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Abstract: Glycosphingolipids (GSLs), a subtype of glycolipids containing sphingosine, are critical components
of vertebrate plasma membranes, playing a pivotal role in cellular signaling and interactions. In human
articular cartilage in osteoarthritis (OA), GSL expression is known notably to decreases. This review focuses on
the roles of gangliosides, a specific type of GSL, in cartilage degeneration and regeneration, emphasizing their
regulatory function in signal transduction. The expression of gangliosides, whether endogenous or augmented
exogenously, is regulated at the enzymatic level, targeting specific glycosyltransferases. This regulation has
significant implications for the composition of cell surface gangliosides and their impact on signal transduction
in chondrocytes and progenitor cells. Different levels of ganglioside expression can influence signaling
pathways in various ways, potentially affecting cell properties, including malignancy. Moreover, gene
manipulations against gangliosides have been shown to regulate cartilage metabolisms and chondrocyte
differentiation in vivo and in vitro. This review highlights the potential of targeting gangliosides in the
development of therapeutic strategies for osteoarthritis and cartilage injury and addresses promising directions
for future research and treatment.

Keywords: glycosphingolipids (GSLs); osteoarthritis; articular cartilage; gangliosides; chondrocyte
differentiation; cartilage regeneration

1. Introduction

Articular cartilage is a specialized connective tissue that resides at the interface between bones
and joint space [1]. This highly specialized tissue comprises chondrocytes and a specific extracellular
matrix (ECM) containing types II, IX, and XI collagen and proteoglycans, but notably lacks type I
collagen. Referred to as hyaline cartilage, it is characterized by its elasticity, which plays a crucial role
in absorbing and distributing loads during weight-bearing. Another function is to provide a smooth,
lubricated surface facilitating a range of motion and enabling load transfer with minimal friction.
Articular cartilage is avascular, aneural, lymphatic, and hypocellular, limiting its capacity for
standard tissue repair mechanisms [2]. Most important, articular cartilage has a limited capacity for
intrinsic healing and repair.

Osteoarthritis (OA), the most common joint disease, affects over 300 million people worldwide
and contributes to an economic burden on both patients and society [3,4]. The disease costs the United
States economy more than $80 billion per year [5]. OA is characterized by progressive degradation of
articular cartilage and ECM, while its pathogenesis remains largely unknown despite extensive gene-
and protein-based research [6]. Articular cartilage does not possess access to the nutrients or
circulating chondrogenic progenitor cells and cartilage lacks the natural potential to overcome a
sufficient healing response by possessing a nearly acellular nature [7]. Consequently, articular
cartilage has limited healing potential; therefore, it can lead to cartilage degeneration and ultimately
result in OA. In particular, the relationship between OA and glycolipids began to receive attention
after the finding that the composition of glycosphingolipids (GSLs) is markedly altered in the
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articular cartilage of OA patients [8-10]. Following this report, the possibility that biomembrane
glycolipids, the subject of post-genomic studies, are involved in the pathogenesis of OA has come to
be considered.

GSLs are key components of cell membranes, comprising a hydrophobic ceramide and a
hydrophilic oligosaccharide residue. Ceramides are embedded in the outer leaflet of the plasma
membrane, while oligosaccharides project into the extracellular space [11,12]. GSLs cluster on the cell
membrane surface, modulating transmembrane signaling and mediating intercellular and cell-matrix
interactions [11-14]. An enzyme called glucosylceramide synthase encoded by the UDP-glucose
ceramide glucosyltransferase (Ugcg) gene is responsible for directing the first committed step in GSL
synthesis [15-18]. Glucosylceramide is formed when a glucose moiety is transferred from UDP-
glucose to ceramide, which is the precursor of most cellular GSLs. Mice with a global disruption in
UGCG are embryonic lethal (E7.5), suggesting that GSLs are essential for embryonic development
and differentiation [15-17,19]. It is now well established that some sphingolipids can regulate key
biological functions, and these include cell growth and survival, cell differentiation, angiogenesis,
autophagy, cell migration, or organogenesis [20]. Furthermore, specific bioactive sphingolipids have
been linked to various pathologies, including inflammation-related diseases like atherosclerosis,
rheumatoid arthritis, type II diabetes, obesity, cancer, and osteoarthritis.

Here, we mainly discuss the usefulness of GSLs expressed on cell membranes as biomarkers for
quality control in cartilage regenerative medicine and as therapeutic target molecules for OA.

2. Impact of GSLs on the Cartilage Homeostasis

After it was shown that a major component of glycolipids (ceramide) stimulates the mRNA
expression of collagenase-1/MMP-1 and stromelysin-1/MMP-3 in human fibroblasts through the
activation of three different mitogen-activated protein kinases (MAPKSs), ERK1/2, SAPK/INK and p38
in cartilage, ceramide was also found to be involved in cartilage degeneration and apoptosis [21,22].
The ceramide pathway activator suppressed the production of inflammatory cytokines and activation
of the MAPK pathways [23]. As mentioned above, systemic knockout mice of the Ugcg gene are
embryonic lethal because UGCG is the first committed step in the synthesis of the majority of GSLs
[15-18]. GSLs form clusters on the plasma membrane and play diverse roles in regulating membrane-
mediated signal transduction and mediating cell-cell and cell-extracellular matrix interactions [24—
27]. Therefore, an attempt was made to sort out even the most characteristic downstream glycolipid
molecules by sequential knockout of upstream glycosyltransferase genes involved in the impairment
of cartilage homeostasis in chondrocytes. The contents of such research studies are summarized in
Figure 1 and Table 1.
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Figure 1. Schematic of the biosynthetic pathway for gangliosides. Glucosylceramide (GlcCer)
synthase, encoded by the Ugcg gene, synthesizes GlcCer from ceramide. Gangliosides are classified
as o-, a-, and b-series according to the number of sialic acids attached to galactose. GM3 synthase
(GM3S) is required for GSL synthesis downstream of LacCer, including the a-series and b-series. b-
series gangliosides are synthesized from the common precursor molecule GD3, which is the product
of GD3 synthase (GD3S, encoded by the Gd3s gene). 31, 4-N-acetylgalactosaminyltransferase
(GalNACT) activity is required for the elaboration of the o-, a-, and b-series precursors LacCer, GM3,
and GD3, respectively. Cer, ceramide; GSLs, glycosphingolipids; GlcCer, glucosylceramide; LacCer,
lactosylceramide.

A decrease in all major gangliosides, contrasting with a marked increase in the GM3, has been
demonstrated in osteoarthritic fibrillated cartilage. Some previous studies have shown that
gangliosides have tissue-protective effects against oxidative stress or apoptosis in neuronal, cardiac,
and hepatic cells [28-32]. The results of the series of studies indicate that loss of gangliosides results
in greater cartilage vulnerability to interleukin (IL)-1 stimulation in the cartilage degradation process
by increasing MMP-13 secretion and chondrocyte apoptosis. On the other hand, There have been
indications that replenishing cells with the missing gangliosides can restore normal activation [33,34].
Based on the previous studies, it is reasonable to consider a treatment that supplements the o-, a-,
and b-series gangliosides below GalNACcT. Future therapeutic trials are pending.

Glycosidase inhibitors are also considered to be an important target for cartilage regeneration.
They are directly linked to osteoarthritis because N-acetyl-beta-hexosaminidase is the predominant
glycosidase released by chondrocytes to degrade glycosaminoglycan [35,36]. Stimulation of
chondrocytes with IL-13 selectively increases extracellular hexosaminidase activity among many
enzymes, suggesting that hexosaminidase is the cartilage matrix-degrading enzyme activated by
inflammatory stimuli. The inhibitor of this hexosaminidase was shown to modulate intracellular
levels of glycolipids, including GM2 and GA2 (o- and a-series gangliosides).

Table 1. Genetic defects in mouse glycan formation and physiologic consequence.
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3. Role of GSLs in Cartilage Repair and Differentiation Processes

GSLs play a crucial role in the repair and differentiation processes of articular cartilage. These
processes are essential for addressing cartilage defects, commonly observed in osteoarthritis. The
unique properties of GSLs facilitate the regeneration of cartilage tissue, which is key to restoring joint
function. Articular cartilage repair models have demonstrated the potential of specific cell types and
biological factors in facilitating cartilage repair. These models highlight the importance of
understanding the underlying mechanisms of cartilage regeneration, particularly focusing on the role
of GSLs in this process.

In this chapter, various aspects of cartilage repair will be explored, with a focus on the role of
glycolipids in promoting the regeneration and repair process through chondrogenic differentiation.

3.1. Endogenous Potential to Heal in Articular Cartilage

To enhance endogenous cell recruitment to the injury site, the biological process within a living
organism after articular cartilage injury needs to be clarified. Considering species differences,
appropriate animal models to replicate human articular cartilage repair processes are reported in
mice [51-53], rats [54], rabbits [55-57], horses [58], and canines [59], thus molecular reaction after
articular cartilage injuries is continuously disclosed [60-64]. Even though the species are different,
the major ganglioside in articular cartilage appears to be GM3 [65,66]. GSLs consist of several types
of glycolipids and are classified into several groups depending on their structural features, which
include neo-lacto-series, globo-series, isoglobo-series and ganglio-series (gangliosides) [24,40]. GM3
serves as a precursor molecule for most of the more complex ganglioside species [41] and ganglioside
expression pattern in cells during differentiation changes in response to cytokine and growth factor
stimulation [67-69]. During the articular cartilage healing process, GM3 was first expressed in injured
bone marrow on day 1 and gradually decreased at 2 weeks after articular cartilage injury GM3 next
transiently expressed cartilage in the vicinity of remnant cartilage which co-expressed with type X
collagen with a peak 6 weeks postoperative [42]. Notably, the depletion of gangliosides in mice
suppressed hypertrophic differentiation in the vicinity of remnant cartilage, resulting in enhanced
articular cartilage regeneration. These results suggested that gangliosides have dual roles in the
recruitment of chondrogenic precursor cells to the injury site and induction of hypertrophic
differentiation in chondrocytes. Manipulation of ganglioside expression may future direction in
articular cartilage regeneration, however, the site- and time-specific intervention to manipulate
glycosphingolipids in articular cartilage is needed.

3.2. Changes in the Glycan Structure during Chondrogenic Differentiation

Chondrogenic differentiation is the well-organized process by which cartilage is formed from
condensed mesenchyme tissue, which differentiates into chondrocytes and begins secreting the
molecules that form the extracellular matrix [70]. Extracellular enzymes, which include the matrix
metallopeptidases, lead to the activation of cell signaling pathways and gene expression in a
temporal-spatial-specific manner during the development process. The recruited mesenchymal stem
cells may attempt to differentiate into chondrocytes after articular cartilage injury [71,72]. However,
the response after injury is not a fully recapitulated process of development, resulting in regenerated
cartilage-like tissue that does not possess typical biomolecules of hyaline cartilage such as type II
collagen and aggrecan, and the proportion of the chemical constitutes of them differ from those in
original cartilage [73,74]. Molecules promoting the selective differentiation of multipotent
mesenchymal stem cells into chondrocytes have been reported to stimulate the repair of injured
articular cartilage [75]. Therefore, the regulation system for chondrogenic differentiation is attracting
attention.

Glycosylation is one of the posttranslational modifications in cell surface proteins and
extracellular matrix proteins, which regulate a variety of biological functions, including enhancement
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of protein stability, controlling cell-to-cell communication, and adhesion [76]. In addition, this process
is known to contribute to the pathogenesis of various kinds of diseases [77,78]. We previously
performed quantitative and qualitative analyses of N-linked glycans and glycoproteins during
chondrogenic differentiation using the glycoblotting method [79] and subsequent glycoform-focused
reverse proteomics and genomics using mouse pre-chondrogenic cell line, ATDCS5 cell line [80]. The
levels of high-mannose type N-glycans increase during chondrogenic differentiation, suggesting that
N-glycans may have key roles in differentiation and/or homeostatic maintenance of chondrocytes
[81]. As for hypertrophic differentiation in chondrocytes, Yan et al. reported that resting chondrocytes
exposed to concanavalin A, which binds specifically to high mannose-type structures, selectively
differentiated to the hypertrophic stage [82,83]. We previously performed comprehensive glycomics,
including N-glycans, O-glycans, free oligosaccharides (fOSs), glycosaminoglycans (GAGs), and GSLs
and showed dynamic alterations in all classes of glycoconjugates following the differentiation process
[84]. Hierarchical clustering analysis based on quantitative glycomic profiles showed that the levels
of various N-glycans dramatically increased with hypertrophic progression, in contrast, those of GSL-
glycans and fOSs significantly decreased. Changes in the levels of O-glycans and GAGs were
transient. These results suggested that glycan markers can be used as differentiation biomarkers for
chondrogenic differentiation and may help to evaluate the regenerative product after articular
cartilage injury.

4. Cell Sources

As we explained in the Introduction section, articular cartilage is a type of hyaline cartilage that
enables smooth movements between bones in articulating joints, which requires both weight-bearing
and low-friction capability [85]. Therefore, the regenerated cartilage requires these high qualities of
properties. The ultimate goal for ideal cartilage regeneration is to restore these key properties of the
original hyaline cartilage in terms of histological structure and biomechanical functions, which seems
to be only achieved by replacing it with healthy cartilage tissue [86]. As for now, several types of cell-
based approaches have been introduced [87]. Representative strategy includes autologous cartilage
implantation, mesenchymal stem cells, and induced pluripotent stem cells. Table 2 summarizes three
representative cell types and reports on cartilage regenerative medicine. Here, mainly based on
glycobiology, we overview the recent cell-based regenerative medicine in articular cartilage.

Table 2. Cell sources and cartilage regenerative medicine.

Lesion
Clinical i 2
. Cell source ¢ (cm?) Performances References
practice / OA
grade
Mesenchymal Microfracture is most likely to be
Microfracture stem cell 2.0-4.0 successful for small femoral [88-92]
(MSCQ) condylar defects
Autologous Effective procedure for the
matrix-induced treatment of mid-sized cartilage [88,89,93—
. MSC 1.3-5.3 ) .
chondrogenesis defects. Low failure rate with 99]
(AMIC) satisfactory clinical outcome
Superior structural integration with
Autologous . . .
native cartilage tissue compared to [89,100-
chondrocyte Chondrocyte  2.0-10.0 .
. . microfracture and AMIC, but a 103]
implantation

two-stage treatment burden exists
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Osteochondral autograft transfer
system and mosaicplasty appear to

be an alternative for the treatment

Osteochondral 0.1-20.0/ of medium-sized focal chondral
autograft Chondrocyte OA grade and osteochondral defects of the [104-107]
transplantation [ -IIT weight-bearing surfaces of the knee.

Chondrocyte sheet and auricular
cartilage micrograft for treatment of
early-stage OA has been tried
Osteoarticular allograft

transplantation was used to treat

22-44/
) high-grade cartilage defects or
Allogenic Chondrocyte, OA N . .
arthritis. iPSC-derived cartilages [108-115]
transplantation iPSC gradell - ] . .
v are used in preclinical studies that

are in the middle to late stages
when clinical trials are within range
Lower degenerative grades

improve outcomes but are less

Intra-articular adipose- )
o ) ] OA grade effective for end-stage OA. The
injection with ~ derived stem ] ) [116-122]
II-1v results of intra-articular
stem cell cell, MSC

administration of stem cells are
better with BMSC.

4.1. Autologous Cartilage/ Chondrocyte Implantation

In 1993, R Langer and ] P Vacanti advocated the concept of tissue engineering, which applied
the principles of biology and engineering to the development of functional substitutes for injured
tissue by manipulating cells, scaffolds, and stimuli such as cytokine [123]. The first target organ by
tissue engineering was thought to be skin or cartilage due to the less variation of cell types, and
avascular and two-dimensional nature. However, in terms of articular cartilage, it was proved to be
incorrect as far as known. Articular cartilage does not possess access to the nutrients or circulating
chondrogenic progenitor cells and cartilage lacks the natural potential to overcome a sufficient
healing response by possessing a nearly acellular nature [124]. Consequently, articular cartilage has
limited healing potential; therefore, it can lead to cartilage degeneration and ultimately result in OA.

In 1994, Brittberg et al. first introduced a cell-based therapy consisting of two staged procedures
for full-thickness defects of articular cartilage in the knee [125]. This procedure requires the first
harvest of chondrocytes from a non-weight-bearing area of articular cartilage. After a culture of 4 to
6 weeks, a second-stage procedure is undertaken to implant amplified chondrocytes into the defect.
Considering the limited healing potential for articular cartilage, these procedures seem to be ideal.
Since the first clinical report was published, several authors have demonstrated successful clinical
outcomes of this procedure for cartilaginous lesions [126-128]. However, there remain concerns
about the dedifferentiation of chondrocytes during the culture period due to the limited proliferative
capacity [129-131]. The cartilage extracellular matrix possesses various glycosylated proteins, which
contribute to the maintenance of its specific functions [132]. Sialic acids are negatively charged sugars
expressed at the terminal positions of N- and O-linked oligosaccharides, which are attached to cell
surfaces or secreted glycoproteins. As a result of their non-reducing terminal position, sialic acids are
involved in highly specific recognition phenomena [133,134]. Primary human chondrocytes
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predominantly express a-2-6-specific sialyltransferases and oa-2-6-linked sialic acid residues in
glycoprotein N-glycans [135]. Interestingly, inflammation stimuli induced a shift from a-2-6-linked
towards a-2-3-linked sialic acid, suggesting that a-2-6-linked sialic acid can be used as a biomarker
for quality control in amplified human cartilage.

4.2. Mesenchymal Stem Cells (MSCs)

Mesenchymal stem cells are multipotent stem cells and can be obtained from various organs
including bone marrow, synovium, periosteum, adipose tissue, and skeletal muscle [136]. MSCs are
attractive cell sources in regenerative medicine based on their abilities to self-renew and differentiate
into mesenchymal tissue lineage [137]. During the last few years, the use of MSCs and their cell-free
derivatives has seen an increasing number of applications in disparate medical fields, including
chronic musculoskeletal conditions [138-142]. All of these approaches would require cell harvesting
and transplantation. One of the concerns is that MSCs are heterogeneous populations, whose
capability to differentiate varies depending on the tissues harvested and donor age. Although MSCs
are grouped together by the common characteristics of CD44, 73, 90, 105 positivity and CD31, 45
negativity, these do not necessarily define "stem cells." These cells are then expanded in vitro until a
required cell number is reached, therefore, isolation methods, culture conditions, and passages
should be given consideration.

Glycosylation features associated with bone marrow-derived MSCs included high-mannose
type N-glycans, linear poly-N-acetyllactosamine chains, and a2-3-sialylation [143]. Their cellular
differentiation stage can be determined using these glycomics. Tateno et al. carried out glycome
analysis on different passages of adipose-derived human MSCs (hMSCs) using high-density lectin
microarray to identify glycan markers that distinguish MSCs to have enough capability to
differentiate [144]. This report indicated that a2-6-linked sialic acid-specific lectins showed stronger
binding to early passage of adipose-derived hMSCs with differentiation ability to adipocytes and
osteoblasts than did late passage cells without the ability. They also reported quantitative glycome
analysis targeting both N- and O-glycans from early and late passages of adipose tissue-derived
hMSCs and showed the expression of «a2-6-sialylated N-glycans varies depending on the
differentiation potential of stem cells but not O-glycans, suggesting that a2—6-sialylated N-glycans
can be used biomarker for quality control of hMSCs [145]. The presence of a2-6-linked sialic acid
structure is a characteristic of pluripotent stem cells that possess higher differentiation potential. This
may serve as an indicator of their differentiation potential. Ryu et al. showed that the gangliosides
GM3 and GD3, which contain a2-3- and a2-8-linked sialic acids, were expressed after the
chondrogenic differentiation of synovium-derived hMSC aggregates [146]. In the same way, GM3
expression increased temporarily following the chondrogenic differentiation of hMSCs derived from
bone marrow [147]. Considering OA cartilage is characterized by a decrease in most gangliosides,
these gangliosides may be useful in developing therapeutic agents for MSC-based articular cartilage
regeneration in articular cartilage disease.

4.3. Induced Pluripotent Stem Cells (iPSCs)

In 2006, Takahashi and Yamanaka reported pluripotential stem cells from mouse embryonic or
adult fibroblasts by introducing four factors Oct3/4, Sox2, c-Myc, and Klf4 [148]. The method to
establish human iPSCs dramatically evolved and simplified [149]. This progress provides us with
opportunities to understand the disease mechanisms and promote regenerative medicine [150,151].
To avoid the rejection of differentiated cells originating from iPSC transplantation, autogenous
transplantation with iPSCs originating from donors is ideal. However, these procedures require time
to establish iPSCs with high enough quality for transplantation as well as the cost. In contrast, iPSCs
induced from individuals with a homozygous human leukocyte antigen haplotype (HLA-homo) is a
significant candidate for allogenic transplantation on the basis that HLA-homo iPSCs might not be
rejected by HLA haplotype-matched patients [152-154]. iPSC banking recruited from healthy,
consenting HLA-type homozygous donors and is made with peripheral blood-derived mononuclear

doi:10.20944/preprints202403.0303.v1
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cells or umbilical cord blood [155]. Many research groups have been trying to apply iPSCs-based
therapy to patients, and some of them are already being administered in clinical trials [156].

As for cartilage metabolisms, the main techniques to confirm chondrogenic differentiation from
iPSCs are based on the detection of upregulated chondrogenic genes or histological analysis of the
extracellular matrix. We previously performed a quantitative GSL-glycan analysis to compare human
iPSCs, iPSC-derived MSC-like cells, iPS-MSC-derived chondrocytes (iPS-MSC-CDs), and bone
marrow-derived MSCs [147,157]. GSL-glycan profiles differed among cell types, and the GSL-
glycome underwent a characteristic alteration during the process of chondrogenic differentiation.
Undifferentiated human iPSCs mainly expressed globo- and lacto-series GSLs, which shifted to
ganglio-series GSLs, such as GM3 when iPSCs differentiated into iPS-MSCs. After chondrogenic
differentiation of both bone marrow-derived MSCs and iPS-MSC-like cells, the expression of GM3
increased temporarily. Furthermore, the GSL-glycome of normal human cartilage was closely similar
to that of iPS-MSC-CDs.

In terms of tumorigenicity for iPSCs themselves, while clinical applications are going forward,
the concerns that transplantation of differentiated iPSC might lead to teratoma formation in the
recipient should be clarified [158,159]. Matsumoto et al. reported that R-17F antibody detects
undifferentiated iPSCs harboring the Lacto-N-fucopentaose I (LNFP I) of GSLs, and as a result, exerts
cytotoxic activity [160]. Recently, we developed the aminolysis-sialic acid linkage-specific
alkylamidation (SALSA) method [161], which enables discrimination of sialic acid linkage isomers
on GSL-glycans by mass spectrometric analysis and analyzed the GSL-glycome of co-cultured
undifferentiated iPSCs and chondrocytes by glycoblotting-SALSA method. Most GSL-glycans from
~100 cells of iPSCs could also be detected. Utilizing this technique, we showed that R-17 antibody
detects undifferentiated iPSCs harboring the Lacto-N-fucopentaose I (LNFP I) of GSLs have selective
removal of residual iPSCs even by chondrocytes co-cultured with iPSCs [162]. Furthermore, the
experiment was successfully performed to determine whether R-17 antibodies could prevent
teratoma formation induced by residual iPSCs [163]. The GSLs-Glycome analysis is useful to
determine the optimal condition for the removal of undifferentiated iPSCs to a level safe for
transplantation.

5. Conclusions

Glycomics of mesenchymal stem/progenitor cells can be utilized to evaluate their stage of
cellular differentiation. Furthermore, this review highlighted the potential that supplementing
missing GSLs could play significant roles in tissue regeneration and disease modification. To guide
the regeneration of degenerated or injured cartilage into articular cartilage, a multifactorial
methodology that incorporates GSLs, which are closely related to cartilage homeostasis, should be
developed in the future.
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