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Abstract: Erosion represents a significant global threat to coastal zones, especially beaches, which are
among the most valuable coastal landforms. This study evaluates the vulnerability to coastal erosion
along the Brazilian Amazon coast, focusing on eight recreational beaches. The research is based on
an assessment of geological, physical, ecological, and anthropogenic indicators. Some of these
indicators were proposed in this study to enhance the evaluation of vulnerability in Amazonian
beaches. The analysis reveals that most of the beaches studied are highly vulnerable to erosion due
to a combination of natural factors and human activities. The barrier-beach ridge, composed of
unconsolidated sediments, exhibits the highest vulnerability, while low cliffs present a moderate
level of risk. The study highlights that semi-urban beaches with significant infrastructure
development are particularly susceptible to erosion, a problem exacerbated by unplanned land use.
Conversely, rural beaches, especially those located in protected areas, show lower vulnerability due
to reduced human impact and better conservation of natural ecosystems. Furthermore, the study
underscores the effects of extreme climatic events, such as prolonged rainfall and high-energy waves,
which can intensify erosion risks. The findings suggest that anthropogenic changes, combined with
extreme climate events, significantly influence the dynamics of coastal erosion. This research
emphasizes the importance of targeted management strategies that address both natural and human-
induced vulnerabilities, aiming to enhance coastal resilience and sustainability for Amazonian
beaches.

Keywords: vulnerability; natural processes; anthropogenic activities; management; Amazonian
beaches

1. Introduction

Coastal environments form the dynamic interface between land and sea, hosting essential
ecosystems, infrastructure, and nearly 40% of the global population [1,2]. These areas are increasingly
exposed to natural and anthropogenic pressures, with coastal erosion being a prominent concern
[3/4]. Coastal areas, due to their socio-economic and environmental importance, face global
challenges associated with erosion, which impacts sandy coastlines across various regions [5,6]. It is
estimated that approximately 70% of the world’s sandy beaches are experiencing erosion [7],
resulting from complex interactions among climatic, oceanographic, and human-induced factors.

Erosive dynamics result from natural processes such as wave action, tides, beach slope, sediment
supply, and sea level rise, often intensified by human activities, such as coastal engineering, land-use
changes, and uncontrolled urban expansion [8-11]. Consequently, the net loss of sediment along the
beach profile, referred to as erosion [12], can lead to significant morphological transformations in
these environments [13], threatening local ecosystems [14], infrastructure, and socio-economic
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activities, including tourism [15,16]. Storms, among natural forces, are particularly significant, often
causing both short- and long-term sediment displacement. In severe cases, these events may lead to
permanent alterations in the coastal landscape [17-19]. In addition, unplanned occupation and
environmental degradation have contributed to the loss of dunes, mangroves, and built
infrastructure [20,21].

To assess coastal vulnerability, various indices have been developed globally [22-24]. These
indices make it possible to identify, quantify, and classify coastal environments based on their
varying degrees of vulnerability. One of the most widely applied is the Coastal Vulnerability Index
(CVI), which was initially introduced by [25]. It integrates physical, geomorphological, and socio-
environmental parameters to assess the susceptibility of coastlines to hazards such as sea-level rise,
storms, and erosion [26,27]. Based on this, the present study adapts the CVI approach to the unique
conditions of Amazonian beaches, which are shaped by powerful physical forces and increasing
anthropogenic pressures [28,29].

The objective of this work is to provide a comprehensive assessment of beach vulnerability
across distinct climatic contexts along the Amazonian coast, supporting effective management of
natural resources and coastal development. Although focused on Para state, the methods and
findings presented here may inform similar efforts in other dynamic coastal settings.

2. Study Area: The Amazon Coast
2.1. Overview of the Amazon Coast

The Brazilian Amazon coast is a vast and dynamic estuarine-marine system shaped by abundant
sediment inputs reworked by both fluvial and coastal processes [29-31]. Stretching between 4°N and
4°S, this coastal zone represents about 35% of Brazil’s 8,500 km-long shoreline [32]. It includes the
immense sediment, nutrient, and organic matter discharge of the Amazon River (Figure 1), which
alone contributes nearly 20% of global river discharge (~200,000 m® s on average) and an estimated
754 x 10¢ tons of suspended sediments per year [33-35]. Although bedload constitutes only about 1%
of the discharge, it accounts for millions of tons annually [36] and sustains extensive sandy beaches
and tidal sandflats.

The coastline is dominated by mangroves and comprises various features such as tidal flats, salt
marshes, cheniers, beach ridges, deltas, and coastal dunes, making up one of the world’s largest
mangrove ecosystems [37,38]. Located in a low-latitude region, the Coriolis effect is minimal, making
coastal circulation primarily driven by river discharge, prevailing winds, wave action, and meso- to
megatidal regimes that create intense tidal currents [29,30].
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Figure 1. State of Para highlighting the Amazon and Gurupi estuaries, Marajo Island, Marajé and coastal sectors:
Western Marajé (Sector I), the Eastern Marajo (Sector II), the Continental Estuarine (Sector III), the Fluvial
Maritime (Sector VI) and the Atlantic Coast of Para (Sector V) according to [29].

2.2. Geomorphological Setting and Offshore Conditions

From a geomorphological perspective, the Para coast is divided into two primary zones [39]: (a)
the emergent coast, represented by Marajo6 Island with a relatively straight shoreline, and (b) the
submergent coast, extending between Marajé and Gurupi Bays and characterized by a more
irregular, dissected landscape with estuaries, islands, and tidal inlets.

This coast is further subdivided based on sedimentary environments and coastal processes. For
example, the area between Maraj6 and Pirabas Bays features a narrow coastal plain and active cliffs
formed from Tertiary sediments (Barreiras and Pirabas formations), while the region between Pirabas
and Gurupi Bays is distinguished by expansive mangrove areas and sedimentary plains.

Offshore conditions are a critical element in understanding coastal dynamics. Data from
NOAA'’s National Data Buoy Center (Station 41041) indicate that prevailing trade winds—from the
northeast and east—drive the generation of waves. During the rainy season (February-May), winds
(5.0-14.0 m s1) produce significant wave heights (Hs) of up to 5.0 m, with predominant directions
between 50° and 110° and wave periods of 3 to 19 s. In contrast, during the dry season (September—
November), wind speeds and wave heights are generally lower. Figure 2 shows the offshore wind
and wave parameters that control the nearshore conditions, setting the stage for coastal processes.
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Figure 2. Seasonal pattern of wind (m s™) and height waves (m) conditions. Source: [40], Buoy Data - 41041.

2.3. Climatic Drivers and Hydrological Dynamics

Rainfall on the Amazon coast is predominantly controlled by the Intertropical Convergence
Zone (ITCZ). The region experiences a humid equatorial climate (Képpen Am) with distinct rainy
(January—June) and dry (July-December) seasons (Figure 3A). Annual rainfall (Figure 3B) may exceed
2000 mm on the Atlantic coast sector (e.g., Tracuateua station) and 3000 mm within the continental
estuarine sector (e.g., Belém station) [41,42].

Interannual climate variability on the Amazon coast is strongly influenced by the Oceanic Nifio
Index (ONI) for the Nifio-3.4 region [40], where El Nifio events (ONI = +0.5) reduce rainfall and La
Nina events (ONI < -0.5) enhance precipitation. Major El Nifo events in 2009-2010 and 2015-2016, as
well as La Nifia episodes in 2007-2008 and 2010-2011, are clearly reflected in the ONI trends (Figure
4). Additionally, severe droughts—such as those in 2005, 2010, and 2012 —have also had notable
impacts on regional hydrology, driven in part by elevated sea surface temperatures in the tropical
Atlantic.
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Figure 3. Average monthly rainfall between 2006 and 2022, and annual rainfall (2006-2022) in Belém and
Tracuateua. The grey hatching represents the rainy season. EN - EI Nifio, LN - La Ni7ia and D - Drought. Source:

[43].
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Figure 4. Month Oceanic Nifo Index, detaching E! Nifio and La Nifia levels between 2006 and 2022. Source: [40].
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River discharge is closely linked to regional rainfall, with peak flows typically occurring about
one month after the highest precipitation periods. Data from the National Water Agency [44] show
significant variability between stations, such as the Atlantic Coast Sector (Nova Mocajuba station)
and the Continental Estuarine Sector (Guama station), where Guamad'’s discharge is approximately

70% higher (Figure 5).
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Figure 5. Average monthly riverine discharge between 2006 and 2022, and annual discharge (2006-2022) at the
Nova Mocajuba and Guama stations. The grey hatching represents the rainy season. EN EI Nifio, LN La Nifia and
D Drought. Source: [44].

The wide and shallow Amazonian continental shelf amplifies the tidal range; for instance, tidal
amplitudes exceed 4 m in the Atlantic sector (Salinopolis station), but tide attenuation through the
Marajé estuary causes a notable reduction in tidal amplitude at Belém and Breves stations (Figure 6).
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Figure 6. Tidal elevation per month at six stations along the Para coast (A-F), and the maximal range at each
station. Source: [45].

2.4. The Study Area and Beach Characteristics

The study area comprises beaches located across four sectors (Figure 7): Eastern Marajo
(Pesqueiro and Praia Grande), Continental Estuarine (Murubira), Fluvio-Maritime (Colares, Maruda,
and Princesa), and the Atlantic Coast (Atalaia and Ajuruteua).

In the Eastern Marajd sector, Pesqueiro Beach is located in the municipality of Soure. This beach
extends approximately 4 km in length and 1 km in width, with a north-south orientation and a
straight to convex shoreline. Its gentle slope, segmented by large tidal channels, is influenced by
fetch-limited waves from Marajé Bay and strong tidal currents. The fine to very fine sediments
contribute to barrier beach formation, while adjacent mangrove and tidal flat systems offer natural
shelter. Pesqueiro Beach lies within the Soure Marine Extractive Reserve, supporting traditional
artisanal fishing communities. Also in the Eastern Marajo sector, Praia Grande was another beach
studied. It features a 1.2 km-long beach with an NNW-SSE orientation, characterized by a narrow,
concave sandy strip and steep topography at the base of coastal cliffs. Sediments derived from the
Barreiras/Post-Barreiras Group, along with wave action and tidal currents, shape its geomorphology.
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In the Continental Estuarine sector, Murubira Beach is situated on Mosqueiro Island along the
Para River. Murubira spans 1.4 km and is about 70 m wide at low tide. The beach is bordered by a
series of active and inactive cliffs from the Barreiras Group, with hydrodynamics influenced by tidal
ranges of approximately 3.5 m and wave heights reaching 1.5 m.

In the Fluvio-Maritime sector, Colares is a mesotidal beach located on Colares Island. It measures
560 m in length and 400 m in width during low spring tides. Additionally, Maruda Beach, situated at
the mouth of the Marapanim estuary, experiences tidal ranges of up to 5 m, spans over 1 km in length,
and reaches up to 300 m in width at low tide.

In the Atlantic Coast sector, the studied beaches were Princesa, Atalaia, and Ajuruteua. These
insular beaches are surrounded by dunes, estuaries, lagoons, and mangroves. They are characterized
by intertidal sandy ridges (200400 m wide), shaped by macrotidal conditions (tidal ranges >4-6 m)
and strong tidal currents (up to 1.5 m s!). Sandbanks modulate wave energy at low tide, while at
high tide, wave heights may exceed 1.5 m. Princesa Beach benefits from additional protection within
the Algodoal-Maiandeua Environmental Protection Area, whereas Atalaia and Ajuruteua are near
protected areas such as the Caeté-Taperacu Marine Extractive Reserve and the Atalaia Natural
Monument.
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Figure 7. Study area, showing tide gauge, fluviometer and climatological stations, and studied beaches.

3. Methodology

This section introduces the newly proposed Coastal Vulnerability Index (CVI), designed to
assess coastal erosion and customized to the specific characteristics of the Amazon coast. The
methodology is based on the CVI framework from [46]. The dataset comprises 14 indicators grouped
into four categories: Geological (GE), which includes Geomorphology (GM), Beach Slope (BS), Beach
Exposure (BE), and Terrain Elevation (TE); Physical (PH), encompassing Wave Climate (WC), Spring
Tidal Range (STR), Rainfall Level (RL), and Wave Orientation (WO); Environmental (EN), covering
the Conservation Status of Dunes (CD), Conservation Status of Mangrove Forests (CM), and
Protected Areas (PA); and Seafront Features (SF), which include Development Level (DL), Territorial
Occupation (TO), and Erosion Indicator (EI).

Each CVI component represents a characteristic affecting overall coastal vulnerability, enabling
a comprehensive analysis for the eight beaches studied. The indicators were obtained through field
campaigns, satellite image analysis, and data from national and international sources (Table 1). The
vulnerability scores for each indicator range from 1, indicating Very low vulnerability, to 5,
representing Very high vulnerability, as detailed in Table 2. The CVI value was calculated (Eq. 1)
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using the arithmetic mean of the indicator values. In this study, the CVI was classified using the same

principle applied to the indicators. This standardized scale facilitates the interpretation of the results.

CVI =

GM+BS+BE+TE+WC+STR+RL+WO0+CD+CM+PA+DL+TO+EI
C

q.1

14

Table 1. A summary of the methodology used for the calculation of the CVL

Sub-indexes Indicators Methodology
Field campaigns (direct observation), Google Earth satellite images and
Geomorphology . )
literature review.
Field campaigns. Two topographic levelling campaigns were carried out
Beach slope on each beach, from the dunes, backshore area or promenade to the

nearshore area (up to 1.5 me deep, relative to the spring low tide level).

Geology

Beach exposure

Field campaigns (direct observation and hydrodynamic measures), Google
Earth satellite images and literature review. Hydrodynamics (tidal
elevation and significant wave height - Hs) were collected using a mooring
mounted on the bottom at a depth of 4.7 m below the MWL, to which wave
and tide data loggers (TWR 2050) were attached. Wave sampling was
carried out on the basis of 512 samples at a burst rate of 4 Hz, with
sampling periods of 10 minutes. Tidal water level data was obtained every

2 seconds and average values were measured every 10 minutes.

Terrain elevation

Satellite imagery from Google Earth

Field campaigns. Significant wave height-Hs were collected using a
bottom-mounted mooring at a depth of 4.7 m below MWL, to which a wave
data logger (TWR 2050) was attached. Wave sampling was based on 512
samples at a burst rate of 4 Hz with sampling periods of 10 min duration.
Offshore significant wave heights-Hos (average height of the highest one-
third of all waves measured), periods-Tp (defined as the wave period
associated with the most energetic waves in the total wave spectrum at a
specific point) and directions-0 were obtained from National Data Buoy
Center - NDBC which holds data from NOAA (station 41041)

Physical

Wave climate
H 595%/ H s

Spring Tidal range -
sTR

Tidal range was obtained using a bottom-mounted mooring at a depth of
4.7 m below MWL, to which a tide data logger (TWR 2050) was attached.
Tidal water level data were obtained every 2s and mean values were

measured every 10 min.

Rainfall level

Monthly precipitation data were provided by the INMET (meteorological

stations located at Tracuateua and Belém).

Wave orientation

The wave direction was obtained from NOAA (station 41041) and the
beach orientation was determined using Google Earth and the angle of
rotation of the orientation for this shallow angle was obtained using a

software program.
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Conservation status ) ) .
Field campaigns (direct observation)
of the dunes

Environmental Conservation status
Field campaigns (direct observation)
of the mangrove
Protect area Literature review
Satellite imagery from Google Earth and field campaign (direct
Development level i
observation)
Seafront o . ] ] ]
feat Territorial Satellite imagery from Google Earth and field campaign (direct
eatures
occupation observation)
Erosion indicators Field campaign (direct observation)
Table 2. Ranges of vulnerability scores for the indicators of sub-indexes.
Score
Sub-index Indicators
1-Very low 2-Low 3-Moderate 4-High 5-Very high
Barrier-beach
ridge, sandy
beaches,
Medium
. muddy or
Geomorphology Rocky, cliffs and ) Estuary and
) ] Low cliffs sandy flats
(GM) cliffed coasts  indented lagoon
bounded by
coasts
dunes, deltas,
mangrove
environments
Beach slope (BS) >0.12 0.08-0.12 0.04-0.08 0.02-0.04 <0.02
Beaches
) Beaches Exposed
Beaches partially .
partially Beaches beaches
Geology protected by  protected . .
protected partially without
(GE) breakwater by natural o .
i inside the exposed and protective
Beach exposure or natural barrier and
] ) bays, marked forno  structures and
(BE) barrier, and with - . .
. receiving  modulation of exhibit no
influenced moderate i .
o ) fetch- the breaking ~ modulation of
by high tidal modulation o ) ]
] ) limited wave climate the breaking
modulation. tidal )
waves wave climate
modulation
3to6m
>6m <3m
. (estuarine )
) ) (estuarine (estuarine
Terrain elevation beaches) 6
beaches) >9 -- -- beaches) and
(TE) . to9m .
m (oceanic ) < 6 (oceanic
(oceanic
beaches) beaches)
beaches)
Physical Wave climate
<0.65 0.65-0.75 0.75-1.0 1.0-1.5 >1.5
(PH) Hs?95%/Hg?
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Spring Tidal
<1.0m 1.0-2.0m 2.0-4.0m 4.0-6.0 m >6.0m
range - sTR
Rainfall level <300 mm -- 300-700 mm -- > 700 mm
) ) 75°-90° 60°-74° 45°-59° 121°-
Wave orientation -- --
91°-105° 106°-120° 135°
Partially
) affected: not
Conservation Preserved
vegetated
status of the and - - Suppressed
dunes,
dunes vegetated L
territorial
occupation
Partially
. Dense,
Environmental affected:
mature
(EN) Conservation plants with Little or no
mangroves
status of the ) - exposed - trees or
with no
mangrove forest . roots, leaning trees
evidence of o
) territorial
erosion )
occupation
Within a Adjacent to
Far from
Protect area protected - a protected -
protected area
area area
Development Semi-urban i Urbanization
Rural Semi-urban Urban
level process process
Seafront —
Territorial
features ] <10% 10-30% 30-50% 50-70% >70%
occupation
(SF) :
Erosion 1to4 Lo
Lo None -- o -- >5 indicators
indicators* indicators

*Indicators: buried vegetation, exposed roots, erosion escarpment, narrowing or absence of backshore, coastal
protection engineering structures, state of conservation of dunes, mangroves, cliffs and damage to seafront

properties.

3.1. Development of the Coastal Vulnerability Index (CVI)

The geological component includes Geomorphology, which serves as an indicator of the relative
erodibility of coastal landforms. For this indicator, vulnerability classification intervals are based on
the susceptibility of various relief types, where rocky and cliffed coasts receive the lowest
vulnerability scores, while landforms such as beach ridges, sandy beaches, muddy or sandy flats
bordered by dunes, deltas, and mangrove environments are assigned the highest scores (Table 2).
Another indicator is Beach Slope, which encompasses both the subaerial beach profile (linked to
inundation vulnerability) and the submerged slope (associated with erosion potential). Gentle slopes
indicate higher vulnerability compared to steeper slopes, as shown in Table 2. This study adopts the
ranges provided by [47]. Additionally, Beach Exposure is determined by natural and anthropogenic
features, as well as wave-tide interactions (Table 2). The classification system, adapted from [29,48],
ranges from sheltered environments that provide physical protection (Very Low vulnerability) to
exposed beaches lacking protective structures, with no modulation of the breaking wave climate
(Very High vulnerability). The fourth indicator, Terrain Elevation, evaluates the vulnerability of
coastal areas to inundation, overwash, and sea-level rise. In this study, the classification criteria were
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adapted from [49]. For estuarine beaches, influenced by mesotidal conditions, Very Low vulnerability
corresponds to elevations above 6 m, while Very High vulnerability applies to elevations below 3 m.
For oceanic beaches, shaped by macrotidal conditions (tidal ranges typically between 5.0 and 6.0 m)
and significant wave heights (Hs) up to 1.8 m, Very Low Vulnerability is assigned to elevations above
9 m, and Very High vulnerability to elevations below 6 m. Only three scores, as indicated in Table 2,
were used for this indicator to align with those established by [49].

The Physical component encompasses four indicators. The first is Wave Climate, a key factor in
coastal sediment balance, particularly during high-energy wave events. According to [47], the ratio
between Hs%s% (wave height exceeded only 5% of the time) and the H;s threshold (which depends on
local conditions) defines coastal vulnerability based on erosion potential. When wave heights exceed
this threshold, significant erosive impacts can reshape the coastline, damage habitats, and affect
infrastructure (Table 2). The second indicator is Spring Tidal Range, which is linked to risks of
permanent and episodic flooding. High tidal ranges—especially when combined with strong tidal
currents—are associated with increased coastal erosion [50] (Table 2). High Rainfall Levels directly
influence the water table and coastal sediment transport. Greater beach saturation enhances sediment
movement, increasing erosion (higher vulnerability). Along the Amazon coast, groundwater
exfiltration in the upper intertidal zone occurs when cumulative three-month rainfall exceeds 500
mm [51]. The fourth indicator is Wave Direction, which is determined by the angle between beach
alignment and prevailing wave directions. Vulnerability is assessed based on criteria outlined in [50],
as shown in Table 2.

With respect to the Environmental components, three indicators stand out. The first is the
conservation status of dunes, as dunes serve as natural barriers that protect coastal areas and
contribute to sediment balance. Adapted from [52], vulnerability classifications range from preserved
and vegetated dunes (Very Low vulnerability) to suppressed dunes (Very High vulnerability), as
shown in Table 2. The second indicator is the conservation status of mangrove forests, as mangroves
act as protective barriers against waves and storms, making them effective indicators of erosion.
Vulnerability classifications range from beaches with dense, mature mangroves showing no signs of
erosion (Very Low vulnerability) to sparse or absent mangrove trees and leaning vegetation (Very
High vulnerability), as shown in Table 2. The last indicator is the presence of protected areas,
primarily designated for sustainable use. Vulnerability is ranked from beaches located within
protected areas (Very Low vulnerability) to beaches outside and distant from protected areas (Very
High vulnerability).

The Seafront features are composed of three indicators. The first is Development Level, which
assesses the distribution of populations and settlements to determine the degree of development in
an area. This can place pressure on coastal zones and potentially exacerbate coastal erosion.
Development levels are categorized into five classifications, as presented in Table 2. The second
indicator is Territorial Occupation, which evaluates the percentage of spatial occupation along the
seafront. Scores, adapted from [53], are determined based on the percentage of occupation, as
outlined in Table 2. The third indicator is Erosion Indicators, which analyze the presence of specific
signs of coastal erosion, as shown in Table 2. These indicators include buried vegetation, exposed
roots, erosion escarpments, narrowing or absence of the backshore, coastal protection structures, and
damage to seafront properties

4. Results
4.1. The Coastal Vulnerability Index-CVI

The Coastal Vulnerability Index (CVI) (Table 3) highlights differences in vulnerability among
the studied beaches. The lowest vulnerability scores are observed in rural beaches such as Pesqueiro
(CVI =2.9), Princesa (CVI = 3.2) and Colares (CVI = 3.3). Although geological and physical factors
contribute to Moderate to High vulnerability in these areas, their lower overall vulnerability is
attributed to the conservation of dune, mangrove, and restinga environments, along with limited
development and reduced human impact. Moderate vulnerability scores are assigned to Praia


https://doi.org/10.20944/preprints202505.0487.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

13 of 22

Grande (CVI=3.6) and Murubira (CVI = 3.6), primarily due to higher scores in physical factors (such
as rainfall levels and wave orientation), environmental aspects (absence of protected areas), and
seafront features (erosion indicators). The highest vulnerability scores are recorded for semi-urban
beaches, including Maruda (CVI = 4.2), Atalaia (CVI = 4.2), and Ajuruteua (CVI = 4.0). Ajuruteua,
although currently a rural beach, is undergoing rapid development and transitioning towards semi-
urbanization, increasing its vulnerability. Below is the description of the indicators by sector.

Table 3. Components, Indicators and CVI values per beach.

Components Indicators Pesqueiro Grande Murubira Colares Maruda Princesa Atalaia  Ajuruteua
Geomorphology 5 3 3 3 5 5 5 5
Beach slope 4 3 3 3 4 5 5 5
Geology
Beach exposure 3 3 3 3 3 1 2 1
Terrain elevation 3 1 1 3 3 5 5 5
Wave climate 4 4 4 4 5 5 5 5
Spring Tidal
. prng 3 3 3 3 5 5 5 5
Physical range
Rainfall level
Wave orientation
Conservation
status of the 1 3 3 1 3 1 3 3
dunes
Environmental Conservation
status of the 1 3 3 1 3 1 3 3
mangrove
Protect area 1 5 5 5 5 1 3 3
Development
1 3 3 2 3 1 3 2
level
Seafront Territorial
. 2 4 5 4 5 2 5 4
features occupation
Erosion
Lo 3 5 5 4 5 3 5 5
indicators
CVI 2.9 3.6 3.6 3.3 42 3.2 4.2 4.0

4.2. Eastern Marajo Island (Sector 1I)

In this sector, two beaches were analyzed: Pesqueiro and Praia Grande. Pesqueiro Beach
exhibited Very High vulnerability in the Geological and Physical components, particularly in the
Geomorphology indicator, as it is a barrier beach characterized by a curved spit shaped by local
north-south longitudinal sediment transport. Similarly, High vulnerability was observed in the
Rainfall level indicator, due to rainfall accumulation exceeding 1500 mm over three months during
the rainiest period, and in the Wave orientation indicator. Moreover, High vulnerability was noted
in the Beach slope indicator, as the slope typically ranges between 0.02 and 0.04, and in the Wave
climate indicator, where the ratio of Hs%s% to Hs?falls between 1.0 and 1.5. Conversely, Pesqueiro
Beach is situated within a protected area, which results in Low vulnerability for five of the six
environmental and seafront feature indicators. It is a rural beach surrounded by well-preserved
dunes and mangroves, making it part of the Soure Marine Extractive Reserve. Territorial occupation
along the beachfront is less than 30%. The sole exception was the Erosion indicator, which revealed
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evidence of buried vegetation, exposed roots, and an erosion escarpment. As a consequence of the
erosion issue, the beach area experienced a reduction of 61,202 m? between 2007 and 2021 (Figure 9).

At Praia Grande, six indicators exhibit Moderate vulnerability: two within the Geology
component: (i) Geomorphology, as it is a beach with ridges running in a NNW-SSE direction,
bordered by cliffs and headlands of the coastal plateau; and (ii) beach slope, which ranges between
0.04 and 0.08. One indicator within the Physical component, the Spring tidal range, reaching 2.0-4.0
m, classifying it as mesotidal. Two indicators within the Environmental component—dunes and
mangroves, which are partially affected by nearby construction. Finally, one within the Seafront
features component. Very High vulnerability was recorded in the Physical component for Rainfall
level and Wave orientation. It is a semi-urban beach located outside protected zones. The Territorial
occupation at Praia Grande covers 50-70% of the beachfront, indicating High vulnerability, with
Erosion indicators including property damage, cliffs, mangroves, dunes, exposed roots, and a narrow
shoreline.

4.3. Continental Estuarine and Fluvio-Maritime (Sectors III and IV)

Four beaches were studied within these sectors: Murubira, Colares, Marudd, and Princesa.
Murubira Beach is characterized by active cliffs of the Barreiras Group, indicating Moderate
vulnerability. Its Beach slope, ranging between 0.04 and 0.08, is also classified as Moderate
vulnerability. About 75% of its terrain has elevations greater than 6 m, corresponding to Very Low
vulnerability. Colares Beach features sandy deposits primarily shaped by Wave action, located at the
foot of cliffs, resulting in Moderate vulnerability. Its Beach slope, ranging between 0.04 and 0.08, also
falls under Moderate vulnerability, with 86% of the coastline at elevations between 3 and 6 m. Maruda
Beach consists of sandy ridges, forming banks and channels that create Very High vulnerability
(Figure 8). The beach slope, varying from 0.02 to 0.04, indicates High vulnerability, while 100% of the
coastline has elevations between 3 and 6 m, marking it as Moderate vulnerability. Princesa Beach is
a flat, linear barrier ridge, surrounded by dunes and mangroves, contributing to Very High
vulnerability. Its Beach slope, ranging between 0.08 and 0.12, is considered Low vulnerability, but its
coastal elevation, measuring less than 6 m, results in Very High vulnerability for this
indicator.Among all beaches in these sectors, the Hs%s% and the Hs? ratio exceeded 1.5, only in Princesa
beach.
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Praia Grande
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Figure 8. Study beaches showing details of the natural characteristics and development level. The red line
represents 2007, the blue line represents 2014, and the green line represents 2021.

In addition, Murubira and Colares exhibit mesotidal conditions, with a Spring tidal range of 3.9
m, indicating Moderate vulnerability, while Maruda and Princesa, with Spring tidal ranges exceeding
4.0 m, fall into the macrotidal category, leading to Very High vulnerability. During the rainiest
months, rainfall accumulation surpasses 1500 mm over three months across all beaches, resulting in

Very High vulnerability in this regard. The Environmental features further differentiate these
beaches. Murubira and Maruda experience significant human impact, with territorial occupation
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affecting 70-80% of the coastline, leading to Very High vulnerability. These semi-urban beaches are
heavily used for recreational purposes, causing considerable modifications to their original natural
conditions, resulting in Moderate vulnerability. Erosion indicators, such as buried vegetation,
exposed roots, erosion escarpments, and damage to properties, are prominent in both locations.
Colares and Princesa are rural and less developed, which places them in Low and Very Low
vulnerability categories, respectively. Colares, in particular, has less than 30% of its coastline
occupied by buildings, with well-preserved dunes and native vegetation, denoting Low
vulnerability. Princesa Beach, located within the Algodoal/Maiandeua Environmental Protection
Area, enforces strict territorial management, ensuring well-conserved dunes and mangroves,
contributing to Very Low vulnerability. However, the construction of 30 bars in the intertidal zone
adds an element of Low vulnerability to its overall environmental profile. However, at Maruda and
Princesa beaches, the surface area decreased by 41,414 m? and 51,910 m?, respectively, between 2007
and 2021. In Murubira, the retaining wall helped limit the reduction in surface area to 709 m? during

this period (Figure 9).
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Figure 9. Surface area at different time intervals.

4.4. Atlantic Coast (Sector V)

The two beaches analyzed in this sector, Ajuruteua and Atalaia, are geomorphologically
classified as highly vulnerable due to their barrier beach ridge characteristics (Figure 8). Both beaches
are flat, linear, elongated landforms, bordered by tidal deltas, dunes, and mangrove areas,
contributing to their Very High vulnerability. Additionally, the beach slope is absent in both
Ajuruteua and Atalaia, further emphasizing their Very High vulnerability. During low tide, semi-
submerged sandbanks offer protection to both beaches. Ajuruteua provides better protection during
low tide, with wave heights (Hs values) ranging from 0.1 to 0.4 m, while Atalaia offers less protection,
with Hs values between 0.5 and 0.8 m. The seafront terrain elevation ranges from 3 to 9 m, yet
inhabited areas reveal that 52% of Ajuruteua’s coastline and 77% of Atalaia’s coastline feature
elevations below 6 m, placing both beaches in the Very High vulnerability category.

The physical indicators further reflect their susceptibility to erosion. The Hs%s% and the Hs?
threshold ratio exceeded 1.5, indicating Very High vulnerability. This ratio signifies that wave heights
exceeded 5% of the time are greater than 2.5 m, demonstrating significant erosion potential.
Additionally, the spring tidal range (sTR) for both beaches varies between 5 and 6 m, representing
high vulnerability. Rainfall accumulation during the wettest months surpasses 1500 mm over three
months, confirming very high vulnerability in this regard.

In addition, Ajuruteua is adjacent to the Caeté-Taperagu Marine Extractive Reserve, established
in 2005, while Atalaia is adjacent to the Atalaia Natural Monument, created in 2018. Both beaches
feature numerous wooden structures built on stilts within the intertidal zone, dunes, and mangrove
areas. Territorial occupation affects 50-70% of Ajuruteua’s coastline, resulting in High vulnerability,
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while Atalaia’s territorial occupation exceeds 70%, placing it in the Very High vulnerability category.
Ajuruteua retains rural characteristics but is transitioning into semi-urbanization, presenting Low
vulnerability. Several houses, bars, and restaurants line its seafront, whereas Atalaia Beach exhibits
significant semi-urbanization, with extensive construction of bars, hotels, and houses, contributing
to moderate vulnerability. With respect to erosion, both beaches have experienced substantial erosion
over the decades, leading to the partial or complete destruction of buildings, infrastructure, dunes,
and mangroves. Equinoctial spring tides exacerbate erosion events, resulting in the loss of street
lighting, bars, restaurants, and inns. At Atalaia, wooden structures are frequently relocated to dunes
during periods of severe erosion, while Ajuruteua has implemented structural engineering solutions
to protect its buildings. However, Ajuruteua’s surface area has decreased by 110,046 m? betweem
2007-2021 (Figure 9). Common erosion indicators at both beaches include buried vegetation, exposed
roots, escarpments, concentrations of heavy minerals, coastal protection structures, and damage to
seafront properties.

5. Discussion
5.1. Geological Indicators

Coastal erosion vulnerability is assessed through indicators that reflect susceptibility to high-
energy events [27,47,54]. In this study, the Coastal Vulnerability Index (CVI) incorporates geological,
physical, environmental, and seafront indicators. Geomorphology was classified based on the relative
resilience of coastal landforms [8,55,56]. Two types of coastal relief were identified: (i) barrier beach
ridges -composed of unconsolidated sediments and highly vulnerable (score 5)- found in Pesqueiro,
Maruda, Princesa, Atalaia, and Ajuruteua; and (ii) low cliffs, moderately vulnerable, in Praia Grande,
Murubira, and Colares. Beach slope, a key erosion predictor, shows that gentler slopes are more
prone to erosion [49,57]. Protection levels—natural or artificial—also modulate exposure: (i)
Estuarine beaches within bays (e.g., Marajo Bay) are Moderate vulnerability due to limited fetch; (ii)
Partially protected beaches (e.g., with sandbanks or tidal bars) show Very Low vulnerability; (iii) Less
sheltered beaches, like Atalaia, exhibit Low vulnerability [29]. Elevation proved to be crucial: beaches
below 6 m are highly vulnerable, 6-9 m moderately so, and above 9 m have low vulnerability
(modified from [48]). High vulnerability coincides with barrier beach ridges, while low cliffs
correspond to lower vulnerability.

5.2. Physical Indicators

Tidal attenuation reduces tidal elevation by ~35% in Marajo Bay compared to the Atlantic coast.
Thus, macrotidal beaches (Atlantic) are more vulnerable due to stronger currents and flooding risk,
contrary to previous classifications [46,58]. On the Amazon coast, macrotides and moderate waves
drive intense erosion, particularly during equinoctial spring tides [28,51]. Offshore waves (3—4 m)
attenuate nearshore (1-2 m), with sandbanks buffering wave energy at low tide. However, high tide
exposes the shoreline to wave impact, making it the critical period for erosion. Storm-induced
vulnerability is classified as very high (CVI > 1.5) due to significant Hs values (1.5-1.8 m). Wave
incidence angles (0 > 70°) increase exposure [56,59]. Rainfall also contributes: heavy seasonal rains
saturate beaches, enhancing offshore sediment transport and erosion [60]. All beaches showed High
vulnerability due to intense rainfall.

5.3. Environmental Indicators

Dune fields and coastal vegetation —such as mangroves and restinga—serve as critical natural
barriers. They not only mitigate the direct impact of waves and storms on the coast but also play a
central role in maintaining the sediment balance by acting as both buffers and sources of sediment
for neighboring areas. In the study area, rural beaches with well-preserved dune systems and
mangroves (e.g., Pesqueiro, Colares, and Princesa) demonstrated Low vulnerability to erosive
processes, highlighting the protective function of these natural elements. In addition, the existence of
protected areas, where local regulations restrict unplanned urban expansion and promote coastal
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ecosystem preservation [61-63], reinforces the resilience of these coastal zones. Such areas facilitate
the implementation of sustainable management strategies and effective land-use regulations, which
are essential for maintaining the natural stability of the coastline. In contrast, unregulated
development and disorganized territorial occupation alter sedimentary processes and significantly
increase erosion risk [64,65]. This unsustainable development undermines the natural recovery
capability of coastal ecosystems, making them more vulnerable to extreme events.

5.4. Seafront Features

In terms of seafront features, semi-urban beaches like Murubira, Atalaia, and Maruda are
characterized by a higher concentration of facilities and services —including restaurants, bars, private
residences, inns, and hotels—which intensifies the pressure on these coastal zones. In areas with high
territorial occupation (e.g., Praia Grande, Murubira, Marudd, Atalaia, and Ajuruteua), increased
anthropogenic activity often exacerbates the natural processes of erosion. The presence of
infrastructure limits the natural adaptability of the coast, often aggravating erosion by altering
natural sediment dynamics.

When erosion intensifies, it frequently results in significant structural impacts: wooden
buildings might be relocated to avoid total loss of utility, whereas concrete constructions could suffer
partial or complete failure. Visible signs of erosion include deteriorating structures, exposed tree
roots, and the tilting or collapse of trees, which are indicators of severe substrate instability. Although
some coastal protection structures have been installed in locations such as Atalaia, Ajuruteua, and
Murubira, these interventions are typically limited in scope and sometimes insufficient to counteract
the severe impact of extreme weather events.

Furthermore, climatic phenomena like El Nifio and La Nifia amplify these challenges by causing
alternating periods of drought and intense rainfall. These events not only increase rainfall intensity
and wave energy during strong wind conditions but also elevate groundwater levels, further
destabilizing the coastal landscape. The compounded influence of natural forces and human activities
underscores the importance of comprehensive vulnerability assessments. Such integrated analyses
are crucial for devising sustainable coastal management strategies and for planning interventions
aimed at mitigating the adverse effects of coastal erosion.

6. Summary and Conclusions

This study evaluated the erosion vulnerability of eight beaches along the Para coast (Amazonian
coast, Brazil) by integrating geomorphological characteristics, coastal physical processes, patterns of
territorial occupation, ecosystem conservation, and erosion indicators. The analysis revealed a
vulnerability spectrum ranging from low to high across the study area. Natural factors play a crucial
role, as the inherent geology and physical processes largely drive high vulnerability in most of the
beaches. Anthropogenic impacts further exacerbate vulnerability, with unplanned territorial
occupation significantly affecting semi-urban beaches (e.g., Atalaia) or in semi-urban process (e.g.,
Ajuruteua) with higher development. In contrast, rural beaches, particularly those within protected
areas, demonstrated lower vulnerability due to reduced human interference and better preservation
of natural protective features. However, evidence of erosion was recorded in Princesa and Pesqueiro
beaches. The presence of promade on the semi-urban beaches of Maruda, Murubira, and Colares
prevented them from experiencing significant variations in the coastline; Extreme meteorological
events, including prolonged rainfall and intensified wave activity, also contribute to erosion,
temporarily heightening erosive processes and disrupting coastal equilibrium. These episodic events
can accelerate erosion, posing additional threats to coastal stability. The findings highlight the
necessity of integrating comprehensive vulnerability assessments into coastal management practices.
They provide critical support for the development and implementation of mitigation strategies to
reduce erosion impacts on both estuarine and oceanic beaches, regardless of urbanization levels.
Overall, the study offers valuable insights for the sustainable management of natural resources and


https://doi.org/10.20944/preprints202505.0487.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 May 2025

19 of 22

infrastructure preservation along the Amazonian coast, emphasizing the need for proactive and
adaptive management strategies in response to both natural and human-induced challenges.
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