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Abstract

We revisit the P = NP question through the joint lenses of time-relative description complexity and
automated discovery. Our premise is epistemic rather than ontological: even if polynomial-time
algorithms for NP—complete problems exist, they may have very high Kolmogorov (description)
complexity and thus be undiscoverable by unaided humans. Formal barriers (relativization, natural
proofs, and algebrization) already suggest that familiar techniques are insufficient to separate or

collapse P and NP. Regardless of the ultimate truth of P < NP, we argue that systematic search
in high—-K code spaces is valuable today: it may yield stronger heuristics, tighter exponential bases,
improved approximation schemes, and fixed—parameter runtimes. To make such artifacts scientifically
credible, we advocate a certificate—first workflow [9,78] that couples (i) polytime—by—construction
skeletons with (ii) machine—checkable evidence (e.g., DRAT/FRAT logs; LP/SDP duals) and (iii)
non-uniform search distilled into uniform algorithms. We also note empirical motivation from large
language models: scaling laws and energy budgets indicate that high capacity often unlocks new
emergent behaviors, while internal mappings remain complex and opaque. The overarching message
is pragmatic: capacity (high descriptive complexity) plus certification may provide a principled path
to better algorithms and clearer limits without presuming a resolution of P Z NP. This paper is
best described as an position/expository essay. We synthesize existing work from complexity theory,
Kolmogorov complexity, and algorithmic discovery, and offers a rational justification for a shift in
emphasis: from the elusive goal of discovering polynomial-time algorithms for NP-complete problems,
to the tractable and fruitful pursuit of discovering high-performance heuristics and approximation methods
via automated search and learning.

Keywords: P < NP; NP-completeness; Kolmogorov complexity; automated algorithm discovery; ap-
proximation algorithms; certificate-first verification; Natural Proofs barrier; PCP theorem; Exponential
Time Hypothesis (ETH); human discoverable algorithms

1. Introduction

Classical context. Foundational results on NP-completeness and reductions include Cook’s theorem,
Karp’s reductions, and the standard references [18,28,48,74].

Intractability remains a central obstacle in combinatorial optimization, planning, and decision
making. Many canonical problems (such as TSP') are, in practice, NP-hard and after decades of effort
no polynomial-time algorithm is known for any NP-complete problem. The absence of success is
not evidence: proofs of complexity separations are hard, and history warns against arguments from

1 Alist of abbreviations is at the end of the paper
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ignorance [27]. More compelling is the accumulation of barriers indicating that standard techniques
will not resolve the question. Relativization shows that many proof strategies behave the same in
oracle worlds where P = NP and where P # NP [10]; the Natural Proofs framework explains why
many combinatorial circuit arguments cannot yield strong lower bounds under widely believed
cryptographic assumptions [66]; and algebrization extends relativization to cover many algebraic
techniques [1]. In parallel, the PCP theorem and its refinements account for the pervasive hardness of
approximation [6,25,41]. Together these results suggest that any resolution of P Z NP may require
ideas well beyond our current toolkit.

This paper does not attempt to settle P Z NP. Instead, it makes two claims. First, discoverability
asymmetry: even if efficient algorithms for NP-complete problems exist, their minimal descriptions may
be large (high-K), placing them outside typical human design priors and bounded working memory.
Second, pragmatism via automated discovery: with modern compute, we can now systematically search
rich program spaces for heuristics, approximation algorithms, and exponential-time improvements,
and we can demand machine-checkable certificates so that even opaque artifacts are auditable.

We formalize a time-relative description complexity K¢ (-) for decision, search, and optimization
problems (Section 2), use it to frame the high-K hypothesis (Section 2.4), survey automated discovery
paradigms with a certificate’first protocol (Section 4), add empirical context from large language
models (Section 4.6), and present concise case studies (Section 5). We conclude with implications for
P # NP and close with a summary of the paper’s main points (Sections 6-7).

Terminology.

Throughout this paper we use the phrase certificate-first to denote a discovery workflow in which
candidate algorithms or heuristics are only considered scientifically valid when accompanied by
machine-checkable evidence (certificate) of correctness or quality. Examples include DRAT/FRAT logs
for SAT, LP/SDP dual solutions for optimization, or explicit approximation ratios. In short, discovery
may be opaque or high-K (high Kolmogorov complexity), but acceptance requires certificates that can
be independently, and efficiently, verified.

2. Background

Algorithmic landscapes. For parameterized algorithms and exact exponential techniques, see [19,26]. For
a broad overview of computability and complexity notions relevant here, see [21].

This section lays the theoretical groundwork by defining the complexity classes NP, NP-
completeness, and NP-hardness. It provides a detailed discussion of decision problems, the role
of oracles, and the importance of polynomial-time verification. Following this, Kolmogorov complexity
is defined and extended to include its application to time-complexity asymptotic classes, setting the
stage for a discussion of human cognitive limits and algorithmic discoverability.

Dynamic programming is the archetypal example of a low-description but powerful technique,
dating back to Bellman’s formulation [13].

Rice’s theorem reminds us that no algorithm can decide every nontrivial semantic property of
programs [67]; this underlies the uncomputability of K¢.

2.1. Complexity Classes: NP, NP-Completeness, and NP-Hardness

The study of computational complexity involves classifying problems based on their inherent
difficulty and the resources required to solve (optimally, in the case of NP-hard problems) or verify
them. This section focuses on the class NP, which consists of decision problems where solutions can
be verified in polynomial time, and explores NP-completeness and NP-hardness, which formalize
the notions of the most challenging problems within NP and beyond. These classifications form the

2 We use the term certificate broadly to mean any machine-checkable evidence that supports an algorithmic claim (e.g., a
satisfying assignment as a witness, a DRAT/FRAT proof log for UNSAT, or an LP/SDP dual bound for optimization).
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foundation for understanding the P Z NP question and the complexity landscape of many practical
and theoretical problems.

2.1.1. Decision Problems and the Class NP

Informally, a decision problem is a computational problem where the answer is either "yes" or
"no." For example:

*  Given a Boolean formula, is there an assignment of truth values that satisfies it?
*  Given a graph G, does there exist a Hamiltonian cycle of length k or less in G?
* Given a graph G, does there exist a clique of size k or more in G?

Formally, fix a binary encoding of instances. A decision problem is a function
IT:{0,1}* — {0,1}, IT(x) =1 (YES), II(x) = 0 (NO).
We write | x| for the bit-length of the instance x.

Problem instances and running time.

Fix a binary encoding of instances; let |x| denote the bit length of a problem instance x. An
algorithm runs in polynomial time if its number of steps is O(|x|¥) for some constant k.

Definition 1 (The Class P.). A decision problem belongs to the class P if there exists a deterministic
algorithm that, for every input instance x, outputs the correct YES/NO answer in time polynomial in
[x].

Definition 2 (Class NP (via verification).). A decision problem belongs to NP if there exist (i) a
polynomial p(-) and (ii) a deterministic Boolean verifier V(x,y) — {YES,NO} that runs in time
polynomial in |x| + |y|, such that the following holds for every instance x:

e If the correct answer on x is YES, then there exists a certificate (witness) y with |y| < p(|x|) for
which V(x,y) accepts.
e If the correct answer on x is NO, then for all strings y with |y| < p(|x|), V(x,y) returns NO.

Equivalently, NP consists of problems decidable by a nondeterministic algorithm that halts in
polynomial time on every branch and accepts an input iff there exists at least one accepting branch.
Intuitively, the machine “guesses” a short certificate y and then performs the same polynomial-time
check as V(x,y). The verifier and nondeterministic definitions coincide; see, e.g., [74] [Ch. 7].

Thus, for problems in NP, a short certificate, when it exists, can be checked quickly (in polynomial
time).

Example: SAT.

An instance x is a Boolean formula. A certificate y is an assignment to its variables. The verifier
V(x,y) evaluates the formula under y and returns YES iff the formula is true. V runs in time polynomial
in |x| (and in |y|, which is itself polynomial in |x|).

Remark. This verifier definition is equivalent to the standard nondeterministic-machine view of NP,
but it avoids machine and language-membership notation and requires no oracle model.

Example (Traveling Salesman Problem). Consider the decision version of the TRAVELING SALES-
MAN PROBLEM (TSP-DEC):

Instance. A complete weighted graph G = (V, E,w) on n = |V| labeled vertices with nonnegative
integer edge weights w : E — Z>¢, and a threshold k € Zx.

Question. Is there a Hamiltonian tour (a permutation 7t of V) whose total weight is at most k?

Certificate (witness). A permutation 7w = (719, ..., 7,) of the vertices.

Verifier V(G, k, r).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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1. Check that 7 lists each vertex exactly once (permutation test) and that 7z forms a tour (each pair
of adjacent vertices is connected in G).
2. Compute the tour weight

n
W(m) = Y w(m, mi1) withm,q = m.
i=1

3.  Return YESiff W(r) < k.

All steps run in time polynomial in the input length. Therefore TSP-DEC belongs to NP via polynomial-
time verification.

2.1.2. NP-Completeness
Definition 3 (The Class NP-complete (NPC)). A decision problem L is NP-Complete if:

e [ eNP,and
* Lisashard as any problem in NP, meaning every problem in NP can be Karp-reduced to L in
polynomial time.

A Karp reduction transforms, in time that is polynomial in the size of the instance, instances of
one problem L; into instances of another problem L;.

Definition 4 (Karp Reduction). Let L; and L, be decision problems. A Karp reduction from L; to Ly,
denoted L; <}, Ly, is a polynomial-time computable function f such that for every input instance x of
L1, the following holds:

x is a "yes" instance of L; <= f(x) is a "yes" instance of L,.

In other words, solving L, on the transformed input f(x) allows us to solve L; on the original
input x, and the transformation f takes time polynomial in the size of x.

Intuitively, this means that if we have an algorithm for L, and we can transform any instance of
L into an instance of L, using the function f, then we can solve L; by first applying f and then
invoking the algorithm for L,. The reduction ensures that the "yes"/"no" answer is preserved and that
the transformation is efficient (i.e., runs in polynomial time). Note that Karp reduction is a preorder
(reflexive and transitive relation).

2.1.3. NP-Hardness

Definition 5. A problem L is NP-hard if every problem in NP can be Karp-reduced to L in polynomial
time. Unlike NP-complete problems, NP-hard problems are not required to be in NP, may not be
decision problems, and may not have polynomial-time verifiability. For example:

*  Decision Problems: NP-complete problems, such as SAT, are also NP-hard.

*  Optimization Problems: Finding the shortest Hamiltonian cycle in a graph is NP-hard but not a
decision problem.

*  Undecidable Problems: Problems such as the Halting Problem are NP-hard but not computable.

NP-hardness generalizes the concept of NP-completeness, capturing problems that are computa-
tionally at least as hard as the hardest problems in NP. Note that NP-hard problems may lie outside NP
altogether and include problems that are undecidable (such as the Halting Problem, the Busy Beaver
Problem, Post’s Correspondence Problem, and others).

2.2. Lemmas and Consequences of Karp Reductions
Lemma 6 (Easy-in = Easy-out). If A <, Band B € P, then A € P.

Proof. Given x, compute f(x) in polynomial time and run the polynomial-time decider for B on f(x).
The composition of two polynomial-time procedures is polynomial. [

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.2038.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2025 d0i:10.20944/preprints202509.2038.v1

50f 20

Definition 7 (The Class NP-complete (NPC)). A decision problem C is NP-complete iff (i) C € NP and
(ii) for every A € NP, A <h C.

Corollary 8. If some NP-complete problem C lies in P, then P = NP.

Proof. For any A € NP, by Definition 7 we have A <}, C. Since C € P, Lemma 6 implies A € P. Thus
NP C P, and trivially P C NP. O

Why NP-complete problems matter. A single polynomial-time algorithm for any NP-complete problem
collapses P and NP by Corollary 8.

any L € NP
Karp reduction (<)) to SATJ{

SAT

if SAT<P then LeP by Lemma 6J{

\Therefore, NP C P\ = [P=NP

Remark (On the use of “collapse”). In complexity theory, a collapse means that two or more complexity
classes that are believed to be distinct are shown to be equal. For example, if any NP-complete
problem (such as SAT) admits a polynomial-time algorithm, then every problem in NP reduces to it in
polynomial time, implying P = NP—a collapse of the two classes. Similarly, the Karp-Lipton theorem
shows that if NP C P/poly, then the entire polynomial hierarchy PH collapses to its second level,
=P =118 [50].

2.2.1. The P = NP question

The question asks whether every efficiently verifiable decision problem is also efficiently decidable:

P=NP <= NPCP
<= 3JC € NPC with C € P (equivalently, every C € NPC).

or, equvalently:

P = NP <= VL € NP, 3 a deterministic polynomial-time algorithm solving L.

If P = NP, then all NP-complete problems, such as SAT, would have polynomial-time algorithms.
This is precisely because all NP-complete problems can be Karp-reduced to each other. If P = NP,
then all NP-Hard problems which are non-decision search versions of NP-complete problems will also
then have a polynomial time solution.

Why does “one NP-complete problem” suffice?

If C is NP-complete and C € P, then for any problem A € NP we have a polynomial-time Karp
reduction A <}, C,s0 A € P (compose the reduction with the decider for C). Hence P = NP. Note
that this result is due to the transitivity of <},.

Consequences if P = NP.

All NP-complete problems (e.g., SAT, 3-SAT, CLIQUE, HAMILTONIAN CYCLE) admit polynomial-
time algorithms. Moreover, the associated search/optimization versions for the usual NP problems also
become polynomial-time solvable: using standard self-reductions, one can reconstruct a witness (or an

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.2038.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 September 2025 d0i:10.20944/preprints202509.2038.v1

6 0f 20

optimal solution when the decision version is in P) via polynomially many calls to the decider and
polynomial-time bookkeeping.’

Consequences if P # NP.

Then no NP-complete problem lies in P (otherwise the previous paragraph would force P = NP).
NP-complete problems are therefore those whose YES answers can be verified quickly (in polynomial
time) but, in the worst case, cannot be decided quickly.

2.3. Kolmogorov Complexity

We begin with the original definition of Kolmogorov complexity, which quantifies the informa-
tional content of strings based on the length of the shortest algorithm that generates them. We then
extend this concept to computational problems, focusing on the complexity of describing solutions or
algorithms for such problems. Finally, we further refine the definition to account for the complexity of
algorithms within specific asymptotic time classes, particularly polynomial and exponential, in the

context of the P = NP question.

2.3.1. Definition for Strings

The Kolmogorov complexity K(s) of a string s [54] is defined as the length of the shortest (in bits)
program p that outputs s when executed on a universal Turing machine U:

K(s) = mpin{|i9| U(p) = s}

This measures the information content or compressibility of the string. For example:

* A highly structured string (e.g., "1010101010...") has low Kolmogorov complexity.
¢ Arandom string has high Kolmogorov complexity because it cannot be compressed.

2.3.2. Kolmogorov (Descriptive) Complexity for Problems

We now extend the definition of Kolmogorov complexity to problems instead of strings.
Fix a universal prefix Turing machine (TM) U. The (prefix) Kolmogorov complexity of a finite
binary string s is
Ku(s) = min{|p|: U(p) =s}.

By the invariance theorem [54], changing U alters K;; by at most an additive O(1); Ky; is not computable
nor semicomputable [54] [Chs. 2-3]. We lift this description-length viewpoint from strings to problems
by measuring the shortest program that solves the problem under a prescribed time budget (complexity
class).

Time-relative description complexity (decision/search/optimization).

Let C be a time class (e.g., P, EXP). For a decision problem L with Boolean answer,
Ke(L) = min{ |p| : Vx, U(p, x) outputs the correct YES/NO and runs within C },

with K¢ (L) = co if no such program runs within C. The same template extends to search relations
R(x,y) (require U(p, x) to output some valid y when one exists), to exact optimization (output an
optimal feasible solution), and to approximation (output an «(n)-approximate solution), always under
the same time budget [54].

3 Formally, P = NP implies FP = FNP; for common NP problems (SAT, TSP decision to TSP optimization, etc.) the
reconstruction uses well-known self-reduction schemes.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Two special cases.

We will use

poly = Kp,  Kexp := Kgxp ‘

that is, the shortest polynomial-time and exponential-time solvers, respectively. Concretely, one may write

Kpoty (L) = min{|p| : 3k Vx, U(p, x) decides L in time O(|x| 1,
Kexp(L) = min{|p| : 3¢,k Vx, U(p, x) decides L in time O(Z”"'k) }.

Remark (Notation). Throughout the paper we use the symbol “:=" to denote definition by equality. For
example, writing A := B means that A is defined to be B, rather than asserting an equation that could
be true or false.

Examples.

SORTING has short classical polynomial-time algorithms, so Kpoly (SORTING) < oo (and small in
absolute terms). For an NP-complete decision problem such as TSP-DEC, there is a short exponential-
time template: enumerate all candidate certificates of polynomial length and verify each in poly-
nomial time. Hence Kex, (TSP-DEC) < o0 and is small up to encoding, whereas the finiteness of

Kpoly (TSP-DEC) hinges on P = NP [54,74] [Thm. NPCEXP].

Key properties (decision problems; analogous forms hold for search/optimization).

*  Finiteness characterizes classes. Kyl (L) < 00 <= L € P; Kexp(L) < 00 <= L € EXP. In
particular, since NP C EXP, every NP problem (hence every NP-complete problem) has Keyp < 0.
In simpler terms: if a problem has a finite polynomial-time description length, it means the problem
can be solved efficiently; if it only has a finite exponential-time description, then it can be solved
(perhaps very slowly) but not efficiently. NP problems fall into the latter category at minimum.

e NP via short exponential templates. For any L € NP with polynomial-time verifier V(x,y) of
witness length < p(|x|), a fixed “enumerate-and-verify” schema yields a deterministic 2P°!(|x)
decider; thus

Kexp(L) < |code of V| +O(1).

In simpler terms: every NP problem can be solved by the brute-force strategy of trying all possible
certificates and checking them. This always gives an exponential-time algorithm with a short
description.

¢ Dependence on P Z NP.IfP # NP and C is NP-complete, then K1, (C) = o0 while Kex (C) <
o0; if P = NP, then every L € NP has Ky (L) < oo (take the shortest polynomial-time decider).
In simpler terms: whether short polynomial-time descriptions exist for NP-complete problems

depends on the outcome of the P Z NP question itself.

*  Monotonicity across budgets. Whenever both are finite, Kexp(X) < Kpory (X) (a looser time
budget cannot increase the shortest description length). In simpler terms: if you allow yourself
more time, you never need a longer program to solve the same problem.

e  Karp Reduction sensitivity. If A Sﬁ Band B € C, then A € C and

Kc(A) < Ke(B) + O(1) + |code of the translator function f|,

by composing the shortest C-solver for B with the polynomial-time Karp reduction f. In simpler
terms: if problem A reduces to problem B, then the complexity of describing a solver for A is at
most the complexity of B plus the size of the Karp reduction. Karp reductions don’t make things
harder to describe.

e Orthogonality to running time. Small programs can have huge runtime (e.g., exhaustive certifi-
cate enumeration), so description length and time are logically independent—hence the value of

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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the time-relative refinement. In simpler terms: having a short program does not guarantee it runs
fast; and running time does not fully capture how complex the program is to describe.

¢  Uncomputability. In general, K¢ cannot be computed or even bounded algorithmically on
arbitrary inputs (by standard Kolmogorov arguments; cf. Rice’s theorem on nontrivial semantic
properties) [54]. In simpler terms: there is no algorithm that can always tell you the exact description
complexity of a problem, just as there is no algorithm that can decide every nontrivial property of
programs.

Low-K exponential templates for NP.

Every L € NP has a constant-length “enumerate certificates and verify” solver running in
2poly(n) time [74] [§7.3]. This formalizes the intuition that NP-complete problems admit low-description
exponential (often brute-force) algorithms even when efficient ones are unknown [54].

2.4. Human Discoverability of High-Description-Complexity Algorithms (High-K)

The central heuristic of this paper is that human-discoverable algorithms occupy a tiny, structured
region of the full algorithmic design space for problems in NP (See Figure 1). We make this precise by
appealing to (i) description complexity, (ii) elementary counting arguments, and (iii) human cognitive
limits.

High

Kolmogorov Complexity

Low

Human Discoverable Algorithms

Figure 1. Schematic: The space of all algorithms ordered by descriptive (Kolmogorov) complexity. The human-
discoverable region (bottom) is very small relative to the full space; efficient solutions for hard problems, if they
exist, may lie outside the human-discoverable region.

Low description vs. high description.

Let K¢ (+) denote time-relative description complexity (Section 2.3.2). An algorithm of low de-
scription complexity has a short specification (few lines or a compact program); a high-K description

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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algorithm requires a long, intricate specification. Kolmogorov’s framework makes this formal for
strings/programs and is machine-independent up to O(1) by the invariance theorem [54].

Counting intuition.

There are only 2"+! — 1 binary strings of length < 1, so only that many programs can be “short.”
In contrast, the number of Boolean functions on 7 inputs is 2%', which is astronomically larger.
Therefore, almost every function cannot be realized by a short program or a small circuit [71]. Thus,
“most” computable behaviors are of high description (or circuit) complexity. Equivalently, concise
specifications are rare and high description complexity is typical. We should thus expect many useful
procedures to lack short descriptions and to have high Kolmogorov complexity (high-K).

Cognitive constraints.

Human reasoning favors short, chunkable procedures; working memory and intrinsic cognitive
load bound how much unstructured detail we can manipulate [59,76]. This induces a discovery bias
toward low-K descriptions with clear modularity, reuse, and mnemonic structure—algorithms we can
devise, verify, and teach. By contrast, the program space overwhelmingly contains behaviors whose
shortest correct descriptions are long and non-obvious; hence many effective procedures may sit in
high-Kolmogorov-complexity regions (high-K) that exceed routine human synthesis. It is therefore
plausible that a significant subset of practically valuable algorithms are high-K and rarely found by
unaided insight. A pragmatic response is to employ large-scale computational search—program
synthesis, evolutionary search, neural/architecture search, meta-learning—under constraints and
certificates (tests, proofs, invariants) to explore these regions safely. In short, cognitive bounds shape
our algorithmic priors toward brevity and structure, while powerful compute can systematically probe
beyond them to surface useful but non-succinct procedures.

NP problems as a case study.

Every L € NP admits a low-description a short exponential-time template that enumerates cer-
tificates and verifies them in polynomial time. Kexp (L) is therefore finite and typically small up to
encoding [54,74] [Thm. NPCEXP]. For an NP-complete C,

00, if P # NP,
Kpoly(c) = s
finite (possibly large), if P = NP.
Hence the empirical asymmetry: short inefficient algorithms are easy (templates exist), whereas any
efficient algorithm, if it exists, might sit at high description complexity, beyond typical human cognitive
limits and discoverability.

Interpretation and limits.

This “high-K efficient algorithm” hypothesis is heuristic, not a statement about the truth of P < NP.
It offers a plausible explanation for why decades of human effort have yielded powerful heuristics and
proofs of hardness/limits, but no general polynomial-time algorithms for NP-complete problems. It
also motivates automated exploration of high-description code spaces, coupled with machine-checkable
verification (certificates, proofs, oracles in the promise sense when appropriate), to make discovery
scientifically testable.

With these preliminaries in place, we now review structural barriers (relativization, Natural Proofs,
algebrization, PCP-driven hardness) that temper expectations of simple polynomial-time solutions
and motivate the later emphasis on capacity-driven automated discovery with machine-checkable
certificates.
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3. Structural Barriers to the Existence of Efficient Algorithms for NP-Hard
Problems

It is well known that if a single NP-complete problem were to be solved in polynomial time, then
all problems in NP would be solvable in polynomial time. Therefore, P = NP. The implications of
such a result would be profound. Many cryptographic protocols rely on problems that are believed to
be hard on average [7]. If P = NP, then these assumptions could no longer be sustained.

Despite decades of effort by leading researchers, no polynomial-time algorithm has been discov-
ered for any NP-complete problem. This sustained lack of progress is often interpreted as indirect
evidence that P # NP, but such an argument remains speculative. The absence of success does not
constitute a proof, and history provides examples where long-standing open problems were eventually
resolved in unexpected ways [3,4,35,79].

However, there are deeper theoretical reasons why many in theoretical computer science believe
that P # NP. A number of landmark results appear to impose structural barriers to proving P = NP or
to the existence of simple polynomial-time algorithms for NP-complete problems. In particular, the
following are frequently cited:

¢  The Karp-Lipton theorem, which shows that if NP C P/poly, then the polynomial hierarchy
collapses to its second level [49].
*  The Natural Proofs barrier, introduced by Razborov and Rudich (1997), which argues that many

existing circuit-lower-bound techniques are unlikely to resolve the P Z NP question under
standard cryptographic assumptions [66].

¢ The Probabilistically Checkable Proofs (PCP) theorem, which underlies strong hardness-of-
approximation results for many NP-hard problems [6].

3.1. The ETH/SETH Context

e ETH. There is no 2°(")-time algorithm for 3-SAT [44].
e SETH. For every ¢ > 0 there exists k such that k-SAT cannot be solved in time O(2(1-)") [43].

These conjectures provide a calibrated backdrop for “better-exponent” goals: under ETH, many classic
NP-hard problems are unlikely to admit subexponential-time algorithms, and SETH yields fine-grained
lower bounds for k-SAT and related problems. This paper’s methodology—capacity-driven automated
discovery in high-K spaces, coupled with machine-checkable certificates—is compatible with ETH
and SETH: we target smaller exponential bases, improved constants, and broader fixed-parameter
tractability, without asserting subexponential algorithms where these conjectures preclude them.

Interpretive note. ETH/SETH concern running time, not descriptional complexity. They do not imply
that any efficient algorithm for an NP-complete problem must have high Kolmogorov complexity.
Our claim is heuristic: taken together with known proof-technique barriers, these conjectures suggest
that if polynomial-time algorithms for NP-complete problems exist, they are unlikely to arise from
today’s simple, low-description techniques. In that sense, such algorithms—if they exist—may reside
in high-K regions of the design space, beyond unaided human discoverability.

The remainder of this section expands on the above theoretical results in turn.

3.2. The Karp—Lipton Theorem

The Karp-Lipton Theorem, established in 1982, provides a significant structural implication regard-
ing the class NP and non-uniform computation. It states that if NP C P/poly, then the polynomial
hierarchy (PH) collapses to its second level:

If NP C P/poly, then &5 =T} = PH.*

In other words, if nondeterministic polynomial-time problems can be solved by deterministic
polynomial-time machines with polynomial-size advice strings (non-uniform circuits), then the poly-

4 Karp and Lipton, “Turing Machines That Take Advice,” L'Enseignement Mathématique, 1982 [50].
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nomial hierarchy, which is believed to be infinite, collapses very low. This would be a surprising
outcome, since it would contradict the presumed richness of PH. Given that P/poly is often used to
model the power of non-uniform algorithms or hardware circuits, the theorem suggests that any proof
of P = NP via circuit complexity must overcome this potential collapse. This result is one of the early
indications that nontrivial structural implications follow from seemingly local containments.

3.3. The Natural Proofs Barrier

Razborov and Rudich introduced the Natural Proofs framework to explain why many circuit-
lower-bound techniques may not scale to separate P from NP [66] (see also [7] [§20.4]). A property P of
Boolean functions on 7 inputs (i.e., a subset P, of all truth tables of size 22") is called:
¢ Large if it holds for a non-negligible fraction of functions, e.g., % > 2-poly(n),
¢  Constructive if, given a function’s truth table (length 2"), membership f € P, can be decided in

time poly(2") (equivalently, by circuits of size poly(2")).

e  Useful against a circuit class C (e.g., P/poly) if no function computable by C-circuits of size

poly(n) lies in P, yet some explicit hard family { f, } satisfies f,, € P, for infinitely many n.

Barrier (conditional).

Assuming the existence of strong pseudorandom objects secure against C-circuits, there is no property
that is simultaneously large, constructive, and useful against C [66]. In particular, under these crypto-
graphic assumptions one cannot prove super-polynomial circuit lower bounds for P/poly via natural
properties.

Scope and limits.
The barrier explains why many “combinatorial” methods (which typically yield large and con-

structive properties) are unlikely to resolve P Z NP by circuit lower bounds. It does not show that
P # NP is unprovable: it leaves room for (i) non-constructive arguments, (ii) non-large (very sparse)
properties, and (iii) targets for which the requisite pseudorandom objects are not known to exist.
Consequently, progress likely requires techniques that avoid naturalness relative to the targeted circuit
class or that circumvent the cryptographic assumptions.

3.4. The PCP Theorem and the Hardness of Approximation

The Probabilistically Checkable Proofs (PCP) theorem revolutionized our view of NP: membership
can be verified by inspecting only a few proof bits at random. The canonical form states

NP = PCP(O(logn),O(1)),

i.e., there are constants g, € > 0 such that every x € NP has a proof that a verifier checks using O(logn)
random bits and g queries, with completeness 1 and soundness 1 — €; see [6].

Consequences for approximation.
PCP machinery yields gap reductions showing that even approximate solutions are hard:

*  Max-3SAT: No polynomial-time algorithm can achieve a ratio better than 7/8 + ¢ for any ¢ > 0
unless P = NP [41].

e  Vertex Cover: Approximating within factor 1.3606 is NP-hard [20]; the best known ratio is 2.

e Set Cover: Approximating within (1 — o(1)) In# is hard unless NP C DTIME(nO(IOg 103")) [25].

e Max Clique/Chromatic Number: n!~¢-approximation is NP-hard for any fixed ¢ > 0 [84].

Thus, even under relaxed objectives (constant or logarithmic factors), many classic NP-complete

problems remain intractable to approximate in polynomial time. This strengthens the view that exact

polynomial-time algorithms are unlikely and motivates the search for problem-structured heuristics

with provable—yet necessarily limited—approximation guarantees.
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4. Automated Algorithm/Heuristic Discovery: A New Frontier

Automated discovery, as used here, grows out of familiar lines of work. From empirical algorithms
comes the idea of portfolios and automatic configuration, where strength comes from choosing well
rather than insisting on a single universal solver [32,83]. From learning-augmented algorithms comes
the view that predictions can serve as advice, with safeguards that limit the damage when the advice
is wrong [56,60,63]. From implicit computational complexity comes polytime-by-construction design,
in which the language itself carries the resource discipline [12].

The aim is not to propose a fixed pipeline but to suggest a change in perspective. With modern
compute it now becomes feasible to explore program spaces that extend far beyond what can be
examined by hand. What matters is not opacity for its own sake, but reach: compact templates and
systematic search may surface high-K procedures that would be hard for humans to invent directly.
Credibility then follows from what travels with the code—logs, proofs, and dual bounds—so that
claims can be checked and trusted on an instance-by-instance basis.

What follows offers a shared vocabulary and a few recurring patterns of discovery. The targets
remain concrete: better approximations within known floors, broader fixed-parameter regimes, and
smaller exponential bases, together with the evidence that allows such results to enter practice.

4.1. Definitions (Model-Agnostic)

For clarity, we use the following terms informally and in line with standard texts.

Heuristic. A polynomial-time procedure that returns a feasible decision or solution on every input,
typically without a worst-case optimality bound [62]. Randomized variants run in expected
polynomial time or succeed with high probability.

Approximation algorithm. For minimization with optimum OPT(x), an algorithm A is an a(n)-
approximation if A(x) < a(n) OPT(x) for all instances of size n, with polynomial running time
(and analogously for maximization). Canonical regimes include constant-factor, PTAS/EPTAS,
and polylogarithmic-factor approximations [77,81].

Meta-heuristic. A higher-level search policy—e.g., evolutionary schemes, simulated annealing, or
reinforcement learning—that explores a space of concrete heuristics or pipelines adapted to a
target distribution [22,51].

Algorithmic discovery system. Given a design space S (programs, relaxations, proof tactics), a distri-
bution D, and an objective | (e.g., certified gap or runtime), the system searches for s* € S that
scores well under | within resource limits, and emits certificates when applicable (dual bounds,
proof logs) [7,14].

4.2. Discovery Paradigms

There is no single road to discovery; several strands point in the same direction. One is search and
synthesis: local or stochastic search over code and algorithmic skeletons with equivalence checking
(Massalin’s Superoptimizer; STOKE) [58,70], SAT /SMT-guided construction of combinatorial gadgets
such as optimal sorting networks [16], and recent reinforcement-learning setups for small algorithmic
kernels [57].

Another is learning-guided generation. Systems that generate or repair code by tests and specifica-
tions (e.g., AlphaCode) and program search guided by LLMs with formal validation (e.g., FunSearch)
show how statistical guidance and verification can coexist [53,68].

A third strand is neuro-symbolic structure. Syntax-guided synthesis (SyGuS), equality saturation
with e-graphs, and wake-sleep library growth (DreamCoder) combine search with inductive bias from
symbolic structure [2,23,82].

Finally, evolutionary and RL approaches remain natural for routing, scheduling, and solver control
(e.g., learned branching or cutting policies), where compact policies can be discovered and then judged
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by certificates [22,29,52,61]. Across these cases the theme is consistent: capacity broadens the search;
structure and checking keep results grounded.

4.3. Targets for Approximation and Heuristics

Reductions and relaxations. Automated reductions, LP/SDP relaxations, and learned policies for
branching and cutting provide a flexible substrate. Dual-feasible solutions and lower bounds certify
quality, while SAT-family problems admit independently checkable proof logs [7,14].

Rounding schemes. Classical rounding ideas can be viewed as templates to explore, with guar-
antees inherited from the template: randomized rounding [64], SDP-based rounding such as Goe-
mans-Williamson for MAX-CUT [31], and metric embeddings that translate structure into approxima-
tion [24].

Algorithmic skeletons. Sound skeletons—local search with a potential function, primal-dual
methods, greedy with exchange arguments—set the envelope of correctness. Searched or learned
choices (moves, neighbors, tie-breaks) then tune behavior within that envelope [77,81].

4.4. Evidence and Evaluation

Because this is a position paper, the emphasis is on what tends to constitute persuasive evidence.
Correctness comes first: constraint checks for feasibility; for decision tasks, proof logs or cross-verified
certificates where available. When worst-case guarantees exist they should be stated; where they are
out of reach, per-instance certified gaps via primal-dual bounds are informative. Efficiency is often
clearer from anytime profiles—solution quality over time on fixed hardware—than from a single
headline number. Generalization benefits from clean train/test splits, stress outside the training
distribution, and simple ablations for learned components. Reproducibility follows from releasing
code, seeds, models, datasets, and the verification artifacts (certificates and any auxiliary material
needed to independently check results such as proofs, logs, or even counterexamples) themselves.

4.5. High-K Perspective, Limits, and Compute as an Enabler

High-K artifacts—large parameterizations or intricate codelets—may lie beyond familiar design
priors yet remain straightforward to verify. The working view is that worst-case optimality for
canonical NP-hard problems is unlikely, so practice leans on heuristics and approximations; automated
discovery, constrained by polytime-by-construction scaffolds and paired with certificates, offers a way
to surface stronger ones and, at times, to tighten provable bounds. Compute changes what is plausible:
modern compute clusters make it realistic to explore vast program spaces, from code optimization
to small-scale algorithm design [53,57,68,70]. The same scale brings predictable risks—benchmark
overfitting, reward hacking, unverifiable “speedups,” distribution shift—that are best mitigated by
certified outputs, standard verification tools, and transparent reporting.

4.6. Observations from LLMSs and Scaling

Large language models (LLMs) illustrate how increased capacity (number of model parameters)
can unlock qualitatively new behavior and abilities. Empirical scaling laws show that test loss decreases
in a predictable way with more parameters, more data, and more compute, and compute-optimal
training balances these factors [40,47]. In practice, models exhibit emergent properties: abilities that do
not appear in small systems but manifest once scale crosses a threshold. A natural interpretation is that
the learned mapping from input tensors to output tensors is often high in description complexity (high-K).
Larger parameter budgets can encode more intricate, complex, functions, and scaling increases the
probability that training discovers such mappings. This is not evidence about P < NP, butitis an
empirical lesson about search: higher capacity explores larger regions of algorithmic space. A natural
hypothesis is that the learned mappings may be high in description complexity; larger parameter
budgets (capacity) increase the probability of reaching such functions.

Human neurobiology points in the same direction. The human brain contains approximately
8.6 x 10'° neurons, is estimated to have 10'4-10'> synaptic connections, and consumes about 20% of
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the body’s resting metabolic energy [8,17,39,46,65]. Humans also have a high encephalization quotient
[39,45] relative to body size. It is reasonable to view human intelligence itself as a high-K phenomenon:
large capacity and dense connectivity are, it appears, required to support it.

Nature and modern machine learning both suggest that capacity and scale matter (but may not
necessarily be sufficient to achieve AGI). It is therefore reasonable to hypothesize that the high—-K
space of algorithms—too intricate for humans to discover unaided—may contain useful heuristics and
approximation algorithms for many hard problems.

5. Case Studies: Applying the Workflow

This section is illustrative. It shows how the certificate-first workflow may apply to canonical
problems. It does not present experiments. The goal is to make the method concrete without prescribing
one toolchain.

A workable protocol.

(1) Fix a task and an instance distribution. (2) Choose baselines users already trust. (3) Specify a
compact search space or DSL and a proxy for description length (e.g., AST nodes or compressed size).
(4) Require machine-checkable certificates. (5) Report practical metrics: gap, time-to-target, success
rate, fraction certified.

5.1. SAT (CNF)

Targets. Better branching, clause learning, and clause-deletion policies. Search space. Small
policies over clause and variable features; proxy-K by AST size or token count. Certificates. Verify
UNSAT with DRAT/FRAT; validate SAT by replaying assignments [9,15,78]. Context. Portfolios
and configuration improve robustness; they integrate naturally with certificate-first outputs [32,83].
Outcome. A discovered policy is acceptable once it produces proofs or checkable models on the target
distribution.

5.2. Traveling Salesman Problem (TSP)

Targets. Lower tour gaps and stronger anytime behavior. Search space. Insertion rules or LKH
parameter templates; proxy-K by rule length [38]. Certificates. Use 1-tree and related relaxations as
lower bounds; export tours and bounds with Concorde-style utilities [5,37]. Outcome. A policy is
credible when tours come with lower bounds that certify the reported gaps.

5.3. Vertex Cover and Set Cover

Targets. Simple rounding and local-improvement templates. Search space. Short heuristics that
map LP or greedy features to choices; proxy-K by template length. Certificates. Dual-feasible solutions
certify costs; hardness thresholds calibrate expectations [11,20,25,64]. Outcome. New templates are
useful when they offer certified gaps or better anytime profiles on the intended distribution.

5.4. Learning-Augmented and Discovery Tools

Role. Predictions serve as advice with robustness guarantees; portfolios hedge uncertainty
[56,60,63,83]. Program search and RL can propose compact rules; superoptimization and recent
discovery systems show feasibility on small domains [16,53,57,58,68,70]. Certificate-first turns such
proposals into auditable artifacts.

Scope.

This is a position paper. The section does not claim superiority over mature solvers. It shows
how to pair capacity and search with certificates and structure so that high-description solutions—if
found—are scientifically usable.
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6. Implications for P # NP

If P # NP, then the longstanding intuition is confirmed: exact polynomial-time algorithms for
NP-complete problems are, in the worst case, out of reach. This does not close off progress, but it shifts
what “progress” means. Advances then come from approximation, from exploiting structure through
parameterized approaches, from tightening exponential-time algorithms, or from combining diverse
methods into robust portfolios. Each of these directions represents ways of doing better even when the
ultimate barrier remains.

Seen in this light, the focus moves away from hoping for a breakthrough algorithm that overturns
complexity theory, and toward a pragmatic exploration of what can be achieved within known limits.
Certificates and verifiable relaxations are valuable because they allow even opaque or high-complexity
procedures to be trusted. If P were ever shown equal to NP, the same emphasis on auditable artifacts
would still matter: high-K algorithms would need to be made scientifically usable.

The broader implication is that the P 2 NP question, while unresolved, should not dominate
practice. Assuming P # NP encourages a reframing: instead of waiting for resolution, we can treat
complexity-theoretic limits as the backdrop against which useful heuristics, approximations, and
verifiable improvements are sought.

7. Discussion and Conclusions

This paper encourages a pragmatic way of thinking about algorithm design: to look beyond
human discoverability and explore high-description-complexity (high-K) spaces, while at the same
time keeping the search anchored to certificates. Even without resolving the celebrated question of
P NP, this pairing—capacity for discovery combined with auditable evidence—suggests a pathway
to heuristics and approximation procedures that improve practice and, in some cases, may, in some
cases, tighten known bounds.

The emphasis here is less on deriving algorithms that are simple to narrate and more on treating
discovery itself as an object of study. Capacity-rich systems can explore design spaces that are beyond
the reach of manual reasoning. When such explorations are paired with epistemic safequards—SAT
proof logs such as DRAT and FRAT, LP and SDP dual bounds, 1-tree relaxations, or equivalence
checking—artifacts become auditable, examinable and, therefore, trustworthy. In this reframing,
understanding shifts from producing hand-crafted algorithms to verifying the correctness of artifacts
and bounding their behavior.

Assuming P # NP, exact polynomial-time algorithms for NP-complete problems do not exist.
Progress must then be understood in other terms: stronger approximation methods within known
hardness floors, parameterized techniques that exploit hidden structure, incremental improvements to
exponential-time algorithms, or more robust combinations of solvers into portfolios. What counts as
success in this setting is not a definitive breakthrough but the production of efficiently computable
procedures whose reliability is guaranteed by independent certification rather than by intuitive
transparency.

The practical implications are wide-ranging but deliberately domain-agnostic. In Satisfiability
and related constraint settings, proof logs render unsatisfiability claims independently checkable. In
graph optimization and routing, dual bounds and relaxations serve the same purpose. Discovery
costs can be absorbed offline; what is ultimately deployed remains polynomial-time and auditable
instance by instance. This way, even when artifacts are opaque or high-K, their use can be grounded in
verifiable evidence.

Of course, there are limitations and risks. High-K artifacts may be brittle, or they may conceal
dependencies that are difficult to manage. Certification mitigates some of these issues but does not
eliminate them. Benchmarks can be overfit; distributions may shift; compute and energy costs are real.
Claims of speed or optimality carry weight only when they are tied to released artifacts—code, seeds,
models, and certificates—so that they can be checked, validated, and reproduced.
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Several open directions suggest themselves. Polytime-by-construction DSLs might be extended
with richer expressivity. Neuro-symbolic approaches could combine relaxations and rounding with
machine-checked proofs. Transfer across problems may be possible through embeddings or e-graphs,
provided certification is preserved. Learning-augmented and portfolio methods can offer robustness
against distributional uncertainty. Community benchmarks, finally, would benefit from requiring not
only solutions but also certificates of correctness.

The broader message is a methodological shift. For too long, algorithm design has tacitly assumed
an anthropocentric stance: that useful algorithms are, by necessity, those that humans can both discover
and comprehend. We suggest that this is a limiting assumption. Experience from Al systems such
as AlphaGo [72,73], whose non-intuitive, high complexity, strategies surpass human design patterns,
demonstrates that effective procedures need not be low complexity and thus human-discoverable.
This challenges the implicit (or unconscious) assumption that usefulness coincides with human
discoverability. An often quoted example of how Al (in this case AlphaGo) finds strong, non-intuitive
strategies is the now famous Move 37 [36]. Nature itself, with the scale and complexity of the human
brain, makes a similar point — capacity does matter. Structural results such as the Karp-Lipton theorem,
the Natural Proofs barrier, and the PCP theorem indicate that general polynomial-time breakthroughs
for NP-complete problems are unlikely. Yet with modern compute, it now becomes possible to
systematically search high-dimensional spaces for heuristics and approximations that are high-K
and beyond unaided human reach. If paired with verification, these opaque discoveries can still be
rendered scientifically usable.

Lineage. Our stance follows a long tradition of algorithmic discovery by search and learning: from
superoptimization and code synthesis [58,70], through syntax-guided and neuro-symbolic methods
[2,23,82], portfolio/configuration approaches [32,83], and recent large-scale program-search systems
[53,57,68]. Our contribution is not the idea of discovery by compute, but a consolidated capacity +
certificates perspective that treats high—K exploration as routine and insists that new artifacts arrive
with machine-checkable evidence.

In short, progress can be made systematic by bringing together capacity and search with certificates
and structure.
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MDPI Multidisciplinary Digital Publishing Institute
AST Abstract Syntax Tree

B&B Branch-and-Bound

CP Constraint Programming

Dp Dynamic Programming

DRAT Deletion/Resolution Asymmetric Tautology
DSL Domain-Specific Language

DTIME Deterministic Time

EXP Exponential Time

FFD First-Fit Decreasing

FNP Function Nondeterministic Polynomial Time
FP Function Polynomial Time

FRAT Flexible RAT

FPTAS Fully Polynomial-Time Approximation Scheme
Gp Genetic Programming

high-K High Kolmogorov Complixity

IL Imitation Learning

LKH Lin-Kernighan-Helsgaun heuristic

LP Linear Programming

low-K Low Kolmogorov Complixity

MaxSAT Maximum Satisfiability

MDL Minimum Description Length

MIP Mixed-Integer Programming

NP Nondeterministic Polynomial Time

NPC NP-Complete

OOD Out-of-Distribution

P Polynomial Time

PCP Probabilistically Checkable Proofs

PH Polynomial Hierarchy

PTAS Polynomial-Time Approximation Scheme
P/poly Polynomial-Size Advice (Non-uniform)

RL Reinforcement Learning

SAT Boolean Satisfiability

SDP Semidefinite Programming

™ Turing Machine

TSP Travelling Salesman Problem

TSP-DEC Travelling Salesman Problem (Decision)

b Second Level of the Polynomial Hierarchy (Pi)
Hg Second Level of the Polynomial Hierarchy (Sigma)

TTT ()Time-to-target) =~ Time to reach a pre-set quality threshold
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