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Abstract: The Indian Himalayan Region (IHR), due to its topography, geography, and active tectonics, a rough 

mountain zone, is among the most vulnerable zones to the landslide danger. The most cutting-edge and 

accurate ways for creating a landslide susceptibility model (LSM) are advanced statistical and geospatial 

techniques. The goal of the current work is to use advanced statistical and geospatial techniques to analyse and 

evaluate the updated landslide susceptibility for East District in the NE Himalayas of Sikkim, India. The 

spatiotemporal landslip inventory for the years are produced using literature surveys, historical satellite 

imageries and on-site observations. Slope, aspect, elevation, curvature, plane curvature, profile curvature, 

topographic wetness index (TWI), lithology, fault proximity, drainage proximity, road proximity, normalised 

difference vegetation index (NDVI), rainfall, drainage density and land use/ land cover (LULC) are some of the 

topographic, environmental, geologic, and anthropogenic factors that are included in the spatial database. 

These landslide causative factors (LCFs) were chosen to study the area's periodic landslip vulnerability. An 

inventory of 151 landslides from historical published records, field visits and satellite imagery interpretations, 

respectively, were used in the experimental design. Information Value Model (IVM), was used to evaluate the 

vulnerability to landslides as determined by fifteen LCFs. The goal of the study is providing an updated 

susceptibility map, which would contribute for proper planning to reduce the number of fatalities and possible 

economic harm caused by the region's frequent slope instabilities. It is expected that the application of statistical 

algorithms would assist relevant authorities and organisations in properly planning for and managing the 

region's disaster management. 

Keywords: East Sikkim; landslide susceptibility; information value model  

 

1. Introduction 

The most significant geo-environmental risk that is seen in mountainous terrains across the 

world and poses a serious danger to infrastructure and human life is landslides (Sati et al.,2020). 

Landslides are one of the main risks brought on by natural events like earthquakes and rains, as well 

as human activities like road construction and urbanisation that may result in slope collapses 

(Svalova et al.,2019). Almost 9% of all natural disasters globally include landslides. Large-scale slope 

failures have been caused by recent big earthquakes that have occurred in China (1999,2008,2010 & 

2013), Kashmir (2005), Sikkim (2011), Nepal (2015), New Zealand (2016), Japan (2018), etc. Numerous 

people were killed, injured, and infrastructure was damaged, particularly since the road networks 

were disrupted, as a result of these disastrous occurrences. 1.3% of fatalities of all natural disasters 

died through landslides, with Asia accounting for around 54% of these landslides (Froude et 

al.,2018).In recent years, landslides have accelerated in both wealthy and underdeveloped nations 

due to rapid urbanisation and development (Yawen & M., 2011). Many fatalities worldwide are 

caused by natural occurrences like earthquake-induced landslides (Gorum et al.,2011 & 2015, 
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Kirschbaum et al., 2015; Petley et al.,2006; Sepúlveda et al., 2015). The majority of the landslides take 

place in regions with active tectonics, uneven topography, and high rates of precipitation. The 

geographic distribution and intensity of landslides are influenced by topographic features, lithology, 

geomorphology, land use, and land cover (Aydin et al.,2017). The Himalayan Mountain region's 

population and infrastructure are always under risk due to mass migrations (Hewitt et al.,2012). Due 

to the predominately mountainous topography of the NE Himalaya, landslip activity is seen as a 

severe issue that threatens both infrastructure and habitation. Thousands of landslides occurred in 

Indian Himalayan Region (IHR) and its adjoining areas as a result of the catastrophic 2005 & 2011 

earthquake in Kashmir and Sikkim (Owen et al.,2008; Geoseismological Report, GSI,2011). Massive 

landslides, rock avalanches, and other slope collapses that occur often have caused severe casualties 

and significant infrastructure damage (Peiris et al.,2006; Owen et al.,2008; Basharat, 2012 & 

2021).There have been many studies done in the past to identify the distribution of landslides, field 

data collecting techniques, inventory development, and geographic distribution analysis (Sato et 

al.,2007; Kamp et al.,2008; Owen et al.,2008; Basharat et al.,2014 & 2016) as well as to understand the 

mechanics, distribution, and evolution of earthquake-triggered landslides. The territory has been 

divided into several susceptible zones using the methodologies of landslip susceptibility, including 

knowledge-based, statistical, deterministic, probabilistic, and machine learning (ML) (Girma et al., 

2015; Hamza et al.,2017 & Basharat et al.,2021). An efficient method for preventing and reducing 

landslides across a large territory is landslide susceptibility assessment. It is one of the most helpful 

informational resources for decision-makers and aids experts in lowering the danger to life and 

property. In recent years, a number of methods for assessing landslide susceptibility have been 

created, all of which are based on the idea that future mass movements may be predicted by looking 

at the relationship between previous landslides and the elements that influenced them (Guzzetti et 

al,2002; Chen et al.,2020). There are several ways to create a landslide susceptibility map (LSM) based 

on various formulations, but statistical approaches and machine learning are the most popular ones 

(Ikram et al.,2017; Sahin et al.,2020; Farooq et al.,2021; Polat,2021). For the detection, categorization, 

and evaluation of landslides, satellite remote sensing (RS) and geographic information systems (GIS) 

are extensively used. Recent years have seen an increase in the use of freely available moderate 

resolution satellite data, such as that from Sentinels and Landsat 8. Landslides in the area have 

previously been accurately identified using LISS Imageries of high resolutions (Martha et al.,2010). 

The aid of data on topography and environmental characteristics has posed a boon to data- and 

knowledge-driven statistical models, which have dominated the LSM field recently (Guzzetti et al., 

2012). Numerous statistical techniques for LSM have been anticipated and effectively used to aid in 

the analysis of landslip distribution patterns and the processes that create them as a result of recent 

advancements in geospatial technology (Merghadi et al.,2020). LSM are quickly converting from 

statistical and knowledge-driven learning to advanced statistical approaches with more precision and 

accuracy. LSM has been employed to handle the global mapping of landslip risk because of its 

magnificence. Around the world, landslip mapping has been done in a variety of ways, but they all 

have the same objectives. Numerous models and approaches are now being proposed at both the 

local and regional levels to predict the spatial distribution of landslides. While optimum LSM is of 

growing interest to land geoscientists, many of them are concentrating on a statistical and knowledge-

based model for landslip predictions, such as (Ahmed et al.,2021; Kamp et al.,2008; Riaz et al.,2018). 

Recently, researchers are working upon advanced statistical models due to their usefulness and 

excellent accuracy. The precision of traditional statistical techniques for LSM make them successful. 

The most efficient statistical techniques are considered to be Information Value Model (IVM), 

Statistical index (SI), frequency ratio (FR) and certainty factor (CF).  The effectiveness of each of the 

landslide causative factors on the incidence of landslides is assessed using these methodologies, 

which are commonly used data-driven approaches. In order to reduce the probability of landslides 

occurring, it is helpful to examine regionally scaled landslide risks and their numerous affecting 

factors. Thousands of landslides occurred in Eastern Himalayas as a result of the anthropogenic and 

tectonic factors. Numerous studies have been done in different parts of Indian Himalayan Region 

(IHR) and the areas surrounding it that were damaged by the tectonic causes in order to characterize 
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landslides and determine their vulnerability (Kumar et al.,2006). The objective of the current work is 

to analyse the spatio-temporal LSM using advanced statistical techniques that are more reliable and 

stable. The aim of this study is to apply cutting-edge advanced statistical methods to forecast the 

spatiotemporal vulnerability of landslides. In the district of East Sikkim, NE Himalayas of India, the 

current study's particular goal is to construct and access landslip susceptibility models about their 

impacting cause utilising temporal data from historical records, field visits and satellite Imageries. 

Further evaluation of the sensitivity and risk maps for landslip mitigation and the use of disaster 

reduction methods in the area might be done using susceptibility maps. 

2. Study Area 

The study area geographically lies in the NE Himalayas of India, which covers an area of 964 

square kilometres with a population of 0.16 million situated. In the East District, 679 square 

kilometres, or 71.17 percent of the district's total land area (964 square kilometres), are covered by 

forests. Of the overall geographic area, very dense forest takes up 162 square km, dense forest takes 

up 396 square km, and open forest takes up 121 square km. Hill, valley, and slope are the three main 

physiographic units. Teesta, Rangpo Chhu, and Dik Chhu are the three main drainage systems in the 

East District. Elevation range from 246 m to 4625 m (Figure 1). Mean average temperatures ranges 

between 22℃ to 36℃ in summer, while minus 04℃ to 07℃ in winter, with annual precipitation of 

100–900 mm (Source : IMD data)  (Figure 2). The lithostatic units in the area are Kanchenjunga 

gneiss, Darjeeling gneiss, Chungthang schists and gneiss, Lingtse granite gneiss, and the Daling 

group of rocks, which includes phyllite, slates, quartzites, and schist of Pre-Cambrian age, are the five 

geological units found in the district (Source : GSI Report, 2020) . Alluvium quaternary deposits 

periodically form along streams and rivers. Numerous fractures, faults, joints, folds, and other 

structural anomalies have formed in the rocks found in the district as a result of various structural 

disturbances. Geological formations in the area show prominent lineaments that run in the N-S, E-

W, NE-SW, ENE-WSW, and NW-SE directions. 

 

Figure 1. Geographical location of the study area. 
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Figure 2. Annual Precipitation of the study area (Source: IMD,2020). 

3. Materials and Methods 

3.1. Data Collection  

The data sources used to create the landslip inventory and LCFs are shown in Table 1. Using 

LISS IV Sensor (Resourcesat Satellite) Images, Google Earth Images, Toposheets and field 

investigations based on the criterion of loss of vegetation and disruptions in forest canopy, the 

landslides in the research region were interpreted and mapped. Using supervised classification in 

Exelis ENVI version 5.3, a land-use/land-cover map was created using LISS IV satellite images. 

Table 1. List of the data sources used to compute the landslide inventory and landslide causative 

factors. 

S.No. Theme 
Data 

type 
GIS Tools Resolution Source 

1 
Landslide 

inventory 

 Visual  IRS P6,LISS 4, 

 Polygon interpretation 5.8 m Field visits 

    Bhukosh GSI 

2 
Rainfall 

Grid IDW 4*4 Km IMD, 

  interpolation  Gangtok 

3 

Slope 

gradient 

    

 Grid Spatial 2.5*2.5 m Cartosat DEM 

  Analyst   

     

4 
Slope Aspect 

Grid Spatial 2.5*2.5 m Cartosat DEM 

  Analyst   

5 

Elevation 

 Spatial 2.5*2.5 m Cartosat DEM 

 Grid Analyst   

     

6 

Geology 

 Visualization  Geological Map 

 
       

Polygon 

& 

Interpretation 
1:250000 GSI  

7 

Soil 

 Visualization   

 Polygon 
& 

Interpretation 
1:50,000 NBSSLUP 

0
200
400
600
800

1000

G
A

N
G

TO
K

 A
W

S

R
A

N
IP

O
O

L

G
A

N
G

TO
K

TA
D

A
N

G

M
A

ZI
TA

R

G
A

N
G

TO
K

 A
W

S

R
A

N
IP

O
O

L

G
A

N
G

TO
K

TA
D

A
N

G

M
A

ZI
TA

R

G
A

N
G

TO
K

 A
W

S

R
A

N
IP

O
O

L

G
A

N
G

TO
K

TA
D

A
N

G

M
A

ZI
TA

R

G
A

N
G

TO
K

 A
W

S

R
A

N
IP

O
O

L

G
A

N
G

TO
K

TA
D

A
N

G

M
A

ZI
TA

R

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

R
ai

n
fa

ll 
(i

n
 m

m
)

Weather Stations ( Month wise)

Rainfall (mm) in East Sikkim from 2000-2020 

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 April 2024                   doi:10.20944/preprints202404.0066.v1



 5 

 

     

     

8 
Normalized 

Difference 

Vegetation 

Index 

(NDVI) 

Grid 
(NIR-Red 

/NIR+Red) 
2.5*2.5 m IRS P6 LISS 4 

     

9 Topographic 

Wetness 

Index (TWI) 

Grid 
Hydrology 

Tool (ArcGIS) 
2.5*2.5 m Cartosat DEM 

     

     

10 
Road 

Proximity 

Polygon Multi ring 2.5*2.5 m  

  Buffer 

Analysis 
 Bhukosh, GSI 

11 

Drainage 

Proximity 

Polygon Multi ring 2.5*2.5 m  

  Buffer   

  Analysis  Cartosat DEM 

     

12 Drainage 

Density 

Polyline Hydrology 2.5*2.5 m Cartosat DEM 

     

13 

LULC 

Grid Supervised    

  Classification 5.8*5.8 m IRS P6 , LISS 4 

     

14 
Landslide 

Susceptibility 

Map 

Grid 

Information 

Value 

Method 

2.5*2.5 m 

Landslide 

Causative  

Factors (LCFs)  

  (IVM)   

The National Remote Sensing Centre (NRSC) provided the temporal images of Resourcesat 

Satellite LISS IV (5.8 m resolution) with a cloud cover of 2.10%. To extract the topographic variables 

for the research region, a 5.8 m resolution, digital elevation model (DEM) based on LISS IV was 

employed. To determine the lithological and tectonic properties of the region, geological maps 

obtained from the Geological Survey of India (GSI) were used. Using a handheld Global Positioning 

System (GPS) and GLONASS receiver with a field survey precision of 5 metres (m), the landslip 

inventory was cross-verified. In the field, landslides' physical qualities and feature such as length and 

slope angle are measured using laser distance. ArcGIS 10.8 (Esri Inc.) was used to map, digitise, and 

analyse the data that was collected from various sources. Figure 3 depicts the methodological flow 

chart used to accomplish the study's predetermined goal. 

 

Figure 3. Schematic diagram shows the landslide susceptibility map development. 
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3.2. Landslide Inventory 

The use of a sustainable landslip inventory requires precise, high-quality data from a geospatial 

record in conjunction with a reconnaissance survey based on fieldwork (Figure 4 a,b,c,d,e,f,g &h). A 

crucial step in comprehending and analysing the comparison between a landslip and the governing 

variables that determine landslip susceptibility and hazard mapping is the identification and 

development of landslip inventory (Galli et al.,2008; Chen et al.,2017). By mapping with on-site visits, 

remote sensing methods, and examining temporal satellite pictures, the temporal landslides were 

updated. 

 

Figure 4. Photographs during field investigation (a) Affected houses due to Pachey Slide (b) debris 

flow at Qu Khola Slide (c) Teen taal Slide (d) Devasted vegetation (e) Vulnerable settlements in the 

Valley (f) Kit Golai Slide (g)Vulnerable road construction (h) Fragile lithology. 

In order to interpret and update the landslide inventories in the study area, remote sensing data 

from Google Earth and RESOURCESAT satellite imageries from 2010, 2015 and 2020 were used. These 

data are very useful in identifying those landslides present in the hilly or mountainous areas that are 

not accessible through the field survey. For the purpose of recognising mass migration, the 

destruction of natural vegetation is employed as a fundamental criterion.  
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Following landslide detection using RESOURCESAT, temporal landslide inventory of several 

years were created, encompassing 151 landslides that covered 9.939 km2 respectively (Figure 5 a & 

b). To create the IVM models, samples from the 2010, 2015, and 2020 inventories of landslides and 

non-landslides were used. Each landslip inventory is randomly split into two groups (training and 

testing) based on the percentage of samples, with a ratio of 70%:30%. 

Each year's inventory contains 70% samples of landslides and non-landslides that are used as 

training samples, while the remaining 30% are samples that are used for testing. This method yields 

the best results since the non-landsliding area is chosen on a low-angled slope area where the 

likelihood of landsliding is extremely low. After preparing the datasets, LSMs were created using the 

weighted overlay tool pack in Arc GIS 10.8. 

 

Figure 5. (a) Map showing Landslide Polygon Inventory (b) Map showing sources of Landslide 

Inventory. 

3.3. Landslide Causative Factors 

Numerous LCFs, such as topographical, geological, environmental, and anthropogenic factors, 

interact to affect slope failure (Costanzo et al.,2012; Dou et al.,2019). The likelihood of a mass 

movement was assessed by the link between landslip activity and influencing factors. There are 

fifteen LCFs in this study, including NDVI, landuse/land cover, slope gradient, aspect, elevation, 

curvature, profile curvature, plan curvature, Rainfall, Drainage density, TWI, and lithology (Figs. 6, 

7 and 8). 

Landslides are greatly influenced by topography or geomorphology (Dahal et al.,2008). Slope, 

aspect, elevation, curvature, plan curvature, profile curvature, distance to streams, and topographic 

wetness index (TWI) are some of the topographic parameters used to determine the topography in 

the Cartosat DEM, which displays terrain with a 2.5 m resolution. They play a significant influence 

in the action of landslides (Riaz et al.,2022). Here is a quick discussion of these parameters that were 

obtained from the DEM. 

3.3.1. Slope Gradient 

The slope gradient is the main reason for landslides (Vijith et al.,2014). It affects the stress 

distribution in the slope, the weathering layer, and the run off from the slope's surface (Figure 6a). 

The reason why steep slopes collapse more frequently than moderate slopes may be attributed to 

restriction pressures (Gou et al.,2015). According to Riaz et al.,2018, the slope area was derived from 

a DEM with a 2.5 m resolution and categorised into seven classes: 0 - 15, 15 - 20, 20 - 30, 30 - 40, Above 

> 40. 
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Figure 6. Map Showing (a) Slope angle (b) Slope aspect (c) Elevation (d) Curvature   (e) Plan 

Curvature (f) Profile Curvature (g) TWI (h) Lithology (i) Seismotectonic. 

3.3.2. Aspect 

Due to the slope's aspect (Figure 6b), which causes melting of the snow and water infiltration, 

increased freezing and thawing, and mass movement, the aspect is a key influencing element. In a 

certain area, landslides usually occur in a particular direction (Saadatkhah etal.,2014). Using ArcGIS 

10.8, the aspect was reclassified into eight classes after being generated from the DEM. 

3.3.3. Elevation 

The elevation (Figure 6c) plays a significant role in the geographical distribution of landslides 

used for landslide susceptibility studies (Dai et al.,2001; Kamp et al.,2008). Elevation has a major 

impact on slope failure and has a considerable impact on regional features (Ercanoglu et al.,2004). 

The research area's elevation varies from 246 m to 4625 m, and an elevation map was created using 

DEM and the reclassification tool in ArcGIS 10.8. 

3.3.4. Curvature 

The slope's curvature is another way to express the slope's geometry, and it plays a crucial role 

in the occurrence of landslides (Nefeslioglu et al.,2008) (Figure 6d). (Maggioni and Gruber,2003) state 

that curves with negative values are concave and those with positive values are convex. The slope 

surface's curves and curvature value both rise at the same time. 
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3.3.5. Plan Curvature 

Plan curvature, often referred to as the curvature of the slope surface in a horizontal surface or 

the line of elevation on a topographical map (Figure 6e), is what determines how the water will move 

in its flowing trajectory. Positive values imply that the cell's side surfaces are convex, whilst negative 

values imply that the side surfaces are concave. A surface with a zero value, on the other hand, is 

regarded as linear or flat. 

3.3.6. Profile Curvature 

Profile curvature is described as having a high slope angle in the direction of the slope surface 

(Figure 6f). The trajectory of water is also influenced by the profile curvature (Pourghasemi et 

al.,2018;, Zhou et al.,2018). The surface of the cell is assumed to be convex upwards by a negative 

number and concave by a positive number. If the value is 0, the surface is flat. The acceleration or 

slowdown of flow through a surface is influenced by profile curvature. 

3.3.7. Topographic Wetness Analysis (TWI) 

The TWI is a significant contributor to the mass movement's causes. The TWI identified the 

region of accumulation of water flow, which is commonly connected to saturated land, both 

intermittently and permanently (Figure 6g). The hydrology and raster calculator tool in ArcGIS 10.8 

was used to create a DEM with a spatial resolution of 2.5 m (Gruber et al.,2009). 

3.3.8. Lithology 

The local lithology (Figure 6h) has a significant impact on the likelihood of mass movement. 

Lithology is regarded as a well-known criterion that significantly influences the physical 

characteristics of surface and subsurface materials and plays a significant role in the slope failure 

process (Ikram et al.,2022). The majority of slope failures occurred in weak, unstable, or brittle 

lithological units. The variance in slope surface instability is also influenced by the differences 

between different lithological units (Aditian et al.,2018). 

3.3.9. Distance to Faults 

When the faults are active, they have a significant impact on the distribution of mass movement 

(Figure 6i). The majority of slope collapses are impacted by the proximity to faults caused by rock 

and surface structure cracking (Basharat et al.,2014). ArcGIS software was used to calculate the 

distance from the faults using the buffer tool. 

3.3.10. Normalized Difference Vegetation Index (NDVI) 

According to (Riaz et al.,2022) NDVI is a significant environmental influencing element (Figure 

7a). The plant density on the slope surface is measured using the NDVI. It is widely acknowledged 

that the addition of grasses and roots plays a significant part in the strength of the soil. An NDVI map 

was produced using multispectral Resourcesat satellite data to show the location and density of 

surface vegetation. 
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Figure 7. Map showing (a) NDVI (b) Rainfall (c) Drainage density. 

3.3.11. Rainfall 

The rainfall map of East district is prepared using rainfall data from India Meteorological 

Department (IMD) website having resolution of 4km×4Km. The rainfall data of last twenty years since 

2000 to 2020 is downloaded for monsoon months (May to September) and averaged (Saha and Saha, 

2021). The thematic layer of rainfall is prepared using averaged data with the help of the interpolation 

method of IDW in ArcGIS (Figure 7b). 

3.3.12. Drainage Density 

The density of drainage is a significant signal of the linear scale of the element in stream eroding 

topography and is specified as the total stream length of all orders and drainage areas and may 

indicate the channel spacing closeness (Dikshit et al., 2014; Rawat et al., 2016). Drainage density is 

critical as it leads to mass wasting and slope failure. The drainage density in the study area is divided 

into nine classes up to 335 km2. In the ArcGIS software drainage density map with the help of data 

from Cartosat DEM is prepared (Figure 7c). 

3.3.13. Landuse/Landcover 

Environmentally regulated elements are thought to play a significant role in the likelihood of 

landslides. Another crucial environmental regulated influencing factor of the landslip that avoids 

surface soil deterioration is the area's LU/LC (Figure 8a). Land cover is a key determining factor for 

slope failure since the mass movement is based on the kind of land. The land use/landcover model 
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was calculated using Resourcesat images with 2% cloud cover. Exiles ENVI software was used to 

categorise the picture into several landuse groups (such as forest, barren, grass land, water bodies, 

and urban land) after performing supervised classification. 

 

 

Figure 8. Map showing (a) LULC (b) Drainage Proximity (c) Road Proximity. 

3.3.14. Distance from drainage 

Distance to drainage (Figure 8b) is determined as a significant influencing parameter in the slope 

failure because the proximity to a water body in a region increases the likelihood of a slope failure by 

increasing fluid pore pressure and slope toe erosion (Du et al.,2017; Raja et al.,2017). Due to the 

rugged topography, which was extracted using Cartosat DEM and then reclassified in Arc GIS 10.8, 

the project area includes a substantial drainage network. 

3.3.15. Distance from Roads 

Anthropogenic influences are those that are brought on by human action, such as road 

construction, mining or removing vegetation. One of the key considerations is the distance from the 

road (Figure 8c), since most landslides occur owing to the influence of the road network, which has 

a similar effect to the closeness of drainage in steep terrain (Yalcin et al.,2011). The roads were 

digitalized using Google Earth and topographical maps. The road network was divided into many 

buffers, which were subsequently reclassified using the reclassify tool in ArcGIS 10.8. 
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3.4. Information Value Model (IVM) 

The information value model is a statistical approach to predict an event based on the parameter 

relation and the event. This is an approach focused on the frequency of the landslide occurrence in 

the Landslide Causing Spatial Factor distribution across the study area (Cao et al., 2016; Banerjee et 

al., 2018). It is an indirect statistical method and can be used to determine the spatial relation between 

the likelihood of landslide occurrence and the conditioning factors (Du et al., 2019). The likelihood of 

landslides is determined in this model by the factor information value (Luo et al 2019). The efficiency 

of this model depends on the variables between the landslide conditioning factors and the landslide 

distribution (Singh and Kumar, 2018). In order to determine the weights of the predictor, the ratio of 

landslide density in each class of a causal factor to landslide density in the total area should be 

calculated (Chen et al., 2014). The weight measurement equation is given below: 

Wt=ln 
Landslide Density within a factor class

Landslide Density within the study area
 

=ln
𝑁𝑝(𝑆𝑖)/𝑁𝑝𝑖𝑥(𝑁𝑖)

Σ𝑁𝑝𝑖𝑥(𝑆𝑖)/Σ𝑁𝑝𝑖𝑥(𝑁𝑖)
 

where, Wt = Weight of a factor class; ln = natural logarithm; Npix(Si) = Number of pixel of landslide 

within class i; Npix(Ni) = Number of pixel of class i; ΣNpix(Si) = Number of pixel of landslide within 

the whole study area; ΣNpix(Ni) = Number of pixel of the whole study area. 

The natural logarithm is used to give negative weights when the landslide density is less than 

average, and when it is more than average positive weights are assigned. The positive weight (Wt) is 

the direct connection between landslide and landslide predictor factor and the existence of landslide 

predictors. For each class of causative variables, the weight value was calculated by the above 

equation. A weighted value was added for the landslide susceptibility index (LSI) of each pixel to 

produce a map for landslide susceptibility. 

LSI=𝐴𝑆𝑃𝑤𝑡+𝑆𝐿𝑃𝑤𝑡+𝐶𝑈𝑅𝑤𝑡+𝐷𝑁𝐷𝑤𝑡+𝐿𝐺𝑌𝑤𝑡+𝐿𝑈𝐿𝑤𝑡+𝑁𝐷𝑉𝑤𝑡+𝐸𝐿𝑉𝑤𝑡+𝐿𝑁𝐷𝑤𝑡+𝐺𝑀𝑃𝑤𝑡+𝑆𝐿𝑇𝑤𝑡 

where ASPwt is the weight of aspect, SLPwt is the weight of slope, CURwt is the weight of curvature, 

DNDwt is the weight of drainage density, LGYwt is the weight of lithology, LULwt is the weight of 

land use and land cover, NDVwt is the weight of NDVI, ELVwt is the weight of elevation LNDwt is 

the weight of lineament density, GMPwt is the weight of geomorphology and SLTwt is the weight of 

soil type. The negative and positive weighted values represent the interaction of an irrelevant and 

significant element with an occurrence of the landslide (Chen et al., 2020). The landslide-susceptibility 

map is subsequently combined with the landslide training and the testing raster. Dividing LSI into 

three areas based upon its steepness, which include a high susceptibility zone, a moderate 

susceptibility zone and a low susceptibility zone, intensity of landslide susceptibility is measured. 

(Table 2) 

Table 2. 

Causative factors Class Class % Landslide % IV Wt. 

SLOPE ANGLE 

0-15 16.32842235 2.44 1.901 

15-20 10.47852403 3.46 1.107 

20-30 27.91272562 17.84 0.447 

30-40 25.72418149 32.71 -0.240 

40-90 19.55614651 43.54 -0.800 

SLOPE ASPECT 

NORTH (0-22.5) 9.817483531 1.79 1.700 

NORTH EAST (22.5-67.5) 10.1795097 6.46 0.455 

EAST (67.5-112.5) 11.39699628 13.85 -0.195 

SOUTH EAST (112.5-157.5) 12.69987768 21.12 -0.508 

SOUTH (157.5-202.5) 12.17322552 19.49 -0.471 

SOUTH WEST (202.5-247.5) 12.54464949 19.41 -0.437 

WEST (247.5-292.5) 10.86736385 10.63 0.022 

NORTH WEST (292.5-337.5) 10.29112874 4.95 0.731 

NORTH (337.5-360) 10.02976522 2.29 1.476 
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ELEVATION 

0-1000 6.516448503 13.37 -0.719 

1000-2000 18.45161233 15.38 0.182 

2000-3000 15.98802483 19.28 -0.187 

3000-4000 15.48094483 34.67 -0.806 

4000-5000 23.10091308 17.14 0.299 

5000-6000 18.61663863 0.17 4.701 

6000-7000 1.723727865 0.00 0.000 

7000-8000 0.121689935 0.00 0.000 

GEOLOGY 

Gondwana Group 1.682519383 0.00 0.000 

Permafrost Area 32.67324754 27.74 0.164 

Tso Lhamo Formation 0.16785229 0.00 0.000 

Everest Limestone 0.709375749 0.00 0.000 

Central Crystalline 39.08960115 54.01 -0.323 

Everest Pelite 2.236032292 0.00 0.000 

Tourmaline Granite 0.635440812 0.00 0.000 

Chungthang Formation 4.208296699 6.57 -0.445 

Lingtse Gneiss 2.413875789 2.92 -0.190 

Daling Group 16.18375829 8.76 0.614 

LULC 

Built up area 1.068244006 1.78 -0.510 

Forest 33.68697275 50.08 -0.397 

Agricultural land 2.954938857 3.25 -0.095 

Waterbody 2.654194351 2.86 -0.074 

Grassland 9.578374622 11.28 -0.163 

Barren land 30.18828376 18.83 0.472 

Snow/Glaciers 19.86899165 11.93 0.510 

LITHOLOGY 

BANDED MIGMATITE, 

GARNET BT GNEISS,MICA 

SCHIST 

41.18118278 57.34 -0.331 

BASIC INTRUSIVES 0.010013418 0.00 0.000 

BIOTITE GNEISS 3.582800953 0.00 0.000 

BIOTITE QUARTZITE 0.026034887 0.00 0.000 

BOULDER 

BED,FOSSILIFEROUS 

LIMESTONE and 

SANDSTONE 

1.303747021 0.00 0.000 

BOULDER 

SLATE,CONGLOMERATE,

PHYLLITE 

0.214287145 0.70 -1.183 

CALC GRANULITE WITH 

/WITHOUT QUARTZITE 
1.706286424 1.40 0.199 

CALC SILICATE ROCK 0.809084173 2.10 -0.953 

CHLORITE SERICITE 

SCHIST AND QUARTZITE 
16.95071396 19.58 -0.144 

DOLIMITIC QUARTZITE, 

CHERT, PHYLLITE, SLATE 
0.468627961 0.00 0.000 

FOSSILIFEROUS 

LIMESTONE WITH 

QUARTZITE 

0.45661186 0.00 0.000 
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GARNET, 

KYANITE,SILLIMANITE,BI

OTITE SCHIST 

0.368493782 0.70 -0.641 

META GREYWACKE 0.096128813 0.00 0.000 

MYLONITIC GRANITE 

GNEISS 
1.528047584 0.70 0.782 

PHYLLITE QUARTZITE 0.202271043 0.00 0.000 

PYRITIFEROUS SLATE 

AND PHYLLITE 
0.080107344 0.00 0.000 

QUARTZ ARENITE 0.102136863 0.00 0.000 

QUARTZ ARENITE, 

BLACK SLATE, CHERTY 

PHYLLITE 

0.268359602 0.00 0.000 

QUARTZITE 1.514028799 0.70 0.772 

QUARTZITE,MICA 

SCHIST, 

GNEISS,CALCGRANULITE 

2.200949272 0.70 1.147 

SANDSTONE, SHALE 0.198265676 0.00 0.000 

SANDSTONE,SHALE 

WITH MINOR COAL 
0.961288126 0.70 0.318 

TOURMALINE GRANITE 0.552740673 1.40 -0.928 

UNMAPPED 24.98548054 13.99 0.580 

VARIEGATED CLAY, 

SAND AND PEBBLE 
0.232311297 0.00 0.000 

NDVI 

-0.99 1.220382936 0.32 1.330 

0 - 0.2 2.620573599 42.95 -2.797 

0.2 - 0.4 15.10630829 40.48 -0.986 

0.4 - 0.6 42.69477715 14.31 1.093 

0.6 - 1 38.35795802 1.94 2.986 

RAINFALL 

< 100 mm 15.15975664 15.32 -0.011 

100-200 mm 15.75003022 18.55 -0.164 

200-300 mm 36.4579556 15.32 0.867 

300-400 mm 21.62657641 31.45 -0.375 

> 400 mm 11.00568113 19.35 -0.565 

DRAINAGE 

DENSITY 

0-22 34.32853862 17.74 0.660 

23-43 20.46617511 13.71 0.401 

44-65 20.02498086 29.84 -0.399 

66-87 13.14920021 25.81 -0.674 

88-110 6.591724082 6.45 0.021 

111-130 3.918368991 6.45 -0.499 

131-150 1.041540755 0.00 0.000 

151-170 0.328377453 0.00 0.000 

171-200 0.15109392 0.00 0.000 

TWI 

-4.1 31.57720433 36.77 -0.152 

-1.4 34.32563839 31.15 0.097 

-1.7 17.85050556 16.33 0.089 

-2.4 7.816076813 7.60 0.028 

-2.5 3.873006957 3.65 0.061 

1.1 - 4.5 3.923311075 3.78 0.038 
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4.5 - 14.1 0.63425688 0.73 -0.141 

ROAD 

PROXIMITY 

< 100 m 4.706306451 4.79 -0.019 

100 -200 m 3.606833156 3.42 0.052 

200 - 300 m 3.012036128 2.74 0.095 

300 - 400 m 2.577453788 4.79 -0.621 

400 - 500 m 2.409228366 4.79 -0.688 

> 500 m 83.68814211 79.45 0.052 

DRAINAGE 

PROXIMITY 

< 100 m 7.194112236 4.00 0.587 

100 -200 m 6.053357866 4.00 0.414 

200 - 300 m 5.795768169 8.00 -0.322 

300 - 400 m 4.894204232 0.00 0.000 

400 - 500 m 5.170193192 12.00 -0.842 

> 500 m 70.89236431 72.00 -0.016 

4. Results 

4.1. Landslide susceptibility models 

Utilising values assigned to the LCFs, and landslide inventory of several years (2010, 2015, and 

2020) the susceptibility models for the research region was created using ArcGIS 10.8 and unique, 

extremely accurate advanced statistical techniques. The resulting LSMs depict the likelihood of 

landslides in a "low to high" range, with low denoting a region that is safe from mass movement 

activity and high denoting a likelihood that landslides would occur (Figure 9). LSM is calculated 

using the IV wt. coefficients and corresponding class and landslide variation of LCFs. 

. 

Figure 9. Landslide Susceptibility Map using IVM Model of the study area. 
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Each dataset identifies regions that are vulnerable to mass movement activities in a little to 

somewhat varied manner. Additionally, the LSM is divided into three zones (Low, Moderate, High) 

to help identify areas that may be at high risk of experiencing landslides. Figure 9 displays the IVM-

LSM. To determine the highest likelihood of a landslip occurring along a fault, LSMs classified as 

high susceptibility zones. The majority of the area's roadways have moderate to high grades and are 

located between 1000 and 1500 metres above sea level. 

The area occupied by these sensitive zones on basis of landslide inventory of various years is 

depicted in Figure 9. The slope gradient and area's lithology, such as fragile phyllite and schists, are 

effective LCFs among all other LCFs for landslip activity in the years 2010, 2015, and 2020. This is 

demonstrated by the Information Value weight coefficient. According to the updated, the LR 

susceptibility model predicts a very high susceptible zone of 109.68 km2, Moderate susceptible zone 

of 492.95 km2 and low susceptible zone of 361.37 km2 out of total 964 km2 of the research region. 

(Figure 9 & Table 3). 

Table 3. Classification of landslide susceptibility of different districts of Sikkim. 

DISTRICT LANDSLIDE 

SUSCEPTIBILITY 

CLASS 

AREA % AREA (IN SQ. 

KMS) 

 
LOW 37.49 361.37 

EAST SIKKIM MEDIUM 51.14 492.95 

 
HIGH 11.38 109.68 

LSM of East District indicates that 37.49%, and of the total district area is classified into low 

landslide susceptibility while 51.14% area have moderate landslide susceptibility. 11.38% of the total 

district have high landslide susceptibility (Table 3). East District is found to have high landslide 

susceptibility which is confirmed by field visits and secondary sources. 

The output landslide susceptibility map of Study area (Figure 9) based on Information Value 

method is classified into three susceptible categories as Low, Medium,High.Percentage area in each 

class is calculated.(Table 3) 

The analysis of IVM susceptibility model indicate that the region is susceptible to landslip 

activity is growing in a very high susceptible zone over the various years’ worth of data. 

Our findings are consistent with Costanzo et al.'s assertion that topographic conditions have a 

substantial impact on the occurrence of landslides. Our findings support those of Riaz et al., Pham et 

al., Ikram et al., and Ahmed et al. that lithological units and slope gradient are the most significant 

LCFs. Using the advanced statistical model i.e Information Value Model (IVM) it is discovered that 

the most significant LCFs are Elevation, distance to drainage, NDVI, curvature, and rainfall. These 

findings proved that the significance of major LCFs varies depending on the geography and models 

used. 

For the current study fifteen landslide conditioning factors, i.e., slope aspect, slope gradient, 

elevation, Lithology, land use and land cover (LULC), rainfall, Curvature, Plan curvature, Profile 

curvature, normalized difference vegetation index (NDVI), Geology, Road Proximity, Drainage 

Proximity Drainage density, and total wetness index were analyzed in the remote sensing (RS) and 

geographic information system (GIS) environment. The thematic layers for the same has been 

prepared which is further used to prepare the Landslide Susceptibility Map of the study area. 

For the validation of LSM, it is compared with landslide inventory map. It is observed that 

eastern part of the district is classified into high and very high landslide susceptibility class which is 

in agreement with the landslide inventory map. Landslide inventory map also suggests that majority 

of the landslides are observed in the eastern part of the district. 
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5. Conclusions 

This study used temporal landslide inventories for the District East Sikkim in the NE Himalayas 

of India to apply advanced statistical technique to determine the susceptibility zones of landslides 

and estimate the likelihood of landslide activity. The East Sikkim district has experienced significant 

economic losses as a result of the landslip activity, including damage to communities, infrastructure, 

and roadways. 

To create IVM-LSM and determine the causes of landslides in the area, the study used 

spatiotemporal landslide inventories (2010, 2015, and 2020) with fifteen causative elements, including 

topographic, geological, environmental, and anthropogenic variables. The LSM showed that the 

rainfall, slope and lithological (i.e., fragile Phyllite, Schists) control in the proximity of faults 

considerably regulate the landslip activities in the research region. The most trustworthy IVM-based 

LSM study datasets from the years 2010, 2015, and 2020 showed that the area has a very high sensitive 

zone that is continually expanding. 

It was determined that IVM models are workable by the validation using statistical measures 

and in agreement with the landslide inventories of various years. The findings also imply that IVM-

LSMs are more trustworthy and authentic. It is recommended that advance statistical models be used 

as the preferred models for predicting landslides in the study region. This study establishes that since 

the region is highly susceptible in nature, so as to predict, the updated LSM Modelling has to be done 

to evaluate the effectiveness LSM in this particular area. 

In our present study landslide susceptible zonation mapping is done. Almost all the landslides 

have been reported in the rainy season. The study shows that land use/land cover, rainfall, slope, 

drainage density, structure and lithology play an important role in landslide triggering. The ranking 

of the conditioning factors based on the present analysis and the landslide hazard index is highest 

for rainfall followed by structures, lithology, slope, LU/LC and drainage density. The total study area 

is divided into three susceptible zones i.e. low, medium and high susceptible zones comprising of 

37.49%, 51.14% and 11.38% and 361.37 km2, 492.95km2 and109.68km2 in East district (Figure 10 &11) 

. The methodology described here for landslide susceptible mapping includes generating thematic 

information layers, developing an appropriate numerical rating system, integrating spatial data and 

validating outcomes. It is analyzed that GIS application is extremely helpful for the generation of 

thematic information and their spatial data analysis, involving complex tasks. The numerical rating 

system enables to enhance performance assessment and optimization. Since the contributing 

variables to the landslide differ from region to region, however this rating may not apply to other 

areas of the Himalayas. 

To create temporal landslide inventory for recursive landslide hazard assessment, historical 

landslide data from a variety of sources can be used. Finally, the knowledge from this study's findings 

will help urban planners, disaster management authorities, and other decision-makers choose safe 

building sites and identify regions that are prone to landslides. In order to prevent infrastructure 

development in landslip risk locations, more practise with landslip risk assessment studies might be 

conducted to build risk maps. 
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Figure 10. Landslide Susceptibility area variation in the research region. 

 

Figure 11. Landslide Susceptibility percentage variation in the research region. 
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