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Abstract: The Indian Himalayan Region (IHR), due to its topography, geography, and active tectonics, a rough
mountain zone, is among the most vulnerable zones to the landslide danger. The most cutting-edge and
accurate ways for creating a landslide susceptibility model (LSM) are advanced statistical and geospatial
techniques. The goal of the current work is to use advanced statistical and geospatial techniques to analyse and
evaluate the updated landslide susceptibility for East District in the NE Himalayas of Sikkim, India. The
spatiotemporal landslip inventory for the years are produced using literature surveys, historical satellite
imageries and on-site observations. Slope, aspect, elevation, curvature, plane curvature, profile curvature,
topographic wetness index (TWI), lithology, fault proximity, drainage proximity, road proximity, normalised
difference vegetation index (NDVI), rainfall, drainage density and land use/land cover (LULC) are some of the
topographic, environmental, geologic, and anthropogenic factors that are included in the spatial database.
These landslide causative factors (LCFs) were chosen to study the area's periodic landslip vulnerability. An
inventory of 151 landslides from historical published records, field visits and satellite imagery interpretations,
respectively, were used in the experimental design. Information Value Model (IVM), was used to evaluate the
vulnerability to landslides as determined by fifteen LCFs. The goal of the study is providing an updated
susceptibility map, which would contribute for proper planning to reduce the number of fatalities and possible
economic harm caused by the region's frequent slope instabilities. It is expected that the application of statistical
algorithms would assist relevant authorities and organisations in properly planning for and managing the

region's disaster management.
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1. Introduction

The most significant geo-environmental risk that is seen in mountainous terrains across the
world and poses a serious danger to infrastructure and human life is landslides (Sati et al.,2020).
Landslides are one of the main risks brought on by natural events like earthquakes and rains, as well
as human activities like road construction and urbanisation that may result in slope collapses
(Svalova et al.,2019). Almost 9% of all natural disasters globally include landslides. Large-scale slope
failures have been caused by recent big earthquakes that have occurred in China (1999,2008,2010 &
2013), Kashmir (2005), Sikkim (2011), Nepal (2015), New Zealand (2016), Japan (2018), etc. Numerous
people were killed, injured, and infrastructure was damaged, particularly since the road networks
were disrupted, as a result of these disastrous occurrences. 1.3% of fatalities of all natural disasters
died through landslides, with Asia accounting for around 54% of these landslides (Froude et
al.,2018).In recent years, landslides have accelerated in both wealthy and underdeveloped nations
due to rapid urbanisation and development (Yawen & M., 2011). Many fatalities worldwide are
caused by natural occurrences like earthquake-induced landslides (Gorum et al. 2011 & 2015,
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Kirschbaum et al., 2015; Petley et al.,2006; Septlveda et al., 2015). The majority of the landslides take
place in regions with active tectonics, uneven topography, and high rates of precipitation. The
geographic distribution and intensity of landslides are influenced by topographic features, lithology,
geomorphology, land use, and land cover (Aydin et al.,2017). The Himalayan Mountain region's
population and infrastructure are always under risk due to mass migrations (Hewitt et al.,2012). Due
to the predominately mountainous topography of the NE Himalaya, landslip activity is seen as a
severe issue that threatens both infrastructure and habitation. Thousands of landslides occurred in
Indian Himalayan Region (IHR) and its adjoining areas as a result of the catastrophic 2005 & 2011
earthquake in Kashmir and Sikkim (Owen et al.,2008; Geoseismological Report, G51,2011). Massive
landslides, rock avalanches, and other slope collapses that occur often have caused severe casualties
and significant infrastructure damage (Peiris et al,2006; Owen et al.2008; Basharat, 2012 &
2021).There have been many studies done in the past to identify the distribution of landslides, field
data collecting techniques, inventory development, and geographic distribution analysis (Sato et
al.,2007; Kamp et al.,2008; Owen et al.,2008; Basharat et al.,2014 & 2016) as well as to understand the
mechanics, distribution, and evolution of earthquake-triggered landslides. The territory has been
divided into several susceptible zones using the methodologies of landslip susceptibility, including
knowledge-based, statistical, deterministic, probabilistic, and machine learning (ML) (Girma et al.,
2015; Hamza et al., 2017 & Basharat et al.,2021). An efficient method for preventing and reducing
landslides across a large territory is landslide susceptibility assessment. It is one of the most helpful
informational resources for decision-makers and aids experts in lowering the danger to life and
property. In recent years, a number of methods for assessing landslide susceptibility have been
created, all of which are based on the idea that future mass movements may be predicted by looking
at the relationship between previous landslides and the elements that influenced them (Guzzetti et
al,2002; Chen et al.,2020). There are several ways to create a landslide susceptibility map (LSM) based
on various formulations, but statistical approaches and machine learning are the most popular ones
(Ikram et al.,2017; Sahin et al.,2020; Farooq et al.,2021; Polat,2021). For the detection, categorization,
and evaluation of landslides, satellite remote sensing (RS) and geographic information systems (GIS)
are extensively used. Recent years have seen an increase in the use of freely available moderate
resolution satellite data, such as that from Sentinels and Landsat 8. Landslides in the area have
previously been accurately identified using LISS Imageries of high resolutions (Martha et al.,2010).
The aid of data on topography and environmental characteristics has posed a boon to data- and
knowledge-driven statistical models, which have dominated the LSM field recently (Guzzetti et al.,
2012). Numerous statistical techniques for LSM have been anticipated and effectively used to aid in
the analysis of landslip distribution patterns and the processes that create them as a result of recent
advancements in geospatial technology (Merghadi et al.,2020). LSM are quickly converting from
statistical and knowledge-driven learning to advanced statistical approaches with more precision and
accuracy. LSM has been employed to handle the global mapping of landslip risk because of its
magnificence. Around the world, landslip mapping has been done in a variety of ways, but they all
have the same objectives. Numerous models and approaches are now being proposed at both the
local and regional levels to predict the spatial distribution of landslides. While optimum LSM is of
growing interest to land geoscientists, many of them are concentrating on a statistical and knowledge-
based model for landslip predictions, such as (Ahmed et al.,2021; Kamp et al.,2008; Riaz et al.,2018).
Recently, researchers are working upon advanced statistical models due to their usefulness and
excellent accuracy. The precision of traditional statistical techniques for LSM make them successful.
The most efficient statistical techniques are considered to be Information Value Model (IVM),
Statistical index (SI), frequency ratio (FR) and certainty factor (CF). The effectiveness of each of the
landslide causative factors on the incidence of landslides is assessed using these methodologies,
which are commonly used data-driven approaches. In order to reduce the probability of landslides
occurring, it is helpful to examine regionally scaled landslide risks and their numerous affecting
factors. Thousands of landslides occurred in Eastern Himalayas as a result of the anthropogenic and
tectonic factors. Numerous studies have been done in different parts of Indian Himalayan Region
(IHR) and the areas surrounding it that were damaged by the tectonic causes in order to characterize
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landslides and determine their vulnerability (Kumar et al.,2006). The objective of the current work is
to analyse the spatio-temporal LSM using advanced statistical techniques that are more reliable and
stable. The aim of this study is to apply cutting-edge advanced statistical methods to forecast the
spatiotemporal vulnerability of landslides. In the district of East Sikkim, NE Himalayas of India, the
current study's particular goal is to construct and access landslip susceptibility models about their
impacting cause utilising temporal data from historical records, field visits and satellite Imageries.
Further evaluation of the sensitivity and risk maps for landslip mitigation and the use of disaster
reduction methods in the area might be done using susceptibility maps.

2. Study Area

The study area geographically lies in the NE Himalayas of India, which covers an area of 964
square kilometres with a population of 0.16 million situated. In the East District, 679 square
kilometres, or 71.17 percent of the district's total land area (964 square kilometres), are covered by
forests. Of the overall geographic area, very dense forest takes up 162 square km, dense forest takes
up 396 square km, and open forest takes up 121 square km. Hill, valley, and slope are the three main
physiographic units. Teesta, Rangpo Chhu, and Dik Chhu are the three main drainage systems in the
East District. Elevation range from 246 m to 4625 m (Figure 1). Mean average temperatures ranges
between 22°C to 36°C in summer, while minus 04°C to 07°C in winter, with annual precipitation of
100-900 mm (Source : IMD data) (Figure 2). The lithostatic units in the area are Kanchenjunga
gneiss, Darjeeling gneiss, Chungthang schists and gneiss, Lingtse granite gneiss, and the Daling
group of rocks, which includes phyllite, slates, quartzites, and schist of Pre-Cambrian age, are the five
geological units found in the district (Source : GSI Report, 2020) . Alluvium quaternary deposits
periodically form along streams and rivers. Numerous fractures, faults, joints, folds, and other
structural anomalies have formed in the rocks found in the district as a result of various structural
disturbances. Geological formations in the area show prominent lineaments that run in the N-S, E-
W, NE-SW, ENE-WSW, and NW-SE directions.
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Figure 1. Geographical location of the study area.
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Rainfall (mm) in East Sikkim from 2000-2020
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Figure 2. Annual Precipitation of the study area (Source: IMD,2020).
3. Materials and Methods

3.1. Data Collection

The data sources used to create the landslip inventory and LCFs are shown in Table 1. Using
LISS IV Sensor (Resourcesat Satellite) Images, Google Earth Images, Toposheets and field
investigations based on the criterion of loss of vegetation and disruptions in forest canopy, the
landslides in the research region were interpreted and mapped. Using supervised classification in
Exelis ENVI version 5.3, a land-use/land-cover map was created using LISS IV satellite images.

Table 1. List of the data sources used to compute the landslide inventory and landslide causative

factors.
S.No.  Theme E,a;: GIS Tools Resolution Source
1 . Visual IRS P6,LISS 4,
Landslide . . . .
: ¢ Polygoninterpretation 5.8 m Field visits
nventory Bhukosh GSI
2 . Grid IDW 4*4 Km IMD,
Rainfall . .
interpolation Gangtok
3
Slope Grid Spatial 2.5%2.5m Cartosat DEM
gradient Analyst
4 Grid Spatial 2.5*2.5m Cartosat DEM
Slope Aspect
Analyst
5 Spatial 2.5%2.5m Cartosat DEM
Elevation  Grid Analyst
6 Visualization Geological Map
1
Geology & 1250000 GSI
PolygonInterpretation
7 Visualization
ol potygon, & 1:50,000 NBSSLUP

Interpretation
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hg;“;:iffed Grid /5\11\?151523) 25*25m IRS P6 LISS 4
Vegetation
Index
(NDVI)
9 Topographic Grid Hydrology 2.5*2.5m Cartosat DEM
Tool (ArcGIS)
Wetness
Index (TWI)
10 Road Polygon Multiring 2.5*2.5m
Proximity Buffer. Bhukosh, GSI
Analysis
11 Polygon Multiring 2.5*2.5m
Drainage Buffer
Proximity Analysis Cartosat DEM
12 Drainage Polyline Hydrology 2.5%2.5m Cartosat DEM
Density
13 Grid  Supervised
LULC Classification 5.8*5.8 m IRSP6, LISS 4
. Information Landslide
Slisirc};tsilll;iil?ty Grid Value 2.5%2.5m Causative
Map Method Factors (LCFs)
(IVM)

The National Remote Sensing Centre (NRSC) provided the temporal images of Resourcesat
Satellite LISS IV (5.8 m resolution) with a cloud cover of 2.10%. To extract the topographic variables
for the research region, a 5.8 m resolution, digital elevation model (DEM) based on LISS IV was
employed. To determine the lithological and tectonic properties of the region, geological maps
obtained from the Geological Survey of India (GSI) were used. Using a handheld Global Positioning
System (GPS) and GLONASS receiver with a field survey precision of 5 metres (m), the landslip
inventory was cross-verified. In the field, landslides' physical qualities and feature such as length and
slope angle are measured using laser distance. ArcGIS 10.8 (Esri Inc.) was used to map, digitise, and
analyse the data that was collected from various sources. Figure 3 depicts the methodological flow
chart used to accomplish the study's predetermined goal.
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Figure 3. Schematic diagram shows the landslide susceptibility map development.
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3.2. Landslide Inventory

The use of a sustainable landslip inventory requires precise, high-quality data from a geospatial
record in conjunction with a reconnaissance survey based on fieldwork (Figure 4 a,b,c,d,ef, g &h). A
crucial step in comprehending and analysing the comparison between a landslip and the governing
variables that determine landslip susceptibility and hazard mapping is the identification and
development of landslip inventory (Galli et al.,2008; Chen et al.,2017). By mapping with on-site visits,
remote sensing methods, and examining temporal satellite pictures, the temporal landslides were
updated.

Figure 4. Photographs during field investigation (a) Affected houses due to Pachey Slide (b) debris
flow at Qu Khola Slide (c) Teen taal Slide (d) Devasted vegetation (e) Vulnerable settlements in the
Valley (f) Kit Golai Slide (g)Vulnerable road construction (h) Fragile lithology.

In order to interpret and update the landslide inventories in the study area, remote sensing data
from Google Earth and RESOURCESAT satellite imageries from 2010, 2015 and 2020 were used. These
data are very useful in identifying those landslides present in the hilly or mountainous areas that are
not accessible through the field survey. For the purpose of recognising mass migration, the
destruction of natural vegetation is employed as a fundamental criterion.
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Following landslide detection using RESOURCESAT, temporal landslide inventory of several
years were created, encompassing 151 landslides that covered 9.939 km2 respectively (Figure 5 a &
b). To create the IVM models, samples from the 2010, 2015, and 2020 inventories of landslides and
non-landslides were used. Each landslip inventory is randomly split into two groups (training and
testing) based on the percentage of samples, with a ratio of 70%:30%.

Each year's inventory contains 70% samples of landslides and non-landslides that are used as
training samples, while the remaining 30% are samples that are used for testing. This method yields
the best results since the non-landsliding area is chosen on a low-angled slope area where the
likelihood of landsliding is extremely low. After preparing the datasets, LSMs were created using the
weighted overlay tool pack in Arc GIS 10.8.
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Figure 5. (a) Map showing Landslide Polygon Inventory (b) Map showing sources of Landslide
Inventory.

3.3. Landslide Causative Factors

Numerous LCFs, such as topographical, geological, environmental, and anthropogenic factors,
interact to affect slope failure (Costanzo et al.,2012; Dou et al.,2019). The likelihood of a mass
movement was assessed by the link between landslip activity and influencing factors. There are
fifteen LCFs in this study, including NDVI, landuse/land cover, slope gradient, aspect, elevation,
curvature, profile curvature, plan curvature, Rainfall, Drainage density, TWI, and lithology (Figs. 6,
7 and 8).

Landslides are greatly influenced by topography or geomorphology (Dahal et al.,2008). Slope,
aspect, elevation, curvature, plan curvature, profile curvature, distance to streams, and topographic
wetness index (TWI) are some of the topographic parameters used to determine the topography in
the Cartosat DEM, which displays terrain with a 2.5 m resolution. They play a significant influence
in the action of landslides (Riaz et al.,2022). Here is a quick discussion of these parameters that were
obtained from the DEM.

3.3.1. Slope Gradient

The slope gradient is the main reason for landslides (Vijith et al.,2014). It affects the stress
distribution in the slope, the weathering layer, and the run off from the slope's surface (Figure 6a).
The reason why steep slopes collapse more frequently than moderate slopes may be attributed to
restriction pressures (Gou et al.,2015). According to Riaz et al.,2018, the slope area was derived from
a DEM with a 2.5 m resolution and categorised into seven classes: 0 - 15, 15 - 20, 20 - 30, 30 - 40, Above
> 40.
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Figure 6. Map Showing (a) Slope angle (b) Slope aspect (c) Elevation (d) Curvature (e) Plan
Curvature (f) Profile Curvature (g) TWI (h) Lithology (i) Seismotectonic.

3.3.2. Aspect

Due to the slope's aspect (Figure 6b), which causes melting of the snow and water infiltration,
increased freezing and thawing, and mass movement, the aspect is a key influencing element. In a
certain area, landslides usually occur in a particular direction (Saadatkhah etal.,2014). Using ArcGIS
10.8, the aspect was reclassified into eight classes after being generated from the DEM.

3.3.3. Elevation

The elevation (Figure 6c) plays a significant role in the geographical distribution of landslides
used for landslide susceptibility studies (Dai et al.,2001; Kamp et al.,2008). Elevation has a major
impact on slope failure and has a considerable impact on regional features (Ercanoglu et al.,2004).
The research area's elevation varies from 246 m to 4625 m, and an elevation map was created using
DEM and the reclassification tool in ArcGIS 10.8.

3.3.4. Curvature

The slope's curvature is another way to express the slope's geometry, and it plays a crucial role
in the occurrence of landslides (Nefeslioglu et al.,2008) (Figure 6d). (Maggioni and Gruber,2003) state
that curves with negative values are concave and those with positive values are convex. The slope
surface's curves and curvature value both rise at the same time.
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3.3.5. Plan Curvature

Plan curvature, often referred to as the curvature of the slope surface in a horizontal surface or
the line of elevation on a topographical map (Figure 6e), is what determines how the water will move
in its flowing trajectory. Positive values imply that the cell's side surfaces are convex, whilst negative
values imply that the side surfaces are concave. A surface with a zero value, on the other hand, is
regarded as linear or flat.

3.3.6. Profile Curvature

Profile curvature is described as having a high slope angle in the direction of the slope surface
(Figure 6f). The trajectory of water is also influenced by the profile curvature (Pourghasemi et
al.,2018;, Zhou et al.,2018). The surface of the cell is assumed to be convex upwards by a negative
number and concave by a positive number. If the value is 0, the surface is flat. The acceleration or
slowdown of flow through a surface is influenced by profile curvature.

3.3.7. Topographic Wetness Analysis (TWI)

The TWI is a significant contributor to the mass movement's causes. The TWI identified the
region of accumulation of water flow, which is commonly connected to saturated land, both
intermittently and permanently (Figure 6g). The hydrology and raster calculator tool in ArcGIS 10.8
was used to create a DEM with a spatial resolution of 2.5 m (Gruber et al.,2009).

3.3.8. Lithology

The local lithology (Figure 6h) has a significant impact on the likelihood of mass movement.
Lithology is regarded as a well-known criterion that significantly influences the physical
characteristics of surface and subsurface materials and plays a significant role in the slope failure
process (Ikram et al.,2022). The majority of slope failures occurred in weak, unstable, or brittle
lithological units. The variance in slope surface instability is also influenced by the differences
between different lithological units (Aditian et al.,2018).

3.3.9. Distance to Faults

When the faults are active, they have a significant impact on the distribution of mass movement
(Figure 6i). The majority of slope collapses are impacted by the proximity to faults caused by rock
and surface structure cracking (Basharat et al.,2014). ArcGIS software was used to calculate the
distance from the faults using the buffer tool.

3.3.10. Normalized Difference Vegetation Index (NDVI)

According to (Riaz et al.,2022) NDVI is a significant environmental influencing element (Figure
7a). The plant density on the slope surface is measured using the NDVL It is widely acknowledged
that the addition of grasses and roots plays a significant part in the strength of the soil. An NDVI map
was produced using multispectral Resourcesat satellite data to show the location and density of
surface vegetation.
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Figure 7. Map showing (a) NDVI (b) Rainfall (c) Drainage density.

3.3.11. Rainfall

The rainfall map of East district is prepared using rainfall data from India Meteorological
Department (IMD) website having resolution of 4kmx4Km. The rainfall data of last twenty years since
2000 to 2020 is downloaded for monsoon months (May to September) and averaged (Saha and Saha,
2021). The thematic layer of rainfall is prepared using averaged data with the help of the interpolation
method of IDW in ArcGIS (Figure 7b).

3.3.12. Drainage Density

The density of drainage is a significant signal of the linear scale of the element in stream eroding
topography and is specified as the total stream length of all orders and drainage areas and may
indicate the channel spacing closeness (Dikshit et al., 2014; Rawat et al., 2016). Drainage density is
critical as it leads to mass wasting and slope failure. The drainage density in the study area is divided
into nine classes up to 335 km2. In the ArcGIS software drainage density map with the help of data
from Cartosat DEM is prepared (Figure 7c).

3.3.13. Landuse/Landcover

Environmentally regulated elements are thought to play a significant role in the likelihood of
landslides. Another crucial environmental regulated influencing factor of the landslip that avoids
surface soil deterioration is the area's LU/LC (Figure 8a). Land cover is a key determining factor for
slope failure since the mass movement is based on the kind of land. The land use/landcover model
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was calculated using Resourcesat images with 2% cloud cover. Exiles ENVI software was used to
categorise the picture into several landuse groups (such as forest, barren, grass land, water bodies,
and urban land) after performing supervised classification.
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Figure 8. Map showing (a) LULC (b) Drainage Proximity (c) Road Proximity.

3.3.14. Distance from drainage

Distance to drainage (Figure 8b) is determined as a significant influencing parameter in the slope
failure because the proximity to a water body in a region increases the likelihood of a slope failure by
increasing fluid pore pressure and slope toe erosion (Du et al.,2017; Raja et al.,2017). Due to the
rugged topography, which was extracted using Cartosat DEM and then reclassified in Arc GIS 10.8,
the project area includes a substantial drainage network.

3.3.15. Distance from Roads

Anthropogenic influences are those that are brought on by human action, such as road
construction, mining or removing vegetation. One of the key considerations is the distance from the
road (Figure 8c), since most landslides occur owing to the influence of the road network, which has
a similar effect to the closeness of drainage in steep terrain (Yalcin et al.,2011). The roads were
digitalized using Google Earth and topographical maps. The road network was divided into many
buffers, which were subsequently reclassified using the reclassify tool in ArcGIS 10.8.
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3.4. Information Value Model (IVM)

The information value model is a statistical approach to predict an event based on the parameter
relation and the event. This is an approach focused on the frequency of the landslide occurrence in
the Landslide Causing Spatial Factor distribution across the study area (Cao et al., 2016; Banerjee et
al., 2018). It is an indirect statistical method and can be used to determine the spatial relation between
the likelihood of landslide occurrence and the conditioning factors (Du et al., 2019). The likelihood of
landslides is determined in this model by the factor information value (Luo et al 2019). The efficiency
of this model depends on the variables between the landslide conditioning factors and the landslide
distribution (Singh and Kumar, 2018). In order to determine the weights of the predictor, the ratio of
landslide density in each class of a causal factor to landslide density in the total area should be
calculated (Chen et al., 2014). The weight measurement equation is given below:

Wt=ln Landslide Density within a factor class

Landslide Density within the study area
Np(Si)/Npix(Ni)
"ENpix(Si) /ENpix(Ni)
where, Wt = Weight of a factor class; In = natural logarithm; Npix(5i) = Number of pixel of landslide
within class i; Npix(Ni) = Number of pixel of class i; ZNpix(Si) = Number of pixel of landslide within
the whole study area; ZNpix(Ni) = Number of pixel of the whole study area.

The natural logarithm is used to give negative weights when the landslide density is less than
average, and when it is more than average positive weights are assigned. The positive weight (Wt) is
the direct connection between landslide and landslide predictor factor and the existence of landslide
predictors. For each class of causative variables, the weight value was calculated by the above
equation. A weighted value was added for the landslide susceptibility index (LSI) of each pixel to
produce a map for landslide susceptibility.

LSI=ASPwt+SLPwt+CURwt+DNDwt+LGYwt+LULwt+NDVwt+ELVwt+LNDwt+GMPwt+SLTwt
where ASPwt is the weight of aspect, SLPwt is the weight of slope, CURwt is the weight of curvature,
DNDwt is the weight of drainage density, LGYwt is the weight of lithology, LULwt is the weight of
land use and land cover, NDVwt is the weight of NDVI, ELVwt is the weight of elevation LNDwt is
the weight of lineament density, GMPwt is the weight of geomorphology and SLTwt is the weight of
soil type. The negative and positive weighted values represent the interaction of an irrelevant and
significant element with an occurrence of the landslide (Chen et al., 2020). The landslide-susceptibility
map is subsequently combined with the landslide training and the testing raster. Dividing LSI into
three areas based upon its steepness, which include a high susceptibility zone, a moderate
susceptibility zone and a low susceptibility zone, intensity of landslide susceptibility is measured.
(Table 2)

Table 2.
Causative factors Class Class % Landslide % IV Wt.
0-15 16.32842235 244 1.901
15-20 10.47852403 3.46 1.107
SLOPE ANGLE 20-30 27.91272562 17.84 0.447
30-40 25.72418149 32.71 -0.240
40-90 19.55614651 43.54 -0.800
NORTH (0-22.5) 9.817483531 1.79 1.700
NORTH EAST (22.5-67.5) 10.1795097 6.46 0.455
EAST (67.5-112.5) 11.39699628 13.85 -0.195
SOUTH EAST (112.5-157.5) 12.69987768 21.12 -0.508
SLOPE ASPECT SOUTH (157.5-202.5) 12.17322552 19.49 -0.471
SOUTH WEST (202.5-247.5) 12.54464949 19.41 -0.437
WEST (247.5-292.5) 10.86736385 10.63 0.022
NORTH WEST (292.5-337.5) 10.29112874 4.95 0.731

NORTH (337.5-360) 10.02976522 2.29 1.476

do0i:10.20944/preprints202404.0066.v1
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0-1000 6.516448503 13.37 -0.719
1000-2000 18.45161233 15.38 0.182
2000-3000 15.98802483 19.28 -0.187
3000-4000 15.48094483 34.67 -0.806
ELEVATION
4000-5000 23.10091308 17.14 0.299
5000-6000 18.61663863 0.17 4.701
6000-7000 1.723727865 0.00 0.000
7000-8000 0.121689935 0.00 0.000
Gondwana Group 1.682519383 0.00 0.000
Permafrost Area 32.67324754 27.74 0.164
Tso Lhamo Formation 0.16785229 0.00 0.000
Everest Limestone 0.709375749 0.00 0.000
GEOLOGY Central Crysta.llline 39.08960115 54.01 -0.323
Everest Pelite 2.236032292 0.00 0.000
Tourmaline Granite 0.635440812 0.00 0.000
Chungthang Formation 4.208296699 6.57 -0.445
Lingtse Gneiss 2.413875789 2.92 -0.190
Daling Group 16.18375829 8.76 0.614
Built up area 1.068244006 1.78 -0.510
Forest 33.68697275 50.08 -0.397
Agricultural land 2.954938857 3.25 -0.095
LULC Waterbody 2.654194351 2.86 -0.074
Grassland 9.578374622 11.28 -0.163
Barren land 30.18828376 18.83 0.472
Snow/Glaciers 19.86899165 11.93 0.510
BANDED MIGMATITE,
GARNET BT GNEISS,MICA 41.18118278 57.34 -0.331
SCHIST
BASIC INTRUSIVES 0.010013418 0.00 0.000
BIOTITE GNEISS 3.582800953 0.00 0.000
BIOTITE QUARTZITE 0.026034887 0.00 0.000
BOULDER
BED,FOSSILIFEROUS
LIMESTONE and 1.303747021 0.00 0.000
SANDSTONE
BOULDER
LITHOLOGY SLATE,CONGLOMERATE, 0.214287145 0.70 -1.183
PHYLLITE
CALC GRANULITE WITH
J/WITHOUT QUARTZITE 1.706286424 1.40 0.199
CALC SILICATE ROCK 0.809084173 2.10 -0.953
CHLORITE SERICITE
SCHIST AND QUARTZITE 16.95071396 19.58 -0.144
DOLIMITIC QUARTZITE,
CHERT, PHYLLITE, SLATE 0.468627961 0.00 0.000
FOSSILIFEROUS
LIMESTONE WITH 0.45661186 0.00 0.000

QUARTZITE
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GARNET,
KYANITE,SILLIMANITE,BI  0.368493782 0.70 -0.641
OTITE SCHIST
META GREYWACKE 0.096128813 0.00 0.000
MYLONITIC GRANITE
CNEISS 1.528047584 0.70 0.782
PHYLLITE QUARTZITE 0.202271043 0.00 0.000
PYRITIFEROUS SLATE
AND PHYLLITE 0.080107344 0.00 0.000
QUARTZ ARENITE 0.102136863 0.00 0.000
QUARTZ ARENITE,
BLACK SLATE, CHERTY  0.268359602 0.00 0.000
PHYLLITE
QUARTZITE 1.514028799 0.70 0.772
QUARTZITE MICA
SCHIST, 2.200949272 0.70 1.147
GNEISS,CALCGRANULITE
SANDSTONE, SHALE 0.198265676 0.00 0.000
SANDSTONE,SHALE
WITH MINOR COAL 0.961288126 0.70 0.318
TOURMALINE GRANITE  0.552740673 1.40 -0.928
UNMAPPED 24.98548054 13.99 0.580
VARIEGATED CLAY,
SAND AND PEBBLE 0.232311297 0.00 0.000
-0.99 1.220382936 0.32 1.330
0-0.2 2.620573599 42.95 -2.797
NDVI 02-04 15.10630829 40.48 -0.986
04-0.6 42.69477715 14.31 1.093
06-1 38.35795802 1.94 2.986
<100 mm 15.15975664 15.32 -0.011
100-200 mm 15.75003022 18.55 -0.164
RAINFALL 200-300 mm 36.4579556 15.32 0.867
300-400 mm 21.62657641 31.45 -0.375
> 400 mm 11.00568113 19.35 -0.565
0-22 34.32853862 17.74 0.660
23-43 20.46617511 13.71 0.401
44-65 20.02498086 29.84 -0.399
DRAINAGE 66-87 13.14920021 25.81 -0.674
DENSITY 88-110 6.591724082 6.45 0.021
111-130 3.918368991 6.45 -0.499
131-150 1.041540755 0.00 0.000
151-170 0.328377453 0.00 0.000
171-200 0.15109392 0.00 0.000
-4.1 31.57720433 36.77 -0.152
-1.4 34.32563839 31.15 0.097
TWI -1.7 17.85050556 16.33 0.089
-2.4 7.816076813 7.60 0.028
-2.5 3.873006957 3.65 0.061
1.1-45 3.923311075 3.78 0.038
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45-14.1 0.63425688 0.73 -0.141
<100 m 4.706306451 4.79 -0.019
100 -200 m 3.606833156 3.42 0.052
ROAD 200 - 300 m 3.012036128 2.74 0.095
PROXIMITY 300 - 400 m 2.577453788 4.79 -0.621
400 - 500 m 2.409228366 4.79 -0.688
> 500 m 83.68814211 79.45 0.052
<100 m 7.194112236 4.00 0.587
100 -200 m 6.053357866 4.00 0.414
DRAINAGE 200 - 300 m 5.795768169 8.00 -0.322
PROXIMITY 300 - 400 m 4.894204232 0.00 0.000
400 - 500 m 5.170193192 12.00 -0.842
> 500 m 70.89236431 72.00 -0.016

4. Results

4.1. Landslide susceptibility models

Utilising values assigned to the LCFs, and landslide inventory of several years (2010, 2015, and
2020) the susceptibility models for the research region was created using ArcGIS 10.8 and unique,
extremely accurate advanced statistical techniques. The resulting LSMs depict the likelihood of
landslides in a "low to high" range, with low denoting a region that is safe from mass movement
activity and high denoting a likelihood that landslides would occur (Figure 9). LSM is calculated
using the IV wt. coefficients and corresponding class and landslide variation of LCFs.
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Figure 9. Landslide Susceptibility Map using IVM Model of the study area.
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Each dataset identifies regions that are vulnerable to mass movement activities in a little to
somewhat varied manner. Additionally, the LSM is divided into three zones (Low, Moderate, High)
to help identify areas that may be at high risk of experiencing landslides. Figure 9 displays the IVM-
LSM. To determine the highest likelihood of a landslip occurring along a fault, LSMs classified as
high susceptibility zones. The majority of the area's roadways have moderate to high grades and are
located between 1000 and 1500 metres above sea level.

The area occupied by these sensitive zones on basis of landslide inventory of various years is
depicted in Figure 9. The slope gradient and area's lithology, such as fragile phyllite and schists, are
effective LCFs among all other LCFs for landslip activity in the years 2010, 2015, and 2020. This is
demonstrated by the Information Value weight coefficient. According to the updated, the LR
susceptibility model predicts a very high susceptible zone of 109.68 km?2, Moderate susceptible zone
of 492.95 km2 and low susceptible zone of 361.37 km2 out of total 964 km?2 of the research region.
(Figure 9 & Table 3).

Table 3. Classification of landslide susceptibility of different districts of Sikkim.

DISTRICT LANDSLIDE AREA % AREA (IN SQ.
SUSCEPTIBILITY KMS)
CLASS
LOW 37.49 361.37
EAST SIKKIM MEDIUM 51.14 492.95
HIGH 11.38 109.68

LSM of East District indicates that 37.49%, and of the total district area is classified into low
landslide susceptibility while 51.14% area have moderate landslide susceptibility. 11.38% of the total
district have high landslide susceptibility (Table 3). East District is found to have high landslide
susceptibility which is confirmed by field visits and secondary sources.

The output landslide susceptibility map of Study area (Figure 9) based on Information Value
method is classified into three susceptible categories as Low, Medium, High.Percentage area in each
class is calculated.(Table 3)

The analysis of IVM susceptibility model indicate that the region is susceptible to landslip
activity is growing in a very high susceptible zone over the various years’ worth of data.

Our findings are consistent with Costanzo et al.'s assertion that topographic conditions have a
substantial impact on the occurrence of landslides. Our findings support those of Riaz et al., Pham et
al., Ikram et al., and Ahmed et al. that lithological units and slope gradient are the most significant
LCFs. Using the advanced statistical model i.e Information Value Model (IVM) it is discovered that
the most significant LCFs are Elevation, distance to drainage, NDVI, curvature, and rainfall. These
findings proved that the significance of major LCFs varies depending on the geography and models
used.

For the current study fifteen landslide conditioning factors, i.e., slope aspect, slope gradient,
elevation, Lithology, land use and land cover (LULC), rainfall, Curvature, Plan curvature, Profile
curvature, normalized difference vegetation index (NDVI), Geology, Road Proximity, Drainage
Proximity Drainage density, and total wetness index were analyzed in the remote sensing (RS) and
geographic information system (GIS) environment. The thematic layers for the same has been
prepared which is further used to prepare the Landslide Susceptibility Map of the study area.

For the validation of LSM, it is compared with landslide inventory map. It is observed that
eastern part of the district is classified into high and very high landslide susceptibility class which is
in agreement with the landslide inventory map. Landslide inventory map also suggests that majority
of the landslides are observed in the eastern part of the district.
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5. Conclusions

This study used temporal landslide inventories for the District East Sikkim in the NE Himalayas
of India to apply advanced statistical technique to determine the susceptibility zones of landslides
and estimate the likelihood of landslide activity. The East Sikkim district has experienced significant
economic losses as a result of the landslip activity, including damage to communities, infrastructure,
and roadways.

To create IVM-LSM and determine the causes of landslides in the area, the study used
spatiotemporal landslide inventories (2010, 2015, and 2020) with fifteen causative elements, including
topographic, geological, environmental, and anthropogenic variables. The LSM showed that the
rainfall, slope and lithological (i.e., fragile Phyllite, Schists) control in the proximity of faults
considerably regulate the landslip activities in the research region. The most trustworthy IVM-based
LSM study datasets from the years 2010, 2015, and 2020 showed that the area has a very high sensitive
zone that is continually expanding.

It was determined that IVM models are workable by the validation using statistical measures
and in agreement with the landslide inventories of various years. The findings also imply that IVM-
LSMs are more trustworthy and authentic. It is recommended that advance statistical models be used
as the preferred models for predicting landslides in the study region. This study establishes that since
the region is highly susceptible in nature, so as to predict, the updated LSM Modelling has to be done
to evaluate the effectiveness LSM in this particular area.

In our present study landslide susceptible zonation mapping is done. Almost all the landslides
have been reported in the rainy season. The study shows that land use/land cover, rainfall, slope,
drainage density, structure and lithology play an important role in landslide triggering. The ranking
of the conditioning factors based on the present analysis and the landslide hazard index is highest
for rainfall followed by structures, lithology, slope, LU/LC and drainage density. The total study area
is divided into three susceptible zones i.e. low, medium and high susceptible zones comprising of
37.49%, 51.14% and 11.38% and 361.37 km2, 492.95km?2 and109.68km?2 in East district (Figure 10 &11)
. The methodology described here for landslide susceptible mapping includes generating thematic
information layers, developing an appropriate numerical rating system, integrating spatial data and
validating outcomes. It is analyzed that GIS application is extremely helpful for the generation of
thematic information and their spatial data analysis, involving complex tasks. The numerical rating
system enables to enhance performance assessment and optimization. Since the contributing
variables to the landslide differ from region to region, however this rating may not apply to other
areas of the Himalayas.

To create temporal landslide inventory for recursive landslide hazard assessment, historical
landslide data from a variety of sources can be used. Finally, the knowledge from this study's findings
will help urban planners, disaster management authorities, and other decision-makers choose safe
building sites and identify regions that are prone to landslides. In order to prevent infrastructure
development in landslip risk locations, more practise with landslip risk assessment studies might be
conducted to build risk maps.
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Landslide Susceptibility in East Sikkim in terms of area
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Figure 10. Landslide Susceptibility area variation in the research region.
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Figure 11. Landslide Susceptibility percentage variation in the research region.
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