

Article

End-to-End PQC Encryption Protocol for GPKI-based
Video Conferencing System
Yeongjae Park 1, Hyeondo Yoo 1, Jieun Ryu 1, Young-Rak Choi 1, Ju-Sung Kang 2 and Yongjin
Yeom 2,*

1 Department of Financial Information Security, Kookmin University, Seoul 02707, Republic of Korea
2 Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul 02707,

Republic of Korea
* Correspondence: salt@kookmin.ac.kr

Abstract: Owing to the expansion of non-face-to-face activities, security issues in video conferencing
systems are becoming more critical. In this paper, we focus on the end-to-end encryption (E2EE)
function among security services of video conferencing systems. First, the E2EE-related protocols of
Zoom and Secure Frame (SFrame), which are representative video conferencing systems, are
thoroughly investigated, and the two systems are compared and analyzed overall. Next, the E2EE
protocol in the Government Public Key Infrastructure (GPKI)-based video conferencing system, in
which the user authentication mechanism is fundamentally different from those used in private
sector systems, such as Zoom or SFrame, will be considered. In particular, among E2EE-related
protocols, we propose a detailed mechanism in which the post-quantum cryptography (PQC) key
encapsulation mechanism (KEM) is applied to the user key exchange process. As the session key is
not disclosed to the central server even in futuristic quantum computers, the mechanism to which
the PQC KEM method proposed in this study is applied satisfies the E2EE security requirements
and can be applied to domestic GPKI-based systems. It is expected to contribute in strengthening
the safety of the next-generation video conferencing system.

Keywords: E2EE; Zoom; SFrame; MLS; GPKI

1. Introduction

The use and importance of video conferencing systems are rapidly increasing in industry and
academia due to the preference for a remote environment. Security vulnerabilities in video
conferencing systems have been exposed as their usage has increased. Hence, end-to-end encryption
(E2EE) stands out as one of the most pressing needs for enhancing security in video conferencing
systems. E2EE ensures that when two entities communicate, the contents of the message remain
concealed from anyone except the intended recipient, preserving their confidentiality [1].

In order to address security vulnerabilities, video conferencing systems are currently
implementing E2EE security measures. Zoom, a popular video conferencing system in recent times,
currently offers two phases of E2EE security and has plans to gradually implement it across four
phases. Additionally, they consistently share E2EE security updates through whitepapers on their
website [2].

Discussions on security services for video conferencing systems are actively progressing in the
international standardization process for various technologies.

A representative example is the Secure Frame (SFrame), which is currently undergoing
standardization. SFrame is a group communication protocol that applies E2EE security to a web real-
time communication (WebRTC) protocol that enables real-time communication. It provides E2EE
security by applying a double encryption method to prevent the exposure of message information to
a selective forwarding unit (SFU), an intermediate communication [3]. This group communication
protocol has gained attention for significantly reducing communication overhead, a problem with

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2023 doi:10.20944/preprints202305.2077.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202305.2077.v1
http://creativecommons.org/licenses/by/4.0/

E2EE. SFrame is currently applied and used in video conferencing systems such as Google Duo and
Cisco Webex [4].

In this study, the E2EE-related protocols of Zoom and SFrame were investigated. Also, a detailed
comparison between the two systems was conducted. The discussion focuses on the E2EE protocols
in a video conferencing system based on the Government Public Key Infrastructure (GPKI), which
are known for robust reliability compared to authentication mechanisms used in the private sector.
In particular, we propose a specific protocol that uses the key encapsulation mechanism (KEM) of
post-quantum cryptography (PQC) for exchange user keys in GPKI-based video conferencing system.
The proposed protocol does not expose the key to central server because it securely shares the key
through PQC KEM when user entering a video conference. This protocol effectively fulfills
authenticity, confidentiality, and integrity which are the E2EE security requirements [5].

In section 2, the research trends and security requirements regarding E2EE security are explored,
and include an investigation into the security vulnerabilities of Zoom. In section 3, an analysis is
conducted on the key management system presented in Zoom’s E2EE whitepaper. Section 4 describes
the structure related to the E2EE function of SFrame and the E2EE security key management system,
messaging layer security (MLS). Section 5 discusses the E2EE protocol in the government user
authentication mechanism and the GPKI-based authentication system. We propose a protocol that
applies PQC KEM to the user key exchange process, and based on this, we construct a next-generation
video conferencing system with an E2EE security function. Finally, Section 6 concludes this paper.

2. Research Trends

2.1. E2EE-related Research

Since non-face-to-face environments are becoming more prevalent, there is an increase in usage
of online video conferencing systems. As a result, the importance of security technology for
protecting the privacy of entities is receiving attention. However, a problem may occur in which
privacy information of entity is exposed to a central server when video conferencing information is
transmitted. A concept that has emerged to improve for this problem is E2EE, that is, an encryption
technology for protecting the privacy of entities. If E2EE technology is applied to encrypt using a key
that shared only by entities who are communication parties, entities privacy is protected because
messages cannot be verified except entities.

On the other hand, there are several practical barriers to the actual application and deployment
of E2EE technology. The most significant obstacle is when the communicating party does not utilize
a reliable Certification Authority (CA)'s Public Key Infrastructure (PKI) during the secret key
generation process and instead relies on an unreliable third party as a server. This compromises the
privacy of the entities as the third party gains access to the secret key information, rendering the E2EE
security function ineffective. Apart from the security issues arising from the perspective of E2EE, the
following obstacles should also be taken into consideration [1].
• The government of national policy does not actively encourage the application of E2EE

technology.
• Problems arise when an entity wants services provided by a third party with low-security

reliability.
Despite these obstacles, E2EE security needs to be applied for the secure of the entity’s video

conferencing system. Furthermore, entities need to check if system has applied E2EE security.
As a representative protocol with E2EE security, the Signal Protocol applied to various message

applications is a cryptographic protocol that provides E2EE security for word, voice, and video
encryption. This protocol has five features, Immediate Decryption, Long-lived Sessions, Usability,
Forward Secrecy, Post-Compromise Security [1].

The communication parties of the Signal Protocol receive messages immediately and decryption
without loss or delay is possible. To this end, the Signal Protocol has a feature that maintains the
session between communication parties until they reinstall an application or change the device. In
addition, the protocol has usability because it does not use its own password or PKI by CA. Forward

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2023 doi:10.20944/preprints202305.2077.v1

https://doi.org/10.20944/preprints202305.2077.v1

secrecy refers to the feature that even if a user in the group is attacked and the group secret key is
exposed, the attacker cannot decrypt the message before the attack. Contrary to Forward Secrecy,
Post-Compromise Security refers to the feature that an attacker cannot decrypt messages after a user
has been attacked. Therefore, Post-Compromise Security is also referred to as Future Secrecy.

E2EE security requirements, including Forward Secrecy and Post-Compromise Security features,
are defined according to the Internet Engineering Task Force (IETF) standardization document [5].
In this document, the requirements for E2EE security are devided into necessary and optional
features, as summarized in Table 1.

E2EE must satisfy the following three requirements: authenticity, confidentiality, and integrity.
There are additional features that enhance E2EE security and contribute to its effectiveness. There are
seven conditions, including forward secrecy and post-compromise security, provided by the Signal
Protocol.

Cisco Webex video conference application provides E2EE security. They securely exchange the
shared meeting key based on MLS and encrypt meeting content using SFrame. They claim the
security model of Webex. Also, a video conference data exchanged securely that encryption to use of
specific ciphersuites. They have described their strategy in the whitepaper [6].

On the other hand, Cisco Webex has presented a roadmap to implement Zero Trust-based E2EE.
The roadmap consists of two phases: Phase 1 and Phase 2. In Phase 1, they plan to deploy a E2EE
using standard based cryptography with SFrame and MLS. Phase 2 involves adding a method to
verify end-to-end verified identity based on the automatic certificate management environment
(ACME) protocol, which is a certificate authority structure [7]. ACME supports extensions for various
identifiers in different PKI contexts. Additionally, ACME can automate certain aspects of certificate
management, even if some non-automated processes are still required [8].

Table 1. Features of End-to-End Encryption.

Necessary Features Optional Features

Authenticity

Confidentiality

Integrity

Availability
Loss Resilience

Deniability
Forward Secrecy

Post-Compromise Security
Metadata Obfuscation

Disappearing Messages

2.2. Vulnerable case of Video Conferencing System Security

Various video conferencing systems are being launched worldwide. Notable video conferencing
systems include Zoom, Cisco Webex, Facebook, Microsoft Teams, and Google Meet. Among them,
the average number of Zoom users in 2020 increased by over 40 times compared to 2019 [9].

However, as the number of Zoom users rapidly increased and began to attract attention, the
number of attackers threatening security also increased. Zoom has been subject to several attacks by
attackers; particularly, Zoom membership privacy has been leaked to the dark web and Zoom
Bombing/Zoom Trolling, which disrupts meetings, such as hacking the screen, has become common.

In addition to intentional attacks, Zoom has experienced various security vulnerability issues.
Zoom was also aware of it, and took measures such as upgrading the encryption algorithm to AES-
256-GCM or adding a 2-Factor Authentication method to solve it [9]. Although Zoom has addressed
most of the vulnerabilities, E2EE function has only been partially addressed. Currently, the E2EE
security features provided by Zoom have only been implemented up to phase 2 out of a total of 4.

3. Analyzing Zoom’s E2EE Capabilities

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2023 doi:10.20944/preprints202305.2077.v1

https://doi.org/10.20944/preprints202305.2077.v1

Zoom plans to provide E2EE security by subdividing it into four phases. According to Zoom’s
E2EE whitepaper [2], E2EE security features have been specified in up to two phases. Zoom’s E2EE
security plan is as follows:
• Phase 1: Client Key Management
• Phase 2: Identity Check
• Phase 3: Transparency Tree
• Phase 4: Real-Time Security

Phase 1 of Zoom’s E2EE involves Client Key Management. Client Key Management is a system
designed to securely distribute the meeting key (𝑀𝑀𝑀𝑀) among the entities (clients) participating in a
meeting, enabling them to encrypt and decrypt meeting data. E2EE Phase 2 is an Identity Check. In
Phase 1, the identity status of each client was based on the displayed screen name during the meeting,
while in Phase 2, the client's identity status was traced using Sigchain. By reviewing the record of the
client's identity status during the meeting, it became possible to prevent attacks from suspicious
devices.

Zoom’s E2EE phases 3 and 4 have not been applied and are planned for application in the future.
Phase 3 introduces the transparency tree, which expands the authentication assurance to enable all
clients in the conference to verify devices and keys. Phase 4 involves real-time security, which
strengthens meeting security through additional signatures and enables client Sigchain verification
without passing through the Zoom Server.

In Section 3, we analyze Client Key Management, which is the first step in E2EE security. The
details and plans for the remaining phases of Zoom’s E2EE security are included in Zoom’s E2EE
whitepaper [2].

3.1. E2EE Phase 1: Client Key Management

A Zoom meeting typically comprises a host, who initiates and manages the meeting, and
participants who join the meeting. First, assume that Alice (host) and Bob (participant) explain the
Client Key Management system of Zoom. Additionally, it is assumed that both entities possess a
long-time signing key (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) and a long-time verification key (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼). Based on the above conditions,
the process of Zoom’s Client Key Management system is illustrated in Figure 1. [2].

Figure 1. Zoom’s End-to-End Encryption Key Management Process.

We describe progress of the Figure 1. to Algorithm 1.:
• When each client log-in to Zoom, the Zoom server generates a signature (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)) for

each client’s verification key (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼). (Algorithm 1., Line 1)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2023 doi:10.20944/preprints202305.2077.v1

https://doi.org/10.20944/preprints202305.2077.v1

• Each client generates a temporary encryption key pair, public key, and secret key (𝑝𝑝𝑝𝑝𝐼𝐼 , 𝑠𝑠𝑘𝑘𝐼𝐼). Each
client generates a signature (𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼) with EdDSA, after that uploads the public key (𝑝𝑝𝑝𝑝𝐼𝐼), signature
(𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼), and signature for the verification key (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝐼𝐼 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)) to the bulletin board. (Algorithm
1., Line 2 - 6)

• To generate a symmetric key (𝐾𝐾𝐴𝐴𝐴𝐴) for the encryption/decryption of the meeting key (𝑀𝑀𝑀𝑀), the
host (Alice) performs the Diffie-Hellman between the public key (𝑝𝑝𝑝𝑝𝐵𝐵) of the verified participant
(Bob) and its own private key (𝑠𝑠𝑠𝑠𝐴𝐴). Subsequently, these keys are used as inputs to the HKDF
function. The participant (Bob) uses own private key (𝑠𝑠𝑠𝑠𝐵𝐵) and the host’s public key (𝑝𝑝𝑝𝑝𝐴𝐴) to
generate a symmetric key (𝐾𝐾𝐴𝐴𝐴𝐴) in a similar manner. (Algorithm 1., Line 8, 12)

• The host generates a 32-byte shared meeting key (𝑀𝑀𝑀𝑀) that is used to encrypt and decrypt the
meeting data using AES-GCM. The meeting key is generated using a cryptographically secure
random number generator (RNG). The host then encrypts it with the symmetric key (𝐾𝐾𝐴𝐴𝐴𝐴),
uploads it to the bulletin board, decrypts the ciphertext with the symmetric key (𝐾𝐾𝐴𝐴𝐴𝐴), and
obtains the meeting key (𝑀𝑀𝑀𝑀). (Algorithm 1., Line 9, 10, 13)

Algorithm 1. E2EE Key Exchange Process of Zoom.

𝑨𝑨: Alice(host), 𝑩𝑩: Bob(client), 𝒑𝒑𝒑𝒑𝑰𝑰: public key, 𝒔𝒔𝒔𝒔𝑰𝑰: secret key, 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: verification key,
 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: signing key, 𝑴𝑴𝑴𝑴: shared meeting key, 𝑺𝑺𝑺𝑺𝑺𝑺𝑰𝑰: signature for public key,

𝑲𝑲𝑨𝑨𝑨𝑨: symmetric key for enc/dec,
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑰𝑰 (𝑰𝑰𝑰𝑰𝑲𝑲𝑰𝑰): signature of the server for verification key

1: For user 𝐴𝐴, 𝐵𝐵 do 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼 (𝐼𝐼𝐼𝐼𝐾𝐾𝐼𝐼) ← Zoom server ▷𝐴𝐴, 𝐵𝐵 signs in, 𝐼𝐼 ∈ {𝐴𝐴,𝐵𝐵}
2: procedure (Zoom’s E2EE Key Exchange)
3: For user 𝐴𝐴, 𝐵𝐵 do ▷𝐼𝐼 ∈ {𝐴𝐴,𝐵𝐵}
4: (𝑝𝑝𝑝𝑝𝐼𝐼 , 𝑠𝑠𝑠𝑠𝐼𝐼) ← KeyGen
5: 𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼 ← EdDSA(𝑝𝑝𝑝𝑝𝐼𝐼)
6: bulletin board ← {𝑝𝑝𝑝𝑝𝐼𝐼 , 𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼 }
7: For user 𝐴𝐴 do
8: 𝐾𝐾𝐴𝐴𝐴𝐴 ← HKDF(Diffie-Hellman(𝑝𝑝𝑝𝑝𝐵𝐵, 𝑠𝑠𝑠𝑠𝐴𝐴))

9: 𝑀𝑀𝑀𝑀
$
← Secure RNG

10: bulletin board ← Enc(𝐾𝐾𝐴𝐴𝐴𝐴 , 𝑀𝑀𝑀𝑀)
11: For user 𝐵𝐵 do
12: 𝐾𝐾𝐴𝐴𝐴𝐴 ← HKDF(Diffie-Hellman(𝑝𝑝𝑝𝑝𝐴𝐴, 𝑠𝑠𝑠𝑠𝐵𝐵))
13: 𝑀𝑀𝑀𝑀 ← Dec(𝐾𝐾𝐴𝐴𝐴𝐴 , Enc(𝐾𝐾𝐴𝐴𝐴𝐴 , 𝑀𝑀𝑀𝑀))
14: end procedure

Otherwise, if a new participant Charlie joins to Key Management System as mentioned above,
which includes Alice and Bob, the following steps are additionally performed. It is assumed that
Charlie possesses a long-time signing key (𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶) and a long-time verification key (𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶).
• Zoom server generates a signature (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 (𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶)) for Charlie’s verification key (𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶). After

that, Charlie generates a temporary encryption key pair (𝑝𝑝𝑝𝑝𝐶𝐶 , 𝑠𝑠𝑘𝑘𝐶𝐶), and a signature (𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶) with
EdDSA. Then Charlie uploads the public key (𝑝𝑝𝑝𝑝𝐶𝐶), signature (𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶), and signature for the
verification key (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 (𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶)) to the bulletin board.

• To generate symmetric key (𝐾𝐾𝐴𝐴𝐴𝐴), Alice performs the Diffie-Hellman between the public key
(𝑝𝑝𝑝𝑝𝐶𝐶) and its own private key (𝑠𝑠𝑠𝑠𝐴𝐴). Charlie uses own private key (𝑠𝑠𝑠𝑠𝐶𝐶) and the Alice’s public
key (𝑝𝑝𝑝𝑝𝐴𝐴) to generate the symmetric key (𝐾𝐾𝐴𝐴𝐴𝐴) similarly.

• Alice generates a new 32-byte shared meeting key (𝑀𝑀𝐾𝐾∗). Then Alice encrypts it with each
symmetric key (𝐾𝐾𝐴𝐴𝐴𝐴 , 𝐾𝐾𝐴𝐴𝐴𝐴), uploads it to the bulletin board. After that, Bob and Charlie can
decrypt the ciphertext with each symmetric key (𝐾𝐾𝐴𝐴𝐴𝐴 , 𝐾𝐾𝐴𝐴𝐴𝐴), and obtains the meeting key (𝑀𝑀𝐾𝐾∗).

4. Analysis of SFrame

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2023 doi:10.20944/preprints202305.2077.v1

https://doi.org/10.20944/preprints202305.2077.v1

In Chapter 4, the group communication protocol SFrame and Key Management System MLS,
which are in the process of standardization for video conferencing systems, are analyzed.
Subsequently, the E2EE-related Zoom and SFrame protocols were investigated to compare and
analyze the two systems. SFrame applies the E2EE mechanism to the WebRTC protocol, enabling
real-time communication [3].

The SFrame protocol employs double encryption to media, such as video or audio, ensuring
secure transmission with E2EE. As a result, the SFU central server, which relays end-to-end media
traffic, cannot access the plaintext message information but only the necessary metadata for
communication routing. Moreover, SFrame encrypts the entire media frame during transmission
rather than encrypting individual media packet separately. In other words, SFrame uses an
initialization vector (𝐼𝐼𝐼𝐼) and an authentication tag for each frame for encryption. This method has
gained significant attention as it reduces communication overhead, which is a well-known challenge
in E2EE [3].

4.1. Structure of SFrame

The double encryption method applied by SFrame is as follows [3]:
• Hop-by-Hop Encryption (DTLS-SRTP)
• End-to-End Encryption (Symmetric)

Figure 2. illustrates the process by which the communication parties, Alice and Bob, securely
transmit media using the SFrame protocol with double encryption. First, the two entities share a
group symmetric key schedule through a Key Management System with E2EE security in advance.

Figure 2. SFrame Encryption/Decryption Process.

Alice retrieves the SFrame symmetric key from the pre shared key schedule and utilizes it to
encrypt the media. Next, the encrypted media are packetized before being transmitted to the SFU.
Alice encrypts the packetized media with the DTLS-SRTP symmetric key and transmits it to the SFU.
The SFU decrypts the media packet using the pre-shared DTLS-SRTP symmetric key with Alice, and
then re-encrypts the decrypted media with Bob’s DTLS-SRTP symmetric key before delivering it.
Finally, Bob can decrypt the ciphertext sequentially with DTLS-SRTP key and SFrame symmetric key.
Consequently, the plaintext of the media is not exposed to SFU. The SFU checks only the media
metadata and routes the media packets received from Alice to Bob.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2023 doi:10.20944/preprints202305.2077.v1

https://doi.org/10.20944/preprints202305.2077.v1

The symmetric key used for double encryption in the encryption/decryption process of the
SFrame protocol is the same, and a Key Management System for the E2EE function is essential for
symmetric key sharing. The 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑘𝑘𝑘𝑘𝑘𝑘 information related to the 𝐾𝐾𝐾𝐾𝐾𝐾 are assigned to the
entities of the group belonging to the Key Management System. Therefore, each entity obtains
the 𝑏𝑏𝑏𝑏𝑠𝑠𝑒𝑒_𝑘𝑘𝑘𝑘𝑘𝑘 information used for decryption by checking the 𝐾𝐾𝐾𝐾𝐾𝐾 of the transmitted media header.
For SFrame encryption, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑘𝑘𝑘𝑘𝑘𝑘 is used as an input to the HKDF function to derive the SFrame
symmetric key and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 value. Subsequently, a 𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐 is generated by XOR 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 with 𝑐𝑐𝑐𝑐𝑐𝑐 , and
the 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 value is used for encryption/decryption.

4.2. SFrame’s Key Management System

The SFrame protocol was proposed to separate the use of the key from the encryption algorithm.
Using this design, any Key Management System with E2EE security can be applied to SFrame, for
example, E2EE security protocols such as Signal Protocol, Olm Protocol, MLS, etc. Currently, the IETF
draft document on SFrame recommends the use of MLS as the Key Management System [3].

4.2.1. MLS Protocol

The MLS protocol is a Key Management System in the process of standardization by the IETF.
MLS has been standardized since 2018, and recently, an RFC standard was proposed [10].

Figure 3. Initial Group Creation Process of MLS Protocol.

Figure 3. shows the initial group creation process for the MLS Key Management System. To
describe this process, the Ratchet Tree, the key schedule of the MLS, and Secret Tree structures have
to be explained; however, this paper describes the process of adding members without explaining
the tree structure.

We describe progress of the Figure 3. to Algorithm 2.:
• Assume that a host creates a group, a client joins a group. They join the group presents their

credentials for authentication and undergoes verification by the authentication service (AS) of
the MLS server. The host and client upload a key package containing their ID, signature, and
public key to the directory. (Algorithm 2., Line 2 - 4)

• Next, the host generates 𝑝𝑝𝑝𝑝𝑝𝑝ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0] and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0] by a cryptographically secure RNG,
uses them as inputs to HKDF, and creates 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 that necessary for make MLS key
schedule. The host encrypts 𝑝𝑝𝑝𝑝𝑝𝑝ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0] , 𝑗𝑗𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , and 𝑝𝑝𝑝𝑝𝑝𝑝(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) with the client’s
public key (𝑝𝑝𝑘𝑘𝐵𝐵) and transmits them. (Algorithm 2., Line 5 - 8)

• The client decrypts the received ciphertext with own private key (𝑠𝑠𝑘𝑘𝐵𝐵) to obtain
the 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 value. The client creates the same key schedule as the host, using the
acquired 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑝𝑝𝑝𝑝𝑝𝑝(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜). (Algorithm 2., Line 9 - 10)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2023 doi:10.20944/preprints202305.2077.v1

https://doi.org/10.20944/preprints202305.2077.v1

Algorithm 2. E2EE Key Exchange Process of MLS Protocol.

𝑨𝑨: host, 𝑩𝑩: client, 𝒑𝒑𝒑𝒑𝑰𝑰: public key, 𝒔𝒔𝒔𝒔𝑰𝑰: secret key, 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒍𝒍𝑰𝑰: credential,
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: verification key, 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: signing key, 𝑰𝑰𝑫𝑫𝑰𝑰: identity, 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑_𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔, 𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋𝒋_𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔:

parameters to generate key schedule, 𝒑𝒑𝒑𝒑𝒑𝒑: pre shared key
𝑨𝑨𝑨𝑨: Authentication Service

1: procedure (MLS’s E2EE Key Exchange Process)
2: For user 𝐴𝐴, 𝐵𝐵 do ▷𝐼𝐼 ∈ {𝐴𝐴,𝐵𝐵}

3: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝐼𝐼
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
�⎯⎯⎯� 𝐴𝐴𝐴𝐴 ▷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝐼𝐼 = {𝐼𝐼𝐼𝐼𝐾𝐾𝐼𝐼 , 𝐼𝐼𝐷𝐷𝐼𝐼}

4: Directory ← KeyPackage(𝐼𝐼) ▷KeyPackage(𝐼𝐼) = {𝑝𝑝𝑘𝑘𝐼𝐼 , 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼 , 𝑠𝑠𝑠𝑠𝑔𝑔𝐼𝐼}
5: For user 𝐴𝐴 do

6: 𝑝𝑝𝑝𝑝𝑝𝑝ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0], 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0]
$
← Secure RNG

7: 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ← HKDF(𝑝𝑝𝑝𝑝𝑝𝑝ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0], 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0])
8: Directory ← Enc(𝑝𝑝𝑘𝑘𝐵𝐵, 𝑝𝑝𝑝𝑝𝑝𝑝ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0] ∥ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∥ 𝑝𝑝𝑝𝑝𝑝𝑝(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜))
9: For user 𝐵𝐵 do
10: 𝑝𝑝𝑝𝑝𝑝𝑝ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0], 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑝𝑝𝑝𝑝𝑝𝑝(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) ←

Dec(𝑠𝑠𝑘𝑘𝐵𝐵, Enc(𝑝𝑝𝑘𝑘𝐵𝐵, 𝑝𝑝𝑝𝑝𝑝𝑝ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0] ∥ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∥ 𝑝𝑝𝑝𝑝𝑝𝑝(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)))
11: end procedure

4.3. Comparison between Zoom and SFrame

In this section, we compare the E2EE-related protocols of Zoom analyzed in Section 3 and
SFrame in Section 4. The analysis of these two systems are presented in Table 2.

To compare the E2EE-related protocols of the two systems, it was assumed that SFrame utilized
the MLS protocol as its Key Management System. Conversely, SFrame is a video conferencing system
in the standardization, it has the flexibility to support various ciphersuites. Zoom provides detailed
information about ciphersuites in their whitepaper.

The Diffie-Hellman method, which is commonly used in the key agreement process of Zoom
and SFrame, is a one-to-one method for both protocols. Zoom uses Curve25519 Diffie-Hellman to
generate a symmetric key (𝐾𝐾𝐼𝐼𝐼𝐼) for encryption/decryption and uses the Ed25519 EdDSA signature
algorithm. In the case of SFrame, the elliptic curve method Diffie-Hellman KEM function of HPKE
(RFC 9180) was used to share Ratchet Tree information among group members [11]. The SFrame
signature algorithm can be applied to both EdDSA and ECDSA.

Both systems encrypt and decrypt information regarding the shared key. Zoom exchanges the
meeting key (𝑀𝑀𝑀𝑀) by encrypting/decrypting with a symmetric key (𝐾𝐾𝐼𝐼𝐼𝐼), whereas SFrame
shares 𝑝𝑝𝑝𝑝𝑝𝑝ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[0] , 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , and 𝑝𝑝𝑝𝑝𝑝𝑝(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) using the asymmetric key encrypt/decrypt
method.

As mentioned in Section 2, Table 1 lists the necessary features for E2EE security, such as
authentication, confidentiality, and integrity. Both Zoom and SFrame fulfill all these features for E2EE
security.

Finally, Zoom currently implements E2EE security up to Phase 2, and specification for a Phase
3 transparency tree is not implemented. In contrast, SFrame uses an asynchronous Ratchet Tree
method, which enables users within a group to verify each other’s authentication in real-time.
Therefore, SFrame can be considered to incorporate Phase 3, which corresponds to the structure of
Zoom’s E2EE security plan.

Table 2. Comparison Between Zoom and SFrame.

Property Zoom
SFrame

(with MLS)

Key Agreement ECDH, HKDF
HPKE (ECDH-based KEM)

(RFC 9180)
Signature EdDSA EdDSA

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2023 doi:10.20944/preprints202305.2077.v1

https://doi.org/10.20944/preprints202305.2077.v1

ECDSA

Shared-Key Exchange 𝐸𝐸𝐸𝐸𝐸𝐸(𝑀𝑀𝑀𝑀) ← Symmetric(𝐾𝐾𝐼𝐼𝐼𝐼)
𝐸𝐸𝐸𝐸𝐸𝐸(𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,
𝑝𝑝𝑝𝑝𝑝𝑝ℎ_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑖𝑖])

 ← Asymmetric(𝑝𝑝𝑘𝑘𝐼𝐼, 𝑠𝑠𝑘𝑘𝐼𝐼)

E2EE

Authenticity ○ ○

Confidentiality ○ ○

Integrity ○ ○

Transparency Tree Ⅹ ○

5. Next-Generation Video Conferencing System

5.1. GPKI-based System

There are two issues with the operation method of public key cryptography: no user
authentication and expiration date for the public key. In order to use a public key passed on to
someone else, it is required to have a trusted institution who can manage the list of public keys. The
GPKI is an example of such an infrastructure that provides the necessary mechanisms for managing
and distributing public keys securely. The GPKI, also known as an administrative electronic signature,
utilizes GPKI certificates issued by certification authorities. These certificates serve as electronic
information that verifies and provides evidence of the authenticity of signatures. Electronic
information is issued to administrative, auxiliary, and assistant agencies, public infrastructure, banks,
or users [12].

Figure 4. depicts GPKI-based and National Public Key Infrastructure (NPKI)-based certification
scheme. First, the GPKI system use a Top-level certification authority (CA1) to manage a list of public
keys for public service worker (A, B). The CA1 issues a certificate (𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝐼𝐼) containing a signature for
the public key (𝑝𝑝𝑘𝑘𝐼𝐼) that signs with its private key (𝑠𝑠𝑘𝑘𝐶𝐶𝐶𝐶). Second, NPKI system use another Top-level
certification authority (CA2) that managing multiple CA. These multiple CA maintain public keys
for civilian (C, D). Also, these CA issue a certificate (𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝐼𝐼) for civilian. These two systems mutually
recognize authentication systems each other and collaborate to manage a certificate trust list. As CA1,
CA2, and CA are a trusted authority, users can trust the public key contained in the certificate issued
by a trusted authority.

(a) (b)

Figure 4. (a) GPKI-based Certification Scheme; (b) NPKI-based Certification Scheme.

5.2. End-to-End PQC encryption protocol applicable to GPKI-based video conferencing systems

GPKI-based video conferencing systems employ user authentication mechanisms that differ
from those used in the private sector. Unlike Zoom’s login and signature method and authentication
through SFrame’s credentials, GPKI-based video conferencing systems require a login with a

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2023 doi:10.20944/preprints202305.2077.v1

https://doi.org/10.20944/preprints202305.2077.v1

certificate issued by a government agency. Consequently, if all meeting participants are affiliated
with a government agency and possess GPKI-based certificates, there are no obstacles to their
participation. Meanwhile, ordinary people who participate in meetings do not have GPKI certificates;
therefore, another authentication method is required. Access through a provided link or a one-time
password authentication method may be a possible method for authenticating the private sector.

We propose the application of PQC KEM to the user key exchange process of the E2EE protocol
in a GPKI-based video conferencing system. Previously, in Zoom’s E2EE security Phase 1, Client Key
Management and meeting data could be encrypted or decrypted if a 32-byte 𝑀𝑀𝑀𝑀 was shared securely.
In the proposed next-generation video conferencing system, the session key (𝑠𝑠𝑠𝑠) shared through KEM
plays the same role as the 32-byte 𝑀𝑀𝑀𝑀 in Zoom.

Figure 5. is the application of the PQC KEM to the GPKI-based video conferencing system. We
describe progress of the Figure 5. to Algorithm 3.:

First, it is assumed that both the host (A), who owns the GPKI, and the general client (C) are
normally authenticated. The host uploads ciphersuite (𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴), server’s signature for
verification key (𝑆𝑆𝑆𝑆𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴 (𝐼𝐼𝐼𝐼𝐾𝐾𝐴𝐴)), and own signature (𝑆𝑆𝑆𝑆𝑔𝑔𝐴𝐴). Subsequently, the client generates a
public key (𝑝𝑝𝑘𝑘𝐶𝐶) and a private key (𝑠𝑠𝑘𝑘𝐶𝐶) using the host’s ciphersuite. The client then uploads its public
key (𝑝𝑝𝑘𝑘𝐶𝐶), server’s signature for the verification key (𝑆𝑆𝑆𝑆𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵 (𝐼𝐼𝐼𝐼𝐾𝐾𝐵𝐵)), and own signature (𝑆𝑆𝑆𝑆𝑔𝑔𝐵𝐵). Next,
the host creates a session key (𝑠𝑠𝑠𝑠) using a random source extracted from a cryptographically secure
RNG. The host encrypts the session key (𝑠𝑠𝑠𝑠) with the client’s public key (𝑝𝑝𝑘𝑘𝐶𝐶), and uploads it. The
client decrypts the ciphertext with the secret key (𝑠𝑠𝑘𝑘𝐶𝐶) to obtain the session key (𝑠𝑠𝑠𝑠). Finally, the host
and client can securely encrypt/decrypt with session key (𝑠𝑠𝑠𝑠) and share conference data.

Algorithm 3. E2EE Key Exchange Process with KEM applied to Next-generation Video Conferencing
System.

𝑨𝑨: host, 𝑩𝑩: client, 𝒑𝒑𝒑𝒑𝑰𝑰: public key, 𝒔𝒔𝒔𝒔𝑰𝑰: secret key, 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: verification key, 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: signing
key, 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑰𝑰 (𝑰𝑰𝑰𝑰𝑲𝑲𝑰𝑰): signature of the server for verification key, 𝑺𝑺𝑺𝑺𝑺𝑺𝑰𝑰: signature for

public key, 𝑹𝑹: random source, 𝒔𝒔𝒔𝒔: shared session key, 𝒄𝒄𝒄𝒄: ciphertext
1: procedure (Next-generation video conferencing system’s E2EE Key Exchange Process)
2: For user 𝐴𝐴, 𝐶𝐶 do ▷𝐼𝐼 ∈ {𝐴𝐴,𝐶𝐶}

3: 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
�⎯⎯⎯� 𝐶𝐶𝐶𝐶

4: For user 𝐴𝐴 do
5: Server ← {𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴, 𝑆𝑆𝑆𝑆𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴 (𝐼𝐼𝐼𝐼𝐾𝐾𝐴𝐴), 𝑆𝑆𝑆𝑆𝑔𝑔𝐴𝐴}
6: For user 𝐶𝐶 do
7: (𝑝𝑝𝑘𝑘𝐶𝐶 , 𝑠𝑠𝑘𝑘𝐶𝐶) ← KeyGen
8: Server ← {𝑝𝑝𝑘𝑘𝐶𝐶 , 𝑆𝑆𝑆𝑆𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 (𝐼𝐼𝐼𝐼𝐾𝐾𝐶𝐶), 𝑆𝑆𝑆𝑆𝑔𝑔𝐶𝐶}
9: For user 𝐴𝐴 do

10: 𝑠𝑠𝑠𝑠 ← 𝑅𝑅
$
← Secure RNG

11: Server ← 𝑐𝑐𝑐𝑐 = 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬(𝑝𝑝𝑘𝑘𝐶𝐶, 𝑅𝑅)
12: For user 𝐶𝐶 do
13: 𝑠𝑠𝑠𝑠 ← 𝑅𝑅 = 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝑠𝑠𝑘𝑘𝐶𝐶, 𝑐𝑐𝑐𝑐)
14: end procedure

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2023 doi:10.20944/preprints202305.2077.v1

https://doi.org/10.20944/preprints202305.2077.v1

Figure 5. Application of PQC KEM to GPKI-based Video Conferencing System.

Figure 6. Application of NTRU KEM to GPKI-based Video Conferencing System.

The next-generation video conferencing system depicted in Figure 5., which utilized the PQC
KEM, addresses the integrity requirement by leveraging authentication and signing provided by the
GPKI. Moreover, this system satisfies the confidentiality requirements through public key encryption.
Hence, the PQC encryption protocol employed in the GPKI-based video conferencing system fulfills
the E2EE security features outlined in Table 1.

Figure 6. illustrates an example of applying NTRU KEM, one of the 3rd round candidates for the
NIST PQC standardization contest, into a GPKI-based video conferencing system. When using a
ciphersuite of NTRU KEM with a security level 1, such as ‘ntruhps2048509’, the size of the shared
session key (𝑠𝑠𝑠𝑠) is 32-byte, which is the same size of the 𝑀𝑀𝑀𝑀 in Zoom [13].

First, the host (A) uploads the server’s signature for the verification key and ciphersuite. The
client (C) generates a private key (𝑓𝑓, 𝑓𝑓𝑝𝑝, ℎ𝑞𝑞 , 𝑠𝑠) and a public key (ℎ) using the NTRU algorithm, and
uploads the public key (ℎ) and signature. Second, the host extracts a random value (𝑟𝑟, 𝑚𝑚) using a

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2023 doi:10.20944/preprints202305.2077.v1

https://doi.org/10.20944/preprints202305.2077.v1

cryptographically secure RNG, and encrypts it with public key (ℎ). During this procedure, the host
creates a 32-byte session key (𝑠𝑠𝑠𝑠) with a random value (𝑟𝑟, 𝑚𝑚). Third, the client decrypts the ciphertext
with his own private key (𝑓𝑓, 𝑓𝑓𝑝𝑝, ℎ𝑞𝑞, 𝑠𝑠), and gets (𝑟𝑟, 𝑚𝑚). Finally, it generates a 32-byte session key (𝑠𝑠𝑠𝑠)
with (𝑟𝑟, 𝑚𝑚) in the same way as the host. Consequently, the host and client both have the 32-byte
shared symmetric session key (𝑠𝑠𝑠𝑠) without exposing the key to the central server.

The NTRU KEM was used as the PQC scheme in Figure 6., but other PQC schemes could also
be applied to the proposed PQC encryption protocol. As a possible option, since CRYSTALS-KYBER
has been selected as the PQC KEM standard after the 3rd round of NIST PQC standardization
competition [14], applying this KEM to the proposed GPKI-based video conferencing system’s E2EE
PQC protocol could contribute to improve the security of the next-generation video conferencing
system.

6. Conclusions

We examine and compare two representative video conferencing systems, Zoom and SFrame,
focusing on their E2EE capabilities. Both systems were found to meet the necessary features of E2EE;
however, there was a difference between Zoom, which uses a symmetric key method, and SFrame,
which uses an asymmetric key method for encrypting and decrypting shared keys.

To improve the security of E2EE protocols in GPKI-based video conferencing systems that are
not in the private sector, we propose the application of PQC KEM during the key exchange process.
This mechanism satisfies integrity through signing with GPKI-based authentication and
confidentiality through encryption, resulting in E2EE security. Moreover, we expect this mechanism
to securely share session keys even in the face of the escalating threat posed by quantum computers.
Therefore, the security of video conferencing systems can be improved.

The proposed PQC protocol for E2EE in a GPKI-based video conferencing system appears to
serve as valuable reference material for enhancing the On-Nara video conferencing system based on
the Korea GPKI. However, as there is currently no established Korean standard for PQC, the
application of a specific PQC KEM algorithm may necessitate future modifications for its usage in
video conferencing systems. Therefore, the application of a specific PQC algorithm to the proposed
protocol is left for future studies.

Author Contributions: Conceptualization, Y.P. and Y.Y.; Methodology, Y.P.; Validation, Y.Y., J.K., H.Y., J.R. and
Y.C.; Formal analysis, Y.P. and Y.Y.; Investigation, Y.P., H.Y., J.R. and Y.C.; Resources, Y.P. and Y.Y.; Data
curation, Y.P. and Y.Y.; Writing—Original Draft Preparation, Y.P.; Writing—Review & Editing, Y.P. and Y.Y.;
Visualization, H.Y., J.R. and Y.C.; Supervision, Y.Y. and J.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No.2021-0-00046, Development
of next-generation cryptosystem to improve security and usability of the national information system).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Menezes, A.; Stebila, D. End-to-End security: When do we have it?. IEEE Security & Privacy. 2021, 19, 60–
64.

2. Blum, J.; Booth, S.; Chen, B.; Gal, O.; Krohn, M.; Len, J.; Lyons, K.; Marcedone, A.; Maxim, M.; Mou, M.E.;
et al. E2E Encryption for Zoom meetings v3.2. 2021. Available online:
https://css.csail.mit.edu/6.858/2023/readings/zoom_e2e_v3_2.pdf (accessed on 22 November 2022).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2023 doi:10.20944/preprints202305.2077.v1

https://css.csail.mit.edu/6.858/2023/readings/zoom_e2e_v3_2.pdf
https://doi.org/10.20944/preprints202305.2077.v1

3. Omara, E.; Uberti, J.; Murillo, S.G.; Barnes, R.; Fablet, Y. Secure Frame (SFrame): draft-ietf-sframe-enc-00.
2022. Available online: https://datatracker.ietf.org/doc/draft-ietf-sframe-enc/00/ (accessed on 24 September
2022).

4. Isobe, T.; Ito, R.; Minematsu, K. Security Analysis of SFrame. ESORICS 2021, Darmstadt, Germany, 4–8
October 2021; pp. 127–146.

5. Knodel, M.; Celi, S.; Baker, F.; Kolkman, O.; Grover, G. Definition of End-to-end Encryption: draft-knodel-
e2ee-definition-07. 2022. Available online: https://datatracker.ietf.org/doc/draft-knodel-e2ee-definition/07/
(accessed on 17 October 2022).

6. Cisco Webex Meetings Security White Paper. 2022. Available online:
https://www.cisco.com/c/en/us/products/collateral/conferencing/webex-meeting-center/white-paper-c11-
737588.html (accessed on 10 April 2023).

7. Securing Webex Meetings with Zero Trust Security. 2021. Available online:
https://community.cisco.com/kxiwq67737/attachments/kxiwq67737/webex-
announcements/355/1/Zero%20Trust%20Security%20for%20Webex%20Meetings%20-%20Walk%20Throu
gh%20Wednesday.pdf (accessed on 14 April 2023).

8. Barnes, R.; Andrews, J.H.; McCarney, D.; Kasten, J. Automatic Certificate Management Environment
(ACME): RFC 8555. 2020. Available online: https://datatracker.ietf.org/doc/rfc8555/ (accessed on 23 April
2023).

9. Kim, K.; Choi, Y. Comparing Zoom’s security analysis and security update results. Journal of Korea Society
of Digital Industry and Information Management. 2020, 16, 55–65.

10. Barnes, R.; Beurdouche, B.; Robert, R.; Millican, J.; Omara, E.; Cohn-Gordon, K. The messaging layer
security (MLS) protocol: draft-ietf-mls-protocol-16. 2022. Available online:
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/16/ (accessed on 08 December 2022).

11. Barnes, R.; Bhargavan, K.; Lipp, B.; Wood, C. Hybrid public key encryption: RFC 9180. 2022. Available
online: https://datatracker.ietf.org/doc/rfc9180/ (accessed on 04 December 2022).

12. Introduction of administrative electronic signature certificate. Available online:
https://www.gpki.go.kr/jsp/certInfo/certIntro/eSignature/searchEsignature.jsp (accessed on 17 April 2023).

13. Chen, C.; Danba, O.; Hoffstein, J.; Hulsing, A.; Rijneveld, J.; Schanck, J.M.; Schwabe, P.; Whyte, W.; Zhang,
Z. NTRU: Algorithm specifications and supporting documentation. 2019. Available online:
https://ntru.org/f/ntru-20190330.pdf (accessed on 13 March 2023).

14. Alagic, G.; Apon, D.; Cooper, D.; Dang, Q.; Dang, T.; Kelsey, J.; Lichtinger, J.; Liu Y.K.; Miller, C.; Moody,
D.; et al. Status report on the third round of the NIST Post-Quantum Cryptography standardization process.
Available online: https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf (accessed on 27 March
2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2023 doi:10.20944/preprints202305.2077.v1

https://datatracker.ietf.org/doc/draft-ietf-sframe-enc/00/
https://datatracker.ietf.org/doc/draft-knodel-e2ee-definition/07/
https://www.cisco.com/c/en/us/products/collateral/conferencing/webex-meeting-center/white-paper-c11-737588.html
https://www.cisco.com/c/en/us/products/collateral/conferencing/webex-meeting-center/white-paper-c11-737588.html
https://community.cisco.com/kxiwq67737/attachments/kxiwq67737/webex-announcements/355/1/Zero%20Trust%20Security%20for%20Webex%20Meetings%20-%20Walk%20Through%20Wednesday.pdf
https://community.cisco.com/kxiwq67737/attachments/kxiwq67737/webex-announcements/355/1/Zero%20Trust%20Security%20for%20Webex%20Meetings%20-%20Walk%20Through%20Wednesday.pdf
https://community.cisco.com/kxiwq67737/attachments/kxiwq67737/webex-announcements/355/1/Zero%20Trust%20Security%20for%20Webex%20Meetings%20-%20Walk%20Through%20Wednesday.pdf
https://datatracker.ietf.org/doc/rfc8555/
https://datatracker.ietf.org/doc/draft-ietf-mls-protocol/16/
https://datatracker.ietf.org/doc/rfc9180/
https://www.gpki.go.kr/jsp/certInfo/certIntro/eSignature/searchEsignature.jsp
https://ntru.org/f/ntru-20190330.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://doi.org/10.20944/preprints202305.2077.v1

	1. Introduction
	2. Research Trends
	2.1. E2EE-related Research
	2.2. Vulnerable case of Video Conferencing System Security

	3. Analyzing Zoom’s E2EE Capabilities
	3.1. E2EE Phase 1: Client Key Management

	4. Analysis of SFrame
	4.1. Structure of SFrame
	4.2. SFrame’s Key Management System
	4.2.1. MLS Protocol

	4.3. Comparison between Zoom and SFrame

	5. Next-Generation Video Conferencing System
	5.1. GPKI-based System
	5.2. End-to-End PQC encryption protocol applicable to GPKI-based video conferencing systems

	6. Conclusions
	References

