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Abstract: In recent years, the exploration and utilization of geothermal energy have received growing
attention as a sustainable alternative to conventional energy sources. Data-driven reliable identification
of geothermal reservoirs, particularly in crystalline basement terrains, is crucial for reducing explo-
ration uncertainties and costs. In these geological settings, magnetic susceptibility and radioactive heat
production, along with seismic wave characteristics, play a vital role in evaluating geothermal energy
potential. Building on this foundation, our study integrates in situ and laboratory measurements,
collected using advanced sensors from spatially diverse locations, with statistical and unsupervised
artificial intelligence (AI) clustering models. This integrated framework improves the effectiveness
and reliability of identifying clusters of potential geothermal sites. We applied this approach to the
migmatitic gneisses within the Simav Basin in western Türkiye. Among the selected statistical models,
Density-Based Spatial Clustering of Applications with Noise, and among the AI-based models, the
Autoencoder-based Deep Clustering identified the most promising and narrowly defined subregions
with high geothermal production potential. The potential geothermal sites predicted by the AI models
align closely with those identified by statistical models and show strong agreement with indepen-
dent datasets, including existing drilling locations, thermal springs, and the distribution of major
earthquake epicenters in the region.

Keywords: geothermal energy potential; radioactive heat production; artificial intelligence models;
statistical models; seismic characteristics

1. Introduction
Despite its vast potential, geothermal energy currently accounts for only 0.34% to global energy

production [1]. Nevertheless, it holds considerable promise as a sustainable and renewable energy
source, due to its low environmental impact, high efficiency, and ability to reduce dependence on fossil
fuels [2]. By harnessing the Earth’s internal heat from beneath the crust, geothermal energy enables a
wide range of economically viable applications, including electricity generation, as well as residential
and industrial heating and cooling [3,4].

Geothermal energy production is primarily driven by the temperature gradient within the Earth’s
crust, which results from radioactive heat production (RHP) due to the decay of radioactive isotopes.
Isotopes such as 26Al, 26Cl, and 60Fe belong to the group of short-lived radioactive isotopes, while
235U, 238U, 232Th, and 40K have significantly longer half-lives. In the early stages of Earth’s formation,
isotopes with shorter half-lives were more effective in the production of heat energy. However, since
Earth’s formation, isotopes with long half-lives have becomes the primary contributors to sustained
heat generation. Tectonic movements in active zones further influence the heat flux within the crust,
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with some of this heat being derived from radioactive decay [5]. The decay of uranium (U) and thorium
(Th) isotopes within these rocks produces heat that can be harnessed for geothermal energy [6].

The geothermal exploration process has an integrated approach involving geology, geochemistry,
hydrogeology, geophysics. Field investigations are conducted to analyze the structural framework and
petrographic characteristics of the region, supported by detailed geological mapping. Hydrogeologic
studies aim to define aquifer systems and elucidate the subsurface flow mechanisms of geothermal
fluids, including their interactions with bedrock. Geochemical analyses of water and rock samples from
surface and borehole sources help characterize the hydrochemical composition and origin of geother-
mal fluids, providing insight into the reservoir, cap rock, and heat source. Geophysical investigations
incorporate both surface and borehole techniques to delineate the spatial extent of geothermal systems.
Surface methods, including gravity, magnetic, electrical, seismic, and electromagnetic surveys, are used
to identify the cap rock, reservoir zones, and fluid pathways. Borehole geophysics is used to assess
formation properties and temperature profiles. More recently, data from geological and geophysical
surveys have been used to develop synthetic subsurface models, enhancing the understanding and
visualization of geothermal systems [7–9]. Additionally, a two-dimensional electrical conductivity
model derived from magnetotelluric data has been utilized to reveal electrically anisotropic features
associated with tectonic deformation and magmatic intrusions. This model has identified a deeper
hydrothermal system above a magmatic structure, providing valuable insights for future geothermal
exploration [10] .

In recent years, the integration of artificial intelligence (AI) into geothermal energy exploration
has garnered significant attention for its potential to improve the efficiency and accuracy of geothermal
resource assessment. AI offers innovative solutions for processing and interpreting complex datasets,
thereby improving the efficiency and accuracy of geothermal energy evaluations. AlGaiar et al.
[11] investigated the role of AI in geothermal resource exploration, highlighting its potential to
improve efficiency, data interpretation, and prediction accuracy, key factors in advancing sustainable
renewable energy solutions. Duan et al. [12] presents an AI-based approach for clustering and
classifying geothermal reservoirs in the Ying-Qiong Basin, China. By applying AI algorithms to
geological and geophysical data, the authors identified patterns and grouped reservoirs with similar
characteristics. Their study demonstrated the potential of AI to automate and refine the classification
process, providing valuable insights for more effective reservoir management and resource utilization.

In this study, we extend the work of Duan et al. [12] by incorporating spatially varying magnetic
susceptibility, seismic, and geochemical data, while using RHP as a key indicator for assessing
geothermally favorable sites. RHP is closely linked to the concentration of heat-producing elements,
primarily U, Th, and K, which contribute significantly to subsurface thermal anomalies. RHP-based
approaches have been widely used for identification of geothermal heat sources and preliminary
assessment of geothermal energy potential [13–21]. Our modeling framework uses AI-based and
statistical models to enhance prediction accuracy for locating potential geothermal-rich sites. We test
predictive performance of the models in evaluating geothermal energy potential of Precambrian-age
migmatitic gneisses of the northern Menderes Massif, within the Simav Basin in western Türkiye.
Moreover, we examined the AI-predicted geothermal sites in relation to the spatial distribution of
earthquake epicenters to investigate potential correlations between tectonic activity and the localization
of geothermal resources.

2. Study Area
The study area is located in the Simav Basin in the northern Menderes Massif of western Anatolia,

Türkiye (Fig. 1). This region forms part of the Alpine–Himalayan orogenic belt and has under-
gone significant extensional tectonics from the late Neogene to the present. This setting provides a
geodynamically active environment shaped by complex structural deformation and magmatic activ-
ity. Within this tectonic framework, the Demirci, Simav, and Dursunbey basins in the northeastern
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Menderes Massif, have been the focus of extensive multidisciplinary research due to their pull-apart
basin structures, magmatic–metamorphic evolution [22–27] and rich geothermal resources.

The Simav region and its surroundings have emerged as one of Türkiye’s prominent geothermal
energy zones. Numerous studies, including those by [28,29], have evaluated the hydrogeochemical
properties and reservoir potential of the area’s thermal fluids. Geothermal resources in Simav are
actively used for residential and greenhouse heating, as well as electricity generation. The heat
potential of the Simav geothermal field is 1.3x1014 kJ, and the electricity generation potential is 26 MW,
with an average probability of 50%, while the most possible value is calculated as 19 MW [29].

Figure 1. (a) Location of the study area on a regional map, modified from [30] and [31] (b) 1:100,000-scale geological
map of the Kütahya J21 and J22 quadrangles, modified from [32,33]. The base elevation data are derived from
the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation
Model (GDEM), Version 3, covering the N39E028 and N39E029 grids, with a spatial resolution of approximately
30 meters.

3. Geological Settings
The geological map and column section of the study area are presented in Fig. 1 and Fig. 2,

respectively. The geothermal energy resources in the Simav Graben, where the study area is located, are
associated with lithologies that possess potential for heat generation, in addition to featuring permeable
reservoir rocks and impermeable cap rocks essential for geothermal system development [34]. This
study focuses on the migmatitic gneisses of the Kalkan Formation, which constitute the basement
rocks of the Menderes Massif and exhibit significant potential for RHP. The formation displays depth-
dependent brittle and ductile deformation features [35,36], indicating complex tectonometamorphic
processes. Normal faults within the basin, along with intersecting transfer faults, are believed to
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facilitate the upward migration of geothermal fluids. The most lithologically suitable reservoir rocks
for hosting geothermal fluids within the basin include the limestones of the Budağan Formation, the
marbles of the Balıkbaşı Formation, and quartzite layers within the Simav Metamorphites (Fig. 2).

Figure 2. A stratigraphic column of the Simav Basin (not to scale), adapted from Burçak et al. [34] was developed
using data from [33] to construct the geological section.

The Budağan Limestone Formation contains interbedded banded schist layers, reflecting a com-
plex depositional and metamorphic history [34,37,38]. The Balıkbaşı Formation is notable for its
extensive fracturing and the development of micro- to macro-scale dissolution features, including
karstic voids, which significantly enhance its capacity as a geothermal reservoir [33]. Additionally, the
quartzite layers within the Simav Metamorphites demonstrate favorable reservoir characteristics due
to their structural integrity and permeability [33,34].

The Simav Graben, which cuts across the northern Menderes basins, trends predominantly in a
north–south direction and is structurally defined by high-angle normal faults [39]. In the context of
geothermal fluid transport within the graben, zones where transfer faults intersect with these high-
angle normal faults are of particular significance, as they frequently serve as key conduits for fluid
migration. Fault focal mechanism analyses of ongoing seismicity north of Simav further underscore
the importance of regions where strike-slip and normal faults converge. These structurally complex
zones are likely to enhance the permeability and facilitate the upward migration of geothermal fluids,
making them critical targets for exploration.

The Simav Graben is located on the active Simav fault zone, which was formed as a result of the
extensional tectonic regime in the northern Menderes Massif region. The approximately east-west
trending and north-trending Simav active fault cuts north of the Demirci and Selendi Basins in the
NE-SW trending northern Menderes Massif, which was opened in the early Miocene [25,39–41].

4. Data Availability
Field sampling was conducted on the migmatitic gneisses within the J21 and J22 quadrangles

on the 1:25000-scale geological map (Fig. 1). A total 90 rock samples were collected from various
locations within the Kalkan Formation. These samples underwent geochemical analysis to determine
the concentrations of major oxides, including SiO2, Al2O3, K2O, CaO, MgO, FeO, Fe2O3, TiO2, P2O5,
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and MnO. The following elements are present in the compound: Cr2O3, BaO, SrO, and trace elements,
including Rb, Ni, Nb, Y, Ta, V, W, U, Th, Zr, Pb, Cu, Zn, Mo, Co, Cd, Re, Au, Ag, Hg, Sn, As, Sb, Cl, Se,
and S. Magnetic susceptibility measurements were also conducted on these rock samples at both low
and high frequencies, resulting in mass-dependent and frequency-dependent magnetic susceptibility
values.

Seismic data for the study area between January 1, 1900, and March 27, 2025, were acquired from
the Boğaziçi University Kandilli Observatory and Earthquake Research Institute (KOERI) Earthquake
Query System1. The earthquake magnitude and frequency distribution is as follows: 0–1 (4,306 events),
1–2 (2,434 events), 2–3 (2,909 events), 3–4 (599 events), 4–5 (104 events), and 5–6 (6 events). Notably, no
seismic events exceeding magnitude 6 were recorded in the region during the specified period.

Additionally, the designated study area includes 59 geothermal boreholes, as reported by the
General Directorate of Mineral Research and Exploration. Of these, approximately 10 are classified
as high-temperature geothermal wells, while the remaining wells fall into the medium- to low-
temperature categories.

5. Sample Preparation and Methods
Laboratory analyses were carried out in two main categories including magnetic susceptibility

measurements and radioactive heat production assessments.

5.1. Magnetic Susceptibility Measurement

The magnetic susceptibility method is a well-established geophysical technique used to assess the
magnetic properties of rocks and sediments. Magnetic susceptibility quantifies the degree to which a
material becomes magnetized when exposed to an external magnetic field. This property provides
critical insights into the mineralogical composition of geological materials, particularly the presence
of magnetic minerals such as magnetite. For example, rocks enriched in ferromagnetic minerals like
magnetite typically exhibit high magnetic susceptibility, whereas rocks with low iron oxide content
display lower values. In geophysical practice, magnetic susceptibility is expressed either in SI units
(m3/kg) or in cgs units (dimensionless), depending on the measurement system and study objectives.
These measurements serve as a cost-effective and non-destructive means of characterizing the magnetic
and compositional characteristics of subsurface materials [42].

In this study, measurements were conducted using the MS2B sensor of the Bartington device.
Rock samples were initially crushed and ground to a grain size of approximately 75 µm using a
tungsten carbide vibratory grinder. For measurement purposes, samples were shaped into cylindrical
forms with a diameter of approximately 10 mm and a length ranging between 10–20 mm. Prior to
measurement, all samples were thoroughly cleaned and dried to eliminate moisture and contaminants
that could interfere with the results [42]. Prepared powdered rock samples were placed in 10 cc plastic
pots and inserted into the measurement chamber. Readings were taken at both low (0.47 kHz) and
high (4.7 kHz) frequencies, with a sensitivity of 0.1 SI units. To determine the mass-specific magnetic
susceptibility, the measured magnetic susceptibility values, χ, were normalized by the corresponding
sample densities, ρ, following the approach outlined by Dearing et al.[42],

χLF = χ/ρ,

χHF = χ/ρ
(1)

The percent frequency-dependent magnetic susceptibility, χFD%, is derived from the values obtained
from Eq. 1 through

1 http://www.koeri.boun.edu.tr/sismo/zeqdb/
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χFD% = [(χLF − χHF)/χLF]× 100 (2)

The mass-specific and frequency-dependent magnetic susceptibility, χFD, is calculated using the values
obtained from Eq.1, along with the density,

χFD = (χLF − χHF)/ρ. (3)

5.2. Radioactive Heat Production (RHP)

Radioactive heat generation is the process by which heat energy is released through the decay of
radioactive isotopes (e.g., uranium (U), thorium (Th), potassium (K)) in rock-forming minerals. This
form of heat production plays a critical role in assessing the geothermal energy potential of a region.

In this study, RHP potential was determined using X-ray fluorescence, XRF, measurements.
The activity concentrations of radioactive isotopes present in the sample can be derived from these
elemental values, which in turn are used to estimate the RHP of the samples. The spatial distributions
of U, Th, and K are presented in Fig. 3. As shown in the figure, the eastern part of the Simav district
exhibits higher concentrations and greater variability in U, Th, and K compared to the western region,
which is dominated by migmatitic rocks. Notably, Th concentrations are significantly elevated in the
eastern region, while they remain consistently low in the western part of the study area.

The RHP potential at the sampling sites can be estimated using the isotope concentrations and the
correlative relationships given in Eq.4. In these expressions, RHP represents the amount of heat energy
released per unit volume of the sample as a result of the radioactive decay of isotopes. Based on data
from 90 sampling locations, these relationships yielded RHP values with a coefficient of determination,
R2, of 1.00 and root mean square error, RMSE, values ranging from 0.01 to 0.04 µWkg−1. These results
indicate that any of the listed expressions can be reliably applied to estimate RHP in the study region.

RHP = ρ × [(9.7 CU) + (2.7 CTh) + (3.6 CK)]× 10−5, [13]

= ρ × [(9.77 CU) + (2.63 CTh) + (3.4 CK)]× 10−5, [14]

= ρ × [(9.67 CU) + (2.63 CTh) + (3.5 CK)]× 10−5, [15]

= ρ × [(9.52 CU) + (2.56 CTh) + (3.48 CK)]× 10−5, [16]

= ρ × [(0.097 CU) + (0.026 CTh) + (0.036 CK)]× 10−3, [17,18]

= ρ × [(0.0957 CU) + (0.0256 CTh) + (0.0348 CK)]× 10−3, [16,17]

= ρ × [(0.0718 CU) + (0.193 CTh) + (0.262 CK)]× 1.325, [18,19] (4)

We applied the expression by [13] to estimate the spatial distribution of RHP across the region, as
shown in Fig. 4. The results indicate that geothermal potential is predominantly concentrated in the
eastern part of the study area, with a smaller hotspot located in the north-northwestern region. These
findings serve as a basis for evaluating the predictive accuracy of both statistical and AI-based models
in identifying potential geothermal sites.
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Figure 3. Spatial distributions of the radioactive elements potassium (K), thorium (Th), and uranium (U), obtained
from sampling points across the study area, were utilized to estimate the corresponding distribution of radioactive
heat production (RHP).

In estimating RHP potential across the study area using statistical and AI-based models, we also
incorporated variables related to magnetic susceptibility, along with seismic velocities. Although these
parameters are not included in the RHP expressions in Eq. 4, they were incorporated into the clustering
analysis due to observed correlations between tectonic activity, seismic characteristics, and changes in
the temperature and discharge rates of geothermal springs [43,44]. The Simav region is located within
the extensional tectonic regime of Western Turkey and is characterized by intense neotectonic activity.
The area is structurally controlled by normal faults that trend NE–SW and strike-slip faults that trend
NW–SE. The Simav Fault Zone is one of the primary active tectonic structures responsible for both the
regional deformation and the development of geothermal systems in the area [43].

As discussed in Section 3, the geothermal systems in the Simav Basin are closely linked to active
fault zones. These faults act as conduits for the upward migration of deep hydrothermal fluids. The
presence of elevated heat flow and surface hot springs near fault intersections strongly support for
this structural control. Notably, the increase in seismic activity since 2000 indicates ongoing tectonic
deformation, which further facilitates fluid circulation within the geothermal reservoirs [44].
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Figure 4. Spatial variations of RHP, estimated from the concentrations of U, Th, and K, from sampling points,
denoted by black-filled dots, and the correlative relationship by [13].

A notable example of this tectonic–geothermal interaction was observed during the Mw=5.8
earthquake that occurred on May 19, 2011, in the Simav region. Post-earthquake geophysical and
hydrogeological observations revealed significant changes in the temperature and discharge rates
of several geothermal springs, suggesting a dynamic link between seismicity and geothermal fluid
pathways [45].

Figure 5. Spatial variations of magnetic susceptibility: (a) measured values at low frequency, (b) measured
values at high frequency, (c) computed values at low-frequency susceptibility using Eq.1, (d) computed values at
high-frequency susceptibility using Eq.1, (e) percent frequency-dependent susceptibility values calculated with
Eq.2, and (f) mass-specific, frequency-dependent susceptibility values derived from Eq.3.
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6. Cluster Analysis Using Statistical and Unsupervised Artificial Intelligence
Models

The RHP estimates obtained using Eq. 4 do not account for the effects of magnetic susceptibility
and seismic velocity, both of which directly influence RHP, as discussed in Section 5.2. To address
this, we applied three statistical models and three unsupervised artificial intelligence (AI) models to
identify clusters of the most favorable sites for geothermal energy exploration in the study region. The
models used magnetic susceptibility, seismic velocity, and geochemical variables as input features for
clustering. All features were normalized. This is a critical step, as some algorithms, such as KMeans,
are sensitive to the scale of the data. Normalization also helps prevent features with larger ranges from
dominating the clustering process. The target variable is RHP, which does not require standardization.

For the statistical models, we applied Principal Component Analysis (PCA) to reduce the di-
mensionality of the feature set while preserving as much variance as possible. PCA achieves this by
projecting the data into a lower-dimensional space; in our case, the feature space was reduced to two
principal components. All statistical models were applied using the PCA-transformed variables.

We then used the Elbow method to determine the optimal number of clusters. The elbow point,
identified in the inertia plot, marking where the rate of decrease in inertia begins to level off. This
method indicated that four clusters were optimal for our analysis. The identified optimal number of
clusters was used as an input parameter for the statistical and AI models.

We used the Silhouette Score and Davies-Bouldin Index to evaluate the quality of clustering
results. The Silhouette Score measures how similar a data point is to its own cluster (cohesion)
compared to other clusters (separation). It lies in the range of 1≤ Silhouette Score ≤1, where negative
values indicate possible misclassification, 0 suggested overlapping clusters, and values closer to 1
reflect well-separated and compact clusters. The Davies-Bouldin Index evaluates clustering quality
by measuring the average similarity between each cluster. Its value is always zero or positive, where
lower values represent tight, well-separated clusters, while higher values represent loose clustering.

We used the commonly applied K-Means clustering method [46] as the baseline. However, it
resulted in a Silhouette Score of -0.112 and a Davies-Bouldin Index of 6.129, indicating poor clustering
quality and significant misclassification. Consequently, the K-Means method was excluded from
further consideration.

Among the statistical models chosen, unlike many traditional clustering algorithms, Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) [47] does not require the user to
predefine the number of clusters. It can identify clusters of arbitrary shape and is especially effective
for geospatial data or datasets with varying densities. It works by grouping together closely packed
points, those in high-density regions, while labeling points in low-density areas as noise or outliers.

The second statistical clustering model used in the analysis is the Gaussian Mixture Model
(GMM) [48]. Unlike K-Means, which assigns each data point to exactly one cluster, GMM provides a
probabilistic approach, allowing data points to belong to multiple clusters with varying probabilities.
This flexibility makes GMM particularly effective for identifying complex, overlapping clusters with
different shapes, sizes, and densities. The model employs the Expectation-Maximization algorithm to
iteratively estimate the parameters of the underlying Gaussian distributions, enabling more nuanced
clustering compared to hard-assignment methods like K-Means.

The third statistical clustering model used in our analysis is the Agglomerative Clustering Model
(ACM). Agglomerative clustering is a hierarchical clustering technique that constructs clusters by
iteratively merging the closest pairs of data points or existing clusters. It does not require the number
of clusters to be specified in advance. Furthermore, agglomerative clustering is capable of identifying
clusters with complex shapes and structures, as it does not assume any predefined cluster geometry.

In addition to the statistical models, we used three AI-based methods, including Autoencoder-
based Deep Clustering, Self-Organizing Maps, and Deep Embedded Clustering to detect complex
patterns and clusters that traditional algorithms like KMeans often fail to capture, particularly in
cases involving non-spherical or highly overlapping clusters. The autoencoder-based deep clustering
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(ADC) [49] combines unsupervised learning with deep neural networks to extract meaningful features
from the data. An autoencoder first compresses the input into a low-dimensional latent space that
captures essential data structures. KMeans is then applied to this compact representation. The model
iteratively refines both the learned features and the cluster assignments, enhancing clustering accuracy
by aligning the feature space with the clustering objective.

The second AI-based clustering model used in the analysis is the Self-Organizing Map (SOM)
[50], which is based on artificial neural networks. SOMs are particularly well-suited for visualizing
and clustering high-dimensional data by projecting it onto a low-dimensional (typically 2D) grid. The
algorithm organizes input data based on similarity so that neighboring nodes (or neurons) on the
grid respond similarly to similar inputs. This spatial organization makes SOMs highly effective for
identifying underlying structures and patterns in complex datasets.

Another AI-based clustering model used in the analysis Deep Embedded Clustering (DEC) [51]
is an advanced clustering method that integrates deep learning with unsupervised clustering. It
begins by using an autoencoder to learn a compact, low-dimensional representation of the input data,
capturing complex, nonlinear patterns. Unlike traditional clustering methods that operate on raw
data or fixed features, DEC simultaneously refines both the feature space and the cluster assignments
through iterative optimization. It uses a soft assignment approach, using a Student’s t-distribution, to
assign data points to clusters probabilistically. This joint learning framework enables DEC to perform
especially well on high-dimensional and complex datasets, where conventional clustering algorithms
often struggle.

Clustering results for the analysis of potential geothermal sites from each model are shown in
Fig. 6, and the corresponding clustering metrics are presented in Table 1. When earthquake epicenters,
production drilling sites, and the Eynal hot spring, formed by hot water redirected from nearby drilling
are overlaid with the clustering results, overlapping zones of the clusters designate the most promising
geothermal energy locations. Among all the clustering models, DBSCAN and ADC identified the most
narrowly defined overlapping areas as potential geothermal zones, effectively enclosing the existing
drilling sites and thermal springs, located near the seismically active regions.
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Figure 6. Identification of potential geothermal energy regions using statistical models, including DBSCAN (a),
GMM (b), and ACM (c), along with unsupervised artificial intelligence models, including ADC (d), SOMs (e),
and DEC (f). For reference, the locations of production drilling sites and the epicenters of significant earthquakes
(magnitude ≥ 4) are also displayed on the plots.

Table 1. Comparison of Clustering Models Based on Evaluation Metrics.

Model

Metric DBScan GMM ACM ADC SOMs DEC

Silhouette Score 0.717 0.433 0.445 0.340 0.177 0.134

Davies-Bouldin Index 0.392 0.732 0.684 1.333 1.680 2.447
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7. Discussion and Results
During the formation of metamorphic rocks, variations in environmental conditions, such as

pressure, temperature, and fluid activity, can lead to changes in the concentrations of naturally occur-
ring radioactive elements. As a result, the diversity and abundance of these radioelements may vary
depending on the composition of the original source rock that formed the migmatite, as well as the
specific metamorphic processes and stages it experienced. These variations in radioelement concentra-
tions can provide valuable indicators of a region’s geothermal energy potential. Migmatites typically
form near the base of the crust through partial melting, a process that facilitates the mobilization and
redistribution of minerals, including radioactive elements, within the rock.

In the study region, spatial variations in K (wt.%), Th (ppm), and U (ppm) concentrations reveal
that zones with elevated K and Th levels in migmatitic rocks are closely associated with known
geothermal activity. K concentrations range from 0.002 to 8.164 wt.%, Th values from 1 to 65 ppm, and
U concentrations from 0.50 to 15 ppm (Fig. 3). These variations were observed in migmatite samples
collected near geothermal wells drilled by the General Directorate of Mineral Research and Exploration
in the Simav region. The spatial association between high radioelement concentrations in migmatitic
gneisses and geothermal activity suggests a strong geothermal energy potential in the area.

Radioactive heat production (RHP), an indicator of geothermal energy potential, was estimated
using the first expression in Eq. 4, as the differences among the available formulations were found to be
negligible. The estimation, based on the measured spatial distribution of K, U, and Th concentrations,
was used to identify areas with high geothermal energy potential and the resulting spatial distribution
of RHP is shown in Fig. 4. The RHP values in the study area range from 0.291 to 6.784 µWkg−1. RHP
values exceeding 2.0 µWkg−1 are generally considered indicative of significant heat producing rocks
[16,18]. In the study area, migmatites with RHP values exceeding this threshold are primarily concen-
trated in the eastern region, in close proximity to seismically active zones. This spatial association
suggests that these migmatites may represent the primary heat-producing lithology contributing to
the region’s geothermal energy potential.

The expressions provided in Eq. 4, and hence the resultant geothermal potential assesssment,
do not account for the influence of magnetic susceptibility, specifically, low- and high-frequency
dependent and mass-specific magnetic susceptibility, despite the relevance of these parameters in
evaluating the region’s RHP potential. To address this, we analyzed magnetic susceptibility from
laboratory measurements of rock samples collected across the study area. As shown in Fig. 5, the
green, red, and purple regions represent areas with high magnetic susceptibility, while yellow and blue
regions indicate lower values. Notably, zones with elevated magnetic susceptibility correspond with
mineral-rich areas and locations where geothermal energy is actively utilized. This is likely due to the
dissolution of minerals in the presence of hot water and their subsequent interactions under elevated
temperatures. Elevated magnetic susceptibility values observed in areas of hydrothermal alteration
suggest that geothermal processes enhance mineral transformations. These findings contribute to a
more comprehensive understanding of the geothermal potential of the study area.

Moreover, RHP-based assessment of geothermal energy potential in Eq. 4 does not account for
the effect of the primary seismic waves (P-wave) velocity, Vp. However, the relationship between
Vp and RHP, as demonstrated by Rybach and Buntebarth [18], provides valuable insights for both
geothermal system identification and the interpretation of seismotectonic processes. Low Vp values
are typically associated with increased fracture density, high porosity, and advanced hydrothermal
alteration, features commonly found in high-RHP geothermal regions and seismically active fault
zones. In geothermal environments, elevated heat flow and hydrothermal alteration reduce the elastic
properties of rocks, resulting in lower Vp values and seismic wave anomalies. These low Vp zones
also influence the mechanical behavior of fault systems, potentially facilitating earthquake occurrence.
Therefore, the frequent seismic activity observed in geothermal areas with low Vp values may reflect
elevated geothermal potential and active tectonic deformation that facilitates the upward migration
of hydrothermal fluids. Consequently, Vp anomalies serve as valuable geophysical indicators for
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delineating brittle zones in the crust and assessing geothermal energy potential, as they are often
associated with regions of high thermal output and increased seismicity.

Statistical and unsupervised AI models allow for the integration of all measured chemical ele-
ments, beyond U, Th, and K, along with magnetic susceptibility and P-wave velocity data, and RHP
estimates, enabling a more effective identification of areas with geothermal energy potential. Among
the statistical models evaluated, DBSCAN demonstrated the strongest predictive performance by
identifying a narrow, well-defined wedge-shaped zone formed by overlapping clusters. This zone
encompasses majority of the production drilling sites as well as thermal springs, which are sustained
by discharge from production wells.

Among the AI models, ADC emerged as the most promising unsupervised method. It identified
a relatively compact overlapping cluster zone, also enclosing the drilling sites near the seismically
active portion of the study area. Notably, while DBSCAN excluded the Ahmetli region as a potential
geothermal zone, ADC included it within its prediction. Future exploratory drilling in the Ahmetli area
could serve as a valuable validation step to assess and compare the predictive reliability of DBSCAN
and ADC.

Overall, the potential geothermal zones identified based on RHP values calculated using Eq. 4,
derived from U, TH, and K concentrations, are generally consistent with the results obtained from
DBSCAN and ADC models. However, the statistical and AI-based models delineated more localized
and narrowly defined zones. These narrower zones result from the inclusion of additional variables,
especially magnetic susceptibility measures and seismic velocities, that were not considered in the
RHP formulations but were integrated into the clustering analyses.

8. Conclusion
Correlative relationships, given in Eq. 4, based on the concentrations of radioactive elements, U,

Th, and K, and radioactive heat production (RHP) were used to identify potential geothermal sites
across the study area. This analysis revealed three distinct zones within the Simav Basin: western,
central, and eastern regions. Migmatitic gneisses from the eastern region, where geothermal energy
is actively exploited, exhibited RHP values exceeding 2.0 µWkg−1, whereas the central and western
regions showed values below this threshold. Thus, based on field and laboratory analysis, the eastern
region neear demonstrates a higher potential for geothermal energy production. Notably, this area is
located closer to seismically active zones, where recent earthquake magnitudes have exceeded 4.

Statistical and unsupervised artificial intelligence (AI) models enabled the integration of magnetic
susceptibility and seismic characteristics alongside concentrations of radioactive and other chemical
elements. Among the statistical approaches, Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) effectively delineated a narrow, well-defined, wedge-shaped zone, formed by
overlapping clusters, that marks the most favorable subregion for further geothermal exploration and
potential production. Similarly, the Autoencoder-based Deep Clustering (ADC) model emerged as
the most promising AI method for narrowing the search area for geothermal resources. Notably, the
subregions identified by both DBSCAN and ADC encompass the existing geothermal production wells
and thermal springs, which were not included as model features but served as independent validation.
Although these identified zones are more spatially constrained, they align well with geothermally
favorable areas previously identified through field investigations and laboratory analyses.

Our results demonstrate that, unlike traditional correlative approaches, statistical and unsuper-
vised AI models can incorporate magnetic and seismic data to more effectively narrow down potential
geothermal exploration zones, providing time and cost savings. In both modeling approaches, the
zones formed by the overlap of all clusters consistently highlighted the most favorable subregions for
geothermal energy production. The outcomes from the AI models were found to be comparable to
those from the statistical models, suggesting that both approaches should be evaluated in conjunction
to enhance reliability. Future drilling of exploration wells and additional sampling across the study
area will be valuable for validating the clustering accuracy of each model against the other.
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