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Abstract: Plant functional traits are critical indicators of ecosystem health, yet predicting aquatic leaf 
traits via spectral reflectance remains challenging due to limited sample sizes and the 
underrepresentation of rare species. We hypothesized that dominant species’ spectral models could 
infer rare species’ traits even with constrained data. To test this, we measured leaf reflectance spectra 
and eleven functional traits across diverse freshwater macrophyte species, developing Partial Least 
Squares Regression (PLSR) models under varying species combinations (All-families, Dominant-
families, Non-Cyperaceae, etc.) and sample sizes (40–240). Results demonstrated that species 
composition exerted greater influence than sample size on validation accuracy for most traits when 
samples ranged from 120 to 240. A minimum threshold of 160 samples was identified for robust trait 
prediction, though model performance diverged significantly between All-families and dominant-
family combinations, suggesting dominant taxa alone inadequately represent quadrat-level trait 
diversity. These findings challenge assumptions that dominant species compensate for rare species’ 
scarcity in spectral modeling. We advocate prioritizing rare species sampling to enhance model 
generalizability in wetland ecosystems. This work establishes actionable guidelines for scaling 
spectral trait prediction in marshes, advancing ecological monitoring and restoration efforts. 

Keywords: leaf traits; spectroscopy; species combination; aquatic plant; Partial Least Squares 
Regression 
 

1. Introduction 

Leaf traits encompass the physiological, morphological, and biochemical characteristics of plant 
leaves, influencing crucial biological processes such as photosynthesis, primary productivity, and 
nutrient cycling [1–3]. They serve as pivotal factors in plant resource acquisition and allocation, 
embodying the outcomes of evolutionary and community compositional dynamics shaped by biotic 
and abiotic environmental constraints that drive multiple ecosystem processes [4–7]. Chemical traits 
like Leaf Water Content (LWC), leaf nitrogen, phosphorus, sugars, and starch impact nutrient 
absorption, growth, and biogeochemical cycling [8–10]. Morphological traits such as Leaf Area (LA), 
Specific Leaf Area (SLA), Equivalent Water Thickness (EWT), and plant height influence biomass, 
plant drought resistance, and combustibility [11,12]. The different and coordinated expression of 
these traits determines plant growth and responses to environmental factors, reflecting inherent 
trade-offs in plant growth strategies [9]. Therefore, a comprehensive understanding of leaf functional 
traits is imperative for elucidating the consequences of global change on ecological processes [13,14]. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
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Leaf traits influence the optical properties of plants, with varying importance across species and 
growth forms [15,16]. The spectral bands from Visible light (VIS) to Short-Wave Infrared Radiation 
(SWIR) reflect the relationships between leaf functional traits and reflectance characteristics [17]. For 
example, leaf pigments (e.g., chlorophyll) have obvious absorption characteristics in the VIS (400-
700nm), leaf structure (e.g., leaf thickness) shows prominent reflection characteristics in the Near 
Infrared Radiation (NIR, 700-1100nm), and the features of leaf chemical traits (e.g., proteins, lignin, 
and cellulose) are reflected to varying degrees in the SWIR (1100-2500nm) [18,19]. Studies have found 
that for wetland aquatic plants, chlorophyll and SLA explain 60% of the variation in the spectrum, 
and nutrients in leaf tissues also influence spectral reflectance [20–22]. Researchers have leveraged 
plant spectra reflectance data collected by diverse sensors to predict traits using statistical or physical 
methods [23].  

Numerous studies have compared these methods, for instance, Liu et al. (2023) assessed the 
predictive capabilities of PLSR, Support Vector Regression (SVR), Gaussian Process Regression 
(GPR), and Random Forest Regression (RFR) for estimating leaf nutrients at the leaf scale. They 
demonstrated that PLSR and SVR yielded the most accurate predictions for nine nutrients [24]. 
Feilhauer et al. examined the efficacy of PLSR, SVM, and RFR in predicting chlorophyll, dry matter 
content, and water content using leaf reflectance, concluding that PLSR outperformed the other 
methods [25]. Further research has corroborated the effectiveness of the PLSR, which involves 
transforming spectral reflectance into a concise set of orthogonal features (referred to as "latent 
factors") and then linearly regressing these features against leaf biochemicals or morphological traits. 
This approach has proven effective in elucidating the relationship between spectral reflectance and 
leaf traits [22,26–28]. 

Generally, Leaf Mass per Area (LMA), Leaf Dry Matter Content (LDMC), N, and EWT are 
accurately predicted using PLSR, yet some traits exhibit lower accuracy. For instance, Kothari et al. 
found that spectral predictions for certain trace nutrients like P and Mg exhibited lower accuracies 
(with R2 of 0.3) in their investigation of seven plant types [29]. In Rebelo et al. prediction of 
morphological traits such as SLA and leaf length-width ratio, the model accuracy ranged from 0.19 
to 0.39, while for chemical traits like silicon and cellulose content, R2 were 0.37 and 0.57, respectively 
[15]. Several studies have shown that the correlation between leaf spectral and leaf traits is influenced 
by phenological changes [30,31]. In addition, other research has shown that spectral mixing played a 
critical role in the accuracy of leaf trait estimates [32]. However, other influencing factors of trait 
prediction accuracy are still underexplored. 

The quantity of samples is a critical factor in constructing models for the spectral prediction of 
leaf traits [33]. While leaf samples are relatively easy to obtain in forest or grassland ecosystems, the 
growth environments of wetland aquatic plants are frequently waterlogged and featuring complex 
microtopography [34], which complicates the sampling process. Additionally, herbaceous plants 
particularly those from families such as Cyperaceae and Gramineae typically have slender leaves, 
which further making it even more difficult to measure leaf spectral and traits for developing reliable 
spectral models. Therefore, identifying the minimum sample size necessary for accurately predicting 
leaf traits in marshes aquatic plants is crucial to improving sampling efficiency. Meanwhile, 
Cyperaceae and Gramineae are the dominant plant families in most marshes, it can be challenging to 
obtain enough quantity of sample for rare species. Therefore, there is a need to explore an alternative 
predictive method for estimating the leaf traits for rare species. 

In this paper, we aim to predict leaf traits with leaf spectra in typical marsh in Northeast China. 
Our objective is to explore two hypotheses regarding the spectral inversion of leaf functional traits. 
Hypothesis 1 (H1): we hypothesize that the sample size affects the accuracy of prediction models. 
Hypothesis 2 (H2): we posit that the leaf traits of rare species can be inferred from the modeling 
results of the dominant species. 
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2. Materials and Methods 

2.1. Study Area 

We conducted sampling across various regions of Heilongjiang Province, covering the 
representative distribution areas of typical marshes. From June to September during 2021-2023, leaf 
and spectral samples were collected from four national nature reserves in Heilongjiang Province, 
namely Xiaobeihu National Nature Reserve (XBHNNR), Sanhuanpao National Nature Reserve 
(SHPNNR), and Sanjiang National Nature Reserve (SJNNR), Youhao National Nature Reserve 
(YHNNR). A total of 16 plots (30 m × 30 m) were established across these reserves.  

Xiaobeihu National Nature Reserve (128°33´07"-128°45´48" E, 44°03´16"-44°18´59" N) 
experiences a temperate continental climate, characterized by a mean annual temperature of 
approximately 2.5°C and an average annual precipitation of around 650 mm. The reserve features a 
diverse range of habitat types, with the dominant community being the Carex community. Key 
dominant species include Carex appendiculata, Carex schmidtii, Deyeuxia purpurea, and Sanguisorba 
tenuifolia. Additionally, Saussurea amara, Carex meyeriana, and Filipendula palmata are among the 
accompanying dominant species found in the area.  

Sanhuanpao National Nature Reserve (132°12′18″-132°57′25″ E, 46°45′08″-46°51′41″ N) 
showcases a characteristic swampy low-river floodplain landscape, characterized by low-lying 
terrain and an average elevation of 60 m. It experiences an average annual temperature of 
approximately 2.7°C, accompanied by a mean annual precipitation of around 550 mm. There are 
diverse community types, including Glyceria acutiflora-Deyeuxia purpurea communities, Carex 
appendiculata-Deyeuxia purpurea communities, Bidens pilosa-Valeriana officinalis communities, Deyeuxia 
purpurea communities, and Glyceria acutiflora communities. However, the species composition within 
these communities tends to be relatively homogeneous, with some communities characterized by the 
presence of only one species. The dominant species in this area include Glyceria acutiflora, Deyeuxia 
purpurea, and Carex appendiculata. 

Sanjiang National Nature Reserve (134°36′12″-134°4′38″ E, 47°44′40″-48°8′20″ N) encompasses a 
low-impact plain marsh wetland characterized by low-lying terrain, with elevations ranging from 34 
m to 80 m. The soil in this region is characterized by high humidity and abundant organic matter 
content. It experiences an average annual temperature of approximately 2.2°C, accompanied by a 
mean annual precipitation of about 600 mm. The area predominantly features the Deyeuxia purpurea-
Carex appendiculata community and the Deyeuxia purpurea-Carex miyabei community. The dominant 
species include Carex appendiculata and Deyeuxia purpurea, alongside coexisting species such as 
Lythrum salicaria, Hypericum japonicum, and Sanguisorba tenuifolia. 

Youhao National Nature Reserve (128°10′15″-128°33′25″ E,48°13′07″-48°33′15″ N) is 
characterized by a temperate continental climate, with an average annual temperature of 
approximately 0.4°C. The area has a diverse of marsh types, comprising forested swamps, shrub 
swamps, herbaceous marshes, and sphagnum bogs. The dominant species in this area include Carex 
schmidtii, Carex miyabei, Sphagnum palustre, and Filipendula palmata. 
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Figure 1. Distribution of the study site and sampling plots. 

2.2. Data and Methods 

2.2.1. Plant Sample Collection and Species Combinations 

Within each of the plots, 11 smaller quadrats (1 m × 1 m) were randomly established (except 
YHNNR). From these, we randomly selected 5 quadrats for the collection healthy and undamaged 
whole plant, 420 samples from 40 species were utilized for trait measurements and data analysis. 
Among these, the dominant families were Cyperaceae, Gramineae, Rosaceae, Compositae, and 
Geraniaceae. We created several subsets based on different species combinations to test whether 
models built with dominant species could predict rare species. Specifically, the species combinations 
inclusion of the following families: All-families (control group, nT = 420), Dominant-families 
(Cyperaceae (n = 137), Gramineae (n = 142), Rosaceae (n = 65), Compositae (n = 18), and Geraniaceae 
(n = 7), nT = 369), and Non-Cyperaceae families(Gramineae, Rosaceae, Compositae, Geraniaceae, and 
Others (n = 51), nT = 283), Gramineae-Cyperaceae families (nT = 279), and Cyperaceae family (Table 
1). 

Table 1. Sample sites and total samples for different plant families. 

 XBHNNR SHPNNR SJNNR YHNNR Total 

Cyperaceae 21 12 94 10 137 

Gramineae 17 44 75 6 142 

Geraniaceae 7 / / / 7 
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Compositae 9 3 5 1 18 

Rosaceae 23 / 37 5 65 

Others 6 7 38 / 51 

Total 83 66 249 22 420 

2.2.2. Leaf Spectra Measurement 

Plant leaves were promptly stored in a portable refrigerator with ice bag upon collection, and 
spectral measurements were conducted within 6 hours of collection. From 2021to 2022, for each 
sample, three leaves were selected, arranged in parallel, and the spectral reflectance of fresh plant 
smooth leaves was measured using the ASD LabSpec 2500 spectrometer, which covers a spectral 
range of 350-2500 nm (with a spectral resolution of 3 nm @ 350-1050 nm and 10 nm @ 1000-2500nm). 
For 2023, using RS-5400 high resolution spectrometer measured the fresh plant spectral reflectance, 
which covers a spectral range of 350-2500 nm (with a spectral resolution of 2.5nm @ 700nm, 5.5nm @ 
1500nm, and 5.8nm @ 2100nm). Five measurements were taken per leaf to ensure accuracy. The 
spectral data were processed using the Savitzky–Golay (S-G) filtering method in the hsdar package 
[35] in R software (version 4.1.1), and all spectral data were resampled to 1nm. Finally, trimmed to 
the 400-2400 nm to obtain spectra with high signal-to-noise ratio. Notably, outliers were observed 
within the 1830-1884 nm range, and removed, along with any erroneous or outlier spectra data. 

2.2.3. Spectral Difference Analysis 

To analyze spectral differences among plant families, we employed the Bhattacharyya distance 
[36,37] (Eq. 1) to quantify the disparities between individuals of two distinct growth forms across the 
400-1829nm, 1885-2400nm spectral range (Figure S1). This approach facilitated the identification of 
wavelengths exhibiting maximum distinction between the groups. The Bhattacharyya distance (B) 
has proven effective in delineating differences between species and plants with varying growth 
habits [38,39].  𝐵 = 1 8⁄ ൫𝜇௜ − 𝜇௝൯் ∑ ൫𝜇௜ − 𝜇௝൯ିଵ + 1 2⁄ 𝑙𝑛൫|∑| ඥ|∑ | |∑ |௝  ௜⁄ ൯  (1)

where 𝜇௜ and 𝜇௝ represent the mean values across all spectral bands for species i and j, respectively. ∑  ௜ and ∑  ௝ denote the covariance matrices for each species, and ∑ represents the pooled covariance 
matrix. 

2.2.4. Measurement and Analysis of Chemical and Morphological Traits 

Morphological traits were measured immediately after the leaf spectral measurements. Three 
leaves were scanned and weighed with an accuracy of 0.001 g to obtain LA and leaf fresh weight. A 
total of eleven leaf traits were measured, encompassing SLA, LMA, EWT, LWC, N, P, N:P, cellulose, 
lignin, sugar, and starch. LMA was calculated as the ratio of dry leaf mass to LA, while SLA 
represents the reciprocal of LMA. EWT and LWC were calculated using the formulas (leaf fresh 
weight - leaf dry weight) / LA and (leaf fresh weight - leaf dry weight) / leaf fresh weight, respectively 
[40]. 

The collected leaf biomass samples were dried in an oven at 60°C for 48 hours and then ground 
through a 100-mesh sieve for the measurement of leaf chemical traits. Nitrogen (N) content was 
determined using a fully automated Kjeldahl nitrogen analyzer (Model: FOSS 8400, Manufacturer: 
FOSS, Denmark). Cellulose and lignin were measured using an ANKOM A200i fiber analyzer 
utilizing an acidic washing method. Sugar and starch contents were assessed following the method 
outlined by Lindroth et al [41]. Phosphorus (P) content was determined using a CEM microwave 
digestion system (Model: MARS 6 CLASSIC, Manufacturer: CEM, USA) to disintegrate the sample 
solution. After the disintegration process, 2 ml of the liquid to be measured was extracted, and then 
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2 ml of (NH4)2MnO4 solution, 1 ml of Na2SO3 solution, and 1 ml of hydroquinone solution were 
added. The mixture was then made up to 25ml with distilled water, and the absorbance of 
phosphorus was measured using a UV spectrophotometer. The phosphorus content in the samples 
was subsequently calculated based on a standard curve. 

To analyze the traits variation across plant families, we conducted comparisons using ANOVA 
[42]. Given that the data did not exhibit normal distribution or unequal in variance, we employed the 
Kruskal-Wallis analysis to compare median differences among three or more independent sample 
groups [43] (Eq. 2). Furthermore, pairwise comparisons between plant families were conducted using 
Wilcoxon analysis.                        𝐻 = 12 𝑁ሺ𝑁 + 1ሻ ∙⁄ ∑ 𝑅௝ଶ 𝑛௝ൗ௞௝ୀଵ − 3ሺ𝑁 + 1ሻ  (2)

where H is the Kruskal-Wallis statistic, k is the number of groups, N is the total number of samples, 𝑅௝ is the rank sum of the j group, and 𝑛௝ is the sample size of the j group. 

2.2.5. Impacts of Sample Size and Species Combinations Setup  

In terms of sample size, we set six levels: 40 samples (S40), 80 samples (S80), 120 samples (S120), 
160 samples (S160), 200 samples (S200), and 240 samples (S240). Regarding species combination, we 
configurated five combinations of the All-families (AF), Dominant-families (DF), Non-Cyperaceae 
(NC), Cyperaceae-Gramineae (CG), and Cyperaceae (CY). To remove outliers, after generating 
predicted values for all samples, we recalculated the bias in the data. Subsequently, samples with 
deviations exceeded 1.5 times the standard deviation were removed twice. 

To separate impacts of sample size and species combination on the precision of spectral models 
predicting leaf traits, we developed a multivariate linear regression model using the lm function. We 
set different sample size levels of S120, S160, S200, and S240 for each species combination (except for 
the CY, the total sample size is about 80). The sample size and species combination served as 
predictors for the model's coefficient of determination (R2). Additionally, we assessed the 
contribution of each variable to the model's predictive performance using three methods ("First", 
"Last", and "Lmg") from the calc. relimp function in the Relaimpo package [44]. 

2.2.6. Prediction of Leaf Traits by Leaf Spectra 

This study modeled the relationship between leaf spectra and traits with a commonly used 
approach, namely Partial Least Squares Regression (PLSR). PLSR can address the multicollinearity 
in spectra by reducing the number of predictor variables to a smaller set of uncorrelated variables, 
subsequently performing least squares regression on this subset [45–47]. We predicted eleven leaf 
functional traits using spectral data from different sample sizes and species combinations, and 
developed the PLSR models using the pls package [48] in R4.1.1. 

Each dataset was divided into a calibration set (70%) and a validation set (30%) to ensure that 
both sets covered the range of each trait. To mitigate overfitting, we optimized the number of PLSR 
components in the final model by minimizing the Root Mean Square Error (RMSE) of the prediction 
residuals [49]. We iteratively sampled the calibration set 50 times to generate 50 models, then 
averaged the model coefficients to derive an average PLSR model, which served as the final model. 
Model fitting and prediction accuracy were assessed using the coefficient of determination (R2), 
RMSE, and Relative Root Mean Square Error (RRMSE = RMSE/range). Additionally, differences in 
model accuracy across species combinations were compared by Wilcoxon analysis. 

Finally, the Variable Importance of Projections (VIP) was computed for each species 
combinations model to identify the spectral regions contributing most to the prediction of each leaf 
trait. VIP was calculated as the weighted sum of squares of the PLS-weights, with weights derived 
from the variance of the response variables explained by each PLS component [50]. 
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3. Results 

3.1. Traits Variation Among Families 

The distribution of leaf functional traits across various plant families is shown in Figure 2. 
Kruskal-Wallis analysis revealed differences in 10 traits among families (p < 0.05, Table S1), excluding 
N. Pairwise Wilcoxon comparisons revealed significant differences between Cyperaceae and other 
plant families in LMA, SLA, P, and N:P. While Cyperaceae and Compositae showed similar values 
for sugar, starch, lignin, and N content, they differed significantly in all other traits (Figure 2). 

 

Figure 2. Wilcoxon analysis of traits differences across plant families (Com is Compositae, Cyp is Cyperaceae, 
Ger is Geraniaceae, Gra is Gramineae, Ros is Rosaceae, Oth is rare families. LWC represents leaf water content, 
SLA represents specific leaf area, LMA represents leaf mass per area, and EWT represents equivalent water 
thickness. "**" is p < 0.01, "***" is p < 0.001, "****" is p < 0.0001). 
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3.2. Model Performance of Different Sample Sizes 

Model accuracy improved and RRMSE decreased as sample size increased, though this 
relationship varied among traits. For cellulose and starch, model accuracy declined significantly 
when sample size below 80, while N, P, and N:P models showed marked accuracy decreases below 
40 samples. Models exhibited high variability with sample sizes under 120 but achieved optimal 
validation accuracy above 160 samples for all traits (Figure 3, Table S2). 

 

Figure 3. The PLSR models with different sample sizes (S40: 40 samples, S80: 80 samples, S120: 120 samples, 
S160: 160 samples, S200: 200 samples, S240: 240 samples, box plot is validation R2, line chart is RRMSE, LWC 
represents leaf water content, SLA represents specific leaf area, LMA represents leaf mass per area, and EWT 
represents equivalent water thickness). 

3.3. Model Performance for Different Species Combinations 

Different species combinations showed distinct effects on trait model accuracy. LMA and sugar 
had the highest model accuracy in CY (R୐୑୅ଶ  = 0.73，RRMSELMA = 10.68%, Rୗ୳୥ୟ୰ଶ = 0.56, RRMSESugar 
= 15.75%), while for cellulose, LWC, and EWT, the model accuracy was the highest in NC (Rେୣ୪୪୳୪୭ୱୣଶ  
= 0.63, RRMSECellulose = 13.70%, R୐୛େଶ  = 0.85, RRMSELWC = 7.34%, R୉୛୘ଶ  = 0.55, RRMSEEWT = 12.53%). 
N, P, and lignin had the highest model validation accuracy in CG (R୒ଶ  = 0.87，RRMSEN = 9.41%, R୔ଶ= 
0.54，RRMSEP = 12.76%, R୐୧୥୬୧୬ଶ = 0.36, RRMSELignin = 17.96%, Figure 4). Overall, N (R2=0.87) had the 
highest model accuracy in all traits, follow by LWC (R2=0.85, Table S3). 
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Figure 4. Comparison of validation model accuracy in spectral inversion traits for different species combinations 
(AF: All-families, DF: Dominant-families, CG: Cyperaceae-Gramineae, NC: Non- Cyperaceae, CY: Cyperaceae). 

Wilcoxon analysis revealed that model validation accuracy was comparable between AF and DF 
for SLA, P, and N:P. Similarly, no differences in model accuracy were observed for lignin, starch, and 
sugar between AF and NC, or for LMA across AF, CG, and NC. However, EWT, LWC, and cellulose 
models showed significant accuracy differences among AF and other species combinations (Figure 
5). 

3.4. Variable Importance of PLSR Models for Different Species Combinations 

Analysis of VIP values revealed key spectral wavelengths for trait prediction across species 
combinations. While important wavelengths varied among combinations, most traits showed 
consistent peaks near 700 nm in the red edge region. The ranges of 400-700 nm and 2000-2400 nm 
were crucial for trait prediction across all species combinations (Figure S2, Table S4). Notably, CY 
showed distinct VIP patterns, with significantly higher values for N, lignin, and sugar in the 400-700 
nm range compared to other combinations. 
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Figure 5. Wilcoxon analysis of validation model accuracy for spectral inversion of leaf traits with different 
species combinations (AF: All-families, DF: Dominant-families, CG: Cyperaceae-Gramineae, NC: Non- 
Cyperaceae, CY: Cyperaceae. ns: p > 0.05, *: 0.01 < p < 0.05, **: p < 0.01, ***: p < 0.001,****: p < 0.0001). 

4. Discussion 

4.1. Optimal Sample Size for High Predictive Accuracy of PLSR Model 

Previous PLSR models for plant leaf trait prediction typically used hundreds of samples [33,40], 
yet collecting such large datasets in wetland ecosystems presents unique challenges. The process is 
time-consuming and particularly difficult for rare species, thus obtaining adequate leaf samples is 
often impractical. To determine the optimal sample size for wetland aquatic plant trait prediction, we 
employed random sampling at different levels. Our analysis revealed that validation accuracy 
plateaus above 160 samples for most leaf traits. Although obtaining complete trait ranges in field 
measurements remains challenging [33], it is important to note that limited trait distribution in 
validation datasets can affect model accuracy [51]. This issue is particularly relevant for wetland 
ecosystems, where environmental conditions can vary significantly. While Helsen et al. reported 
optimal sample sizes of 100-160 for PLSR spectral prediction models [33], our more comprehensive 
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dataset suggests that 160-240 samples are necessary for reliable model training. This higher 
recommended range reflects the broader trait variability typically found in aquatic plants. 

4.2. Species Combinations Played a More Substantial Role in Predicting Most Traits 

Model validation accuracy varied significantly across species combinations, with performance 
differing by both trait type and species composition (Figure 5). Some traits, particularly starch and 
lignin, showed consistently low accuracy across combinations, reflecting the complex interactions 
among multiple traits within each spectral band [16,52]. Spectral importance analysis through VIP 
values revealed consistent patterns across traits, despite variations among species combinations. 
Most traits showed characteristic peaks near 700 nm in the red edge spectral region, corroborating 
the significant bands previously identified by Wang et al. [30,53]. These findings align with Thomson 
et al. which highlighted the importance of red-edge and NIR regions for trait prediction, particularly 
when SWIR data is unavailable [11]. Future research should investigate how spectral band selection 
could improve leaf trait prediction accuracy. 

The dominant families (Cyperaceae, Gramineae, and Rosaceae) of our dataset contrasted with 
rare families represented by few species. Given the challenges in measuring leaf traits of rare species, 
using dominant species models to predict rare species traits would be advantageous if model 
performance was consistent across species combinations. However, our analysis revealed that most 
traits are significantly influenced by species combinations (Figure 5). Multiple linear regression 
analysis showed that species combinations had a stronger impact on model validation than sample 
size for most traits, though LMA, N:P, and starch were particularly sensitive to sample size (Figure 
6). These findings indicate that models based solely on dominant species cannot adequately capture 
the full trait spectrum, emphasizing the necessity of including rare species in field sampling 
protocols. 

 
Figure 6. Explained proportion of sample size and species combinations to spectral inversion of leaf traits (SC: 
species combinations, SS: sample size). 
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4.3. N and LWC Can Be More Accurate Predicted by Leaf Spectra of Aquatic Plants 

Our PLSR models for eleven leaf functional traits showed calibration R² ranging from 0.22 to 
0.89 and validation R² from 0.12 to 0.87. Based on Kothari’s standards [29], most traits showed 
moderate to low accuracy in All-families combinations, except for N (R² = 0.87) and LWC (R² = 0.85), 
which achieved high accuracy. These results align with previous prediction accuracies reported in 
wetland and grassland ecosystems [32,40,54]. For example, PROSPECT and PLSR models achieved 
average accuracies around 0.4 for LMA and EWT for aquatic plants [55,56], comparable to our 
findings for LMA (R² = 0.32-0.73) and EWT (R² = 0.19-0.55). However, these accuracies were lower 
than those reported in forest ecosystems, where Wang et al. achieved R² up to 0.9 for LMA and EWT 
[53]. N showed consistently high prediction accuracy (R² > 0.8) across all species combinations, 
exceeding typical accuracies with R² of around 0.7 reported in previous studies [29,32,57]. LWC 
predictions were improved when modeling with Non-Cyperaceae samples. Given the sensitivity of 
LWC to SWIR regions [58,59], future research should investigate whether SWIR-specific modeling 
could enhance the prediction accuracy. 

5. Conclusions 

This study explored the factors influencing the accuracy of spectral inversion modeling for leaf 
traits across different species combinations and sample sizes in aquatic plants. The findings revealed 
that species combinations significantly impacted modeling accuracy. The N model for the 
Cyperaceae-Gramineae group achieved the highest accuracy (𝐑𝐕𝐚𝐥𝟐 =0.87), followed by the LWC 
(𝐑𝐕𝐚𝐥𝟐 =0.85) model in the Non-Cyperaceae group. The VIP values varied across species combinations 
but showed consistent peak patterns. Sample size was another critical factor driving model 
performance, with a minimum of 160 samples required to accurately predict most leaf traits using 
PLSR. These results highlight the complex interplay between species combinations, sample size, and 
model accuracy in the spectral prediction of plant functional traits. However, this study did not 
address other important factors, such as phenology and spectral combinations. Future research will 
incorporate these factors to develop more robust models for the spectral inversion of plant functional 
traits. 
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PLSR Partial Least Squares Regression 

LWC Leaf Water Content 
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LA Leaf Area 

SLA Specific Leaf Area 

EWT Equivalent Water Thickness 

LMA Leaf Mass per Area 

N Nitrogen 

P Phosphorus 

LDMC Leaf Dry Matter Content 

VIS Visible light 

SWIR Short-Wave Infrared Radiation 

SVR Support Vector Regression 

GPR Gaussian Process Regression 

RFR Random Forest Regression 

XBHNNR Xiaobeihu National Nature Reserve 

SHPNNR National Nature Reserve 

SJNNR Sanjiang National Nature Reserve 

YHNNR Youhao National Nature Reserve 

S40 40 samples 

S80 80 samples 

S120 120 samples 

S160 160 samples 

S200 200 samples 

S240 240 samples 

AF All-families 

DF Dominant-families 

NC Non-Cyperaceae 

CG Cyperaceae-Gramineae 

CY Cyperaceae 

RMSE Root Mean Square Error 

RRMSE Relative Root Mean Square Error 

VIP Variable Importance of Projections 
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