explored the impact of
the following factors: F1 - tillage systems: S1- deep soil plowing on 18-20 cm (standard), S2 — soil
disking on 10-12 cm (AES), S3 - soil milling on 5-7 cm (AES); F2 — sowing density: Al — 1.1 sowing
units/ha (standard); A2 — 1.3 sowing units/ha (AES); F3 - herbicide application: H1 — herbicide
application (standard); H2 - herbicide nonapplication (AES).
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Figure 1. Experiment design.

Data were collected with a frequency of one week using each source. During field research, the
parameters of main crops, cereal weeds, broadleaf, and short-leaved weeds were measured by height
and density for each plot.

To conduct aviation research copter-type DJI Mavic 3M drone was used with a multispectral
camera of the following characteristics: image sensor — 1/2.8-inch CMOS, effective pixels: 5 Mn; Lens
— FOV: 73.91° (61.2° x 48.10°); equivalent focal length — 25 mm; aperture — {/2.0; fixed focus; image
format — TIFF; video resolution — H.264 FHD: 1920 x 1080@30 fps.

Images were obtained in the following spectral ranges based on the results from aerial
photography: Green (G): 560 + 16 nm; Red (R): 650 + 16 nm; Red Edge (RE): 730 + 16 nm; Near infrared
range (NIR): 860 + 26 nm. We determined the average values of radiation intensity in the specified
spectral ranges, made calculations, and determined the average values of the NDVI vegetation index
for each site over a five-week time interval during the geoinformation analysis of the obtained
images.

Space research was conducted using data received from the Sentinel-1 and Sentinel-2 spacecraft.
During Sentinel-1 measurements, space images were obtained in the radio wave range in the IWS
mode with a resolution of 5 x 5 m, a bandwidth of 20 x 20 km with VV and VH polarization. As a
result of data processing, the average values of the radiation intensity for the middle of each section
were determined.

The reception of images from the Sentinel-2 optical-electronic observation spacecraft was carried
out in the Band 2 (Blue) spectral ranges of 490 nm; Band 3 (Green) 560 nm; Band 4 (Red) 665 nm; Band
8 (NIR) 842 nm. The processing of the data from the space shooting was carried out according to the
methodology like the processing of the data from the aerophotography by spectral channels with the
determination of the vegetation index NDVL

Database description. To effectively conduct the experiment, we formed a panel database that
incorporated the results of physical examinations of plants and soil, data from the Sentinel-1 and
Sentinel-2 satellites, and indicators from a drone. We collected data for five time points at each
experimental site. This ensures the two-dimensionality of the data, enabling the analysis of the object
individual features and their changes over time. Additionally, we ensured the stability of the sample
when forming the panel database. Observation took place in the same areas, which do not change
over time in terms of size and type of observation.
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The object of the sample was 36 plots, which were formed from one experimental field where
maize was sown. The database formation process provides the sample depth, which determines the
number of observations for a specific researched field. Indeed, we observed each of the 36 sites five
times. Three indicators determine the type of plot cultivation, ten indicators stem from a visual
survey, six indicators derive from data from the Sentinel-1 and Sentinel-2 satellites, five indicators
come from a drone survey of experimental plots, and the remaining indicators come from soil tests
at the experimental site (Table 1).

Table 1. Database indicators.

A group of indicators Indicators
Type of processing Tillage_sy, Herbicides, Sowing_den
Visual examination Maize_height_cm, Maize_density_m?2,

Grass_weeds_number, Grass_weeds_density_m?2,
I_Dicotyledoneae_weeds_number,
I_Dicotyledoneae_weeds_density_m?2,
II_Dicotyledoneae_weeds_number,
II_Dicotyledoneae_weeds_density_m?2,
Root_weeds_number, Root_weeds_density_m?2,

Int_weed
Satellite data VV, VH, B2, B3, B4, B8
Drone data G, R, RE, NIR, NDVI

Data from various sources, including space and drone images, were processed as shown in
Figure 2. The NDVI coefficients were used to create models that help identify how weedy the crops
are. The measurements were carried out 5 times at different phases of the maize plant development.
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Figure 2. The procedure for processing space images and images from drones. Flowering stage (shooting from
a drone DJI Mavic 3M). A - image in pseudo-color; B - NDVI coefficient per pixel distribution; C - averaged
values of the NDVI coefficient by fields.

Consequently, the database using 8460 unique indicators for each research area was formed.
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3. Results
3.1. Employing Satellite and Drone Imagery for Weed Identification

Since organic farming does are pesticide-free, effective weed management is crucial to ensuring
high yields. Using agroecological methods like changing tillage practices, adjusting planting density,
and adding natural pest controls might significantly affect weed growth.

However, regional conditions often determine the effectiveness of these methods, this requires
accurate measurements that are taken often. That can only be done by ground monitoring. Modern
RS methods, like images from Sentinel-1 and Sentinel-2 satellites and data from drones, allow for
rapid checks of field conditions. This research aims to find out if RS data can show how different
farming methods, natural materials, and planting amounts affect crops, and if images from Sentinel-
1, Sentinel-2, and drones can show these differences.

ANOVA was used to determine the differences in VV, VH, B2, B3, B4, B8, G, R, RE, and NIR
channels within different types of tillage (Tillage_system), herbicide application (Herbicides), and
sowing density (Sowing_density) (Table 2). An ANOVA test was used to see how important each
factor was in the channels and to see if this information can be used to keep track of weediness levels
in organic farming.

Table 2. Variance analysis (ANOVA) for all channels of Sentinel-1, Sentinel-2 and drones for weed detection.

Cha Df Su Sq Mean Sq F Value Pr(>F)
nnel m
\'A% Tillage_system 2 17.4 8.715 1.872 0.157
Herbicides 1 2.0 1.990 0.427 0.514
Sowing_density 1 42 4.248 0.912 0.341
Residuals 175 814.9 4.656
VH Tillage_system 2 18.1 9.073 1.045 0.354
Herbicides 1 1.3 1.305 0.150 0.699
Sowing_density 1 1.5 1.528 0.176 0.675
Residuals 175 1519.7 8.684
B2 Tillage_system 2 49854 24927 0.991 0.373
Herbicides 1 2102 2102 0.084 0.773
Sowing_density 1 5571 5571 0.221 0.639
Residuals 175 4403990 25166
B3 Tillage_system 2 109883 54942 1.550 0.215
Herbicides 1 10554 10554 0.298 0.586
Sowing_density 1 9437 9437 0.266 0.606
Residuals 175 6201606 35438
B4 Tillage_system 2 255469 127734 0.963 0.384
Herbicides 1 8563 8563 0.065 0.800
Sowing_density 1 29341 29341 0.221 0.639
Residuals 175 23207253 132613
B8 Tillage_system 2 485977 242989 1.577 0.209
Herbicides 1 129754 129754 0.842 0.360
Sowing_density 1 16495 16495 0.107 0.744
Residuals 175 26958475 154048
G Tillage_system 2 22183221 11091610 6.184 0.003
Herbicides 1 1141370 1141370 0.636 0.426
Sowing_density 1 56954 56954 0.032 0.859
Residuals 175 313870661 1793547
R Tillage_system 2 13020158 6510079 2.849. 0.061

Herbicides 1 18115158 18115158 7.927 0.005
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Sowing_density 1 1577901 1577901 0.690 0.407
Residuals 175 399912227 2285213
RE Tillage_system 2 1740347 870174 0.313 0.732
Herbicides 1 14970699 14970699 5.381 0.022
Sowing_density 1 337323 337323 0.121 0.728
Residuals 175 486873488 2782134
NIR  Tillage_system 2 15326079 7663039 11.86 <0.001
Herbicides 1 18277361 18277361 28.29 <0.001
Sowing_density 1 6644403 6644403 10.29 0.002
Residuals 175 113050243 646001

Df — degrees of freedom for each factor and residual values; Sum Sq — sums of each factor squares; Mean Sq -
average squares; F value — the value of the F-statistic for each factor; Pr(>F) — p-value that allows to assess

whether the effect of a factor is statistically significant.

Consequently, the use VV and VH channels of Sentinel-1 for all three factors, reveals no changes.
This indicates that these tools are not sufficiently effective for discerning variations in tillage systems,
sowing density, and the application of herbicides. We also identified no statistically significant
variations concerning all this factors for the Sentinel-2 channels. Sentinel-2 channels demonstrate
restricted sensitivity to differing tillage practices and planting techniques.

Using G, R, RE, NIR drone channels to study tillage systems shows a significant difference (p =
0.003) indicating that the tillage system has a strong effect. Herbicide application and sowing density
are not statistically significant. Variation in the R channel showed substantial impact of herbicide
application with suggesting a possible impact of tillage (p = 0.061).

The RE channel related to herbicides is significant (p = 0.022), demonstrating the impact of
herbicide treatment, and three factors are statistically significant for NIR channel: tillage system (p <
0.001), herbicides (p < 0.001), and sowing density (p = 0.002). Thus, the NIR drone channel is the most
sensitive and appropriate for detecting of all three agrotechnical parameters effects.

Thus, we can conclude, that the VV and VH channels of Sentinel-1 did not yield statistically
significant findings for any of the three criteria, rendering them less useful in discerning differences.
We found the same results for bands 2, 3, 4 and 8 of Sentinel-2; these channels also do not show any
significant impact on tillage, herbicide, and sowing density parameters.

The G drone channel exhibited sensitivity to the processing method employed. Channel R
demonstrated importance for herbicides and approached significance about tillage system, while RE
is significant solely for the herbicide component. The NIR channel is the most informative and
exhibits high sensitivity to all three parameters, rendering it the most promising for weed monitoring.

3.2. Estimation the Weediness Level in Maize Based on Sentinel-1, Sentinel-2 and Drone Images

This study aims to find out if RS images from these sources can be used to check weed levels by
using information from different channels. To meet this goal, we used the same dataset as in 3.1.

To accomplish this, we computed the weed index (WI), a composite metric that considers the
density and height of various weed species. Regression analysis was employed to assess the data and
estimate the value of the RS channels of the landscape concerning the integrated WL, defined as the
cumulative product of the height of all weed species on their projective coverage. Following the
formulation of the WI variable, defined as:

WI = (grass weeds, quantity x grass weeds density, m?) + (I Dicotyledoneae weeds, quantity x I
Dicotyledoneae weeds density, m?) + (I Dicotyledoneae weeds, quantity x I Dicotyledoneae weeds density,
m?) + (Root weeds, quantity x Root weeds density, m?).

A correlation and regression analysis were conducted between Sentinel-1, Sentinel-2, and drone
channels and the level of weediness.
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Table 3. Correlation analysis between the channels and the level of weediness.

Channel Weed correlations
VvV 0.1165
VH 0.1365
B2 -0.4276
B3 -0.3307
B4 -0.3584
B8 0.3993

G -0.1821
R -0.2347
RE -0.2440
NIR 0.4007

Residuals:Min -416.48, 1Q -116.54, Median -13.84, 3Q 70.59, Max 886.84.

Sentinel-1: channels VV and VH have a weak correlation with WI (0.116 and 0.137, respectively).
Channels B2, B3, B4, and B8 of Sentinel-2 exhibit an average correlation level, with B2 (-0.428) and B8
(0.399) being the most informative. The RE drone channel (-0.244) and the NIR channel (0.401) have
a more robust correlation with the weediness score, signifying their substantial informativeness
(Table 3).

The combined regression “Weed_model” reveals that B2, B3, B8, RE, and NIR are significant
channels, with a p-value <0.05 (Table 4). Coefficient of determination: R? = 0.5406, indicating that the
model explains approximately 54% of the variation in weed_index.

Table 4. Regression analysis for Sentinel-1, Sentinel-2, and drone channels.

Channel Estimate Std. Error t value Pr(>1tl)
(Intercept) 4281.867 1229.373 3.483 0.001
\AY 0.154 8.950 0.017 0.986
VH -18.581 7.300 -2.545 0.012
B2 -9.145 1.070 -8.549 <0.001
B3 8.481 1.449 5.853 <0.001
B4 -0.977 0.648 -1.509 0.133
B8 -0.358 0.108 -3.326 0.001
G -0.033 0.047 -0.687 0.493
R 0.020 0.044 0.451 0.652
RE 0.033 0.013 2.570 0.011
NIR 0.052 0.027 1.938 0.054

Residual standard error: 206.5 on 169 degrees of freedom. Multiple R-squared: 0.5406, = Adjusted R-squared:
0.5134. F-statistic: 19.89 on 10 and 169 DF, p-value: <0.001.

Table 5. The Weed model.

Residuals: Channel Coefficients:
Estimate Std. t value Pr(>1tl)
Error

Call: Im(formula = weed_index ~ VV + VH, data = data)
Min -313.04 (Intercept) 573.463 149.268 3.842 <0.001
1Q -171.20 Vv 8.906 11.682 0.762 0.447
Median -81.68 VH 10.543 8.618 1.223 0.223

3Q 51.15

Max 1426.12 Residual standard error: 294.5 on 177 degrees of freedom

d0i:10.20944/preprints202502.1580.v1
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Multiple R-squared: 0.022
Adjusted R-squared: 0.011
F-statistic 1.977 on 2 and 177 DF
p-value 0.142

Call: Im(formula = weed_index ~ B2 + B3 + B4 + B8, data = data)

Min -353.10 (Intercept) 4144.249 1084.508 3.821 <0.001
1Q -132.90 B2 -7.851 0.828 -9.485 <0.001
Median -25.40 B3 8.226 1.323 6.217 <0.001
3Q 103.00 B4 -1.365 0.597 -2.288 0.023
Max 971.00 B8 -0.366 0.090 -4.046 <0.001
Residual standard error: 218.6 on 175 degrees of freedom

Multiple R-squared: 0.467

Adjusted R-squared: 0.455

F-statistic 38.370 on 4 and 175 DF
p-value <0.001

Call: Im(formula = weed_index ~ G + R + RE + NIR, data = data)

Min -498.25 (Intercept) -845.610 400.432 -2.112 0.036
1Q -144.68 G -0.050 0.057 -0.874 0.383
Median -47.57 R 0.047 0.054 0.880 0.380
3Q 61.73 RE -0.046 0.013 -3.705 0.000
Max 1319.33 NIR 0.152 0.030 5.046 <0.001
Residual standard error: 261.2 on 175 degrees of freedom
Multiple R-squared: 0.239
Adjusted R-squared: 0.222
F-statistic 13.73 on 4 and 175 DF
p-value <0.001

The Sentinel-1 model shows a very weak connection between changes in weediness and the VV
and VH channels, with a correlation value of R? = 0.0218. Therefore, we can deduce that the VV and
VH channels are not useful for weediness evaluation.

Weediness changes in Sentinel-2 channels demonstrate statistical significance (p < 0.05), and R?
= 0.467, indicate a strong correlation between the Sentinel-2 and WI channels. Consequently, the
Sentinel-2 channels, particularly B2 and B3, are indicative for forecasting weed density.

The models created with data from drones identified important channels, specifically RE and
NIR, with a p <0.05. The coefficient of determination R?=0.239 signifies the reasonable efficacy of the
model utilizing drone channels for forecasting WI.

Consequently, the RE and NIR channels substantially indicate the weediness level, validating
their appropriateness for monitoring.

The RE and NIR channels greatly affect how we measure weediness, proving they are useful for
monitoring. All Sentinel-2 channels, RE and NIR drones channels exhibit the strongest association
with weediness levels and show potential for predictive applications. Channels Sentinel-1 has shown
little utility and is not advisable for application in weed assessment models.

The model that uses the best channels, especially B2, B3, RE, NIR, can accurately predict weed
growth, which will help agroecological farming.

3.3. RS Factors for the Model Construction of Weediness
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Models have to consider the unique characteristics of each plot and the individuality of temporal
observations; thus, the addition of random effects (plm) is essential.

The Table 6 displays the outcomes of modeling the assessment of weediness in maize crops
utilizing the Sentinel-1 VV and VH channels. In research modeling, random factors account for the
unique weediness features of each plot and the temporal specificity of observations. The coefficient
values for VV and VH, similar to prior tasks of this study, were not statistically significant (p-value
for VV = 0.446 and for VH = 0.221), indicating a modest correlation between these channels and
weediness. R? = 0.0218, indicating a minimal capacity to explain differences in weediness levels.

Table 6. Model for assessing the weediness of maize crops with VV and VH channels of Sentinel-1 (Random

Effect Model with Swamy-Arora’s transformation, one-way individual effect).

Call: plm(formula = weed_index ~ VV + VH, data = pdata, model = “random”)

Effects: Var Std. dev Share
idiosyncratic 91096.6 301.8 1
individual 0.0 0.0 0
theta: 0
Residuals: Channel Coefficients:
Estimate, S Std. Error z-value Pr(>1zl)
Min -313.04 (Intercept) 573.463 149.268  3.842 0.000
1Q -171.20 \A% 8.906 11.682  0.762 0.446
Median -81.68 VH 10.543 8.618 1.223 0.221
3Q 51.15
Max 1426.12 Total Sum of Squares: 15692000
Residual Sum of Squares: 15349000
R-Squared: 0.022
Adj. R-Squared: 0.011
Chisq 3.953 on 2 DF
p-value 0.139

As a result, the Sentinel-1 channels (VV and VH) do not provide sufficient information to
forecast weediness assessments.

The model used to detect weeds in maize fields with Sentinel-2 indicators (B2, B3, B4, B8) showed
that all channels are important (p < 0.05), meaning they strongly relate to the amount of weed
infestation (Table 7).

Table 7. Model for determining weed infestation in maize based on Sentinel-2 channel indicators (Random Effect

Model with Swamy-Arora’s transformation, one-way individual effect).

Call: plm(formula = weed_index ~ B2 + B3 + B4 + B8, data = pdata, model = “random”)

Effects: Var Std. dev Share
idiosyncratic 43020.5 207.4 1
individual 0.0 0.0 0
theta: 0
Residuals: Channel Coefficients:
Estimate, S Std. Error z-value Pr(>1zl)
Min -353.061  (Intercept) 4144.249 1084.508 3.8213 0.000
1Q -132.924 B2 -7.851 0.828 -9.4850 <0.001
Median  -25.397 B3 8.226 1.323 6.2167 <0.001
3Q 102.976 B4 -1.365 0.597 -2.2881 <0.001

Max 970.953 B8 -0.366 0.090 -4.0457 <0.001
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Total Sum of Squares: 15692000
Residual Sum of Squares: 8359900
R-Squared: 0.467
Adj. R-Squared: 0.455
Chisq 153.486 on 4 DF
p-value <0.001

There is a strong negative relationship between weed_index and channel B2 (§=-7.85, p <0.001).
A substantial positive correlation was identified for B3 (S = 8.23, p < 0.001). The data from channels
B4 and B8 are statistically significant as well, and R? = 0.467 signifies a satisfactory capacity to reflect
fluctuations in weediness levels.

Consequently, Sentinel-2 channels, particularly B2 and B3, serve as crucial indicators for
weediness evaluation, rendering this set of channels appropriate for prediction.

Table 8. Model to determine the weediness of maize crops with drone channel indicators (Random Effect Model

with Swamy-Arora’s transformation, one-way individual effect).

Call: plm(formula = weed_index ~ G + R + RE + NIR, data = pdata, model = “random”)

Effects: Var Std. dev Share
idiosyncratic 61203.4 247.4 1
individual 0.0 0.0 0
theta: 0
Residuals: Channel Coefficients:
Estimate, S Std. Error z-value Pr(>1zl)
Min -498.25 (Intercept) -845.611 400.432 -2.112 0.0350
1Q -144.68 G -0.050 0.057 -0.874 0.3820
Median -47.57 R 0.047 0.054 60.880 0.3790
3Q 61.73 RE -0.046 0.013 -3.705 0.0000
Max 1319.33 NIR 0.152 0.030 5.047 <0.001
Total Sum of Squares: 15692000
Residual Sum of Squares: 11943000
R-Squared: 0.239
Adj. R-Squared: 0.222
Chisq 54.932 on 4 DF
p-value <0.001

The method for checking weeds in maize crops using drone channels showed that the data of
RE and NIR channels are significant. RE exhibits a substantial negative correlation with WI (S = -
0.046, p <0.001), while NIR demonstrates a considerable positive correlation (S =0.152, p <0.001). The
data from the G and R channels did not exhibit a significant correlation with the weediness indices
of maize crops. The coefficient of determination R? = 0.239, signifying a moderate capacity to reflect
fluctuations in weediness levels. Consequently, the RE and NIR channels from drones are proficient
in evaluating the degree of weediness.

Thus, the B2 and B3 Sentinel-2 channels and RE and NIR drone channels are the most
informative approach for indicating the weediness level. Sentinel-1 channels did not show a
statistically significant relationship with the level of weediness and are probably less useful for this
task. The most promising channels can be used to develop a monitoring system that will allow
effective management of weeding within the framework of agroecological farming.

5. Conclusions
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In this study, we assessed several key parameters employing satellite and drone imagery for
weed identification and estimation of weediness level in maize fields.

The obtained results indicated that RE and NIR drone channels effectively identified substantial
changes and are more sensitive to all three factors, which makes it the best choice for weed
identification. The NIR channel sensitivity to agrotechnical aspects, such as cultivation type,
rendering it advantageous for field monitoring. Sentinel-1 and Sentinel-2 channels exhibit no
statistical changes concerning the three investigated factors.

Correlation and regression analysis indicate that B2, B3, B8 Sentinel-2 channels and RE, NIR
drone channels have the strongest association with weediness, yielding precise forecasts of weediness
levels. Conversely, Sentinel-1 channels exhibited minimal correlation and significance, suggesting its
restricted utility for weed prediction.

Panel models of random effects indicated that B2 and B3 channels of Sentinel-2, RE and NIR
channels of drone were the most informative for prediction of weediness. They guarantee the
precision of predictions by considering the unique attributes of each location and the temporal
variations in weed proliferation. These channels can serve as the foundation for developing an
efficient weed monitoring system for organic agriculture, enabling the prompt detection of
problematic regions and the adjustment of agronomic practices.

6. Patents

Utility model patent No. 158094 (UKR) Station for Receiving Information from Space Apparatus
for Remote Sensing of the Earth. https://iprop-ua.com/inv/3tjnh0Osz/
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