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Abstract

As an early-diverging angiosperm lineage, Chloranthaceae produces specialized coumarins with
documented antimicrobial and anti-inflammatory activities, which contribute to its ecological
success. Isofraxidin, the most representative dihydroxycoumarin in this clade, exhibits significant
pharmaceutical potential. However, its biosynthetic basis remains uncharacterized. Here, we
assembled a high-quality triploid genome of Chloranthus erectus (8.57 Gb, contig N50=8.76 Mb) to
explore the evolution of defensive metabolism. Genomic analysis revealed an ancient WGD event
and expanded gene families associated with pathogen resistance. Metabolomic analysis identified at
least 49 coumarin compounds in Chloranthus plants, significantly exceeding previous records.
Integrated omics revealed 267 candidate biosynthetic genes across 9 enzyme families governing
isofraxidin biosynthesis. PAL-4CL established the phenylpropanoid backbone, amplified COSY
genes correlated with umbelliferone accumulation, and CYP71/OMT catalyzed terminal
modifications. This study deciphers the chemical defense evolution in early angiosperms and enables
engineering of plant-derived antimicrobials.

Keywords: Chloranthus; genome; metabolome-transcriptome integration; coumarin biosynthesis;
Isofraxidin

1. Introduction

The Chloranthaceae family, an early-diverging lineage of angiosperms, has long captivated
biologists due to its unique combination of ancestral traits. Its vascular system exclusively contains
scalariform perforation plates [1], a characteristic shared with ancient ANA-grade taxa of flowering
plants. The frequent absence of perianth structures in Chloranthaceae flowers exhibits remarkable
convergence with Piperales members (Saururaceae and Piperaceae) and basal monocots [2, 3].
Paleobotanical evidence positions Chloranthaceae fossils as one of the most extensively distributed
early angiosperm fossil groups during the Early Cretaceous[4]. The global occurrence of these fossils,
particularly pollen fossils demonstrating striking morphological continuity with living
Chloranthaceae species [5], provides critical insights into the diversification patterns and
biogeographic dispersal of the early angiosperms.

Chloranthaceae species are pharmacologically significant for their specialized metabolites,
particularly diverse terpenoids [6] and coumarin derivatives [7]. Terpenoid metabolism has been
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relatively well-characterized in early angiosperms [5, 8]. However, coumarin biosynthesis remains
incompletely understood and persistently overlooked. The phytochemicals not only define the
family’s distinctive biological properties but also play crucial roles in plant defense mechanisms.
Under environmental stressors including pathogen attack, insect herbivory, nutrient deprivation,
and growth restriction, Chloranthaceae species exhibit upregulated biosynthesis and
compartmentalization of coumarins as an evolutionary conserved protective strategy [9]. Among
these secondary metabolites, isofraxidin (7-hydroxy-6, 8-dimethoxycoumarin) stands out as a
representative dihydroxycoumarin compound [10]. As a bioactive constituent, isofraxidin
demonstrates pleiotropic pharmacological activities through modulation of key inflammatory
mediators: nuclear factor kappa-light-chain-enhancer of activated B cells (NF-xB), tumor necrosis
factor-alpha (TNF-a), and matrix metalloproteinases (MMPs), highlighting its therapeutic potential
in inflammatory regulation [11, 12].

Although isofraxidin plays a crucial role in plant stress resistance and bioactivity, its biosynthetic
pathway remains unresolved due to inadequate functional annotation of pivotal enzyme-encoding
gene families, such as CYP71 P450s and O-methyltransferases (OMT) in early-diverging angiosperms.
Conventional botanical extraction remains the primary method for obtaining isofraxidin to date.
However, this approach suffers from low efficiency due to the compound’s natural scarcity in plants
and raises environmental sustainability concerns. Here, we generated a high-quality genome
assembly of the autotriploid cultivar Chloranthus erectus using multiple advanced technologies.
Through comparative genomics analysis, we validated the evolutionary position of Chloranthaceae as
a critical lineage in angiosperm evolution. By integrating genomics, transcriptomics, and
metabolomics datasets, we elucidated the biosynthetic pathway and accumulation patterns of
isofraxidin in C. erectus. This study establishes the genomic foundations of chemical defense
evolution in early-diverging angiosperm lineages, deciphering specialized metabolic systems to
advance engineered production of plant-derived antimicrobials.

2. Results

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation, as well as the experimental conclusions that can be
drawn.

2.1. Chromosome-Scale Genome Assembly and Annotation

Using PacBio HiFi sequencing (122.62 Gb) combined with Illumina short-read data (227.40 Gb),
we generated a 8.57 Gb triploid genome for C. erectus with 99% sequence anchored to 45 chromosomal
pseudomolecules through Hi-C scaffolding (Table 1, Tables S1-56). The assembly achieved 8.76 Mb
contig N50 and 94.35% BUSCO [13] completeness (Table S7-S8), showing superior contiguity
compared to other triploid plant genomes like cultivated bananas [14]. Integrated annotation
combining transcriptomic and homology evidence identified 72, 675 protein-coding genes (average
CDS length 1, 154 bp) with 92.7% functional annotation rate (Tables 59-511). Comparative analysis
revealed high gene content conservation across homologous chromosomes, while Hi-C interaction
maps resolved three-dimensional chromatin architecture. Chromosomal organization was validated
by cytogenetic analysis confirming 3x = 45 karyotype (Figure 1, Figure S1).

Table 1. Statistics of the assembly and annotation of Chloranthus erectus genome.

Genome assemblyNo. of sequencesTotal length (bp) N50 (bp) N90 (bp) Longest (bp)
Contigs 8, 503 8,660, 104,190 8, 762, 697 1, 628, 957 67,315,735
Hi-C assembly 1,784 8,569, 334,221 178,915,312 136,432,957 336,677,673
Unplaced 1,739 85, 436, 445
Chromosomes 45 8, 483,897,776 178,915,312 136,432,957 336, 677, 673
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2.2. Transposable Element Accumulation and Whole Genome Duplication

Analysis of transposable elements (TEs) and whole genome duplication (WGD) events revealed
significant genomic evolutionary drivers in C. erectus [15]. Combined homolog-based and structure-
based analyses identified 6315.87 Mb TEs occupying 73.7% of the assembled genome (Table S13),
exceeding TE content in most angiosperms, as well as ginkgo (>70%) [16] and pine (69.4%) [17]. Long
terminal repeats (LTRs) dominate (63.54% of genome), suggesting slow TE clearance mechanisms
similar to pine [16], contributing to C. erectus’ large genome size.

Comparative genomic analysis using monoploid chromosome representatives detected a single
WGD event through Ks distribution and 4DTv analyses (Figure 2B, C). The Ks peak at 1.1~ and
calculated divergence rate (4.339821e-09/year) dated this event to 126.7 Mya. Phylogenetic
comparisons with Amborella [18] and Magnoliaceae confirmed this paleopolyploidy event was unique
to Chloranthaceae (Figure 2D).
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Figure 1. Genome assembly of autotriploid Chloranthus erectus and the genomic characteristics. (A)
Morphological characteristics of flowers, leaves and stems of Chloranthus. (B) The autotriploid C. erectus has 45
chromosomes and the karyotype is 3x = 45. (C) The Hi-C heatmap of assembled chromosomes. (D) Syntenic
blocks of homologous Chromosomes.

2.3. Phylogenetic Reconstruction

The phylogenetic relationships among Magnoliids, Monocots, and Eudicots continue to present
unresolved questions in angiosperm evolution [19]. Leveraging genomic data from early-diverging
angiosperms, our study provides enhanced resolution of these critical evolutionary connections. Our
comprehensive sampling encompassed 25 representative species across major plant lineages (Table
S14). A phylogenetically informative set of 1, 092 conserved low-copy nuclear genes (LCGs) was
rigorously curated from whole-genome alignments to reconstruct maximum likelihood phylogenies
with robust statistical support.

Chloranthus demonstrated strong phylogenetic affinity with core Magnoliids, forming a well-
supported group (BS=100) that resolves as sister to the Eudicot clade (Figure 2D). This topology aligns
with current models positioning Magnoliids as a paraphyletic lineage ancestral to core eudicots [20].
Systematic subsampling further revealed exceptional topological concordance across analytical
frameworks, evidenced by consistent results from 1092 LCGs and 517 LCGs optimized for site-
heterogeneous models (Figures S7). Finally, a coalescent-based species tree reconstructed from 1, 092
LCGs delineated three angiosperm lineages with high confidence: Monocots, Chloranthus +
Magnoliids, and Eudicots.
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Figure 2. Genome insights into Chloranthus. (A) Shared/specific gene families vs. Magnoliids. (B) 4DTv
distribution of homologous blocks. (C) Ks peaks reveal Chloranthus specific WGD. (D) Phylogeny and gene
family dynamics across 25 species show Chloranthus—Magnoliid clade as eudicot sister group (&
expanded/contracted gene families). (E) KEGG enrichment highlights plant-pathogen interaction pathways.

2.4. Expansion of Disease Resistance-Related Gene Families

The analysis of gene families showed that 48843 gene families were clustered in 25 species, of
which 3361 gene families were shared. The corresponding clustering results of the genomes of
C.erectus and four Magnoliids species, P.nigrum, L.chinense, M.biondii and P.americana were extracted,
and it was found that the number of gene families they shared was 7057 (Figure 2A), which may
represent the core gene families of Chloranthales and related Magnoliids.

Genome-specific analysis revealed the dynamic evolution of gene families in C. erectus,
identifying 138 gene families (containing 1, 310 genes) that showed significant expansion (Figure 2D),
and 144 gene families (containing 128 genes) that underwent contraction. Notably, genes related to
plant-pathogen interactions were found to be significantly expanded and enriched (Figure 2E). The
KEGG plant-pathogen interaction pathway integrates a multi-level gene network ranging from
pathogen recognition (PRRs), signal transduction (MAPK, calcium signaling), transcriptional
regulation (WRKY, NPR) to defense execution (ROS, PR proteins). The coordinated action of these
genes helps plants balance defense and growth and resist pathogen invasion through PTI and ETI
mechanisms. The coordinated expansion of these immune-related loci suggests an evolutionary arms
race between C. erectus and its ancestral pathogens, which may explain the successful adaptation of
the Chloranthus genus to a wide range of ecological environments.

2.5. Biosynthesis of Isofraxidin

2.5.1. Characteristics of Coumarin Biosynthetic Pathways in Early Angiosperms

The coumarin backbone is derived from phenylalanine, which undergoes deamination catalyzed
by phenylalanine ammonia-lyase (PAL), resulting in the formation of trans-cinnamic acid. This
intermediate is subsequently hydroxylated at the para position by cinnamic acid 4-hydroxylase (C4H,
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CYP73) to yield p-coumaric acid. The carboxylic acid is then activated by 4-coumaroyl-CoA ligase
(4CL) to generate 4-coumaroyl-CoA (para-Coumaroyl-CoA). Ortho-hydroxylation of 4-coumaroyl-
CoA at the C2' position is catalyzed by coumaroyl-CoA 2'-hydroxylase (C2'H, CYP74) to yield the
unstable intermediate 2’, 4’-dihydroxycinnamoyl-CoA. Recent studies have demonstrated that
coumarin synthase (COSY), a member of the BAHD acyltransferase family, facilitates the
spontaneous cyclization of this intermediate into umbelliferone [21], which serves as the universal
scaffold for coumarin derivatives (Figure 3).

From umbelliferone, coumarin biosynthesis diverges into simple coumarins and complex
coumarins (pyranocoumarins and furanocoumarins). Simple coumarins are mainly subjected to
substitutions at positions C3—C8 and functional group modifications on the core nucleus. In contrast,
the biosynthesis of complex coumarins initiates with the prenylation of umbelliferone.
Prenyltransferases mediate the attachment of prenyl groups at either the C6 or C8 position, producing
6-prenylumbelliferone or 8-prenylumbelliferone, respectively [22]. The 6-substituted derivatives are
subsequently cyclized by angular-type cyclases to form pyranocoumarins, whereas the 8-substituted
derivatives undergo cyclization by linear-type cyclases to yield furanocoumarins.
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Figure 3. Key enzymes and backbone pathways of coumarin biosynthesis in angiosperm, and the putative
biosynthetic pathway of the simple coumarin isofraxidin. Red box: main coumarin core scaffold; black box:

isofraxidin.

Metabolome-wide profiling in Chloranthus identified 49 distinct coumarin metabolites (Table
519), representing a quantitatively significant expansion over previously documented occurrences
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[23]. Structurally, the majority constituted most of them are simple coumarins, such as daphnetin,
fraxidin and scopolin. Additionally, we identified structurally diversified derivatives, including
cleomiscosin A/C. Crucially, pyranocoumarin and furanocoumarin subclasses, which characteristic
of Apiaceae and Rutaceae, were nearly absent across all parts in this species. This chemotaxonomic
gap implies substantially reduced biosynthetic capability for prenylation and dehydrative cyclization
reactions catalyzed by PTs and DC/OC enzymes, respectively. We propose that limited
transcriptional activation or catalytically constrained orthologs of these pathway-specific enzymes
result in negligible metabolic flux toward downstream heterocyclic coumarin biosynthesis.

2.5.2. Integrated Transcriptomic-Metabolomic Elucidation of the Isofraxidin Biosynthetic Pathway

To further elucidate the biosynthetic mechanism of the representative simple coumarin molecule,
isofraxidin, which is the focus of this study, as well as to identify its key regulatory genes, this
research systematically conducted gene mining based on the formation of umbelliferone and
subsequent modification steps specific to simple coumarins. Through comprehensive functional
annotation, orthologous best-matching clustering, and phylogenetic analysis in Chloranthus species,
we systematically identified core gene families governing isofraxidin biosynthesis and their cascade
catalytic mechanisms. A total of 267 candidate genes from 9 pivotal gene families (PAL, CYP73, C4L,
CYP74, COSY, CYP71, CCoAOMT, OMT) were characterized. Notably, the COSY family exhibited
significant expansion (115 members vs. 29 in Arabidopsis, P<0.01), while other families displayed
distinct evolutionary patterns: PAL (22), CYP73 (3), C4L (56), CYP74 (9), CYP71 (15), CCoAOMT (9),
and OMT (38), indicating differential gene duplication strategies among these families to meet
metabolic demands during evolution. Spatial expression profiling revealed tissue-specific patterns
that COSY members showed distinct expression in roots, stems, leaves, and stamens, CYP71
subfamily members demonstrated root (CYP71_5-10), leaf (CYP71_1-4), and stamens (CYP71_11-15)
specificity, while OMT_5-22 and OMT_23-26 exhibited predominant expression in roots and stems,
respectively (Figure 4).

Our UPLC-MS/MS analysis validated key pathway intermediates. The initial conversion of
phenylalanine to cinnamic acid by PAL showed maximum catalytic activity in root tissues,
correlating with significant cinnamic acid accumulation. Subsequent CYP73-mediated hydroxylation
generated para-coumarinic acid, preferentially accumulated in leaves, stamens, and floral axis.
CYP74 catalysis transformed this intermediate into 2, 4-dihydroxycinnamic acid, which underwent
COSY-driven cyclization to form umbelliferone. Metabolomic data revealed 2-fold higher
umbelliferone levels in leaves and stamens compared to roots, with biosynthesis primarily attributed
to COSY_1-21 and COSY_22-47 clusters (Figure 5A). Transcriptome-metabolome integration
demonstrated strong positive correlations between COSY expression and umbelliferone
concentrations (r>0.85), underscoring their critical role in early-stage biosynthesis.

Downstream modifications were also delineated through integrated multi-omics analysis.
CYP71_1-4 (leaf-specific, FPKM>1) catalyzed umbelliferone hydroxylation to esculetin, while
CCoAOMT likely mediated subsequent methylation to scopoletin. Notably, CYP71_11-15 (stamen-
specificc, FPKM>1) potentially facilitated scopoletin-to-fraxetin conversion , establishing spatial
metabolic decoupling. Despite ubiquitous esculetin accumulation (leaves, stamens and floral axis),
fraxetin showed stamen-specific enrichment. This pattern strongly correlated with CYP71_11-15
expression. In particular, CYP71_12/13/15 showing Pearson correlation coefficients of 0.87, 0.88, and
0.91 with fraxetin levels, confirming their dominant role in this biosynthetic step (Figure 5B, D).
Concurrently, suppressed CCoAOMT expression in stamens (FPKM<1) likely diverted metabolic flux
from lignin precursors to isofraxidin biosynthesis.

Final OMT-mediated methylation of fraxetin to isofraxidin involved 38 identified genes. Among
these, OMT_5/6/8 demonstrated root/stem-predominant expression (FPKM>1) with strong
correlations to isofraxidin accumulation (r=0.83/0.83/0.89) (Figure 5C, D), directly implicating them
in terminal methyl group transfer.
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Figure 5. Integrated Metabolomic and Transcriptomic Analysis. (A) Relative abundance of key metabolites in

the isofraxidin biosynthetic pathway. (B, C) Phylogenetic trees of CYP71 and OMT genes. (D) Expression
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patterns of genes linked to isofraxidin synthesis. Pearson correlation coefficients r > 0.8 (n=3) indicate strong

positive correlations, highlighted with an orange background.

3. Discussion

Herbal genomics, an emerging research field, investigates the genetic and regulatory
mechanisms of medicinal plants through genomic approaches to elucidate their bioactive principles
and advance molecular breeding [24, 25]. Genomic dissection of valuable natural product
biosynthetic pathways provides critical insights for synthetic biology-driven compound synthesis
and scalable production. Co-expression network analysis and genome mining are becoming
indispensable strategies to accelerate the modernization of traditional medicinal plant research.

The biosynthesis of coumarins and associated genes has evolved independently multiple times
in plants [22]. As an early-diverging angiosperm, Chloranthus accumulates diverse simple coumarins,
among which isofraxidin—a compound with extensive clinical applications and significant
pharmaceutical potential —warrants systematic investigation. Through integrated multi-omics
analysis, this study elucidates the genetic basis of isofraxidin biosynthesis, offering the first
comprehensive understanding of its metabolic regulation. Our findings reveal the remarkable
complexity and evolutionary adaptability of plant secondary metabolism in Chloranthus. Systematic
identification of 9 key gene families (267 candidate genes) and their functional specialization within
the metabolic cascade provides novel perspectives on coumarin regulation.

Recent studies have established the COSY-encoded enzyme as catalytically essential for
coumarin biosynthesis in upstream pathway steps, revising the conventional model wherein
cyclization was considered spontaneous [21]. Consequently, COSY gene copy number expansion
likely enhances umbelliferone production capacity. Notably, coumarin abundance exhibits
significant divergence across angiosperm lineages. As a core scaffold for bioactive coumarins, COSY
gene family amplification constitutes a pivotal driver.

Our analysis reveals a strong correlation between coumarin structural complexity and COSY
ortholog numbers. While Arabidopsis thaliana contains merely 29 COSY orthologs, the Chloranthus
genome exhibits substantial expansion with 115 members—indicating near four-fold paralog
proliferation. This disparity in gene family size underscores key gene family expansion events during
plant evolution and their concomitant functional diversification processes. These mechanisms
represent core drivers of evolutionary innovation, providing the genetic foundation for novel trait
development and environmental adaptation. We further infer that Chloranthus’ adoption of this
proactive gene duplication strategy likely reflects profound adaptation to specific ecological niches.
For instance, possessing an expanded COSY gene repertoire may significantly enhance the species’
capacity to counteract biotic stresses, particularly in pathogen defense. Numerous and potentially
specialized COSY genes could support the synthesis of more complex, potent, or rapidly responsive
coumarin-based defense compound libraries. Genomic alterations supply raw materials for metabolic
innovation, while environmental pressures act as selective filters that fix genetic variants conferring
adaptive advantages.

Our analysis of the CYP71 subfamily reveals tissue-specific functional partitioning among its
members. Subclades CYP71_1-4 exhibit high expression in leaf tissues, where they catalyze the
hydroxylation of umbelliferone to yield esculetin. Conversely, isoforms CYP71_11-15 demonstrate
stamen-specific expression and drive the conversion of scopoletin to fraxetin. This metabolic
modularity strategy effectively minimizes cytotoxicity risks by confining potentially toxic
intermediates (such as esculetin) to specialized tissues, while optimizing metabolic flux through
spatial compartmentalization. Consequently, defense compound biosynthesis achieves precise
spatiotemporal regulation.

Gene family functional stratification is equally notable. The final step of isofraxidin biosynthesis
requires an OMT for methylation. Transcriptomics identified OMT_5, OMT_6, and OMT_8 with
rhizome-specific high expression (FPKM > 1), showing strong positive correlation with isofraxidin
accumulation (r =0.83-0.89, P < 0.01). Among 38 screened OMT genes, only these three core members
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significantly associate with target metabolite production. This finding indicates strict spatiotemporal
and functional stratification within the OMT family. Core isoforms OMT_5/6/8 specifically dominate
isofraxidin biosynthesis in rhizomes, while paralogs participate in divergent pathways—such as
lignin synthesis (Eucalyptus CCoAOMT homologs) or flavonoid modification (Citrus CrcCCoAOMT?7
homologs) [26, 27].

Collectively, this study elucidates the biosynthetic pathway of isofraxin, a key coumarin in
Chloranthus, and substantiates the paradigm of “one gene family, multiple functions; one metabolic
pathway, multiple genes.” This genomic plasticity-driven mechanism of metabolic innovation likely
represents a pivotal evolutionary strategy that facilitated the ecological success of early angiospermes,
including members of the Chloranthaceae family, in response to the complex environmental
pressures of the Cretaceous.

4. Materials and Methods

4.1. Materials and Sequencing

Fresh leaves were collected from one individual of autotriploid C. erectus (LYY202008). The
samples were sent to Novogene (Beijing, China) for DNA extraction and sequencing. Chromosomes
were checked using root tips from plants. After staining with DAPI, photographs were taken under
a fluorescent microscope (Leica DM2500) in dark. Determine its karyotype as 3X = 45. Genome size
was estimated using K-mer analysis of Illumina 150 bp paired-end reads. The K-mer depth-frequency
distribution was generated using jellyfish v.2.2.7 [28].

DNA was extracted from leaves using the DN Asecure Plant Kit (TIANGEN). The 15 Kb circular
consensus sequencing (CCS) library was constructed and sequenced on the PacBio Sequge II
platform. Short reads genomic library was prepared and sequenced using the Illumina HiSeq
platform. Young leaf samples were processed and DNA extracted using standard protocols, and a
350 bp Hi-C library was sequenced on an Illumina HiSeq instrument.

Roots (R), stems (S), leaves (L), stamens (Sta), and floral axis (FA) under normal growth
conditions were collected for metabolomics detection and transcriptome sequencing.

4.2. Genome Assembly

The 122.62 Gb (7 cells) Hifi reads were rapidly constructed using hifiasm v.0.14 [29]. In order to
evaluate the accuracy of the assembly, the reads of the small fragment library were aligned to the
assembled genome using BWA v.0.7.10 [30], and the alignment rate, the coverage of genome and the
distribution of depth were counted. The presence of contamination was assessed using GC content
and sequencing coverage analysis. We applied both CEGMA v.2.5 [31] and BUSCO v.3.0 [32] to assess
the integrity of the assembly.

Hi-C data (510 Gb) was obtained on the Illumina HiSeq platform, and allhic [33] was used for
contig clustering, ranking and orientation. Then in Juicebox v.1.11.08 [34], manual corrections were
made according to the strength of chromosome interactions, and the final triploid chromosome
assembly was generated, containing all 45 chromosomes.

4.3. Repeat Annotation

We used both homology-based and de novo-based strategies to identify transposable elements
(TEs). Firstly, RepeatMasker v.4.0.7 [35] and RepeatProteinMask are used to generate homology-
based repeat libraries based on RepBase nucleic acid library and RepBase protein library,
respectively. De novo predictions are then performed using RepeatModeler v.1.0.5 [36], RepeatScout
[37], Piler [38] and LTR_FINDER v.1.0.6 [39]. All TEs data were integrated and de-redundant to obtain
an integrated repeat library, which was finally annotated by RepeatMasker.
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4.4. Protein-Coding Gene Prediction and Functional Annotation

Three complementary strategies, including denovo, homology, and RNA-seq based prediction
were used to annotate the protein-coding genes of the C. erectus genome. Augustus v.3.0.2 [40],
Genscan v.1.0 [41], Geneid [42], GlimmerHMM v.3.0.3 [43] and SNAP [44] were run on the repeat-
masked genomes to evaluate de novo gene predictions. For homolog-based prediction, we used the
inferred protein sequences of four species, C. demersum, L. chinense, N. colorata and P. somniferum.
Alignments were further processed using GeneWise v.2.2.0[45] to generate accurate exon and intron
information. For transcriptome-based prediction, cufflinks v.2.1.1 [46] and PASA 2.0.2 [47] were used
to predict and improve the gene structures. All predictions were combined using EVidenceModeler
(EVM) v.1.1.1 [48] to generate a non-redundant gene set, resulting in a final set of 72, 675 protein-
coding genes.

Functional annotation of protein-coding genes was performed by performing BLASTP searches
in the SwissProt (http://www.uniprot.org/), Nr (http://www.ncbi.nlm.nih.gov/protein), Pfam
(http://pfam.xfam.org/), KEGG (http://www.genome.jp/kegg/) and InterPro
(https://www .ebi.ac.uk/interpro/) protein databases. GO (Ashburner et al., 2000) terms for genes were
obtained from InterPro entries and the KEGG (Kanehisa and Goto, 2000) pathway was generated
using the KEGG database.

4.5. Construction of Gene Families

We selected 25 species (A. trichopoda, A. comosus, A. coerulea, A. thaliana, C. demersum, C.
kanehirae, C. esculenta, E. ferox, G. biloba, C. erectus, L. chinense, M. biondii, M. acuminata, N.
nucifera, N. colorata, O. sativa, P. somniferum, P. americana, P. equestris, P. nigrum, S. lycopersicum,
S. polyrhiza, T. sinense, V. vinifera, Z. marina) to construct gene families. Only the transcript with
the longest coding region was reserved, and the similarity between protein sequences was obtained
by all-vs-all blastp. Gene family clusters based on 25 species were then constructed using OrthoMCL
v.2.0.9[49] with an inflation factor set as 1.5. Gene family expansion and contraction analysis was
performed using CAFE v.4.2[50].

4.6. Phylogenetic Analyses

The SCG and LCG of 25 seed plants were identified using SonicParanoid v.1.0 [51] and
OrthoMCL v.2.0.9 [49]. Finally, we identified 1092, 517, 299 and 27 homologous genes, respectively.
Amino acid sequences were aligned using MUSCLE v.3.8.31 [52]. For concatenated datasets,
ModelFinder[53] is used to automatically select the best-fit surrogate model. Maximum likelihood
trees were inferred from the sequences using RaxML v.8.2.12 [54], and support values were estimated
using 500 bootstrap replicates. In the analysis based on coalescent approach, each gene tree was first
constructed using IQ-TREE v.1.6.9 [55], and then these trees are used to infer species tree with
posterior probabilities in Astral v.5.6.1 [56]. To estimate the timescales of the evolution of Chloranthus,
Magnoliids, Monocots and Eudicots, we calibrated a relaxed molecular clock with 2 well-established
constraints: the divergence between angiosperms and gymnosperms (337-289 Ma) and the
divergence between A. trichopoda and N. colorata (199-173 Ma) (http://www.timetree.org/).
Bayesian phylogenetic age analysis and approximate likelihood calculations for branch lengths were
performed on selected genes using the program MCMCTree in PAML v.4.9 [57, 58].

4.7. Identification of Whole-Genome Duplication

We selected four genomes of C. erectus, A. trichopoda, L. chinense and C. kanehirae for
polyploidy analysis based on previous studies [20, 59]. For protein BLASTP within or between
genomes, the cut-off value of e value is 1x10-5. According to the position of the genes and BLASTP
results, McscanX v.2 [60] was used to search for the collinear segment to determine homologous gene
pairs. Protein-gene pairs were subjected to multiple sequence alignment in MUSCLE v.3.8.31 [52].
The KS and 4DTv values for each homologous gene pair were estimated using the codeml method
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implemented in PAML v.4.9 [58]. The distributions of the values were obtained by kernel function
analysis, and they were further modeled as a mixture of multiple normal distributions by the kernel
smoothed density function. Multimodal fitting of the curve was performed using the Gaussian
approximation function (CfTool) in MATLAB.

4.8. UPLC/QTRAP-MS Metabolomic Analysis

Lyophilized tissues (root, stem, leaf, stamen, floral axis; 50 mg/sample) were pulverized at 30
Hz for 1.5 min (MM 400 grinder, Retsch), then extracted with 1200 uL of -20°C pre-cooled 70%
methanol containing internal standards. After vortexing every 30 min (6 cycles, 30 sec each), extracts
were centrifuged (12, 000 rpm, 3 min), filtered through 0.22-um membranes, and stored at -80°C.
Chromatographic separation used an Agilent SB-C18 column (1.8 um, 2.1x100 mm) with mobile
phase A (0.1% formic acid/water) and B (0.1% formic acid/acetonitrile) at 0.35 mL/min (40°C). The
gradient program was: 0-9 min (95%—5% A), 9-10 min (5% A), 10-11.1 min (5%—95% A), 11.1-14 min
(95% A). MS detection employed an ExionLC™ AD/UPLC-ESI-QTRAP system with ion spray voltage
+5500/4500 V, source temperature 550°C, gas pressures (GSI:50 psi, GSII:60 psi, CUR:25 psi), and
collision-activated dissociation in high mode. Metabolites were quantified via MRM with nitrogen
collision gas, optimized declustering potential (DP), and collision energy (CE).

4.9. Identification of Gene Families Involved in Isofraxidin Biosynthesis

In the identification of gene families involved in the biosynthesis of isofraxidin pathway
enzymes a comprehensive approach was adopted. For genes encoding P450 enzymes including
CYP71, CYP73, and CYP74 sequences from Arabidopsis (https://www.arabidopsis.org) were used as
references for genome-wide screening followed by sequence alignment using MAFFT and
phylogenetic reconstruction with IQ-TREE v.1.6.9 applying the Approximate-Maximum-Likelihood
method to identify candidate sequences clustering with AtCYP71, AtCYP73, and AtCYP74. In
parallel for PAL (PF00221), COSY (PF02458), CCoAOMT (PF01596), and OMT (PF00891) initial
candidate sequences were identified through HMMER v3.0 [61] searches against Pfam domains with
an E-value cutoff of 1e-15 and further validated using BLASTp against specific Arabidopsis protein
sequences AAC18870.1, AT1G28680, AAM66108.1 and AT5G54160 respectively also with an E-value
threshold of 1e-15. The final list of candidate genes for each family was established by intersecting
results obtained from both HMMER and BLASTp searches.

4.10. Integrated Transcriptome-Metabolome Analysis

The quantitative values of both genes and metabolites across all samples were normalized using
the Z-score method. Pearson correlation coefficients between gene expression and metabolite levels
were calculated using the core function in R. Correlations with an absolute Pearson correlation
coefficient greater than 0.8 and a p-value less than 0.05 were considered significant and selected for
further analysis.

5. Conclusions

As an early-diverging angiosperm lineage, Chloranthus provides an exceptional model for
investigating isofraxidin biosynthesis, offering critical insights into the adaptive evolution of
chemical defenses in basal flowering plants. Through integrated multi-omics analysis complemented
by enzymatic verification, we have elucidated the core regulatory framework governing
representative hydroxycoumarin biosynthesis in C. erectus. Principal mechanisms were identified: (1)
Functional divergence within the expanded COSY gene family facilitates tissue-specific accumulation
of key precursors through substrate specialization, establishing a dynamic metabolic reservoir for
downstream isofraxidin production. (2) CYP71 subfamily members demonstrate spatiotemporal
differentiation, with stamen-enriched CYP71_12/13/15 (r > 0.87) serving as critical nodes for fraxetin
biosynthesis via compartmentalized expression patterns. (3) The final modifications is achieved
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through rhizome-preferential OMT isoforms (OMT_5/6/7, r > 0.83), enabling accumulation patterns
of terminal derivatives.

This work establishes a mechanistic paradigm for coumarin pathway evolution. By bridging
genomic innovation with ecological adaptation, these findings provide advances in understanding
early angiosperm chemical evolution and developing biotechnological applications for natural
product biosynthesis.
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