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Abstract: In this paper, firstly, the concepts of nucleus and congruence are introduced in involutive
m-semilattices, and their interrelationships are discussed. On this basis, the concrete structure of
coequalizer in the category of involutive m-semilattices is obtained. We introduce the definition of the
free involutive m-semilattices, and concrete structure of the involutive m-semilattices is discussed, and
in addition, we prove that the category of involutive m-semilattices is algebraic. Scondly, the colimit in
the category of involutive m-semilattices is a very difficult problem. We have obtained the concrete
structure of colimit for a full subcategory of the category of involutive m-semilattices. Thirdly, we
introduced the definition of an inverse system in the category of involutive m-semilattices, and give
the concrete structure of the inverse limit of an inverse system. We establish the concept of a mapping
between two inverse systems. The properties between inverse limits are discussed. Finally, we study
the direct limit of the category of involutive m-semilattices and give its concrete structure.
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1. Introduction
Quantale was proposed by Mulvey in 1986. The term quantale was coined as a combination of

quantum logic and locale by Mulvey in [1]. Since quantale theory provides a powerful tool in studying
non-commutative structure and a new mathematicial model for quantum mechanics. Hence, the
theory of quantales has attracted the attention of many scholars. Quantale theory has a wide range of
applications, especially in studying non-commutative structures[2], linear logic [3–5], C∗-algebras [6],
topological space [7–9], category [10–12], roughness theory [13], and so on. A systematic introduction
of quantale theory can be found in [14] written by Rosenthal in 1990.

The m-semilattices is an important related structure of quantale. Rosenthal has proved that
each coherent quantale is isomorphic to a quantale consisting of all ∨-semilattice ideals of an m-
semilattice with a top element. Since m-semilattices connect the structures of ∨-semilattices with the
multiplications of semigroups, hence m-semilattices can be regarded as generalizations of residual
lattices, lattice-ordered semigroups, quantales and frames. The m-semilattices theory has aroused
great interests of many scholars. In [15], By using the fuzzy set method, the concept of (prime) idals
of an m-semilattice was introduced. Equivalent characterzations of (prime) ideals and (prime) ideas
were given. In [16], Zhou and Zhao proposed the congruences induced by fuzzy (prime) ideals of
an m-semilattice, studied the properties of the upper (lower) rough fuzzy approximation operators
with respect to these congruence, and introduced the notions of rough fuzzy (prime) ideal of m-
semilattices. In [17], the minmal neighborthood approximation operator on m-semilattice was studied
and introduce the definition of fuzzy rought sets based on fuzzy coverings of m-semilattices. In [18],
Su and Zhao introduced the concept of filers in m-semilattice and the filer topology on m-semilattices
was constructed. A series of properties of filters spaces were studied. In [19], Pan and Han proved
that the category of coheren quantales is a reflective subcategory of the category of m-semilattices.
Based on the definition of m-semilattices, the concept of involutive m-semilattices was given. A
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series of important properties of involutive m-semilattices were studied and proved that the category
of involutive m-semilattices is complete ([20]). In [21], The definiton of generalized M-P inverse of
m-semilattice matrix was introduced. The necessary and sufficient condition for the existence of
generalized M-P inverse of m-semilattice matrix was obtained. There are also some scholars who have
provided different definitions of m-semilattices from various research backgrounds([22–25]).

The category theory provides a new language that affords economy of thought and expression as
well as allowing easier communication among investigators in different areas. The algebric properties
and limit structures of a category are important research focuses. If the algebraic properties of a category
are proven and its limit structures are provided, then many categorical properties are naturally hold.
This paper researches the algebraic properties of the category of involutive m-semilattices, as well
as the structures of colimit, direct limit, and inverse limit. In the following, some simple concepts of
category theory are referred to references [26].

This paper is organized as follows. In section 1, we show some basic concepts and results neeed
in this article. In section 2, the concepts of nucleus and congruence are introduced. We prove that the
category of involutive m-semilattices is algebraic. In section 3, we discuss the structure of coproduct
and colimit in the category of involutive m-semilattices. In section 4, we study the inverse limit and
direct limit in the category of involutive m-semilattices. The properties between inverse limits are
discussed.

2. Preliminaries
Definition 1 ([20]). Let(S,∨) be a ∨-semilattice, (S, ·) be a semigroup, and ∗ is a unary operation on S
satisfying:

(1) a · (b ∨ c) = (a · b) ∨ (a · c), (b ∨ c) · a = (b · a) ∨ (c · a) for all a, b ∈ S.
(2) a∗∗ = a for all a ∈ S.
(3) (a · b)∗ = b∗ · a∗ for all a, b ∈ S.
(4) (a ∨ b)∗ = a∗ ∨ b∗ for all a, b ∈ S.
(5) There is a maximum element in S.

Then (S,∨, ·, ∗) is called an involutive m-semilattice.

Example 1. (1) Let (B,∧,∨,¬) be a Boolean algebra. We define a semigroup multiplication · on B and an
involution operation ∗ on B as follows

∀a, b ∈ S, a · b = a ∧ b, a∗ = a.

It is easy to verify that (B,∨, ·, ∗) is an involutive m-semilattice.
(2) Let S = {0, a, b, 1} be a lattice determined by Figure 1. A semigroup multplication on S and an

involution operation on S are detemined by the tables below.
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a b

Figure 1.
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Table 1.

· 0 a b c

0 0 0 0 0
a 0 a 1 1
b 0 1 b 1
1 0 1 1 1

Table 2.

∗ 0 a b 1
0 b a 1

It can be verified that (S, ·, ∗) is an involutive m-semilattice.
(3) Let S = {0, a, b, c, 1} be a lattice determined by Figure 2. A semigroup multplication on S and an

involution operation on S are detemined by the tables below.
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a cb

Figure 2

Table 3.

· 0 a b c 1
0 0 0 0 0 0
a 0 b c a 1
b 0 c a b 1
c 0 a b c 1
1 0 1 1 1 1

Table 4.

∗ 0 a b c 1
0 b a c 1

Then (S, ·, ∗) be an involutive m-semilattice.

Definition 2 ([20]). Let S1 and S2 be two involutive m-semiattices. A mapping f : S1 → S2 is said to be
involutive m-semilattice homomorphism if satisfying:

(1) f (a · b) = f (a) · f (b);
(2) f (a ∨ b) = f (a) ∨ f (b);
(3) f (a∗) = ( f (a))∗.
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Definition 3 ([26]). A category is a quintuple C = (O,M, dom, cod, ◦) where
(1) O is a class whose members are called C-objects,
(2) M is a class whose members are called C-morphisms,
(3) dom and cod are functions from M to O (dom( f )) is called the domain of f and cod( f ) is called the

codomain of f ,
(4) ◦ is a function from D = {( f , g)| f , g ∈ M, dom( f ) = cod(g)} into M, called the composition law

of C(◦( f , g)) is usually written f ◦ g and we say that f ◦ g is defined if and only if c( f , g) ∈ D; such that the
following condition are satisfied:

(i) Matching Condition: If f ◦ g is defined, then dom( f ◦ g) = dom(g) and cod( f ◦ g) = cod( f );
(ii) Associativity Condition: If f ◦ g and h ◦ f are defined, then h ◦ ( f ◦ g) = (h ◦ f ) ◦ g;
(iii) Identity Existence Condition: For each C-object A there exists a C-morphism e such that dom(e) =

A = cod(e) and
(a) f ◦ e = f whenever f ◦ e is defined, and
(b) e ◦ g = g whenever e ◦ g is defined.

(iv) Smallness of Morphism Class Condition: For any pair (A, B) of C-object, the class
homC(A, B) = { f | f ∈ M, dom( f ) = A and cod( f ) = B}

is a set.
For a give category C, the class of C-objects will be denonted by Ob(C), whereas, Mor(C) will stand for

the class of C-morphisms.

Example 2 ([26]). The category Set whose class of objects is the class of all sets; whose morphisms sets
hom(A, B) are all functions from A to B, and whose composition law is the usual composition of functions. Set
is commonly called the category of sets.

Definition 4 ([26]). A category C is said to be:
(1) small provided that C is a set;
(2) discrete provided that all of its morphisms are identities;
(3) connected provided that for each pair (A, B) of C-objects, homC(A, B) ̸= ∅.

Definition 5 ([26]). Let C and D be categories, A functor from C to D is a triple (D, F,D) where is a function
from the class of morphisms of to the class of morphisms of D (i.e., F : Mor(C) → Mor(D)) satisfying the
following conditions:

(1) F preserves identities, i.e., if e is a D-identity, then F(e) is a D-identity.
(2) F preserves composition; F( f ◦ g) = F( f ) ◦ F(g), i.e., whenever dom( f ) = cod(g), then

dom(F( f )) = cod(F(g)) and the above equality holds.
For any concrete category C, there is a functor U : C → Set that assigns to any object A, the underlying

set U(A) and to any morphism, the corresponding function on the underlying sets. U is called the forgetful
functor on C.

Definition 6 ([26]). A product of a family (Ai)i∈I of C-objects is a pair (∏
i∈I

Ai, (π)i∈I) satisfying the following

properties:
(1) ∏

i∈I
Ai is a C-object.

(2) for each j ∈ J, πj : ∏
i∈I

Ai → Aj is a C-morphism (called the projection from ∏
i∈I

Ai to Aj).

(3) for each pair (C, ( fi)i∈I), (where C is a C-object and for each j ∈ J, f j : C → ∏
i∈I

Ai) there exists a

unique C-morphism < fi >: C → ∏
i∈I

Ai such that for each j ∈ J, the triangle
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Figure 3.

commutes.

Definition 7 ([26]). A coproduct of a family (Ai)i∈I of C-objects is a pair ((µi)i∈I , ⨿
i∈I

Ai) satisfying the

following properties:
(1) ⨿

i∈I
Ai is a C-object.

(2) For each j ∈ J, µj : Aj → ⨿
i∈I

Ai is a C-morphism (called the injection fromAj to ⨿
i∈I

Ai).

(3) For each pair (( fi)i∈I , C), (where C is a C-object and for each j ∈ J, f j : Aj → C) there exists a unique
C-morphism [ fi] : ⨿

i∈I
Ai → C such that for each j ∈ J, the triangle

Aj

C

f j

⨿
i∈I

Ai
[ fi]

µj

-
?

@
@

@
@R

Figure 4.

commutes.

Definition 8 ([26]). Let A
f
⇒
g

B be a pair of C-morphisms. A pair (E, e) is called an equalizer in C of f and g

provided that the following hold:
(1) e : E ⇒ A is a C-morphism;
(2) f ◦ e = g ◦ e;
(3) For any C-morphism e′ : E′ → A such that f ◦ e′ = g ◦ e′, there exists a unique C-morphism

ē : E′ → E such that the triangle

E′

A

e′

E e

ē

-- B
f

g
-

?

@
@

@
@R

Figure 5.

commutes.

Dually: If c : B → C, then (c, C) is called a coequalizer in C of a pair A
f
⇒
g

B if and only if c ◦ f = c ◦ g

and each morphism c′ with the property that c′ ◦ f = c′ ◦ g can be uniquely factored through c.
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Definition 9 ([26]). A category C is called algebraic provied that is satisfies the following conditions:
(1) The category C has coequalizers;
(2) The forgetful functor U : C → Set has a left adjoint;
(3) The forgetful functor U : C → Set preserves and reflects regular epimorphisms.

3. The Category of Involutive M-Semilattices is Algebraic
Definition 10. Let S be an involutive m-semiattices. A closure (coclosure) operator is an order preserving
increasing (decreasing), idempotent map j : S → S. If j is a closure (coclosure) operator on S, then a ≤
j(b)(j(a) ≤ b) if and only if j(a) ≤ j(b) for all a, b ∈ S.

Definition 11. Let S be an involutive m-semiattices. A involutive m-semilattice nucleus on S is a closure
operator j such that j(a) · j(b) ≤ j(a · b) and j(a∗) = (j(a))∗ for all a, b ∈ S. Let N(S) denote the set of all
involutive m-semilattice nuclei on S.

Lemma 1. Let j is an involutive m-semilattice nucleus on S, then j(a · b) = j(a · j(b)) = j(j(a) · b) =

j(j(a)j(b)) for all a, b ∈ S.

Definition 12. Let S be an involutive m-semilattice with a maximum element 1. ∀j ∈ N(S).
(1) j is right-sided(left-sided) if and only if j(a · 1) = j(a) for all a ∈ S.
(2) j is commutative if and only if j(a · b) = j(b · a) for all a, b ∈ S.
(3) j is idmpotent if and only if j(a2) = j(a) for all a ∈ S.
(4) Let Sj be the set of all fixed points of j, then Sj = {a ∈ S|j(a) = a} is called a quotient of S.

Theorem 1. Let S be an involutive m-semilattice, ∀j ∈ N(S), then
(1) j is right-sided(left-sided) if and only if Sj is right-sided(left-sided).
(2) j is commutative if and only if Sj is commutative.
(3) j is idmpotent if and only if Sj is idmpotent.

Proof. It is easy to be verified by Definition 11 and Lemma 1.

Definition 13. Let S be an involutive m-semilattice and the relation R ⊆ S × S satisfying:
(1) (a, b), (c, d) ∈ R implies (a ∨ c, b ∨ d) ∈ R for all a, b, c, d ∈ S;
(2) (a, b), (c, d) ∈ R implies (a · c, b · d) ∈ R for all a, b, c, d ∈ S;
(3) If (a, b) ∈ R, then (a∗, b∗) ∈ R.

Then R is called an involutive m-semilattice congruence on S.
For any x ∈ S, let [x]R denote the congruence class of x, and Con(S) denote the set of all congruences on

S. Then Con(S) is a complete lattice with respect to the inclusion order.

Theorem 2. Let S be an involutive m-semilattice and j be a nucleus on S. Then (Sj,∨j, ·j, ∗j) is an involutive
m-semilattice and j : S → Sj is an involutive m-semilattice homomorphism, where ∀a, b ∈ Sj, a ·j b =

j(a · b), a ∨j b = j(a ∨ b), a∗j = j(a∗).

Proof. It is easy to prove that the three operations mentioned above are well-defined and (Sj,∨j) is a
join semilattice with a maximum element.

We will show that (Sj,∨j, ·j, ∗j) is an involutive m-semilattice. For any a, b ∈ S, by the Definition
of ·j and Lemma 1, we have (a ·j b) ·j c = j(a · b) ·j c = j(j(a · b) · c) = j((a · b) · j(c)) = j(a · (b · j(c))) =
j(a · (j(b) · j(c))) = j(a · (b ·j c)) = a ·j (b ·j c). Thus the associativity of ·j is valid.

Next, we will show that the distributive law is valid. For any a, b, c ∈ Sj, then
(1) a ·j (b ∨j c) ≥ (a ·j b) ∨j (a ·j c).
(2) by Lemma 1, we have a ·j (b ∨j c) = j(a · j(b ∨ c)) = j(a · (b ∨ c)) = j((a · b) ∨ (c · d)) ≤

j(j(a · b) ∨ j(a · c)) = j((a ·j b) ∨ (a ·j c)) = (a ·j b) ∨j (a ·j c).
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Hence, a ·j (b ∨j c) = (a ·j b) ∨j (a ·j c). Similarly, it can be proven that the right distributive law
(b ∨j c) · aj = (b ·j a) ∨j (c ·j a) is hold.

Finally, we will prove that ∗j is an involutive operation on Sj.
For any a, b ∈ Sj, then
(1) (a∗j)∗j = (j(a∗))∗j = ((j(a))∗)∗j = j((j(a))∗)∗) = j((j(a))∗) = (j(j(a)))∗ = (j(a))∗ = j(a∗) =

a∗j .
(2) (a ·j b)∗j = (j(a · b))∗j = j((j(a · b))∗) = j(j((a · b)∗)) = j(j(b∗ · a∗)) = j(b∗ · a∗). By the Lemma

1 it follows that b∗j ·j a∗j = j(b∗j · a∗j) = j(j(b∗) · j(a∗)) = j(b∗ · a∗). Thus (a ·j b)∗j = b∗j ·j a∗j .
(3) (a ∨j b)∗j = (j(a ∨ b))∗j = j((j(a ∨ b))∗) = j(j(a∗) ∨ j(b∗)) = j(a∗) ∨j j(b∗j) = a∗j ∨j b∗j .

Therefore ∗j is an is an involutive operation on Sj.
For any a, b ∈ S, then
(1) j(a ∨ b) ≤ j(j(a) ∨ j(b)) = j(a) ∨j j(b). By the definition of j it follows that j(a ∨ b) =

j(j(a ∨ b)) ≥ j(j(a) ∨ j(b)) = j(a) ∨j j(b). Thus j(a ∨ b) = j(a) ∨j j(b).
(2) From Lemma 1 it follows that j(a) ·j j(b) = j(j(a) · j(b)) = j(a · b), thus j preserves operation

·j.
(3) j(a∗) = a∗j ≤ (j(a))∗j , but (j(a))∗j = j((j(a))∗) ≥ j(a∗), thus j(a∗) = (j(a))∗j .
From (1),(2),(3) we know that mapping j : S → Sj is an involutive m-semilattice homomor-

phism.

Theorem 3. Let S be an involutive m-semilattice. ∀j ∈ N(S), an equivalence R is defined as follows: (a, b) ∈ R
if and only if j(a) = j(b) for all a, b ∈ S. Then R is a congruence on S.

Theorem 4. Let S be an involutive m-semilattice, and R is a congrence of S. For all a, b, c ∈ S, define
[a] ≤ [b] ⇔ [a ∨ b] = [b]; [a] ∨ [b] = [a ∨ b]; [a] · [b] = [a · b]; ([a])∗ = [a∗]. The mapping π : S → S/R
such that π(a) = [a]. Then (S/R, ·, ∗) is an involutive m-semilattice, and the mapping π is an involutive
m-semilattice homomorphism.

Proof. We first show that ≤ is a parital order on S/R.
For any [a], [b], [c] ∈ S/R, then
(1) It’s clear that [a] ≤ [a].
(2) If [a] ≤ [b] and [b] ≤ [a], then [a ∨ b] = [b] and [b ∨ a] = [a], thus [a] = [b].
(3) If [a] ≤ [b] and [b] ≤ [c], then [a ∨ c] = [a ∨ (b ∨ c)] = [(a ∨ b) ∨ (b ∨ c)] = [b ∨ c] = [c], i.e.,

[a] ≤ [c].
It is easy verified that the above operations ·,∨, and ∗ are well defined, and (S/R,∨) is a

semilattice with a maximum element [1].
Next, for any [a], [b], [c] ∈ S/R, we have
(1) ([a] · [b]) · [c] = [a · b] · [c] = [(a · b) · c)] = [a · (b · c)] = [a] · ([b] · [c]).
(2) [a] · ([b]∨ [c]) = [a] · [b ∨ c] = [a · (b ∨ c)] = [(a · b)∨ (a · c)] = [a · b]∨ [a · c] = ([a] · [b])∨ ([a] ·

[c]). Similarly, it can be proven that ([b] ∨ [c]) · [a] = ([b] · [a]) ∨ ([c] · [a]) also hold.
(3) we verify that ∗ is an involution operation on S/R.
(i) ([a])∗∗ = [a∗∗] = [a∗] = [a]∗.
(ii) ([a · b])∗ = [(a · b)∗] = [b∗ · a∗] = ([b])∗ · ([a])∗.
(iii) ([a ∨ b])∗ = [(a ∨ b)∗] = [a∗ ∨ b∗] = ([a])∗ ∨ ([b])∗.

Therefor (S/R, ·, ∗) is an involutive m-semilattice.
Finally, we will prove that the mapping π : S → S/R is an involutive m-semilattice homomor-

phism.
For any [a], [b] ∈ S/R, then
(1) π(a ∨ b) = [a ∨ b] = [a] ∨ [b] = π[a] ∨ π[b].
(2) π(a · b) = [a · b] = [a] · [b] = π(a) · π(b).
(3) π(a∗) = [a∗] = [a]∗ = [π(a)]∗.
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Definition 14. Let IMSLatt be the category whose objects are the involutive m-semilattices, and whose
morphisms are the involutive m-semilattice homomorphisms. Obviously, the category IMSLatt is a concrete
category.

Lemma 2. Let f : S → P be an involutive m-semilattice homomorphism, then f−1(△) = {(x, y) ∈
S × S| f (x) = f (y)} is an involutive m-semilattice congrence on S.

Let S be an involutive m-semilattice, and R is a binary relation on S. There exists the smallest
congrence containing R, which is the intersection all the involutive m-semilattice congrence containing
R on S. We said this congrence is generated by R, denoted by < R >.

Theorem 5. IMSLatt has coequalizer.

Proof. Let S and P be two involutive m-semilattices, f , g : S → P be two involutive m-semilattice
homomorphisms, and R is the smallest congrence, which contain {( f (a), g(a)|a ∈ P}.

Suppose that π : S → S/R is the canonical mapping, then the mapping π is an involutive
m-semilattice homomorphism by Theorem 4. We will show that (π, S/R) is the coequalier of f and g.

(1) Let a ∈ P, then (π ◦ f )(a)) = π( f (a)) = [ f (a)] and (π ◦ g)(a)) = π(g(a)) = [g(a)]. Since
( f (a), g(a)) ∈ R, this imples that [ f (a)] = [g(a)], i.e., π ◦ f = π ◦ g.

(2) Let h : S → S1 be an involutive m-semilattice homomorphism such that h ◦ f = h ◦ g. Let
R1 = (h)−1(△) and △ = {(x, x)|x ∈ S1}. By the Lemma 2 it follows that R1 is a congrence of S.
∀a ∈ P, then h( f (a)) = h(g(a)). This implies that ( f (a), g(a)) ∈ R1, thus R ⊆ R1.

Define a mapping h1 : S/R → S such that h1([a]) = h(a) for all [a] ∈ S/R. Let (a, b) ∈ R, then
(a, b) ∈ R1, i.e., h1(a) = h1(b). This means that h1 is well defined.

Let [a], [b] ∈ S/R, then
(1) h1([a] · [b]) = h1([a · b]) = h(a · b) = h(a) · h(b) = h1([a]) · h1([b]).
(2) h1([a] ∨ [b]) = h1([a ∨ b]) = h(a ∨ b) = h(a) ∨ h(b) = h1([a]) ∨ h1([b]).
(3) h1(([a])∗) = h1([a∗]) = h(a∗) = (h(a))∗ = [h1([a])]∗.

Hence the mapping h1 : S/R → S an involutive m-semilattice homomorphism.
Let x ∈ S, then h1 ◦ π(x) = h1([x]) = h(x), i.e., h1 ◦ π = h. Thus Figure 6 commutes.

f

g
S1S

S/R

h

∃! h1

-

π

P -
-

�
�

�
��

?

Figure 6

Let h2 : S/R → S such that h2 ◦ π = h, then h2([x]) = (h2 ◦ π)(x) = (h1 ◦ π)(x) = h1([x]), i.e.,
h2 = h1. Therefore (π, S/R) is the coequalizer of f and g.

The problem of free generation plays a crucial role in algebra, and free generation of some
mathematical structures have been widely studied ([27,28]). Next, we will discuss the structure of free
involutive m-semilattices in detail.

Let X be a set, use X̃ = {x1x2 · · · xn|xn ∈ X, n ∈ Z+} to denote the set of all finite strings
composed of elements from X. A binary operation ⋆ is defined as follows:

∀ x1x2 · · · xn, y1y2 · · · ym ∈ X̃,
(x1x2 · · · xn) ⋆ (y1y2 · · · ym) = x1x2 · · · xny1y2 · · · ym.

It is easy to verify that the binary operation ⋆ satisfies associative law. (X̃, ⋆) is called the free
semigroup generated by the set X.
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Let PF(X̃) denote the set of all finite subsets of the set X̃. Two binary operations are defined on
the set PF(X̃) as follows: ∀ A, B ∈ PF(X̃),

A • B = {x1x2 · · · xny1y2 · · · ym|x1x2 · · · xn ∈ A, y1y2 · · · ym ∈ B, n, m ∈ Z+},
A∗ = {xnxn−1 · · · x1|x1x2 · · · xn ∈ A, n ∈ Z+}.

Theorem 6. The triple (PF(X̃), •, ∗) is an involutive m-semilattice with respect to the set inclusion order.

Proof. It is easy to prove that ((PF(X̃),⊆) is a lattice.
For any A, B, C ∈ PF(X̃), then
(1) A • (B ∪ C) = (A • B) ∪ (A • C) and (B ∪ C) • A = (B • A) ∪ (C • A) are obviously valid.
(2) (A • B) • C = {x1x2 · · · xny1y2 · · · ym|x1x2 · · · xn ∈ A, y1y2 · · · ym ∈ B} • C

= {(x1x2 · · · xny1y2 · · · ym) ⋆ (z1z2 · · · zs)|x1x2 · · · xn ∈ A, y1y2 · · · ym

∈ B, z1z2 · · · zs ∈ C}
= {(x1x2 · · · xn) ⋆ (y1y2 · · · ymz1z2 · · · zs)|x1x2 · · · xn ∈ A, y1y2 · · · ym

∈ B, z1z2 · · · zs ∈ C}
= A • (B • C).

(3) (A∗)∗ = ({xnxn−1 · · · x1|x1x2 · · · xn ∈ A})∗ = {x1x2 · · · xn|x1x2 · · · xn ∈ A} = A.
(A • B)∗ = ({x1x2 · · · xny1y2 · · · ym|x1x2 · · · xn ∈ A, y1y2 · · · ym ∈ B})∗

= {ymym−1 · · · y1xnxn−1 · · · x1|x1x2 · · · xn ∈ A, y1y2 · · · ym ∈ B}
= {ymym−1 · · · y1xnxn−1 · · · x1|xnxn−1 · · · x1 ∈ A∗, ymym−1 · · · y1 ∈ B∗}
= B∗ • A∗.

Obviously, (A ∪ B)∗ = A∗ ∪ B∗. From the above proof, it can be seen that (PF(X̃), •, ∗) is an
involutive m-semilattice.

Theorem 7. There is a functor PF : Set → IMSLatt which is left adjint to the forgetful functor
U : IMSLatt → Set.

Proof. Let X and Y be nonempty sets and f : X → Y be a mapping. By Theorem 6 it follows that
PF(X̃) and PF(Ỹ) are involutive m-semilattices. Define PF( f ) : PF(X̃) → PF(Ỹ) such that PF( f )(A) =

{ f (x1) f (x2) · · · f (xn)|x1x2 · · · xn ∈ A} for all A ∈ PF(X̃), then the mapping PF( f ) is well defined.
Next, we will prove that the mapping PF( f ) is an involutive m-semilattice homomorphism. For

any A, B ∈ PF(X̃), then
(1) PF( f )(A ∪ B) = { f (x1) f (x2) · · · f (xn)|x1x2 · · · xn ∈ A ∪ B}

= { f (x1) f (x2) · · · f (xn)|x1x2 · · · xn ∈ A or x1x2 · · · xn ∈ B}
= PF( f )(A) ∪ PF( f )(B).

Therefore, the mapping f preserves the union of sets.
(2) PF( f )(A • B) = { f (x1) · · · f (xn) f (y1) · · · f (ym)|x1x2 · · · xny1y2 · · · ym ∈ A • B}

= { f (x1) · · · f (xn) f (y1) · · · f (ym)|x1 · · · xn ∈ A, y1 · · · ym ∈ B}
= { f (x1) · · · f (xn)|x1 · · · xn ∈ A} •{ f (y1) · · · f (ym)|y1 · · · ym ∈ B}
= PF( f )(A) • PF( f )(B).

Therefore, the mapping PF( f ) preserves the operation •.
(3) PF( f )(A)∗ = { f (xn) f (xn−1) · · · f (x1)|xnxn−1 · · · x1 ∈ A∗}

= {( f (x1) f (x2) · · · f (xn))∗|x1x2 · · · xn ∈ A}
= ({ f (x1) f (x2) · · · f (xn)|x1x2 · · · xn ∈ A})∗
= (PF( f )(A))∗.

Hence, the mapping PF( f ) preserves the involutive operation ∗.
From the above proof, it can be concluded that the mapping PF( f ) is an involutive semilattice

homomorphism.
Next, we will check PF : Set → IMSLatt is a functor.
Define a mapping iX : X → X such that iX(x) = x for all x ∈ X. For any A ∈ PF(X̃), then
(1) PF(iX)(A) = {iX(x1)iX(x2) · · · iX(xn)|x1x2 · · · xn ∈ A}
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= {x1x2 · · · xn|x1x2 · · · xn ∈ A}
= A
= iPF(X)(A).

This means that the functor PF preserves identity mappings.
(2) Let f : X → Y, g : Y → Z, then
PF( f ◦ g)(A) = {( f ◦ g)(x1)( f ◦ g)(x2) · · · ( f ◦ g)(xn)|x1x2 · · · xn ∈ A}

= {( f ◦ g)(x1x2 · · · xn)|x1x2 · · · xn ∈ A}
= { f (g(x1x2 · · · xn))|x1x2 · · · xn ∈ A}
= { f (g(x1)g(x2) · · · g(xn))|x1x2 · · · xn ∈ A}
= PF( f )({g(x1)g(x2) · · · g(xn)|x1x2 · · · xn ∈ A})
= (PF( f ) ◦ PF(g))(A).

Thus the functor PF preservers composition of f and g.
Finally, we will prove that PF : Set → IMSLatt is the left adjoint to the forgetful functor U :

IMSLatt → Set.
Let X be a non-empty set, define a mapping i : X → PF(X̃) such that i(x) = x for all x ∈ X.

Let S be an involutive semilattice and mapping f : X → S, we define a mapping f̃ : PF(X̃) → S
such that f̃ (A) =

∨{ f (x1) · f (x2) · · · f (xn)|x1x1 · · · xn ∈ A)} for all A ∈ PF(X̃). Since { f (x1) ·
f (x2) · · · f (xn)|x1x1 · · · xn ∈ A)} is a finite set, then f̃ (A) ∈ S. This show that the mapping f̃ is well
defined.

For any A, B ∈ PF(X̃), then
(1) f̃ (A ∪ B) =

∨{ f (x1) · f (x2) · · · f (xn)|x1x2 · · · xn ∈ A ∪ B}
= (

∨{ f (y1) · f (y2) · · · f (ym)|y1y2 · · · ym ∈ A})
∨(∨{ f (z1) · f (z2) · · · f (zs)|z1z2 · · · zs ∈ B})

= f̃ (A) ∨ f̃ (B).
(2) f̃ (A • B) =

∨{ f (y1) · f (y2) · · · f (yn) · f (z1) · f (z2) · · · f (zs)|y1y2 · · · ym ∈ A,
z1z2 · · · zs ∈ B)}

= (
∨{ f (y1) · f (y2) · · · f (ym)|y1y1 · · · ym ∈ A})

·(∨{ f (z1) · f (z2) · · · f (zs)|z1z2 · · · zs ∈ B})
= f̃ (A) · f̃ (B).

(3) f̃ (A∗) =
∨{ f (xn) · f (xn−1) · · · f (x1)|xnxn−1 · · · x1 ∈ A∗)}

=
∨
({ f (x1) · f (x2) · · · f (xn)|x1x2 · · · xn ∈ A)})∗

= (
∨{ f (x1) · f (x2) · · · f (xn)|x1x2 · · · xn ∈ A)})∗

= ( f̃ (A))∗.
Hence the mapping PF( f ) is an involutive semilattices homomorphism.

For any x ∈ X, then ( f̃ ◦ i)(x) = f̃ ({x}) = f (x), i.e., f̃ ◦ i = f , hence Figure 7 commutes.

X

S

f

PF(X̃)i

∃! f̃

-

?

@
@
@

@R

Figure 7

Suppose that f̃ ′ : PF( f ) → S is another homomorphism such that f̃ ′ ◦ i = f .
Then f̃ ({x}) = ( f̃ ◦ i)(x) = f (x) = ( f̃ ′ ◦ i)(x) = f̃ ′({x}), i.e., f̃ ({x}) = f̃ ′({x}).
For any A ∈ PF(X̃), then

f̃ (A) =
∨{ f (x1) · f (x2) · · · f (xn)|x1x2 · · · xn ∈ A}

=
∨{ f̃ ′({x1}) · f̃ ′({x2}) · · · f̃ ′({xn})|x1x2 · · · xn ∈ A}

=
∨{ f̃ ′({x1} • {x2} · · · • {xn})|x1x2 · · · xn ∈ A}
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=
∨{ f̃ ′(x1x2 · · · xn)|x1x2 · · · xn ∈ A}

= f̃ ′(
⋃{x1x2 · · · xn|x1x2 · · · xn ∈ A})

= f̃ ′(A).
Thus f̃ = f̃ ′. This means that f̃ is an unique involutive m-semilattice homomorphism, and

satisfies the commutativity of Figure 7.
The above proof shows that the functor PF is left adjoint to the forgetful functor U.

Definition 15 ([26]). A morphism f : A → B is said to be a monmorphism in C provided that for all C-
morphisms h and k such that f ◦ h = f ◦ k, it follows that h = k (i.e., f is left-cancellable with respect to
composition in C).

Dual: A morphism f : A → B is said to be a epimorphism in C provided that for all C-morphisms h and k
such that h ◦ f = k ◦ f , it follows that h = k (i.e., f is right-cancellable with respect to composition in C).

Every morphism in a concrete category that is an injective function on underlying sets is a
monomorphism; Every morphism in a concrete category that is an surjective function on underlying
sets is an epiomorphism.

Theorem 8. In IMSLatt the monomorphisms are precisely the morphisms which are injective on the underlying
sets and the epimorphisms are precisely the morphisms which are surjective on the underlying sets.

Proof. The proof is straightforward by Definition 15.

Definition 16 ([26]). If e : E → A is a C-morphism, then e is called a regular monomorphism if and only if
there are C-morphisms f and g such that (E, e) is the equalizer of f and g.

Dual: If e : A → E is a C-morphism, then e is called a regular epimorphism if and only if there are
C-morphisms f and g such that (e, E) is the coequalizer of f and g.

Theorem 9. The forgetful functor U : IMSLatt → Set preserves and reflects regular epimorphisms.

Proof. Obviously, the forgetful functor U : IMSLatt → Set preserves regular epimorphisms. We will
prove that forgetful functor U : IMSLatt → Set reflects regular epimorphisms, which requires proving
that the epimorphisms are precisely the regular epimorphisms in the category IMSLatt.

Let h : S → T be an epimorphism in the category IMSLatt. Since the surjective is an regular
epimorphism in the category Set, then the mapping h is a regular epimorphism in the category Set. It
means that there is a set X and the mappings f , g : X → S such that (h, T) is the coequalizer of f and g.
Then Figure 8 commutes:

f

g
TS

P

h

∃! h

-

h′

X -
-

�
�

�
�	?

Figure 8

For any A ∈ PF(X̃), define two mappings f̃ : PF(X̃) → S and g̃ : PF(X̃) → S as follows:
f̃ (A) =

∨{ f (x1) · f (x2) · · · f (xn)|x1x2 · · · xn ∈ A},
g̃(A) =

∨{g(x1) · g(x2) · · · g(xn)|x1x2 · · · xn ∈ A}.
By the proof of Theorem 6, we know that mappings f̃ and g̃ are the involutive m-semilattice

homomorphisms. Since h ◦ f = h ◦ g, then
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h ◦ f̃ (A) = h(
∨{ f (x1) · f (x2) · · · f (xn)|x1x2 · · · xn ∈ A})

=
∨{(h ◦ f )(x1) · (h ◦ f )(x2) · · · (h ◦ f )(xn)|x1x2 · · · xn ∈ A})

=
∨{(h ◦ g)(x1) · (h ◦ g)(x2) · · · (h ◦ g)(xn)|x1x2 · · · xn ∈ A})

= h(
∨{g(x1) · g(x2) · · · g(xn)|x1x2 · · · xn ∈ A}),

hence h ◦ f̃ = h ◦ g̃.
Let mapping h′ : S → P such that h′ ◦ f̃ = h′ ◦ g̃, then h′ ◦ f = h′ ◦ g. Since (h, T) is the coequalizer

of f and g. This shows that there exists a unique mapping h̄ : T → P such that h′ = h̄ ◦ h.
For any x, y ∈ S, since h is a surjective function, then there are x1, y1 ∈ S such that h(x1) = x and

h(y1) = y. We have
(1) h̄(x · y) = h̄(h(x1) · h(y1)) = (h̄ ◦ h)(x1 · y1) = h′(x1 · y1) = h′(x1) · h′(y1) = (h̄ ◦ h)(x1) · (h̄ ◦

h)(y1) = h̄(h(x1)) · h̄(h(y1)) = h̄(x) · h̄(y).
(2) h̄(x ∨ y) = h̄(h(x1) ∨ h(y1)) = ((h̄ ◦ h)(x1)) ∨ ((h̄ ◦ h)(y1)) = h′(x1) ∨ h′(y1) = h̄(h(x1)) ∨

h̄(h(y1)) = h̄(x) ∨ h̄(y).
(3) h̄(x∗) = h̄((h(x1))

∗) = h̄(h(x∗1)) = (h̄ ◦ h)(x∗1) = h′(x∗1) = (h′(x1))
∗ = ((h̄ ◦ h)(x1))

∗ =

(h̄(x))∗.
Thus the mapping h̄ is an involutive m-semilattice homomorphism.
The above proof shows that (h, T) is a coequalizer of f and g in the category IMSLatt. Then Figure

9 commutes:

f̄

ḡ
TS

P

h

∃! h

-

h′

PF(X̃) -
-

�
�

�
�	?

Figure 9

Therefore the mapping h is a regular epimorphism in IMSLatt.

By the theorem 5, theorem 7, and theorem 9, we can obtain the theorem 10.

Theorem 10. The category IMSLatt is algebraic.

4. The Colimit of Funtor in IMCSLatt0

The limit of a functor, which is a generalization of each of the notions "terminal object", "equal-
izer","product", and "intersection". Therefore, the study of limits is very important for a category.
Colimits are the dual definition of limits. The limits and colimits in some categories have been system-
atically studied ([29–32]). It is well known that to prove a category is cocomplete, one must verify that
the colimit of a functor from a small category to this category exists, and the construction of colimits
relies on coproducts. Building coproducts in the involutive m-semilattice category is a complex and
difficult task. In this article, we prove that a full subcategory of involutive m-semilattices is cocomplete,
providing some insights for the proof of cocompleteness in the category of involutive m-semilattices.

Definition 17 ([26]). If I and C are categories and D : I → C is a functor, then a natural source for D is a
source (L, (li)i∈Ob(I)) in C such that for each i ∈ Ob(I), li : L → D(i) and for all morphisms m : i → j, the
triangle
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D(i)

L

D(j)

li

lj

D(m)
�

�
�
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Q
Q
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?

Figure 10.

commutes.
Dually: A natural sink for D is a sink ((ki)i∈Ob(I), K) where (ki)i∈Ob(I) is natural transformation from D

to the constant functor K : I → C.

Definition 18 ([26]). If D : I → C is a functor, then a natural source (L, li) for D is called a limit of D
provided that if (L̂, l̂i) is any natural source for D, then there is a unique morphism h : L̂ → L such that for
each j ∈ Ob(I), the triangle

L̂

D(j)

l̂i

L lj

∃! h

-
?

@
@
@

@R

Figure 11.

commutes.
Dually: A natural sink ((ki)i∈Ob(I), K) is called a colimit of D provied that every natural sink for D factors

uniquely through it.

Definition 19. Let S be an involutive m-semilattice. ∀{ai}, {bi} ⊆ S, and I is a finite set. If S satisfies
condition: (CD) ∨

i∈I
(ai · bi) = ( ∨

i∈I
ai) · ( ∨

i∈I
bi). Then (S,∨, ·, ∗) is called an involutive mc-semilattice. It is

clear that if S satisfies (CD), then S satisfies Definition 1(1).

Theorem 11. Let S be an involutive mc-semilattice, and R is a congrence of S. For any a, b, c ∈ S, define
[x] ≤ [y] ⇔ [a ∨ b] = [b]; [a] ∨ [b] = [a ∨ b]; [a] · [b] = [a · b]; ([a])∗ = [a∗]. The mapping π : S → S/R
such that π(a) = [a]. Then (S/R, ·, ∗) is an involutive mc-semilattice, and the mapping π is an involutive
m-semilattice homomorphism.

Proof. The proof of Theorem 11 is similar to the proof of Theorem 4.

Definition 20. Let {Si}i∈I be a family of involutive mc-semilattices with minimum element, and ∏
i∈I

Si is

the cartesian product of {Si}i∈I . For any i ∈ S, define a mapping ϵi : Si → ∏
i∈I

Si by ∀x ∈ I, (ϵi(x))j ={
x, i = j,

0i, i ̸= j,
where 0i denotes the minimal element of Si. Then mapping ϵi is called a standard injection.

Lemma 3 ([20]). Let {Si}i∈I be a family of involutive m-semilattices, and ∏
i∈I

Si is the cartesian product of

{Si}i∈I . ∀s = (si)i∈I , t = (ti)i∈I ∏
i∈I

Si, we define a semigroup multiplication "·" and an involutiveoperation

on ∏
i∈I

Si as follows: s · t = (si · ti)i∈I , s∗ = (s∗i )i∈I . Then (∏
i∈I

Si, ·, ∗) is an involutive m-semilattice.
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Theorem 12. Let ⨿
i∈I

Si = {x = (xi)i∈I ∈ ∏
i∈I

Si|{i ∈ I|xi ̸= 0i} is a finite set }. ∀s = (si)i∈I , t = (ti)i∈I ⊆

⨿
i∈I

Si, s · t = (si · ti)i∈I , s∗ = (s∗i )i∈I . Then(⨿
i∈I

Si, ·, ∗) is an involutive mc-semilattice under the pointwise

order of cartesian product.

Proof. The proof is similar to the proof of Lemma 3.

Definition 21. Let IMCSLatt0 be the category whose objects are the involutive mc-semilattices with minimum
element, and whose morphisms are the involutive m-semilattice homomorphisms. Obviously, the category
IMCSLatt0 is a full subcategory of IMSLatt.

Theorem 13. Let {Si}i∈I be a family of involutive mc-semilattices with minimum element, then (⨿
i∈I

Si, {ϵi}i∈I)

is the coproduct of {Si}i∈I in IMCSLatt0, where ∀i ∈ I, the mapping ϵi : Si → ⨿
i∈I

Si is injection.

Proof. We shall show that ϵi is an involutive m-semilattice homomorphism.
∀i ∈ I, ∀x, y ∈ Si, then
(1) (ϵi(x ∨ y))i = x ∨ y = (ϵi(x))i ∨ (ϵi(y)i = (ϵi(x) ∨ ϵi(y))i.
∀j ∈ I, if i ̸= j, (ϵi(x ∨ y))j = 0j = (ϵi(x))j ∨ (ϵi(y))j = (ϵi(x) ∨ ϵi(y))j.

Thus ϵi(x ∨ y) = ϵi(x) ∨ ϵi(y).
(2) (ϵi(x · y))i = x · y = (ϵi(x))i · (ϵi(y))i = (ϵi(x) · ϵi(y))i.
∀j ∈ I, if i ̸= j, (ϵi(x · y))j = 0j = (ϵi(x))j · (ϵi(y))j = (ϵi(x) · ϵi(y))j.

Thus ϵi(x · y) = ϵi(x) · ϵi(y).
(3) (ϵi(x∗))i = x∗ = ((ϵi(x))i)

∗.
∀j ∈ I, if i ̸= j, (ϵi(x∗))j = 0j = (0j)

∗ = ((ϵi(x))j)
∗.

Thus ϵi(x∗) = (ϵi(x))∗.
Therefore ϵi is an involutive m-semilattice homomorphism.
Let S be an arbitrary involutive mc-semilattice with minimum element 0. ∀i ∈ I, mapping

fi : Si → S is an involutive m-semilattice homomorphism. Define f : ⨿
i∈I

Si → S by ∀x = (xi)i∈I ∈ ⨿
i∈I

Si,

f (x) =
∨
i∈I

{ fi(xi)|xi ̸= 0i}. We first show that f is well defined. For any x = (xi)i∈I ∈ ⨿
i∈I

Si. By the

definition of ⨿
i∈I

Si it follow that {i ∈ I|xi ̸= 0i} is a finite set. Since ∀i ∈ I, mapping fi : Si → S is an

involutive m-semilattice homomorphism, then f (0i) = 0 (i.e., fi preserves the minimum element).
Thus the set {i ∈ I| fi(xi) ̸= 0} is finite. Therefore, the supremum of the set {i ∈ I| fi(xi) ̸= 0} in the
semilattice S exists. This show that f is well defined.

Next, we prove that f is an involutive m-semilattice homomorphisms.
∀a = (ai)i∈I , b = (bi)i∈I , c = (ci)i∈I ∈ ⨿

i∈I
Si, then

(1) f (a ∨ b) =
∨
i∈I

fi((a ∨ b)i) =
∨
i∈I

( fi(ai) ∨ ( fi(bi)) = (
∨
i∈I

fi(ai)) ∨ (
∨
i∈I

fi(bi)) = f (a) ∨ f (b).

(2) f (a · b) =
∨
i∈I

( fi((a · b)i)) =
∨
i∈I

( fi(ai) · fi(bi)), by Definition 19 it follows that
∨
i∈I

( fi(ai) ·

fi(bi)) = (
∨
i∈I

fi(ai)) · (
∨
i∈I

fi(bi)) = f (a) · f (b). then f (a · b) = f (a) · f (b).

(3) f (c∗) =
∨
i∈I

fi((c∗)i) =
∨
i∈I

fi(c∗i ) =
∨
i∈I

( fi(ci))
∗ = (

∨
i∈I

fi∈I(ci))
∗ = ( f (x))∗.

In the following, we prove that fi = f ◦ ϵi for all i ∈ I. ∀x ∈ Si, ( f ◦ ϵi)(x) =
∨
i∈I

fi((ϵi)i) = fi(xi).

Then Figure 12 commutes:
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Si

S

fi

⨿
i∈I

Siϵi

∃! f

-

?

@
@
@

@R

Figure 12

Finally, we prove the uniqueness of the involutive m-semilattice homomorphism f that satisfies
the conditions fi = f ◦ ϵi.

Assuming g is another involutive m-semilattice homomorphism that satisfies the above condition,
i.e., ∀i ∈ I, fi = g ◦ ϵi. Then ∀x ∈ ⨿

i∈I
Si, we have

g(x) = g(
∨
i∈I

ϵi(xi)) =
∨
i∈I

g(ϵi(xi)) =
∨
i∈I

(g ◦ ϵi)(xi) =
∨
i∈I

fi(xi) = f (x).

Therefore (⨿
i∈I

Si, {ϵi}i∈I) is the coproduct of {Si}i∈I in IMCSLatt0.

Definition 22 ([26]). A category C is said to be small provided that C is a set.

Theorem 14. Let I be a small category, F : I → IMCSLatt0 be a functor, then the colimit of F is
((ηi)i∈I , (⨿

i∈I
F(i))/R), where R is the smallest involutive m-semilattice congruence relation that contains

the set
⋃{(ϵi(a), ϵj(F(u)(a)))|u : i → j ∈ Mor(I), a ∈ D(i)}, ∀i ∈ I, ϵi : F(i) → ⨿

i∈I
F(i) is an injection,

and π : ⨿
i∈I

F(i) → (⨿
i∈I

F(i))/R is a projection.

Proof. (1) We first show that ((ηi)i∈I , (⨿
i∈I

F(i))/R) is the natural sink of the functor F.

By the Theorem 11 and Theorem 13, it follows that projection π and injection ϵi are both involutive
m-semilattice homomorphisms. Then the mapping ηi = π ◦ ϵi is also an involutive m-semilattice
homomorphism.

F(i)

(⨿
i∈I

F(i))/R

ηi

⨿
i∈I

F(i)ϵi

π

-

?

@
@
@

@R

Figure 13.

∀u : i → j ∈ MOr(I), ∀x ∈ F(i). Because R is the smallest involutive m-semilattice congruence
relation that contains the set R̃ =

⋃{(ϵi(a), ϵj(F(u)(a)))|u : i → j ∈ Mor(I), a ∈ F(i)}, and ∀i ∈ I, then

(ϵi(x), ϵj(F(u)(x)) ∈ R, thus (ηj ◦ F(u))(x) = (π ◦ ϵj)(F(u)(x)) = π(ϵj(F(u)(x))) = [ϵj ◦ F(u)(x)] =
[ϵi(x)] = [(π ◦ ϵi)(x)] = ηi(x), then Figure 14 commutes:
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(⨿
i∈I

F(i))/RF(i)

F(j)

ηii

ηj

j

u F(u)

-

�
�

�
��

??

Figure 14

Therefore ((ηi)i∈I , (⨿
i∈I

F(i))/R) is the natural sink of the functor F.

(2) Let S be an involutive mc-semilattices with minimum element, { fi|F(i) → S, i ∈ I} be a family
of involutive m-semilattice homomorphisms, and (( fi)i∈I , S) is the natural sink of the functor F, then
fi = f j ◦ (F(u)), i.e., Figure 15 commutes:

SF(i)

F(j)

fi
i

f j

j

u F(u)

-

�
�

�
��

??

Figure 15

∀x = (xi)i∈I ∈ ⨿
i∈I

F(i), define f : (⨿
i∈I

F(i))/R → S such that f ([x]) =
∨
i∈I

fi(xi). Since { fi(xi)|i ∈

I, xi ̸= 0} is a finte set, then
∨
i∈I

{ fi(xi)|i ∈ I, xi ̸= 0} ∈ S, thus the mapping is well defined.

From the Theorem 13 we know that (⨿
i∈I

F(i), {ϵi}i∈I) is the coproduct of {F(i)}i∈I in IMCSLatt0,

there exists a unique involutive m-semilattice homomorphism f̂ : ⨿
i∈I

F(i) → S satisfying fi = f̂ ◦ ϵi,

then Figure 16 commutes:

⨿
i∈I

F(i)F(i)

S

ϵi

∃! f̂fi

-

�
�

�
�	?

Figure 16

Let △ = {(y, y)|y ∈ S}, ∀u : i → j ∈ Mor(I), ∀x ∈ F(i), then f̂ (ϵi(x)) = fi(x) =

f j(F(u)(x)) = ( f̂ ◦ ϵi)(F(u)(x)) = f̂ ((ϵi ◦ F(u))(x)), i.e., (ϵi(x), ϵj(F(u)(x))) ∈ f−1(△). Hence
R̃ =

⋃{(ϵi(a), ϵj(F(u)(a)))|u : i → j ∈ Mor(I), a ∈ D(i)} ⊆ f−1(△). Since R is the smallest

involutive m-semilattice congruence relation that contains the set R̃, therefore R ⊆ f−1(△).
∀x = (xi)i∈I , y = (yi)i∈I ∈ ⨿

i∈I
Fi, if (x, y) ∈ R, then (x, y) ∈ f−1(△), hence f̂ (x) = f̂ (y), therefore∨

i∈I
fi(yi) =

∨
i∈I

fi(xi), which implies that f ([x]) = f ([y]). Thus the mapping f is well defined. ∀i ∈ I,

∀zi ∈ F(i), then f (ηi(zi)) = f ((π ◦ ϵi)(zi)) = f ([ϵi(zi)]) =
∨
j∈I

f j((ϵi(zi))j) = fi(zi). Thus f ◦ ηi = fi,

then Figure 17 commutes:
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⨿
i∈I

F(i)F(i)

S

ϵi

∃! f

(⨿
i∈I

F(i))/R

fi f̂

π --

�
�

�
��	?

��
���

���
����

Figure 17

(3) We shall show that the mapping f : (⨿
i∈I

F(i))/R → S is an involutive m-semilattice homomor-

phism. ∀x, y ∈ (⨿
i∈I

F(i))/R, we have

(i) f ([x] ∨ [y]) = f ([x ∨ y]) =
∨
i∈I

fi((x ∨ y)i) =
∨
i∈I

( fi(xi) ∨ fi(yi)) = (
∨
i∈I

fi(xi)) ∨ (
∨
i∈I

fi(yi)) =

f ([x]) ∨ f ([y]), then f ([x] ∨ [y]) = f ([x]) ∨ f ([y]).
(ii) f ([x] · [y]) = f ([x · y]) =

∨
i∈I

fi((x · y)i) =
∨
i∈I

fi(xi · yi) =
∨
i∈I

( fi(xi) · fi(yi)). By the Definition

19, we know that
∨
i∈I

( fi(xi) · fi(yi)) = (
∨
i∈I

fi(xi)) · (
∨
i∈I

fi(yi)) = f ([x]) · f ([y]). Hence f ([x] · [y]) =

f ([x]) · f ([y]).
(iii) f ([x∗]) =

∨
i∈I

fi((x∗)i) =
∨
i∈I

fi(x∗i ) =
∨
i∈I

( fi(xi))
∗ = (

∨
i∈I

fi(xi))
∗ = ( f ([x]))∗, then f ([x∗]) =

( f ([x]))∗.
(4) We will prove the uniqueness of the involutive m-semilattice homomorphism f : (⨿

i∈I
F(i)/R →

S that satisfies the conditions fi = f ◦ ηi. Assuming f̃ : (⨿
i∈I

F(i))/R → S is another involutive m-

semilattice homomorphism that satisfies fi = f̃ ◦ ηi, then f̃ ([x]) = f̃ (π(x)) = f̃ (π(
∨
i∈I

ϵi(xi))) =

f̃ (
∨
i∈I

(π(ϵi(xi)))) = f̃ (
∨
i∈I

[xi]) =
∨
i∈I

f̃ ([xi]) =
∨
i∈I

f̃ ((π ◦ ϵi)(xi)) =
∨
i∈I

f̃ (ηi(xi)) =
∨
i∈I

( f̃ ◦ ηi)(xi) =∨
i∈I

fi(xi) = f ([x]). Hence f̃ = f .

From (1), (2), (3), and (4), it can be concluded that((ηi)i∈I , (⨿
i∈I

F(i))/R) is the colimit of the functor

F.

Corollary 1. IMCSLatt0 is cocomplete.

5. The Inverse Limit and Direct Limit in IMSLatt
Definition 23. Let I be a downward-directed set, then I can be taken for a category, where its objects is the
elements in I. Let i, j ∈ I, if i ≤ j, then a morphism uij : i → j is taken naturally in the category I.

A functor F : I → IMSLatt is called an inverse system in the category of involutive m-semilattices.
An inverse system in IMSLatt can be described by the following satements without using the notion
of functor. Let I be a downward-directed set. For any i, j ∈ I and i ≤ j, there exists an involutive
m-semilattice homomorphism fij : Si → Sj. And further that fij = f jk · fik for all i, j, k ∈ I satisfing
i ≤ j ≤ k, fii = idSi : Si → Si. The triple (Si, fij, I) is called an inverse system in IMSLatt.

Definition 24. Let I be a downward-directed set, and F : I → IMSLatt be an inverse system in IMSLatt.
Then the limit of F is called the inverse limit of inverse system F : I → IMSLatt.

Dual: upward-directed set; direct system; direct limit.

From the definitions of the inverse limit and direct limit in IMSLatt. It is clear that the inverse
limits are defined to be particular limits and direct limits are particular colimits. Inverse limits and
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directed limits in some categories have been extensively studied([33–38]). The following will give the
inverse limit and direct limit in the IMSLatt.

5.1. The Inverse Limit of the Inverse System in IMSLatt

Theorem 15 ([20]). Let I be a small category, F : I → IMSLatt be a functor, then the limit of F is (L, (pi)i∈I),
where L = { f ∈ ∏

i∈I
F(i)|∀u : i → j ∈ Mor(I) such that f (j) = F(u)( f (i))}. ∀i ∈ I, f ∈ ∏

i∈I
F(i), the

mapping pi : ∏
i∈I

F(i) → F(i) is projection, and pi( f ) = f (i).

Theorem 16. Let I be a downward-directed set, and F : I → IMSLatt be an inverse system in IMSLatt.
Then the inverse limit of inverse system F is (T, (pi)i∈I), where T = {{xi}i∈I ∈ ∏

i∈I
F(i)|∀i, j ∈ I, if i ≤ j,

then ∃ fij : F(i) → F(j) ∈ Mor(IMSLatt) such that fij(xi) = xj}, and ∀i ∈ I, ∀x = (xi)i∈I ∈ ∏
i∈I

F(i),

pi : ∏
i∈I

F(i) → F(i) is a projection (i.e., pi((xi)i∈I) = xi).

Proof. The proof of Theorem 16 is similar to the proof of Theorem 15 in Reference 20.

Suppose F : I → IMSLatt and G : I′ → IMSLatt are two inverse systems in IMSLatt. Let
(T, (pi)i∈I) and (T′, (p′i)i∈I) be the inverse limits of inverse systems F and G, respectively, where I and
I′ are downward-directed sets.

∀i, j ∈ I, ∀i′, j′ ∈ I′, F(i) = Si, F(i′) = Si′ are involutive m-semilattices. If i ≤ j and i′ ≤ j′,
then F(i → j) = Fij : F(i) → F(j) and G(i′ → j′) = Gi′ j′ : F(i′) → F(j′) are involutive m-semilattice
homomorphisms. ∀i, j, k ∈ I, ∀i′, j′, k′ ∈ I′, if i ≤ j ≤ k and i′ ≤ j′ ≤ k′, the Fjk · Fij = Fik, Gj′k′ · Gi′ j′ =

Gi′k′ , Fii = idF(i), Gi′i′ = idG(i′). The homomorphisms Fij and Gi′ j′ are called the bonding mapping of
inverse systems F and G, respectively.

Definition 25 ([36]). Let I be a downward-directed set, and I′ ⊆ I. If ∀i ∈ I, there is a i′ ∈ I′ such that i′ ≤ i,
the set I′ is called a downward cofinal subset of I.

Based on Definition 3.1 in reference [36], the definition of the mapping between two inverse
systems can be given as follows:

Definition 26. Let F : I → IMSLatt and G : I′ → IMSLatt be two inverse systems in IMSLatt.
(φ, { fi′}i′∈I′) is called the mapping from inverse system F to inverse system G if it satisfies the following
conditions:

(1) φ : I′ → I is an order preserving mapping and φ(I′) is a downward cofinal subset of I.
(2) ∀i′ ∈ I′, fi′ : F(φ(i′)) → G(i′) is an involutive m-semilattice homomorphism, and ∀i′, j′ ∈ I′, if

i′ ≤ j′, then Gi′ j′ ◦ fi′ = f j′ ◦ Fφ(i′)φ(j′), i.e., Figure 18 commutes:

F(φ(i′)) G(i′)

F(φ(j′)) G(j′)

fi′

f j′

Fφ(i′)φ(j′) Gi′ j′

-

-
? ?

Figure 18

Theorem 17. Let F : I → IMSLatt and G : I′ → IMSLatt be two inverse systems in IMSLatt. (φ, { fi′}i′∈I′)

is the mapping from inverse system F to inverse G. Then the mapping (φ, { fi′}i′∈I′) induces an involutive m-
semilattices homomorphism f : T → T′, where ∀x = (xi)i∈I ∈ T, f (x) = f ((xi)i∈I) = (x′i′)i′∈I′ = x′ ∈ T′,
x′i′ = ( fi′ ◦ pφ(i′))((xi)i∈I), and pi : ∏

i∈I
F(i) → F(i) is a projection (i.e., pi((xi)i∈I) = xi).
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Proof. ∀ i′, j′ ∈ I′, if i′ ≤ j′, then φ(i′) ≤ φ(j′). ∀x = (xi)i∈I ∈ T, by Definintion 26(2) and
Theorem 16, we know that (Gi′ j′ ◦ fi′)(xφ(i′)) = ( f j′ ◦ Fφ(i′)φ(j′))(xφ(i′)), then Fφ(i′)φ(j′)(xφ(i′)) =

xφ(j′) = pφ(j′)((xi)i∈I). Thus Gi′ j′(x′i′) = Gi′ j′(( fi′ ◦ pφ(i′))((xi)i∈I)) = (Gi′ j′ ◦ fi′ ◦ pφ(i′))((xi)i∈I) =

(Gi′ j′ ◦ fi′)(pφ(i′)(xi)i∈I) = (Gi′ j′ ◦ fi′)(xφ(i′)) = ( f j′ ◦ Fφ(i′)φ(j′))(xφ(i′)) = ( f j′ ◦ pφ(j′))((xi)i∈I) = x′j′ .
This implies that there exists an involutive m-semilattice homomorphism Gi′ j′ : Gi′ → Gj′ such that
Gi′ j′(x′i′) = x′j′ . From Theorem 16 it follows that x′ = (x′i′)i′∈I′ ∈ T′. Hence f is well defined.

∀ x = (xi)i∈I , y = (yi)i∈I , z = (zi)i∈I ∈ T, ∀ i ∈ I′, then
(1) ( f (x ∨ y))i′ = ( fi′ ◦ pφ(i′))(x ∨ y) = fi′((x ∨ y))φ(i′)) = ( fi′(xφ(i′))) ∨ ( fi′(yφ(i′))) = (( fi′ ◦

pφ(i′))(x)) ∨ (( fi′ ◦ pφ(i′))(y)) = ( f (x))i′ ∨ ( f (y))i′ = ( f (x) ∨ f (y))i′ . This implies that f (x ∨ y) =

f (x) ∨ f (y). Thus f preserves union.
(2) ( f (h1 · h2))i′ = ( fi′ ◦ pφ(i′))(x · y) = ( fi′(x · y))φ(i′) = (( fi′(x))φ(i′)) · (( fi′(y))φ(i′)) = (( fi′ ◦

pφ(i′))(x)) · (( fi′ ◦ pφ(i′))(y)) = ( f (x) · f (y))i′ . This shows that f (x · y) = f (x) · f (y). Thus f preserves
semigroup operation ·.

(3) ( f (z∗))i′ = ( fi′(z∗))φ(i′) = (( fi′(z))φ(i′))
∗ = (( fi′ ◦ pφ(i′))(z))∗ = (( f (z))i′)

∗ = (( f (z))∗)i′ .
Thus f preserves involution operation ∗.
Therefore the mapping f is an involutive m-semilattice homomorphism.

Definition 27. Let F : I → IMSLatt and G : I′ → IMSLatt be two inverse systems in IMSLatt.
(φ, { fi′}i′∈I′) be a mapping from the inverse F to the inverse G. Then above induced morphism f : T → T′ is
called the limit mapping. It can be denoted by lim(φ, { fi′}i′∈I′).

Theorem 18. Let (φ, { fi′}i′∈I′) be a mapping from the inverse F to the inverse G. For any i′ ∈ I′, if fi′ is a
monomorphism, then the induced mapping f : T → T′ is also monomorphism.

5.2. The direct limit of the direct system on IMSLatt

Definition 28 ([26]). Let I be a set, if the every subset of I have upper bound, then I is called upward-bound.

Definition 29. Let I be a upward-bound set. The functor D : I → IMSLatt is called a direct system in
IMSLatt, where ∀i, j ∈ I, D(i) = Si and D(j) = Sj, if i ≤ j, then D(i → j) : Si → Sj is an involutive
m-semilattice homomorphism. For the convenience of the following description, let fij denote the mapping
D(i → j) : Si → Sj.

Lemma 4. Let U : IMSLatt → Set be the forgetful functor, and (ui, S) is the coproduct of {U(Si)}i∈I in
the category of sets (i.e., the disjoint union of sets {U(Si)}i∈I). The binary relation ” ∼ ” on S is defined by
the following: x, y ∈ S, such that x ∈ U(Si), y ∈ U(Sj), x ∼ y if and only if there is a k ∈ K, such that
i ≤ k, j ≤ k and fik(x) = f jk(x). Let S = S/ ∼ represents the equivalence class of S under relation "∼", order
relation and three operations on S are defined by the following:

∀[x], [y] ∈ S, such that x ∈ Si and y ∈ Sj, then
(1) [x] ≤ [y] if and only if there is a k ∈ I satisfies i, j ≤ k and fik(x) ≤ f jk(x).
(2) [x] ∨ [y] = [ fik(x) ∨ f jk(y)].
(3) [x] · [y] = [ fik(x) · f jk(y)].
(4) ([x])∗ = [ fik(x∗)].

Then (S,∨, ·, ∗) is an involution m-semilattice.

Proof. It’s easy to prove that the above definitions are well defined, and the set (S,∨, ·, ∗) is an
involution m-semilattice.

Theorem 19. Let I be a upward-bound set, and D : I → IMSLatt be a direct system in IMSLatt. ∀i, j ∈ I,
if i ≤ j, and D(i → j) = fij : Si → Sj is an involutive m-semilattice homomorphism, then the direct limit of
direct system D is (li, S), where S is defined above in the lemma 5, li = π ◦ ui : Ai → Si, and the mapping
π : S → S/ ∼ represents the projection from S to its equivalence class S/ ∼.
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Proof. The proof of this theorem is similar to the proof of the Theorem 14.

Corollary 2. IMSLAtt is directed complete.

Theorem 20. Let I be a upward-bound set, functor D : I → IMSLatt is a direct system in IMSLatt, and (li, S)
is the direct limit of direct system D. ∀i, j ∈ I, if i ≤ j, mapping fij = D(i → j) : Si → Sj is a monomorphism,
then li is also a monomorphism.

Proof. Proof is straightforward.
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