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Abstract: In modern information systems, data analysis is pivotal for uncovering hidden patterns
and extracting meaningful insights. Visualizing the behavior of real-valued functions over high-
dimensional domains enables researchers to gain intuitive understanding of complex systems. Tradi-
tionally, mathematical problems are tackled analytically; however, a data-driven approach—where
synthetic samples are explored systematically—can reveal new directions and solution spaces. In this
paper, we introduce the RDSF algorithm, short for Reducing the Dimension of the Space of Independent and
Dependent Variables of Real-Valued Functions. This algorithm leverages manifold learning, specifically
Multidimensional Scaling (MDS), to reduce the dimensionality of both input and output spaces, al-
lowing effective visualization and analysis of function behaviors. We present a unified framework for
analytical and visual exploration of mathematical and engineering problems using RDSF. The utility
of RDSF is demonstrated through multiple case studies, including approximate solutions to partial
differential equations (PDEs) and topological analysis of the distribution of prime numbers. These
applications reveal that even abstract mathematical domains can benefit significantly from visual,
data-oriented perspectives. The proposed framework is general, adaptable, and opens new avenues
for exploration across disciplines.

Keywords: RDSF algorithm; manifold learning; dimensionality reduction; data-driven mathematics;
partial differential equations; prime number topology; scientific visualization

1. Introduction
Visual exploration of high-dimensional datasets often reveals subtle patterns, structural anomalies,

or deviations from expected objective function behaviors. These insights can uncover new solution
pathways or isolate subspaces of particular interest within the data landscape [1].

Manifold learning, situated at the intersection of geometry, computation, and statistics, has
become a pivotal framework in modern data analysis [2]. It aims to uncover low-dimensional structures
embedded within high-dimensional spaces [3]. Classic linear techniques such as Principal Component
Analysis (PCA) [4]) and Multidimensional Scaling (MDS) [5]) provide interpretable projections by
preserving variance or pairwise distances, respectively.

Understanding the behavior of functions involving more than three variables remains a critical
challenge. Visualizing such high-dimensional relationships enhances the interpretability of model
dynamics and variable interactions [6].

In this article, we introduce the Reducing the Dimension of the Space of Independent and
Dependent Variables of Real-Valued Functions (RDSF), a novel computational algorithm that builds
on MDS for dimensionality reduction and leverages random sampling to approximate objective
landscapes. RDSF is particularly well-suited for cases where analytical formulations are unavailable or
incomplete but a computable objective function exists.

We demonstrate the power and versatility of RDSF through three representative applications: (1)
the approximation of solutions to partial differential equations (PDEs), (2) analysis of the distribution of
prime numbers in multi-dimensional lattices, and (3) topological characterization of function behaviors.
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In each case, RDSF serves as a tool for converting computationally intractable problems into visually
and numerically analyzable forms [7,8].

2. Algorithm for Reducing the Dimension of the Space of Independent and
Dependent Variables of Real-Valued Functions (RDSF)

Let M ⊆ Rn be an information space with dimension n, and let f : M → R be a real-valued
function defined over M. The goal of the RDSF algorithm is to analyze and visualize the behavior of f
across M by constructing an interpretable geometric representation in R3, where the third dimension
corresponds to the functional value of f at each point.

To achieve this, we employ **Multidimensional Scaling (MDS)**, a manifold learning technique
that projects high-dimensional data into lower dimensions while preserving pairwise distances as
closely as possible [9]. Preserving these distances ensures that the relative geometric and topological
relationships among points in M are reflected in the reduced space.

The algorithm consists of the following steps:

1. For each point x = (x1, x2, . . . , xn) ∈ M, compute the function value f (x).

2. Apply MDS to the point cloud {xi}N
i=1 in M to obtain a 2D embedding {yi = (y(i)1 , y(i)2 )}N

i=1 in a
new space N ⊆ R2, such that the Euclidean distances are preserved:

∥xi − xj∥ ≈ ∥yi − yj∥ ∀i, j.

3. For each embedded point yi, associate the corresponding function value f (xi), forming a new 3D
representation:

zi = (y(i)1 , y(i)2 , f (xi)) ∈ R3.

4. Visualize the set {zi}N
i=1 in R3. This 3D embedding enables intuitive analysis of the functional

landscape, highlighting patterns such as gradients, clusters, local extrema, and other structural
insights into the original function f .

This method is particularly useful for exploring the behavior of high-dimensional functions in
optimization, approximation, and data analysis, especially where interpretability and visualization are
important.

3. Applications of the RDSF Algorithm
The RDSF algorithm provides a powerful computational framework for analyzing a wide variety

of mathematical and engineering problems. In many real-world scenarios, sufficient data can be
collected or derived to construct an informative feature space. This allows for systematic evaluation of
an objective function over varying parameters, forming what we call the M-space.

For theoretical problems, however, such data may not be readily available or might need to
be generated synthetically. In such cases, the RDSF algorithm leverages random sampling and
repeated simulations to iteratively refine the understanding of the objective landscape. This ability
to explore solution spaces with minimal initial assumptions makes RDSF particularly valuable for
high-dimensional, underdetermined, or nonlinear problems.

In the following subsection, we demonstrate the utility of the RDSF algorithm in approximating
solutions to Partial Differential Equations (PDEs), a fundamental class of problems in mathematics
and applied sciences.

3.1. Solving Partial Differential Equations Using RDSF

Partial Differential Equations (PDEs) are ubiquitous in modeling physical systems, from heat
transfer to fluid dynamics [10]. However, analytical solutions are often intractable, necessitating
approximate and numerical methods [11]. Here, we introduce a theoretical result that justifies the use
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of RDSF in approximating solutions to a general class of PDEs using randomly generated functional
forms.

Definition 1. A real-valued function f (x1, . . . , xn) is called a Finitely and Analytically Differentiable Function
(FADF) if the function and all its partial derivatives of any order exist and remain finite over the domain of
interest.

Example 1. The functions sin(x) and cos(x) are examples of FADF functions.

Theorem 1. Let ∆(X, U) = 0 be a PDE with finite coefficients over the domain of its independent variables
X = (x1, . . . , xn). Then there exists a FADF function f (X) and a small constant ε > 0 such that the function

U(X) = ε
(

f (X) + Gk(X)
)

approximately satisfies the equation ∆(X, U) ≈ 0, where G(X) is a known continuous function and k represents
the degree of the equation.

Proof. The detailed proof constructs an approximate solution by inserting a perturbed FADF-based
function into the PDE. Due to the boundedness of derivatives and the finiteness of coefficients, the
residual ∆(X, U) can be bounded above and made arbitrarily small by choosing an appropriate ε. For
brevity, we refer the reader to the appendix for a full derivation.

Corollary 1. In practice, due to the complexity of high-dimensional PDEs, the exact value of ε is unknown.
The RDSF algorithm enables us to estimate a near-optimal value of ε through random sampling and numerical
evaluation of the residual ∆(X, U) over many realizations of X.

Example 2 (Heat Equation in Four Variables). Consider the heat equation:

∆(x, y, z, t) =
∂u
∂t

−
(

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
= 0

Let the trial solution be:

u(x, y, z, t) = ε · sin(x) sin(y) sin(z) sin(t)

with initial choice ε = 0.01.
Using the RDSF algorithm, we generate 500 random samples of (x, y, z, t) in a bounded domain and

compute ∆(x, y, z, t, u). The residuals are visualized in Figure 1.

Figure 1. Residuals for ε = 0.01.

To improve accuracy, we repeat this process for ε = 0.001 and ε = 0.0001 (Figures 2, 3). The dispersion
reduces as ε decreases.
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Figure 2. Residuals for ε = 0.001.

Figure 3. Residuals for ε = 0.0001.

From these results, we determine that the function

u(x, y, z, t) = 0.0001 · sin(x) sin(y) sin(z) sin(t)

is a highly accurate approximate solution to the given PDE under the examined conditions.

3.2. Analysis and Investigation of the Dispersion of Prime Numbers

The distribution of prime numbers has long been a central theme in number theory and remains
one of the most intriguing subjects in mathematics [12,13]. In this section, we demonstrate how the
RDSF algorithm can be applied to analyze the dispersion pattern of prime numbers from a topological
perspective, using synthetic integer spaces.

We construct an n-dimensional grid M, where each coordinate can take an integer value from 1 to
9. Each point x ∈ M represents a vector (x1, x2, . . . , xn), and the product P(x) = x1 · x2 · · · xn defines a
non-prime candidate. We define the objective function f : M → N as follows:

f (x) = min{t ∈ N : P(x) + t is a prime number}.

This function measures the “distance” from each constructed number to the next prime [14]. We
apply the RDSF algorithm to build the corresponding topological spaces and visualize the distribution
of f (x) across the grid. The results for 2D, 3D, 4D, and 5D spaces are combined in a unified visualization
shown in Fig. 4.

In the two-dimensional case, the values of f (x) range from 1 to 5 with frequencies of 14, 9, 5, 4,
and 4, respectively. The highest concentration occurs at f (x) = 1 and f (x) = 2, indicating that most
products lie very close to a prime number.

In the three-dimensional case, f (x) spans a broader range: 1 through 13. The most frequent values
are again within the range 1 to 5, with frequencies of 37, 18, 11, 9, and 13. A few outlier values like
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11 and 13 appear with low frequency, illustrating the increased variability of prime gaps in higher
dimensions.

In the four-dimensional case, f (x) takes values between 1 and 20. Notably, the frequency remains
concentrated within f (x) = 1 to f (x) = 7, with the highest at f (x) = 1 (75 instances). A few new
values like f (x) = 10, 13, 14, 16, 17, 19, 20 emerge as dimensionality increases.

In the five-dimensional case, the dispersion of f (x) extends further, ranging from 1 to 31. Despite
this, the values of f (x) are still highly concentrated in the range 1 to 13. Outliers such as f (x) =

25, 26, 27, and 31 occur with very low frequency. These results suggest that as the dimensionality
increases, while more variation in the distance to the next prime emerges, the likelihood of small prime
gaps remains dominant [15].

Figure 4. Distribution of f (x) in 2D to 5D spaces: visualizing the distance to the next prime for synthetic integer
vectors under the RDSF framework. Each subplot corresponds to a specific dimensionality (2D, 3D, 4D, 5D) and
reveals the structured variation in the dispersion of prime distances across dimensions.

Based on the empirical distribution of f (x) observed in multiple dimensions, we propose the
following corollary:

Corollary 2. Let x ∈ {1, . . . , 9}m and define P(x) = ∏m
i=1 xi. Then, the probability that P(x) + t is a prime

number decreases as t increases, and is maximized when t ≤ m.

This result indicates that within bounded integer grids, products of small integers tend to be
closely followed by prime numbers, and this proximity exhibits a structured pattern across dimensions.
The RDSF algorithm thus reveals an underlying topological signature in the dispersion of prime
numbers.

3.3. Analysis and Investigation of the Behavior of Multivariate Arbitrary Real-Valued Functions

Let f (x1, x2, . . . , xn) be a real-valued function of n variables. The RDSF algorithm provides a novel
geometric and topological perspective for analyzing the behavior of such functions in a neighborhood
of interest. Using Python, we randomly generate points (x1, x2, . . . , xn) from a specified domain to
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construct the M-space, where each point corresponds to an input vector of the function. The greater
the number of points sampled, the more accurate the resulting analysis becomes.

Following the RDSF steps, we evaluate f at each sampled point and then use the MDS algorithm
to reduce the n-dimensional input space into two dimensions while preserving pairwise distances. By
incorporating the value of the function as the third coordinate, a 3D plot is obtained that reveals how
the function behaves near the chosen region of the domain.

Example 3. Rastrigin Function. This is a widely-used benchmark in multivariate optimization. Its highly
multimodal structure makes it a difficult problem for optimization algorithms [16]:

f (x) = An +
n

∑
i=1

[
x2

i − A cos(2πxi)
]

where:

• X = (x1, x2, . . . , xn) is an n-dimensional input vector,
• A is a constant (typically set to 10),
• n is the number of variables.

In the two-variable case, the function surface contains numerous local minima (see Fig. 5). Applying the
RDSF algorithm reveals this complex landscape.

Figure 5. Rastrigin Function (2 variables) in the range [−2, 2]

For three variables, where direct 4D visualization is impossible, traditional analysis often requires fixing
one variable. In contrast, RDSF embeds the entire 3D space into 2D and then adds the function value to visualize
a 3D structure (see Figs. 6 and 7).

Figure 6. Rastrigin Function (3 variables) in the range [−2, 2]

In both ranges, the RDSF algorithm successfully reveals the dense distribution of local minima and the
global minimum at the origin, consistent with known analytical results [16].
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Figure 7. Rastrigin Function (3 variables) in the range [−10, 10]

Example 4. Ackley Function. Another benchmark in multivariate optimization, characterized by a nearly flat
outer region and a central hole with a global minimum [17]. Its complexity, featuring numerous local minima,
poses a significant challenge. The n-dimensional Ackley function is defined as:

f (X) = −a · exp

(
−b

√
1
n

n

∑
i=1

x2
i

)
− exp

(
1
n

n

∑
i=1

cos(cxi)

)
+ a + exp(1)

where X = (x1, x2, . . . , xn), and recommended parameters are a = 20, b = 0.2, c = 2π. The global
minimum occurs at X = (0, 0, . . . , 0), where f (X) = 0.

1. Intuitive Visualization Using RDSF. We applied the RDSF algorithm to the 3-variable Ackley
function without fixing any variable. Using Python, 300 random samples in [−5, 5]3 were generated and
evaluated. MDS was applied to embed into 2D, and the function values were used as the third coordinate.

Figure 8. Three-dimensional RDSF representation of the 3-variable Ackley function

As shown, RDSF reveals a central basin (global minimum) surrounded by ridges. This provides intuitive
insight into how regions of similar output are arranged in input space.

2. Comparison with Numerical Optimization. To validate these insights, we used Particle Swarm
Optimization (PSO) via the pyswarms library [18,19]. With 40 particles and 100 iterations in [−5, 5]3, PSO
found a near-global minimum:

• Estimated minimum: f (x∗) = 0.0009409701490210587
• At point: x∗ = (−0.00020799,−0.00016255,−0.00030871)

This aligns well with the RDSF visualization, supporting RDSF’s utility as both an exploratory and
complementary tool for numerical optimization.

This section highlights the flexibility and insight provided by RDSF in exploring complex function
behaviors, whether the functions are highly multimodal (like Rastrigin and Ackley) or smooth with
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a single minimum. The method enables a unified framework for analyzing arbitrary multivariate
real-valued functions without requiring dimension-specific assumptions.

4. Conclusions
In this paper, we introduced the RDSF algorithm—Reducing the Dimension of the Space of

Independent and Dependent Variables of Real-Valued Functions—a framework built upon manifold
learning principles [20], specifically using MDS for dimensionality reduction [21]. RDSF enables
visual exploration of high-dimensional function behavior by projecting independent variables into
two dimensions and mapping function values as the third dimension.

We demonstrated its effectiveness across diverse problems: analyzing residuals in the heat
equation [22] and revealing structural patterns in prime number distributions [23]. These case studies
illustrated how RDSF provides a flexible tool for understanding the behavior of real-valued functions
in multidimensional domains.

The visual representations produced by RDSF not only support exploratory data analysis [21] but
also offer intuitive insights into mathematical and computational problems. We believe this framework
can be extended to other analytical domains, enabling new methods of visualization and interpretation
for complex systems.

Future work includes exploring other distance-preserving embedding methods [24,25], applying
RDSF to empirical datasets in physics or biology, and formalizing theoretical properties of the algorithm
in various functional spaces.

Appendix A. Proof of Theorem 1
We provide a justification for the theorem stating that for a PDE ∆(X, U) = 0 with finite coeffi-

cients, there exists an approximate solution of the form

U(X) = ε
(

f (X) + Gk(X)
)

where f (X) is a FADF function, G(X) is a known continuous function, k represents the degree of the
equation, and ε > 0 is a small constant.

Step 1: Structure of the PDE

Assume the PDE ∆(X, U) is composed of partial derivatives of U with respect to variables
X = (x1, . . . , xn) and possibly nonlinear combinations of these derivatives. Let us denote the PDE in
general form:

∆(X, U) = ∑
|α|≤m

aα(X) · DαU(X) + Φ(X, U(X),∇U(X), . . . ) = 0

where: - α is a multi-index of derivative orders, - Dα denotes the partial derivative of order |α|, - aα(X)

are finite-valued coefficient functions, - Φ is a smooth nonlinear expression in U and its derivatives.

Step 2: Inserting the Trial Function

Let U(X) = ε
(

f (X) + Gk(X)
)

, with f being FADF and G continuous. Then all required deriva-
tives of U exist and are finite:

DαU(X) = ε
(

Dα f (X) + DαGk(X)
)

Step 3: Plug into the PDE

We substitute U(X) into ∆(X, U):

∆(X, U) = ∑
α

aα(X) · ε
(

Dα f + DαGk
)
+ Φ(X, ε( f + Gk), . . . )
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This simplifies to:

∆(X, U) = ε ∑
α

aα(X) ·
(

Dα f + DαGk
)
+ Φ(X, ε( f + Gk), . . . )

Note that: - The first term is O(ε) because ε is factored out. - The second term, Φ, can be expanded
in a Taylor series around ε = 0:

Φ(X, ε( f + Gk), . . . ) = Φ(X, 0, . . . ) + ε · Ψ(X) + O(ε2)

for some bounded function Ψ depending on the partials of f and G.

Step 4: Estimating the Residual

Combining both terms:
∆(X, U) = ε · T1(X) + O(ε2)

for some bounded function T1(X). Hence, the total residual is:

|∆(X, U)| = O(ε)

Step 5: Conclusion

Therefore, by choosing ε small enough, we can ensure that the residual |∆(X, U)| becomes
arbitrarily small across the domain of interest. This justifies that U(X) = ε( f (X) + Gk(X)) is an
approximate solution to the PDE:

∆(X, U) ≈ 0 ⇒ approximate solution.
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