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Abstract: Mutation of a single amino acid residue may significantly affect the structure and function of an 
entire protein. The effect of single amino acid substitutions can be assessed by examining the physicochemical 
environment surrounding the amino acid of interest, an emerging form of quantification of which is 
multidimensional tensors. However, the effect with respect to a protein variant’s inherent dynamics in tensor 
space is rarely assessed despite the potential importance of this form of analysis in revealing local 
physicochemical properties of the protein and response to mutation. Using the wild-type and 936 mutant 
structures of the protein domain 1pga, the present research evaluated the effects of local protein context and 
single amino acid substitutions on molecular dynamics simulation-derived structural distributions via the use 
of tensors capturing a range of biochemical properties. It was observed that the extent of simulated 
physicochemical variation local to a substituted amino acid is positively associated with local mechanical 
stiffness, loss of protein thermostability and decreased local hydrophobicity. In addition, it was observed that 
the largest tensor variation occurs in densely-packed, hydrophobic core-associated regions of protein 
structures. In summary, the pattern of tensor change aligns with prior knowledge about protein stability and 
physicochemical properties. 

Keywords: molecular dynamics simulation; protein; single amino acid substitution; protein local 
physicochemical environment; tensors; variant effect prediction; FireProtDB 

 

1. Introduction 

A protein’s properties, including its three-dimensional structure, stability, mechanical stiffness 
and affinity to ligand molecules, are determined to a large extent by the identity of and interactions 
between its amino acid residues [1–6]. A single amino acid substitution, i.e., mutation of a single 
amino acid residue, may induce significant change in protein structure and function [2,3]. Thus, the 
evaluation and prediction of the changes in protein physicochemistry due to single-point amino acid 
substitutions deserve in-depth study. 

An important way of assessing the effect of single amino acid substitutions is to examine the 
difference in the physicochemical environment surrounding the mutant and wild-type residues 
(‘local variation’), which has been represented in multiple applications with tensors - 
multidimensional matrices that can serve as quantifications of a protein’s three-dimensional structure 
and biochemical properties (wherein, separate “channels” can capture different specific properties) 
[7–10]. Indeed, tensors have become a contemporary form of input for emerging variant effect 
prediction programs that are capable of extracting informative high-dimensional patterns [9–11]. 

However, a protein’s three-dimensional structure is inherently mobile, and the ‘native’ state of 
the protein (as determined via x-ray crystallography for example) is only a single representation of 
the vast number of conformations a protein can assume. As such, upon protein mutation, evaluating 
the environment around the residue of interest in a static protein structure may be insufficient [12,13]. 
More informative, offering new perspectives, would be to assess the changes in a protein’s local 
physicochemistry in the context of a range of the protein’s inherent dynamic states. 
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The present research assessed the profiles of tensor changes relating to single amino acid 
substitutions via molecular dynamics simulation. New structures were sampled from molecular 
dynamics simulation trajectories in a range of mutant settings, and the relative profiles of tensors 
were examined with regard to a range of physicochemical parameters, i.e., the mechanical stiffness 
of the residue of interest, the change in whole-protein thermostability as a result of mutation and the 
change in the residue’s hydrophobicity upon single amino acid substitution. The protein structure 
1pga (B1 immunoglobulin-binding domain of Streptococcal protein G) was selected as the model 
system due to the availability of thermostability change data for a large number of single amino acid 
substitutions. 

2. Methods 

2.1 Preliminary Dataset and Selection of Targets for Analysis 

Raw protein thermostability change data were imported from FireProtDB, a manually-curated 
database established by Stourac et al. that records changes in thermostability as a result of single-
point mutation [14]. FireProtDB is relatively current and manual curation (validation against original 
publications) has removed erroneous entries and annotations prevalent in earlier protein 
thermostability databases such as ProTherm and ProtaBank [14]. 

The present research used ΔΔG (as defined in FireProtDB, where ΔG refers to the Gibbs free 
energy of protein unfolding; 𝛥𝛥𝛥𝛥𝛥𝛥 = 𝛥𝛥𝛥𝛥𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −  𝛥𝛥𝛥𝛥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) [14,15] as the quantification of protein 
thermostability change. 

Data from FireProtDB were accessed and bulk-exported on Dec 11, 2023. The present research 
selected 1pga, a small protein domain containing both beta sheet and alpha helix structures, for 
focused molecular dynamic simulation and tensor sampling (local structural analysis), as it had 936 
curated and ΔΔG-labelled mutant entries recorded in FireProtDB and at least 17 amino acid 
substitutions recorded for every residue (except residue 239). Furthermore, as a non-ligand-bound 
protein structure it was amenable to full automation of a molecular dynamics simulation pipeline. 

Of the 936 mutant entries of 1pga, 105 entries had recorded ΔΔG value of 4 kcal/mol. In the 
original research by Nisthal et al. [15], the main source of 1pga thermostability data in FireProtDB, 4 
kcal/mol was used to represent 'unspecified ΔΔG greater than or equal to 4 kcal/mol'. Therefore, the 
105 1pga mutants with recorded ΔΔG value of 4 kcal/mol were removed in ΔΔG-related analyses. 
However, they were still taken into account in all other analyses, since all other parameters analysed 
were produced in the current research. In addition, the distribution of data points corresponding to 
ΔΔG greater than or equal to 4 kcal/mol can also be indicative of the relationship between ΔΔG, local 
structural variation and other variables. 

Some unique 1pga mutations in FireProtDB were found to have multiple curated ΔΔG values 
recorded. In these cases, the arithmetic mean was used to represent the empirical ΔΔG. 

2.2. Molecular Dynamics Simulation 

Mutant protein structure PDBs were derived from wild-type PDBs with MODELLER, a 
homology-based biological macromolecular building programme [16,17], using a 'Mutate model' 
script written by Webb [18]. 

The protein dynamics of the wild-type structure and the 936 mutant structures of 1pga in 
aqueous solution were simulated via OpenMM [19,20]. A ‘protein in water’ simulation protocol was 
followed similar to that described in the paper by Eastman et al. that first described OpenMM 7 [19]. 
The current research used the AMBER-14 force field and the TIP3P-FB water model to simulate the 
solvent box surrounding the protein domain [19,21]. With the aim of sampling a variety of 
representational structures to reflect the dynamic nature of a protein structure in solution, the total 
runtime of molecular dynamics simulation was set as 80000 steps (320 ps), and snapshots were taken 
every 800 steps (3.2 ps). 1000 distinct frames of dynamic protein structures were yielded for each 
starting structure. 
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2.3. Local Physicochemical Variation Analysis 

Tensors were generated around the residue of interest according to the protocol outlined in Li 
et al.’s research on predicting protein thermostability change with a 3D Convolutional Neural 
Network [9]. Given that their full tensor of dimensionality (1, 14, 16, 16, 16) actually represented the 
concatenation of two (1, 7, 16, 16, 16) component tensors (one describing the mutant residue and one 
describing the corresponding wild-type residue), the current research only generated and compared 
the (1, 7, 16, 16, 16) tensors. Of these numbers, ‘7’ refers to the seven physicochemical properties 
(‘channels’): hydrophobicity, aromaticity, H-bond acceptor, H-bond donor, positive ionisability, 
negative ionisability and occupancy [9]. Each number in the tensor space has a real value on a scale 
ranging from 0 to 1 [9].  

A tensor is produced for each of the 1000 frames of a multi-frame PDB. For the set of 1000 tensors 
derived from each starting structure, the mean and standard deviation for both the Euclidean 
distance between every two whole unique tensors (‘whole-tensor Euclidean distance’) and the 
Euclidean distance between each channel of every two unique tensors (‘intra-channel Euclidean 
distance’) were calculated. For the purpose of the current research, ‘inter-tensor Euclidean distance’ 
serves as a general term that encompasses both whole-tensor Euclidean distance and intra-channel 
Euclidean distance. The Euclidean distances were calculated by subtracting one tensor from another, 
squaring all items in the matrix, taking the matrix sum and performing a square root operation. 

Relationships between three physicochemical parameters, i.e., residual mechanical stiffness, 
ΔΔG (as recorded in FireProtDB) and change in residual hydrophobicity, and the distribution of 
whole-tensor and intra-channel Euclidean distances were assessed respectively. The mechanical 
stiffness of a residue, a constant with arbitrary unit, is calculated by building an anisotropic network 
model based on the inter-residue contacts of a protein and measuring the magnitude required to 
produce a certain degree of deformation of the forces applied along the direction of any two residues 
[22]. The Python-based protein dynamics analysis package ProDy (version 2.4.0) provides functions 
including ‘calcModes’ and ‘calcMechStiff’ that were used to build anisotropic network models and 
calculate mechanical stiffness [23]. The present research used Eisenberg et al.’s normalised consensus 
hydrophobicity scale as a quantification of residual hydrophobicity [24]. The original ‘consensus 
hydrophobicity scale’ was derived in 1982 when Eisenberg et al. unified five pre-existing 
experimentally determined hydrophobicity scales by using the hydrophobicity values of Serine as 
mean and measuring the distance of the hydrophobicity of each amino acid type from the mean in 
terms of number of standard deviations [25]; the normalised consensus hydrophobicity scale was 
established by further normalising the ‘consensus hydrophobicity scale’ to fit a normal distribution 
of mean 0 and standard deviation 1 [24]. In the current research, the change in residual 
hydrophobicity is calculated by subtracting the normalized consensus hydrophobicity value of the 
mutant residue from the normalized consensus hydrophobicity value of the wild-type residue 
(decrease in hydrophobicity will lead to positive ‘change of residual hydrophobicity’ and vice versa). 

2.4. Physicochemical Property Correlation Analysis 

To further interpret the outcomes of local physicochemical variation analysis, associations 
between residual mechanical stiffness, ΔΔG and change in residual hydrophobicity in the context of 
the wild-type structure and the 936 mutant structures of 1pga were assessed by calculating the 
Pearson’s correlation coefficient between the parameters. 
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3. Results 

3.1. Local Physicochemical Variation Analysis 

3.1.1. Magnitude and Spread of Variation in Tensor Space 

As shown in Figures 1 and 2, residue substitution does not significantly change the mechanical 
stiffness at a given position. Figure 1A indicates that mechanical stiffness values of different amino 
acid variants of the same residue are closely clustered around a mean value. 

. 

Figure 1. Profiles across 1pga residue positions (dots represent individual amino acid variants) with 
respect to: (A) mechanical stiffness; (B) ΔΔG; (C) change in hydrophobicity; and mean Euclidean 
distance between pairs of tensors for: (D) whole-tensor (all channels); (E) hydrophobicity channel; (F) 
aromaticity channel; (G) H-bond acceptor channel; (H) H-bond donor channel; (I) positive ionisability 
channel; (J) negative ionisability channel; (K) occupancy channel. For Figures 1A-K: BLUE LINES: 
mean of parameter/mean inter-tensor Euclidean distance at each residue position. BLUE SHADE: 95% 
confidence interval of the mean values at each residue position. 
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Figure 2. Profiles across 1pga residue positions (dots represent individual amino acid variants) with 
respect to: (A) mechanical stiffness; (B) ΔΔG; (C) change in hydrophobicity; and Euclidean distance 
standard deviation between pairs of tensors for: (D) whole-tensor (all channels); (E) hydrophobicity 
channel; (F) aromaticity channel; (G) H-bond acceptor channel; (H) H-bond donor channel; (I) positive 
ionisability channel; (J) negative ionisability channel; (K) occupancy channel. For Figures 1A-K: BLUE 
LINES: mean of parameter/inter-tensor Euclidean distance standard deviation at each residual 
position. BLUE SHADE: 95% confidence interval of the mean values at each residual position. 

As shown in Figures 1D, the mean Euclidean distance between whole tensors describing variants 
of 1pga can vary between 30 and 65 (arbitrary units). Of the seven channels (Figures 1E-K), the 
greatest contributors to inter-tensor differences were the hydrophobicity and occupancy channels, 
with both having mean intra-channel Euclidean distance ranging from 15 to 35; moderate orders of 
intra-channel variation were observed for the H-bond acceptor and H-bond donor channels (around 
10-26); zero mean Euclidean distances were apparent for aromaticity, positive ionisability and 
negative ionisability channels, and the mean intra-channel Euclidean distances of these three 
channels were relatively small. As aromaticity and ionisability are physicochemical properties that 
are intrinsically linked with the type of amino acid around which the tensor is established, small 
variation in channels representing such properties is as expected in the absence of amino acid 
residues with such properties. 

As shown in Figure 2D, standard deviation of whole-tensor Euclidean distances ranges from 5 
to 10. The smallest mean whole-tensor Euclidean distance being over 30 indicates that even for a 
residue with minimal whole-tensor Euclidean distance and maximum whole-tensor Euclidean 
distance standard deviation, 95% of Euclidean distance values will fall between 10 and 50 (mean ± 2 
standard deviations). This means that for each PDB model, the 1000 tensors generated are mostly 
substantially distinct from each other. Regarding each channel, the largest intra-channel Euclidean 
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distance standard deviation is seen in hydrophobicity and occupancy channels (both 2.5-5.5, Figures 
2E, 2K). This suggests that the amount of intra-channel change induced by protein dynamics 
simulation is also the most variable for these two channels. Similar levels of intra-channel Euclidean 
distance standard deviations are seen for the H-bond acceptor and H-bond donor channels (1.75-4, 
Figures 2G-H). As assessed by mean intra-channel Euclidean distance, channels highly-dependent 
on residual physicochemical properties (aromaticity and ionisability channels) are the smallest 
contributors to inter-tensor Euclidean distance standard deviation and can have zero intra-channel 
standard deviation (Figures 2F, 2I, 2J). 

The shapes of the profiles of mean whole-tensor Euclidean distance and whole-tensor Euclidean 
distance standard deviation share similarities with profiles of mechanical stiffness, ΔΔG and 
hydrophobicity change, and particularly resemble the profile of mechanical stiffness (Figure 1A). 
Peaks in the profile of mean whole-tensor Euclidean distances are associated with large values of 
whole-tensor Euclidean distance standard deviation (Figure 2D), high residual mechanical stiffness 
(Figure 1A), high ΔΔG (Figure 1B) and significant decrease in hydrophobicity at mutant residue 
(Figure 1C). 

Of the seven channels, the shapes of the mean intra-channel Euclidean distance profiles of 
channels representing hydrophobicity, H-bond donor, H-bond acceptor and occupancy bear the 
strongest resemblance to the shape of the profile for mean whole-tensor Euclidean distance (Figures 
1E, G, H, K), while the shapes of the intra-channel Euclidean distance standard deviation profiles for 
hydrophobicity, H-bond donor and H-bond acceptor channels are most similar to the shape of the 
profile of whole-tensor Euclidean distance standard deviation (Figures 2E, G, H). Notably, the intra-
channel Euclidean distance standard deviations for the ionisability channels (Figures 2I-J) approach 
uniformity across the entire protein structure. 

Peaks in distribution profiles for whole-tensor and intra-channel Euclidean distance standard 
deviations correlate with large residual mechanical stiffness and high ΔΔG, but the association 
between tensor Euclidean distance standard deviations and change of hydrophobicity at the site of 
interest appears to be more ambiguous, for the peak positions do not show a clear correspondence. 

3.1.2. Relationship between Mean Inter-Tensor Euclidean Distance, Residual Mechanical Stiffness, 
ΔΔG and Decrease in Residual Hydrophobicity 

Table 1. Relationships between mean inter-tensor Euclidean distances, residual mechanical stiffness, 
ΔΔG and change in residual hydrophobicity as quantified with Pearson’s correlation coefficients. For 
determination of Pearson’s correlation coefficients with ΔΔG, data with ΔΔG labelled in FireProtDB 
as 4 kcal/mol are excluded. 

Mean Intra-channel Euclidean 
distance 

Residual mechanical stiffness ΔΔG (kcal/mol) 
Change in residual 

hydrophobicity 
Whole-tensor (all channels) 0.823 (p-value 6.729×10-245) 0.324 (p-value 3.359×10-23) 0.300 (p-value 4.009×10-22) 

Hydrophobicity 0.807 (p-value 5.300×10-228) 0.318 (p-value 2.73 × 10-22) 0.269 (p-value 7.058×10-18) 

Aromaticity 0.530 (p-value 1.026×10-72) 0.167 (p-value 5.39 × 10-7) 0.114 (p-value 3.312×10-4) 

H-bond acceptor 0.786 (p-value 8.047×10-209) 0.353 (p-value 2.00 × 10-27) 0.288 (p-value 2.232×10-20) 
H-bond donor 0.809 (p-value 1.387×10-230) 0.301 (p-value 5.38 × 10-20) 0.347 (p-value 2.319×10-29) 

Positive ionisability 0.125 (p-value 8.139×10-5) 0.0131 (p-value 0.696) 0.431 (p-value 4.290×10-46) 
Negative ionisability 0.251 (p-value 9.299×10-16) 0.201 (p-value 1.53 × 10-9) 0.224 (p-value 1.044×10-12) 

Occupancy 0.806 (p-value 2.365×10-227) 0.301 (p-value 4.63 × 10-20) 0.266 (p-value 1.738×10-17) 

As shown in Figure S1-S3, all subplots can be fitted with linear regression. 
Table 1 indicates that mean whole-tensor Euclidean distance has strong and positive association 

with residual mechanical stiffness. Mean whole-tensor Euclidean distance’s respective associations 
with ΔΔG and decrease of hydrophobicity are positive and visible, but are less significant than the 
relationship between mean whole tensor Euclidean distance and residual mechanical stiffness. 
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As shown in Table 1, regarding separate channels, strong positive associations are identified 
between residual mechanical stiffness and mean Euclidean distance of channels describing 
hydrophobicity, H-bond acceptor, H-bond donor and occupancy respectively. Weaker associations 
are found between residual mechanical stiffness and mean Euclidean distance of aromaticity, positive 
ionisability and negative ionisability channels respectively. 

The relationships between mean intra-channel Euclidean distances and ΔΔG follow similar 
patterns to those between mean inter-tensor Euclidean distances and residual mechanical stiffness 
(Table 1), though relatively weakly. 

The relationships between mean intra-channel Euclidean distances and decrease of residual 
hydrophobicity are similar to those between mean intra-channel Euclidean distances and ΔΔG in 
terms of magnitude, but exhibit patterns different from those between intra-channel Euclidean 
distances and other parameters (Table 1). The strongest positive associations with decrease of 
hydrophobicity are identified in channels describing positive ionisability, H-bond acceptor and H-
bond donor. Channels describing hydrophobicity and occupancy show less significant associations 
with decrease of residual hydrophobicity, the magnitudes of which are closer to the association 
between negative ionisability channel and decrease of hydrophobicity. The least association with 
decrease of residual hydrophobicity is identified for the aromaticity channel. 

3.1.3. Relationships between Inter-Tensor Euclidean Distance Standard Deviations, Residual 
Mechanical Stiffness, ΔΔG and Decrease in Residual Hydrophobicity 

Table 2. Relationship between intra-channel Euclidean distance standard deviations, residual 
mechanical stiffness, ΔΔG and change in residual hydrophobicity as quantified with Pearson’s 
correlation coefficients. For determination of Pearson’s correlation coefficients with ΔΔG, data with 
ΔΔG labelled in FireProtDB as 4 kcal/mol are excluded. 

Intra-channel Euclidean 
distance standard deviation 

Residual mechanical stiffness ΔΔG (kcal/mol) Change in residual 
hydrophobicity 

Whole-tensor (all channels) 0.624 (p-value 5.438×10-108) 0.216 (p-value 7.265×10-11) 0.196 (p-value 4.756×10-10) 
Hydrophobicity 0.642 (p-value 3.95 × 10-116) 0.228 (p-value 5.97 × 10-12) 0.198 (p-value 3.473×10-10) 

Aromaticity 0.479 (p-value 5.92 × 10-58) 0.151 (p-value 5.99× 10-6) 0.102 (p-value 0.00126) 

H-bond acceptor 0.670 (p-value 6.14 × 10-130) 0.262 (p-value 1.88 × 10-15) 0.240 (p-value 1.798×10-14) 
H-bond donor 0.701 (p-value 2.41 × 10-147) 0.245 (p-value 1.21 × 10-13) 0.244 (p-value 6.780×10-15) 

Positive ionisability 0.129 (p-value 4.43 × 10-5) 0.0588 (p-value 0.0797) 0.282 (p-value 1.428×10-19) 
Negative ionisability 0.081 (p-value 0.0109) 0.163 (p-value 1.10× 10-6) 0.193 (p-value 8.300×10-10) 

Occupancy 0.436 (p-value 2.37 × 10-47) 0.115 (p-value 0.000588) 0.114 (p-value 0.000321) 

As shown in Figure S4-S6, all subplots can be fitted with linear regression. 
As indicated by Table 2, the relationships between intra-channel Euclidean distance standard 

deviations, mechanical stiffness, ΔΔG and change in residual hydrophobicity follow similar patterns 
to those between mean intra-channel Euclidean distances, residual mechanical stiffness, ΔΔG and 
decrease of residual hydrophobicity shown in Table 1. Notably, though comparable to the Euclidean 
distance standard deviation of hydrophobicity channel in terms of magnitude (Figure 2K), the 
Euclidean distance standard deviation of occupancy channel has much less significant correlation 
with residual mechanical stiffness, ΔΔG and change in residual hydrophobicity. 
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3.2. Physicochemical Property Correlation Analysis 

Table 3. Pearson’s correlation coefficients between residual mechanical stiffness, ΔΔG and change in 
residual hydrophobicity. During the derivation of the table, data with ΔΔG labelled in FireProtDB as 
4 kcal/mol are excluded. 

 Residual mechanical stiffness ΔΔG (kcal/mol) Change in residual 
hydrophobicity 

Residual mechanical stiffness    
ΔΔG (kcal/mol) 0.461 (p-value 3.57 × 10-53)   

Change in residual 

hydrophobicity 

0.204 (p-value 8.52 × 10-11) 0.277 (p-value 5.62 × 10-19)  

As shown in Table 3, there is positive correlation between residual mechanical stiffness, ΔΔG 
and change in residual hydrophobicity. Since the 936 mutations of 1pga cover almost all possible 
mutants of the protein domain except those with substituted residue 269, the results from Table 4 
have a low possibility of being a result of confounding. 

4. Discussion 

The present research shows that, regarding variants of the protein domain 1pga, for a tensor 
describing the environment around a residue of interest, the magnitude of tensor change induced by 
molecular dynamics simulation is positively associated with the mechanical stiffness of the residue, 
the ΔΔG of the protein structure variant and the decrease in the residue’s hydrophobicity due to 
single-amino-acid substitution.  

Of the seven channels examined, the hydrophobicity and occupancy channels contribute most 
to the change of the tensor (having the largest mean inter-tensor Euclidean distance values). Changes 
in hydrophobicity, H-bond acceptor, H-bond donor and occupancy channels exhibit the strongest 
positive association with residual mechanical stiffness and ΔΔG, while changes in positive 
ionisability, H-bond acceptor and H-bond donor channels exhibit the strongest positive association 
with decrease in residual hydrophobicity. Changes in the aromaticity channel and negative 
ionisability channels show less association with residual mechanical stiffness, ΔΔG and decrease of 
residual hydrophobicity compared to those of the other channels, since they depend on the presence 
or absence of aromatic or ionisable amino acid residues in the vicinity of the residue of interest. 

The analysis conducted by Eyal et al. on green fluorescent protein, human ubiquitin and E2lip3 
domain of pyruvate dehydrogenase revealed possible correlation between protein regions with 
relatively-high mechanical stiffness values and protein secondary structure elements [22]. As higher 
mechanical stiffness is significantly associated with greater mean and spread of inter-tensor 
Euclidean distance (Tables 1-2), residues that belong to secondary structures are more likely to 
experience notable local physicochemical environment change as a result of molecular dynamics 
simulation. However, a more rigorous statistical analysis performed on a larger number of residues 
from a more diverse range of proteins is required to conclusively prove this association. 

Peaks of mean whole-tensor Euclidean distance are found at residue numbers 229, 231, 233, 252, 
256, 260, 278 and 280 (Figures 1-2). These regions correspond to large values of whole-tensor 
Euclidean distance standard deviation and largely coincide with peaks of residual mechanical 
stiffness, ΔΔG and decrease of residual hydrophobicity. 
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Figure 3. Positions of the residues that are associated with high mean inter-tensor Euclidean distances. 
Key residues were coloured red, with the intensity of red hue reflecting magnitude of hydrophobicity. 
PINK RESIDUES (MODERATE HYDROPHOBICITY): Y229, A252, A260; RED RESIDUES (STRONG 
HYDROPHOBICITY): L231, L233, F256, F278, V280. 

As shown in Figure 3, the residues corresponding to large mean whole-tensor Euclidean distance 
and whole-tensor standard deviation values are to a large extent the residues that form the 
hydrophobic core of the protein domain 1pga, which is the region within 1pga with the highest 
hydrophobicity, occupancy and stiffness. 

The current knowledge of factors influencing protein thermostability indicates that 
hydrophobicity and Van Der Waals forces are regarded as the dominant driving forces of 
thermostability and stable folding [3,26], while H-bonding and ionic interactions contribute less to 
protein thermostability [3,27]. The combined effect of numerous hydrophobic interactions and inter-
residual Van Der Waals forces within the hydrophobic core stabilises the protein at its native, folded 
state, and mutations that occur at rigid, high-occupancy (high Van Der Waals force concentration) 
regions of a protein structure, especially hydrophobic core regions, are most likely to result in the 
structure’s thermal destabilisation [3]. 

The aforementioned knowledge aligns with the observations from Figures 1-3 and Tables 1-2, 
i.e., regions that are more densely packed, more hydrophobic and more crucial to the overall 
structural integrity of the protein domain tend to undergo greater alteration to tensor space, and 
regions that are loosely-packed, disordered, less important to protein structural integrity and further 
away from the hydrophobic core tend to experience less tensor alteration. This shows that the new 
tensors generated through molecular dynamics simulation are composed in accordance with the 
established determinants for protein thermostability, conferring confidence in their validity in 
representing a range of protein dynamic states. 

In view of the associations between the distribution of inter-tensor Euclidean distance and 
various physicochemical parameters, it may be possible to use the mean and spread of both whole-
tensor Euclidean distance and intra-channel Euclidean distances as predictor variables in machine 
learning models describing a protein’s change in physicochemical properties upon single amino acid 
substitution. 

Tensors have been applied as inputs for variant effect predictors such as the protein 
thermostability change predictor ThermoNet (the tensor generation programme of which is used in 
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the current research) [9]. As prediction accuracy of variant effect predictors is limited by the amount 
and quality of data fed into the program for training [9,28], another application of the findings of the 
current research may be the expansion of pre-existing protein local physicochemical data with the 
aid of molecular dynamics simulation in order to provide variant effector predictors with a larger 
training set for the derivation of more accurate predictions, i.e. ‘molecular dynamics simulation-
based data augmentation’ [29]. However, as the scope of the current research is limited to the 
evaluation of the change in tensor space induced by molecular dynamics simulation, further 
experiments involving the comparison of variant effector predictor instances trained on original and 
expanded datasets are needed to confirm the validity of this approach. 

In fact, a major issue with ‘molecular dynamics simulation-based data augmentation’ might be 
that for the residues situated at unstructured and flexible regions distal to the hydrophobic core, the 
diversity of data generated may be limited. When they are involved in an expanded training dataset, 
the results produced by a variant effect predictor may be biased. However, the problem may be 
circumvented by using molecular dynamics simulation-based data augmentation in conjunction with 
other data augmentation techniques such as protein model rotation. Thus, more research is necessary 
to fully understand the properties and applicability of molecular dynamics simulation-based data 
augmentation, as well as the ways to mitigate its potential issues. 

In conclusion, the current research can be further expanded in multiple directions, and may 
eventually prove important for the prediction of protein physicochemical property change upon 
mutation. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org. Figure S1: Association between residual mechanical stiffness and mean Euclidean 
distance between pairs of tensors for: (A) whole-tensor (all channels); (B) hydrophobicity channel; (C) 
aromaticity channel; (D) H-bond acceptor channel; (E) H-bond donor channel; (F) positive ionisability channel; 
(G) negative ionisability channel; (H) occupancy channel. For Figures 1A-H: BLUE LINES: linear regression line; 
BLUE SHADE: 95% confidence interval of regression line; Figure S2: Association between ΔΔG and mean 
Euclidean distance between pairs of tensors for: (A) whole-tensor (all channels); (B) hydrophobicity channel; (C) 
aromaticity channel; (D) H-bond acceptor channel; (E) H-bond donor channel; (F) positive ionisability channel; 
(G) negative ionisability channel; (H) occupancy channel. For Figures 1A-H: BLUE LINES: linear regression line; 
BLUE SHADE: 95% confidence interval of regression line; Figure S3: Association between change in 
hydrophobicity and mean Euclidean distance between pairs of tensors for: (A) whole-tensor (all channels); (B) 
hydrophobicity channel; (C) aromaticity channel; (D) H-bond acceptor channel; (E) H-bond donor channel; (F) 
positive ionisability channel; (G) negative ionisability channel; (H) occupancy channel. For Figures 1A-H: BLUE 
LINES: linear regression line; BLUE SHADE: 95% confidence interval of regression line; Figure S4: Association 
between residual mechanical stiffness and Euclidean distance standard deviation between pairs of tensors for: 
(A) whole-tensor (all channels); (B) hydrophobicity channel; (C) aromaticity channel; (D) H-bond acceptor 
channel; (E) H-bond donor channel; (F) positive ionisability channel; (G) negative ionisability channel; (H) 
occupancy channel. For Figures 1A-H: BLUE LINES: linear regression line; BLUE SHADE: 95% confidence 
interval of regression line; Figure S5: Association between ΔΔG and Euclidean distance standard deviation 
between pairs of tensors for: (A) whole-tensor (all channels); (B) hydrophobicity channel; (C) aromaticity channel; 
(D) H-bond acceptor channel; (E) H-bond donor channel; (F) positive ionisability channel; (G) negative 
ionisability channel; (H) occupancy channel. For Figures 1A-H: BLUE LINES: linear regression line; BLUE 
SHADE: 95% confidence interval of regression line; Figure S6: Association between change in hydrophobicity 
and Euclidean distance standard deviation between pairs of tensors for: (A) whole-tensor (all channels); (B) 
hydrophobicity channel; (C) aromaticity channel; (D) H-bond acceptor channel; (E) H-bond donor channel; (F) 
positive ionisability channel; (G) negative ionisability channel; (H) occupancy channel. For Figures 1A-H: BLUE 
LINES: linear regression line; BLUE SHADE: 95% confidence interval of regression line. 
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