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Abstract: This paper provides a comprehensive overview of sensors commonly used in low‐cost, 

low‐power systems, focusing on key concepts such as IoT, Big Data, and smart sensor technologies. 

It  defines  the  evolving  roles  of  sensors,  emphasizing  their  characteristics,  technological 

advancements, and  the  transition  toward  ʹsmart sensorsʹ with  integrated processing capabilities. 

The  article  also  explores  the  increasing  significance  of mini  computing  devices  in  educational 

environments.  These  devices  offer  cost‐effective  and  energy‐efficient  solutions  for  system 

monitoring, prototype  validation,  and  real‐world  application development. By  interfacing with 

wireless  sensor  networks  and  IoT  systems, mini‐computers  enable  students  and  researchers  to 

design, test, and deploy sensor‐based systems with minimal resource requirements. Furthermore, 

the  paper  discusses  the  use  of  signal  processing  techniques  to  enhance  data  acquisition  and 

measurement accuracy, making these systems more reliable and suitable for various educational 

and research applications. This research aims to equip future engineers with the knowledge and 

tools to integrate cutting‐edge sensor networks, IoT, and Big Data technologies into scalable, real‐

world solutions. 

Keywords: mini computing devices; signal processing; low‐power systems; IoT (Internet of Things); 

sensors; measurement solutions; big data; smart sensors; educational technology;   
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1. Introduction 

  In recent years, the extensive use of IoT and Big Data has been incorporated into the education 

of young scientists, [1]. The first term is derived from the ever‐increasing number of devices that are 

connected to a large interconnected network of computing devices, [2]. The second derives from the 

data that are increasing in our everyday lives and applications making them so “big” that there needs 

to be a specific term to categorize, them [3]. The term big is used in terms of volume, velocity, and 

variety  (the  3 Vs),  [4], which  is  closely  tight  to  their processing which  is performed using deep 

learning techniques or Artificial Intelligence. 

One of the most basic ways of understanding and finding all this information is the so‐called 

intelligent  sensors  (smart  sensors),  [5].  As  such,  the  future  of  these  technology  domains  are 
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interconnected with  the main  issue being  that  the processing power of  testing new  and  existing 

methods on these areas is becoming exponential. For example, the new trend of chatbot machines 

using AIS such as Generative adversarial networks, (GAN) which  is one of the hottest trends and 

widely used applications of AI has been heavily criticized for the processing of both training the data 

used and the time and electricity it requires to answer even the simplest of questions, [6]. As such, 

there needs to be a computing device that will be able to be used in schools and research facilities as 

a rapid prototype solution or as a training tool for the students to be educated and learn about these 

new technologies [7–9]. These devices, if focused in all of the areas mentioned above must be both 

low power and low cost so either students/young scientists, [10], or hobby enthusiasts on a budget, 

[11], can and will be able to use them at school or research facilities will be able to easily buy/replace 

them and maintain them at the lowest cost possible, [12–14]. To find this threshold between pricing 

and computing capabilities, several solutions are being discovered annually, [15,16]. Some examples 

include new minicomputers that can connect to external computing devices and support even big 

and resource‐intensive applications like computer vision, [17,18]. The main issue and what this article 

will  study  and present  are  not microcontrollers  i.e. devices  that  receive  a  signal  and  base  some 

code/process provide a single output but smarter devices that also incorporate some sort of feedback 

and memory for the programmers/electrical engineers, [19]. 

As such, regardless of the needs or an application, the first step for a researchers on a budget to 

get accustomed to these technologies is to have small in size and low in cost devices that will be able 

to support these applications (not necessarily at a scale), [20–22]. This article aims to showcase the 

existing mini‐computing devices in the industry regarding how to program small to medium‐sized 

applications and suggest low‐cost and low‐power solutions mainly focusing on educational purposes 

applications. Specifically, the outline of this article is that we first briefly review what a sensor is, its 

properties, and its characteristics. Then, we showcase why we use them and what are the most known 

categories of them, then we expand on the existing solutions where mini computing devices can be 

used  to  connect,  use  and  host  these  sensors  and  provide  more  detailed  comparison  tables  of 

computing devices that incorporate all the necessary skills for development. In this paper, the pricing 

of sensors or mini computing devices is not included as it is highly dependable on the area but, it is 

noted  that  the  range  of  these  devices  and  their  respective  capabilities  are  similar  in  terms  of 

processing power.   

2. Problem Formulation 

2.1. Defining Sensory Devices 

A sensor is generally defined as a device that is used to measure or detect a physical quantity 

and produces a measurable output. The first use of sensors was when they appeared alongside living 

beings and specifically in our everyday instruments and tools. Specifically, the human eyes and ears 

are typical examples where the initially one may consider what sensing is. As such, one can define 

sensing via the previous example where, the former detects part of the spectrum of electromagnetic 

radiation and the latter detects sound, i.e. pressure waves. Over time, man has noticed the lack of 

measuring instruments for solving everyday practical problems, such as measuring length, weight, 

or volume, [23,24]. Then as time progressed, these observations and various practical reasons in our 

everyday  lives  created  the  need  to  measure  more  accurately  than  just  sensing  these  physical 

quantities. 

2.2. Defining Sensory Devices Generations and Advancements 

Since the beginning of sensor development, the term ʺsmart sensorʺ has appeared for a variety 

of devices. This term refers to devices that fully or partially integrate an information processing unit. 

It is worth pointing out that this embeddedness is necessary either in the form of a data processing 

system, or  in the form of memory feedback, an automatic calibration or compensation process, or 

even noise cancellation, otherwise the sensor will not be considered ʹsmartʹ or ʹintelligentʹ, [25–27].   

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 November 2024 doi:10.20944/preprints202411.1090.v1

https://doi.org/10.20944/preprints202411.1090.v1


  3 

 

The first generation of  ʹintelligentʹ sensors are devices that are usually connected to electronic 

signal processing and amplification circuitry, [26,28]. The second generation consists of sensors that 

are remotely located from their installation site and are connected to a section of analog electronic 

circuitry  to adjust and modulate  their desired operation,  [29,30]. The  third generation  contains a 

powerful sensor component usually connected with a signal determination module and is composed 

of integrated circuits and/or passive components existing in the same implementation part (module). 

The  conversion  of  the  analog  to  digital  signal  (A/D  conversion)  in  the  converter  and  the 

microprocessor  are  external  elements  of  the  sensor  composition  and  structure,  [31–33].  Fourth‐

generation smart sensors are a product of regulation circuits combined with an identical monolithic 

or hybrid integrated circuit. More specifically, in this phase, the transducer and digital processing 

circuits communicate with discrete elements and are, as in the previous generation, external elements 

of the sensor composition and signal conditioning circuits. The generated output is bidirectionally 

interfaced to the microprocessor which provides the possibility of automatic control of the operation, 

[34–36]. 

Finally, in fifth‐generation sensors, the converter of the analog to digital signal is located in a 

similar monolithic or hybrid  integrated circuit where  the signal conditioner  is placed.  It  is worth 

mentioning that, depending on the design, a number of these sensors can have as an output a digital 

signal with the possibility of simultaneous and continuous communication with the microcontroller 

and  the  corresponding  modern  computer  system.  To  achieve  this  function  during  their 

communication, a host system via a communication bus or wired network is used, [37,38]. The main 

advantages of this generation is the existence of multiple signals from different sensors, the automatic 

detection of the level of properties such as temperature, humidity, and other environmental factors 

that can disturb a measurement, the automatic correction of the main errors that occur during the 

operation of the predetermined life span of the components and, in general, the integration of large‐

scale integrated systems (VLSI), [39]. 

2.3. Defining Sensory Devices Properties 

For choosing the appropriate instrument for a specific application, it is important to know the 

characteristics  of  a  sensor  device.  This  is  reflected  by  its  performance  and  behavior  during 

measurements.  Some  of  the  most  important  aspects  to  take  under  consideration  for  technical 

instruments and consist of the following characteristics and properties:   

1. Accuracy: measuring how close is the measurement of the sensory device to the actual value of 

the property that is being measured. As such, high accuracy is translated to minimal error and 

reliable and accurate results for varying conditions, [40]. 

2. Tolerance: measures and defines the acceptable range of deviation from a specified value of the 

values and conditions the sensor can withstand without failing or producing incorrect readings, 

[41]. 

3. Linearity: refers to the degree to which the sensor’s output is directly proportional to the input 

across its entire range. As such, high linearity provides consistent and predictable measurements 

whereas it may introduce errors and noise to the final data interpretation, [42,43]. 

4. Distinctness: refers to a sensor’s ability to differentiate the values between small changes in the 

measured parameter. As such, sensors with high distinctness can detect fine variations in the 

input signal. 

5. Repeatability: refers to the ability of a sensor to provide the same measurement results under the 

same conditions over multiple trials thus ensuring reliability and consistent performance, [44]. 

6. Sensitivity: refers to the sensorʹs ability to detect small changes in an input parameter. As such, 

a sensor with high sensitivity provides minimal variations thus ensuring long‐term minoring of 

crucial environmental and operational changes and conditions, [45]. 
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2.4. Most Known and Widely Used Types of Sensors 

This  section  offers  a  comprehensive  overview  of  various  sensor  types  commonly  used  in 

measurement and control applications. We will explore sensors designed to measure temperature, 

optics,  electrical  resistivity,  thermistors,  pressure,  rubber,  capacitance,  level,  humidity,  speed, 

distance,  and  force/weight.  These  sensors  are  vital  across  numerous  industries,  including 

manufacturing, automation, environmental monitoring, and scientific research. 

2.4.1. Sensors for Measuring Temperature 

Temperature is defined as the physical quantity that determines the equilibrium of a system in 

terms  of  its  thermal  characteristics.  The  basic  discovery  for  measuring  this  quantity  was  the 

thermometer, which nowadays consists mainly of electronic components and  is divided  into  two 

categories:   

1. Contact  thermometers:  they  can produce  the desired  reading by  coming  into  contact with  the 

system whose  temperature  is  being measured,  i.e.  by measuring  their  temperature.  In  this 

category,  the accuracy of  the measurement depends  to a  large extent on  the extent  to which 

thermal equilibrium has been established between the thermometer and the system, [46] 

2. Remote thermometers: they can give the desired indication of the thermal radiation of the system 

and indirectly calculate the temperature, since physical contact between the thermometer and 

the system to be measured is not considered necessary, [47]. 

The type of sensor to be used to obtain the required measurement depends on several factors, 

such as  the range of variation of  the  temperature  to be measured,  the required accuracy, and  the 

fidelity of the environment  in which the sensor  is placed. Mechanical or other stresses are often a 

problem and accordingly, the difficulty or ease of measurement is strongly related to the temperature 

value, the medium in which we want to determine the temperature, and the overall topology of the 

problem, [48,49]. Some common examples of contact sensors are fiber optic sensors, [50,51], resistors 

(platinum/nickel),  [52–54],  thermistors,  [55,56],  thermocouples,  [57,58],  cryogenic  sensors,  [59,60], 

and integrated thermometers, [61,62]. 

2.4.2. Sensors for Optics 

  Fiber optic sensors involve devices that are connected to various parameters using thin optical 

fibers as the only means of stimulating and reading the sensing element, [63,64]. These fibers are the 

same  as  those  used  in  telecommunication  devices,  [64,65].  For  example,  when  measuring  the 

temperature in the windings of a high‐voltage power transformer, the voltage can reach high values 

of up  to 500[kV], so  the use of sensors communicating with metallic conductors  is  impossible  for 

safety reasons, making this type of sensor necessary. Optical fibers have various characteristics, the 

variation of which can be exploited by the engineer to produce the necessary sensory instruments 

required  for  a  problem,  [66–68].  Such  characteristics  are  micro‐bindings,  [69],  interferometric 

phenomena,  [70,71],  changes  in  refractive  index,  [72]  polarization  changes,  [73,74], wavelength 

variations, [75,76], the diffractive barriers, [77], occurrence of the Sagnac effect (detection of rotational 

motion), [78,79]. 

2.4.3. Sensors for Electrical Resistivity 

The measurement of electrical resistance can lead, under the right conditions, to a fairly accurate 

calculation and determination of temperature. It should be pointed out here that, according to the 

literature, resistors and thermometers can be made from a wide range of materials, but the required 

function between electrical resistivity and temperature  is not the same for all classes of materials, 

[80,81]. This is the reason why for the measurement of temperature, nickel, platinum, and copper are 

mostly used. 

Platinum Resistance Thermometers (PRT) are widely used as contact sensors as most of their 

variants can be used for temperature measurements with an accuracy of a few [mK]. The same sensor 

can be used in different temperature ranges without any hysteresis effects. Its characteristics remain 
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very stable even after many cycles of use and are characterized by low cost and high accuracy. For 

their activation and operation,  it  is necessary  to have an  external  excitation, which  can be  either 

current  or  voltage,  to  find  the  required  quantity  by  finding  their  electrical  resistance  after  a 

predetermined calibration procedure, [82,83]. 

In modern  times,  thin‐film  sensors have  been  established,  these  are  electronic devices  from 

which the wire sensors are composed of a helical very thin platinum wire placed inside the interior 

of a ceramic tube. In this way, protection and support of the device is achieved and the overall cost 

of construction and maintenance of a system is reduced, [84,85]. In particular, wire sensors are in the 

majority of cases particularly costly compared to thin film sensors due to the purity of the metal. 

To ensure  the correct operation of  the above devices and  to avoid wear due  to high  thermal 

stresses and other environmental factors that contribute both to the destruction of the equipment and 

to a reduction in the accuracy of the measurement, the three‐wire technique is often used, [86,87]. In 

particular, the operating principle is the following: suppose three conductors, of which conductors A 

and  B  are  of  identical  length  and  their  resistances  are  at  opposite  ends  of  the  bridge  (cross‐

connection). 

2.4.4. Thermistor Sensors 

One of the breakthroughs in terms of smart sensors has been thermistors. More specifically, they 

are made of  semiconducting materials, usually metal oxides,  [88]. The  specific  conductivity of  a 

semiconductor is given by the relation : 

σ = e* (n*pe + p*ph) 

where e is the charge of the electron, 

    n,p are the concentrations of electron and hole carriers 

  pe, ph are the electron and hole mobilities 

At this point it is emphasized that the temperature coefficient of thermistors is generally negative 

and despite the existence of thermistors with a positive temperature coefficient its use cases are not 

widespread, [89]. The variation of the temperature coefficient has a large variation which may even 

reach  an  order  of magnitude  of  one  percent  per  oC.  This  fact  allows  them  to  detect  very  small 

temperature changes that could not be detected by a platinum resistor or thermocouple. 

Based  on  thermistors  and  the  need  to  further  analyze  the  data  they  generate,  integrated 

temperature  sensors  on  semiconductors  such  as  microprocessors  were  created,  [90,91].  Their 

characteristics are the linearity of the output signal, their small size, low cost, extremely high order 

of  accuracy,  and  limited operating  range  (from  ‐40  to  +120  0C)  as  long  as  they  are  satisfactorily 

calibrated.   

Smart sensors are usually defined as remote sensors that produce their readings without being 

in physical contact with the system, usually by detecting the thermal radiation emitted by all available 

bodies with  a  temperature  above  absolute  zero. As  a  result,  in  the majority of  applications,  this 

thermal radiation is detected in the infrared region of the electromagnetic spectrum, [92,93]. Their 

advantages are manifold as the temperatures recorded are very high and in many cases exceed the 

physical limits of the contact sensor materials. In addition, the difficult step of finding and designing 

the  optimum  location  for  sensor  installation  is  omitted.  Also,  wear  and  tear  on  the  sensor  is 

significantly reduced as it does not require the kind of stress that contact sensors are subjected to and 

also covers cases where wired contact would be impossible. 

2.4.5. Sensors for Measuring Pressure 

This category includes sensors that exist to measure the force exerted on a surface, which has 

the direct consequence that its unit of measurement is N∙m2, [94]. The pressure to be measured may 

be the product of liquids or gases and consists of an energy detection mechanism (Newton) and their 

conversion into electrical signals. The main types of these sensors are: elastic pressure sensors, [95], 

piezoelectric pressure sensors, [96], and capacitive pressure sensors, [97]. 
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2.4.6. Rubber Pressure Sensors   

As their name indicates, this category includes sensors whose one or more parts can be subjected 

to  temporary changes  (deformation, bending) of  their dimensions,  [98]. These sensors are usually 

found in Bourdon tube pressure measurements where the operation is based on a calibrated needle 

placed on a surface,  [99].  In  the event of pressure,  it moves and the  tube to which  it  is connected 

deviates from its initial point and this force is measured. Due to the displacement of the needle, the 

above procedure is often used for distance measurement using displacement sensors. Displacement 

refers  to  the change  in position of  the object by  some distance or angle where  if  it  schematically 

depicts a straight line, it is defined as linear. Similarly, if the reference point is rotation about a given 

axis of rotation it is defined as angular, [100]. 

2.4.7. Capacitive Pressure Sensors 

In this category of sensors, the diaphragm is placed between two armature elements in each of 

which a capacitor is formed. The two existing capacitors are then connected to a bridge which is in 

equilibrium  for zero pressure. The occurrence of an electrical signal disturbs  the equilibrium and 

therefore changes the capacitance which contributes to the calculation of the necessary elements. The 

main negative aspect of these devices is that they are prone to errors in the presence of oscillations or 

temperature extremes. The basic structure of the measurement bridge and their structure lies in their 

operation which is determined by the circuitry of the capacitors and the signal to be applied to them 

respectively, [101–103]. 

2.4.8. Level Pressure Sensors 

Level  sensors  are  defined  as  sensors whose main  purpose  is  to  control  a  process  and  are 

commonly  found  in  industrial  applications.  In  particular,  they  are  intended  to  determine  the 

maximum and minimum level in a specific and well‐defined area of action for the triggering of an 

actuator. If no moving parts are required in the structures concerned, they can also be converted into 

point‐level sensors, for example, to measure capacitance or for the manufacture of lasers, infrared 

beams, or photocells, [104,105]. 

2.4.9. Sensors for Measuring Humidity 

The parameter of humidity is one of the most important variables in the design and study of 

many elements. In particular, humidity and temperature are the main factors to be taken into account 

to  eliminate  or  even  find  and  counteract  corrosion  of  sensors  and  measurements.  As  far  as 

measurement  is concerned, this consists of air molecules and chemical reactions which are highly 

variable in the respective external environment, [106,107]. 

2.4.10. Sensors for Measuring Speed 

In several applications, especially in terms of controlling a machine or its correct operation, it is 

necessary to monitor data on the flow of a process. The maintenance of airflow, for example, either 

for proper ventilation or to prevent overheating of a generator and heating and ventilation systems 

in general, is based entirely on sensors for measuring the speed of air and, in some applications, of 

liquids. Velocity in these measurements is defined as the distance traveled per unit of time and is 

expressed in meters per second, [108–110]. 

2.4.11. Sensors for Measuring Distance 

In  this  category,  there  are  different  implementations  to  achieve  the  same  measurement 

depending on the objective, available budget, and desired accuracy. The first one is the sonar‐type 

sensors where the detection and the return of values are done using a parabolic curve in space, which 

covers  a  distance  proportional  to  the  power  of  the  sensor.  This method  is  preferred when  it  is 

necessary to cover a large distance between the sensor and the wall, [111,112]. Due to the mode of its 
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operation, the measurements usually generate a lot of noise. The second is for range sensors where, 

the sensor is placed at a fixed point (usually pressed) based on a fixed radius, which passes through 

a  certain  space. This  beam,  in  the majority  of  cases,  is  light  amplification  by  forced  emission  of 

radiation (laser) or infrared rays (infrared), [113]. 

2.4.12. Force‐Weight Sensors 

The  function  of weight  sensors  is  that  of  the  so‐called  S‐type  load  cell.  Essentially,  it  is  a 

transducer  that converts a  load,  in  this case, a  force, applied  (i.e. weight)  into an electrical signal, 

[114,115]. The installation of such sensors is particularly difficult and special attention must be paid 

to sensitivity, accuracy, and calibration. The operation of S‐type sensors is based on the principle of 

the Wheatstone Bridge. In particular, the principle of operation of the bridge is to apply a potential 

difference  to one pair of ends and measure  the voltage difference.  In  the equilibrium state of  the 

bridge, when no load is applied, this voltage difference is approximately equal to zero, [116,117]. 

2.4.13. Concise Outline of Sensor Types 

The most useful and extensively used sensor types are presented in Table 1 and Table 2 below: 

Table 1. A detailed analysis of the most known and used low‐cost and low‐power computing devices 

in the industry. 

Sensor Type  References  Reference Number 

Temperature 

Sensors 

Gazis et al. (2023),   

Zhao & Bergmann  (2023), 

Mnati et al. (2021) 

[108,109,111] 

Contact 

Thermometers 

Mnati et al. (2021),   

Zhao & Bergmann (2023) 

[110,111] 

Remote 

Thermometers 

Li et al. (2021),   

Huang et al. (2019) 

[112,113] 

Optic Sensors  Udd  &  Spillman  (2024), 

Venketeswaran  et  al. 

(2022) 

[120,122] 

Electrical 

Resistivity 

Sensors 

Claggett  et  al.  (2022), 

Kilinc & Erkovan (2023) 

[130,131] 

Thermistor 

Sensors 

Bodic et al. (2023),   

Liu et al. (2024) 

[137,138] 

Pressure 

Sensors 

Mishra et al. (2021),   

Lu et al. (2020) 

[140,141] 

Humidity 

Sensors 

Farahani et al. (2014), Sajid 

et al. (2022) 

[148,149] 

Speed Sensors  Javaid et al. (2021),   

El‐Sheimy  &  Youssef 

(2020) 

[150,151] 

Distance 

Sensors 

Zhmud et al. (2018),   

Ye et al. (2020) 

[160,162] 
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Force  ‐Weight 

Sensors 

Russel et al. (2016),   

Zhang et al. (2021) 

[172,173] 

Table 2. A concise analysis of the most known and used low‐cost and low‐power computing devices 

in the industry is presented in Table 2. 

Sensor Type  References  Reference Number 

Temperature Sensors  Mnati et al. (2021),   

Zhao & Bergmann (2023) 

[110,111] 

Fiber Optic Sensors  Udd  &  Spillman  (2024), 

Huang et al. (2023) 

[120,122] 

Pressure Sensors  Mishra et al. (2021),   

Lu et al. (2020) 

[140,141] 

Humidity Sensors  Sajid et al. (2022),   

Farahani et al. (2014) 

[148,149] 

3. Comparison of Mini Computing Solutions 

 After considering many well‐known  industry options such as Onion Omega2+,  [118], ASUS 

Tinker Board, [119], and Le Potato, [120], Raspberry Pis were chosen to suggest for their balance of 

storage, speed, processor capabilities, community support, and cost‐effectiveness, [121–123], [124]. 

Moreover, Omega2+ devices  are  less  expensive  and  can be  suggested  to be used  in  several  case 

studies but  lacked processing power, whereas  an  interesting  solution  is  the Tinker Board which 

lacked  extensive  community  support  for  sensors  and  documentation.  Similarly,  from  the mini 

computing devices studied, Le Potato, despite superior CPU and GPU performance, also suffered 

from limited community support. Given that our model of study is focused on educational purposes 

thus  it is not resource‐intensive, Rasbperry Pis, a solution that  is not overly engineered  is in most 

cases  suggested  and  preferred.  All mini‐computers mentioned  support  SD  and WiFi,  ensuring 

connectivity and the ability to store local measurements cost‐effectively on an SD card and transmit 

data remotely. A comparative analysis of these devices is provided in Table 3.   

Table 3. A comparison analysis of  the most known and used  low‐cost and  low‐power computing 

devices in the industry. 

Device  CPU Model  RAM 
RAM   

Technology 
Speed  Power 

Raspberry Pi 4 

Model B 

Quad‐core  1.5GHz 

Arm Cortex‐A72 
1‐8GB  LPDDR4 

1.5 

GHz 

5V 

3A 

Raspberry Pi 3 

Model B 

Quad  Core  1.2GHz 

Broadcom BCM2837 
1GB  LPDDR2 

1.2 

GHz 

5V 

2.5A 
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Onion Omega2+  580 MHz MIPS 
128M

B 
DDR2 

580 

MHz 

3.3V 

0.18A 

ASUS Tinker 

Board S 

Quad‐core  1.8  GHz 

RK3288‐CG.W 
2GB  LPDDR3 

1.8 

GHz 

5V 

1.6A 

Nvidia Jetson 

Nano 

Quad‐core  ARM 

Cortex‐A57 
4GB  LPDDR4 

921 

MHz 

5V 

2A 

4. Conclusions 

  The current century is often characterized as the ʺinformation century,ʺ but to harness the vast 

amounts of information available, it is essential to understand, process, and apply data effectively to 

relevant problems. This article began by outlining the aim of providing young scientists, researches 

and technical hobbyists with detailed  information on how to use sensory devices. We analytically 

defined what  a  sensor  is,  its  unique  characteristics,  and  the  evolution  of  sensors,  from  simple 

measurement devices to smart sensors. We also elaborated on various types of sensors, emphasizing 

their unique capabilities and features. 

The technical novelty of this article lies in presenting several core components and providing a 

concise literature review on a vast amount of different sensory devices and mini‐computers used to 

develop early rapid prototypes. These prototypes can serve as a method to validate the ground truth 

of complex and expensive computing devices and in our case to be used as a low‐power and low‐

cost devices to serve educational puproses. In  line with Moore’s Law [125,126] and more recently 

Hwang’s Law [127], we predict that the capabilities of these devices will continue to increase while 

their costs remain manageable, given their performance potential. 

This article offers readers the ability to define different types of sensors, and by studying Table 

1 and Table 2, they can better understand the initial steps of creating a top‐down approach for their 

intended systems. As a result, future scientists can use this article as a reference for selecting sensors 

and  identifying  the most  suitable  types  of  sensors  and mini‐computers  for  their  systems. While 

Raspberry Pi is often considered the go‐to solution in many cases, it is evident from the data and the 

tables  of  this  manuscript  that  other  options  should  also  be  considered  based  on  the  specific 

applications of each project. Lastly, as for future use cases and studies, it should be really interesting 

to provide a more detailed comparison between  these  low‐cost and  low‐power devices and other 

even in lower costs devices such as chrome books or ChromeOS flex using devices, [128,129]. 
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