Pre prints.org

Article Not peer-reviewed version

Application of WKB Theory to
Investigating Electron Tunneling in
Kek-Y Graphene

Andrii lurov ~ , Liubov Zhemchuzhna , Godfrey Gumbs , Danghong Huang
Posted Date: 27 April 2023

doi: 10.20944/preprints202304.1054 v1

Keywords: WKB approximation; semi-classical action; electron tunneling; transmission amplitude

E Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
r available and citable. Preprints posted at Preprints.org appear in Web of
E-‘-* Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/2915309

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 April 2023 doi:10.20944/preprints202304.1054.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Application of WKB Theory to Investigating Electron
Tunneling in Kek-Y Graphene

Andrii Iurov ¥*, Liubov Zhemchuzhna 2, Godfrey Gumbs %> and Danhong Huang *

1 Department of Physics and Computer Science, Medgar Evers College of City University of New York,

Brooklyn, NY 11225, USA

Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park
Avenue, New York, NY 10065, USA

3 Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4,

20018 San Sebastian, Basque Country, Spain

Space Vehicles Directorate, US Air Force Research Laboratory, Kirtland Air Force Base,

New Mexico 87117, USA
Correspondence: aiurov@mec.cuny.edu or theorist.physics@gmail.com

Abstract: In this paper, we have constructed a WKB approximation for graphene having a Y-shaped
Kekulé lattice distortion and a special folding of the K and K’ valleys, which leads to very
specific linear e nergy d ispersions w ith t wo n on-equivalent p airs of s ubbands. T hese obtained
semi-classical results, which include the action, electron momentum and wave functions, are utilized
to analyze the dynamics of electron tunneling through non-square potential barriers. In particular, we
explore resonant scattering of an electron by a potential barrier built on Kekulé-distorted graphene.
Mathematically, a group of consecutive equations for a semi-classical action have been solved by
following a perturbation approach under the condition of small strain-induced coupling parameter
Ay < 1 (a good fit to its actual value A g~ 0.1). Specifically, we consider a generalized model for
Kek-Y graphene with two arbitrary Fermi velocities. The dependence of the electron transmission
amplitude on the potential profile V(x) and band parameters of Kekulé-patterned graphene has been
explored and analyzed in details.

Key words: WKB approximation; semi-classical action; electron tunneling; transmission amplitude

1. Introduction

Kekulé-patterned graphene represents an unusual and technologically very promising
modification of conventional graphene energy band structure due to coupling of its orbital with
spin degrees of freedom. In fact, a periodic Y-shape modification of the bond strengths of graphene, as
illustrated in Figure 1, leads to chiral electronic states as well as two inequivalent coupled Dirac cones
with different Fermi velocities [1-3]. Practically, such a unique feature can be realized by depositing
graphene on a special copper-based substrate [4]. Here, we focus on Kek-Y graphene which is further
distinguished from Kek-O graphene by a finite bandgap [4-6].

Figure 1. (Color online) Atomic structure of Kekulé-distorted grpahene: honeycomb lattices of
graphene with additional Kek-Y bond texture due to the presence of a substrate.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The most crucial feature of Kek-Y graphene is its valley-momentum locking, e.g.,, two eigenstate
modes of electrons are chiral (helical) and have zero bandgap, and meantime, both sublattice
pseudospin and isospin are locked to the same group velocity [1]. Recently, there have been a
number of crucial research publications aimed at addressing these unusual electronic, optical and
transport properties of Kekulé-distorted graphene [3,7-10]. Even though the mismatch between slopes
of two Dirac cones appears fixed in Kekul e-patterned graphene, i.e., vr1/vp2 « 0.9, we still consider
a general case for Kek-Y graphene with two inequivalent Dirac cones and having two arbitrary Fermi
velocities vp 1 and vp .

Kekulé-patterned graphene is the newest member in the family of Dirac-cone materials, including
graphene [11,12], silicene [13-15], transition-metal dichalcogenides [16,17], as well as the most unusual
group of a-73 materials [18-20]. The most uncommon feature of -73 model is the presence of a flat
band in its energy dispersions giving rise to the most unusual electronic and optical properties [21-34].
On the other hand, the magnetic properties and magnetic-quantization behavior of a-73 materials
have also attracted a lot of attention [35-39], including a phase transition from a diamagnetic to a
paramagnetic susceptibility by continuously varying the parameter a [40]. Actually, the low-energy
dispersion of a-73 model looks somewhat like that of generalized Kek-Y graphene model if the Fermi
velocity of the lower Dirac cone is greatly reduced compared to the larger one (i.e., vrp < v ).

The Wentzel-Kramers—Brillouin (WKB), or the semi-classical, theory provides an intuitive but
realistic description for dynamical behaviors of electrons in a variety of complex quantum systems
under the condition of a high-kinetic energy. For this case, the properties of such electrons are not
very much different from their classical counterparts and could be effectively described by classical
dynamics. However, in contrast to a perturbation theory, the interaction between a particle and an
external potential can be very strong, implying that in a number of cases the WKB description can
still be valid even as other types of approximation fail [41-46]. Therefore, from this point of view, it is
essential and crucial to develop a semi-classical WKB theory for each newly discovered Dirac lattice,
such as a-73 or Kekulé-patterned graphene. Mathematically, the WKB approximation is regarded
as a solution technique for a differential equation with the highest-order derivative term multiplied
by a small parameter. In quantum physics, this small parameter is just Planck’s constant 7 so that
the solution for a WKB wave function can be sought as a power series of . However, the WKB for
Dirac electrons in graphene is found drastically different from that in the case of a regular Schrodinger
electron, and therefore we expect that the WKB solution for each novel Dirac material will be quite
unique compared with all other known solutions. Moreover, the sought wave function for a new
material will usually appear as a quickly oscillating function which is further modulated by a much
slower variation from an external potential V'(x).

Among multiple applications of the WKB theory, we would also like to calculate electron
transmission, or tunneling probability, and investigate various bound states of an electronic
system [44,45,47]. In contrast to previous studies on tunneling and transport of electrons in Kek-Y
graphene [48,49] through complicated numerical computations, WKB methods, on the other hand,
provides reliable estimates based on closed-form analytical expressions which are easily used to
interpret experimental measurements on electron transport.

Studying electron tunneling, often associated with calculating a transmission amplitude, becomes
one of the most important issues for each of newly discovered Dirac materials mostly because of the
so-called Klein paradox, i.e., a full tunneling of chiral Dirac electrons through a square potential barrier,
independent of its width and height if the incoming electron moves in the direction perpendicular to
the barrier boundary [12,50-52]. For a finite-angle collision, however, a complete transmission also
appears for an oblique (not a normal) incidence due to presence of Fabry-Perot resonances. Such a
Klein-tunneling behavior was investigated for all Dirac-cone materials and nano-ribbons [49,53,54],
including transport in Kekulé-distorted graphene nanoribbons [49]. Specifically, a magic transmission
was demonstrated for a-73 materials and dice lattice [55-58], in additional to unusual tunneling
behavior of anisotropic Dirac electrons [59-61].
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The unique properties of electron tunneling and the existence of the Klein paradox will depend on
a few factors and the most crucial one is the energy bandgap between the valence and conduction bands
[62-66]. The two-dimensional materials with a gap do not show Klein tunneling. Such a bandgap in
graphene and other Dirac lattices could be created by applying an off-resonance circularly-polarized
dressing field which also turns these material into Haldane-like Chern insulators [67,68]. However, a
linearly-polarized irradiation normally does not affect the gap although it can induce or modify the
existing anisotropy [69,70]. Interestingly, the effects of these external fields with different polarizations
could further mix with anisotropic and tilted energy dispersions of lattices, such as 1T'"MoS, [71-73].

One of the most crucial applications of WKB equations is investigating the electron tunneling for
non-trivial potential barriers, such as trapezoidal barriers [74] or linearly increasing potentials without
a sharp boundary. It was demonstrated for all previously known Dirac materials that the Klein paradox
persists in such potential profiles. Verification of this property for Kekulé-patterned graphene is one of
the goals of the present paper. Since Dirac electrons moving under a linearly-increasing potential can
acquire a very large kinetic energy, applying WKB approximation to such a case seems to be the most
adequate and efficient approach.

The remaining part of our paper is organized as follows. We begin with a brief review of electronic
states and their energy dispersions of Kek-Y graphene in Section 2. In Section 3, we formulate a full
WKB approximation for a general case of Kek-Y graphene, which includes finding the semi-classical
action, longitudinal electron momentum and WKB wave functions. Section 4 focuses on addressing
the electron tunneling and Klein paradox in Kekulé-patterned graphene by utilizing our derived
Wentzel-Kramers—Brillouin equations. Meantime, we also consider different methods for calculating
electron transmissions through different types of potential barriers, and demonstrate how these
methods could be applied to Kekulé-patterned graphene. Finally, we discuss and compare the
obtained results and present concluding remarks in Section 5

2. Energy band structure and electronic states in Kek-Y graphene

At the outset, we briefly review the electronic band structure and eigenfunctions in Kek-Y
graphene. For the type of distortion displayed in Figure 1, the Dirac cones will fold on each other, as
seen in Figure 2, which results in two states with no bandgap, but with different Fermi velocities.

e(k|Ag) 1 k(1 D)
|
< £
~
J k
.& ________________
&
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Figure 2. (Color online) Energy dispersions ey (s1, s, | k, Ag) for Kek-Y graphene represented by two
inequivalent Dirac cones with different Fermi velocities vr 1 and vr, corresponding to vrp(1 4 Ag).
Here sy = %1 is a band index while s = +1 corresponds to two different Fermi velocities due to strain
coupling Ao.

The low-energy Hamiltonian for Kek-Y graphene can be approximately written as [1,3]

Hy(k | AO) = th,?z)(Z) ® (k : ﬁ(2)> + hvp A% (k . 7'(2)) ® 2((]2) , (1)
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where k = {kx, ky} is a wave vector of electrons, vr is the Fermi velocity in regular non-strained
graphene and A is a dimensionless strain-induced coupling parameter. As Ay — 0, we recover the
regular graphene Hamiltonian for unfolded K and K’ valleys, i.e., keeping only the first term on the
right hand side of Equation (1). We indicate that Equation (1) holds only for a small strain-coupling
parameter Ag, and it may be modified as the stain strength increases. In most cases, however, A is
always assumed small in order to retain graphene signature of the system. Here, we choose Ay « 0.1
in our calculations below but derive a generalized model by assuming a substantial difference between
two Fermi velocities v (1 + Ap).

Additionally,
¢ _ 4@ _ |01
- [01],
£(2) _ 42 _ |0 —i
Ly —7;—[1.0], 3)

which act in the spin- and pseudo-spin subspaces, respectively. Correspondingly, 2(()2) and 76(2) in
Equation (1) are two 2 X 2 unit matrices in the spin- and pseudo-spin subspaces, written as

. A 1 0
£ = To(z)=l0 1]. @

Equation (1) is presented by using a Kronecker product of two 2 x 2 matrices, defined as

< <
an B aip B

Ryevd Ryevd
an B ann B

More specifically, for the case of Pauli matrices, we have

1 0 0 0

& (2) ~2 |0 =1 0 0

> —

2 @ 0 0 -1 0|’ (©)
|0 0 0 1|
(1 0 0 0 |

(2) ~(2) 0O -1 0 O

Yy ®T" = 0 0 1 0 7)
|0 0 0 -1 |

Therefore, any block-diagonal (b-d) matrix can be built by following this procedure, i.e.,

a7 a2 | 0 0

ﬁ &(2) — ap1 Aap) 0 0
4= A = 8
b—d 0 ® 0 0 |ay ap (8)

0 0 a1 A4y

As aresult, Equation (1) can take a simple matrix form
¢(2) 12
; k-X Ag (ky — iky) 2
7y (k| 80) = oy L PR ©
Ag (kx +iky) 2y k-X
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0 ke +iky | Ao(ky —iky) 0
ky — ik 0 0 Ao(ky — iky)
k|Ag) =1 LA L 10
(k] o) = hor |\ 0 0 0 ke + iky 10

The energy dispersions of Kekulé-Y graphene are simply obtained as eigenvalues of the matrix
defined in Equation (10), yielding

ey(s1,82 1k, Ag) = hop (51 +5280) k, (11)

which represent two Dirac cones with different Fermi velocities vr(1 & Ap), as displayed in Figure 2,
where s; = +1 is a band index while s = %1 corresponds to two different Fermi velocities due to
strain coupling. These two types of subbands are often referred to as “fast” (s, = +1) and “slow”
(s2 = —1) Dirac cones, and importantly, photo-induced electronic transitions are allowed between
these two.

In correspondence with energy dispersions in Equation (11), the normalized wave functions are
calculated as

o ik
1 s
Frlouslka) =5 | 1|, (12)

where 6y = tan™!(k, /k) is the angle associated with the electron wave vector k with respect to the
x axis. The wave function in Equation (12) consists of two sub-spinors corresponding to standard
graphene eigenstates, i.e.,

Yy (s1,52|k Do) =

1 Yo(s1lk) | 1
2 [ 59 e 10k ‘Yg(sl k) ‘| =5 . (13)

2
; 1
+19k
Sy e :
[ 51 e+19k

Quantum-mechanically, the velocity operators Vy for an electron can be determined by the
Heisenberg equation, that is

Vei=—=— [£Hy(k|Do)] , (14)

which relates to an intraband probability current density fy(s1,s2 |k, Ag), where Hy(k|Ag) is

presented in Equation (9). Semi-classically, on the other hand, we define another particle velocity vy,

determined by

Oy = 1 a<HY(k | A0)>av
h ok ’

which relates to an intraband transport current density j, = novy, where ny is the areal density of

(15)

electrons in our system while (- - - ),y denotes a quantum-mechanical average with respect to the wave
function ¥y (s1, sz | k, Ag) presented in Equation (13).

Generally, from the Schrédinger equation, we know that the intraband probability-current density
can be calculated by

OF

L9
]x(Sl,Sz | k,AQ) ~ (k}:) Im |:‘F ax‘P:| = Uy |Ty(51,52 | k1A0)|2 , (16)

doi:10.20944/preprints202304.1054.v1
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where we treat a Kekulé particle as a free one. The definition in Equation (15) can be employed for
calculating the semi-classical transport current density, yielding

jx (51,52 | k, AO) = MNgUx = NogUF |:7AB(2) ® 23((2) + Ao) (k . 7»552)) ® i(()z):| (17)
0 11]4a) ©
B 1 0|0 A

- MU \TATT0 [0 1 (18)
0 Ayl 1 O

An expression similar to Equation (17) should also be obtained for transport current fy(sl, s2 | k, Ag).

For a Kekule particle, besides the intraband probability current density 7(31, sy | k, Ag), there exists
another interband probability current density due to Ag (strain) coupling between two Dirac-cones
[75]. By including this interband probability current, the total particle current should be continuous
and satisfies the following particle-number conversation law, i.e.,

)
V.](sl,sz|k,A0)+$|‘I’y(51,sz\k,A0)|2:0. (19)

Since there are no external sources for the current and each observable quantity is time-independent,
every term in Equation (19) equals to zero, leading to

d
I Jx(s1,82 |k, Do) =0 — Jx(s1,82 |k, Ag) = const. (20)

This implies that even under a non-uniform potential V' (x), such as a potential barrier, the total current
across the barrier must be conserved. This unique feature plays a crucial role in electron tunneling
and transmission calculation. For our considered system, we always assume a translational symmetry
along the y-direction, and then J,(s1,5 | k, Ag) = a constant.

3. Wentzel-Kramers-Brillouin Approximation

In this Section, we aim to derive the semi-classical Wentzel-Kramers-Brillouin (WKB)
approximation applied to Kek-Y graphene. We begin with the Hamiltonian in Equation (1) and
generalize it for the case with a spatially non-uniform potential V(x) including the special case with a
square barrier V(x) = O(x) ®(Wp — x), where Wp is the width of a square barrier.

By taking into account the fact that our system is no longer translationally invariant in the
x-direction, we take ky — —id/dx and get from Equation (1) that

V(x) —ha/dx —py Ag(=ha/ox — py) 0
—had/ox —k % 0 Ag(—ho/ox —
Hy (x,ky | B0) = ioF [k u e IPCY
Ao(=1d/ox + py) 0 V(x) —ha/dx +py
0 No(—hd/dx+p,) | —hd/ax—p, V(x)

which is independent of y, where p,, = ik, = const remains conserved.

The key idea of the WKB approximation originates from a series expansion in powers of a small
parameter /. Since we will consider a semi-classical particle with a large kinetic energy e(k), it is
necessary to estimate the order of magnitude for each of the considered quantities. By following
Refs. [43,45], it is reasonable to rewrite the Hamiltonian in Equation (21), as well as the corresponding
eigenvalue equation, in a form with only dimensionless quantities, i.e.,

x—>WiBzg and e(k)—>£‘(/?, (22)
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where Vj represents the strength of a potential, e.g., the height of a square-barrier potential.
Correspondingly, we also introduce other dimensionless quantities, such as

V(x) UF Py
V(x) — 7 and p, — v (23)
In this way, the spatial derivative now becomes
9/0x — 9/ (W dg) . (24)

Such a scheme allows us to modify the Planck constant 71, which is our chosen small parameter for a
series expansion, leading to
ho ( oF ) 1, (25)

WV

Consequently, the new energy scale of an incoming particle is large and will not be limited by the
Fermi energy of electrons in graphene.
In this study, we follow an established WKB solution for a Dirac equation and expand our sought
after wave function as a series, given by
i

Yy(s1,52|x,ky) = exp [%S(x)] Z(—iho))“I’A(x,ky) (26)
A=0

i .
= exp [710 S(x)] Wo(x,ky) — ifg ¥1(x, k) — 1§ ¥a(x, ky) + - - - ] ,
where S(x) stands for a semi-classical action in the WKB approximation. Here, our goal is finding a

differential equation with respect to x, which connects consecutive terms in the expansion introduced
in Equation (26). Explicitly, we would seek the form

(1 P) R
D (A0) {ax‘FA(Sl/SZ | x/ky)] —Or(s1,52| %, py, Bo) Yay1(s1,82 | %, ky) =0, (27)
where
DM (A)) = TP es@ +a, 7 o8P (28)
0 1 |Ay O
B 1 0|0 A
B Ap 0[]0 1
0 Ag| 1 0
is proportional to the probability-current operator in Equation(17), A = 0,1,2,3, -, and

Ya——_1(s1,52]x,ky) = 0. Furthermore, the transport operator Or(s1,50]| x, py, o) introduced in
Equation (27), which connects each two consecutive terms of expansion in Equation (26), is

Or1(s1,52 | x, py, Ao) (29)
= (TP etP+1Pg {ﬁm : {% S(x),r’y} } + A {7”(2) : {% S(x), Py} ] 22
¢(x) 9S(x)/9x —ipy | Ao[0S(x)/0x —ipy] 0
B 9S(x)/9x +ipy ¢(x) 0 Ag[0S(x)/0x — ipy]
| Ao[oS(x)/0x +ipy] 0 &(x) 9S(x)/9x +ipy
0 Ao[0S(x)/0x +ipy) 9S(x)/9x —ipy &(x)

where (x) = V(x) —e(py).
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Specifically, for A = —1, we get
Or(s1,52 | x, py, Ao) Yo(s1,52] %, ky) = 0. (30)

For the linear homogeneous equation in Equation (30), a non-trivial solution becomes possible only if

its determinant is zero, i.e.,
2

9S(x)\* . » aS()\* _ 4 S\,

[( dx ) hy dx ~ Py dx thy

(1+43) +&*(x) =0.

[ (29)'

As a quartic equation, Equation (31) could be solved analytically, but in the general case its solutions
are too tedious to write them down. Instead, we use the fact that Ay < 1. Therefore, as Ay —> 0,
Equation (31) turns into

2

—2A2 + A} (31)

2
S\, » 3S(x)\? | | o 400 —
[( ) | -2 |(52) + | ew et o )
with a set of doubly degenerate solutions for incident energy ¢ of an electron, given by
oS(x
pe) = 250 _ i e VP - g3, )
which results in N
S(x) = S(x0) = [ dg/leo — VIO~ 1} 4
Xo

For a finite but small Ay, we are able to solve Equation (31) by using a perturbation method. Assuming

pe(x) = piV () + A3 p N () + -+ (35)

where pggo) (x) = :l:\/ [e0 — V(x)]> — pj derived from the zeroth-order equation in Equation (32), we

obtain the first-order correction p,gl) (x) (on the order of =~ A3) from the following equation

p 00 p 0 { [P0 @] 3} -2 { [pOw] - 43 @0
2{[p0@] + 20 pP )+ 5} oo = ViR =0,

given by \ 2
D () = [P:SO) (X)} -y + [mgo) (9;)] & (x) +p2e(x) | -
2p%(x) { [Pﬁo)(x)} +p}— gZ(x)}

Equations (35)-(37) define the solution for the x-dependent momentum p, (x), while the semi-classical
action for a given momentum p,(x) can be determined by Equation (34). This is one of the most crucial
results in semi-classical theory for Kekulé-patterned graphene.
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Now, the WKB wave function could be obtained from Equation (27). If we look for an eigenstate
formally in the following form

Ya(x)
Ywks (51,82 x, py) = m , (38)
¥ (x)

the relations between its components become

E(x) ¥al(x) + Ao [px(x) —ipy] ¥a(x) + [px(x) —ipy] ¥p(x)
[px(x) —ipy] ¥a(x) +&(x) ¥p(x) 4+ Ao [px(x) —ipy] ¥p(x)
Ao [px(x) +ipy] ¥alx) +&(x) ¥y (x) + Ao [px(x) —ipy] ¥p(x) =0,

=0, (39)
=0

where py(x) is determined from Equations (35)—(37). It is important to point out that the equations in
Equation (39) includes strain-induced coupling A between two sets of wave functions ¥ 4 (x) and
‘I’;LB (x), giving rise to a similar interband probability current [75] within the semi-classical frame.

In general, the solution for a WKB wave function is quite complicated but we can model a reliable
solution by using the fact that the wave functions in Kek-Y graphene is a combination of two graphene
wave function and does not depend on Ag. For this purpose, we first introduce a notation

O(x, py) = (.:(1) [7(8) — imy] = —exp [~iT Oy (x)] - (40)

where, 0, (&) = tan"1[k¢(¢)/k,] is the angle between wave vector k = {k(¢), ky} = (1/h) {m«(€), rty}
and the x-axis. Making use of this notation, the wave function now takes a simple form

O(x, Py)
Yy(s1,82|x,py) = :; (Pg))(x) . (41)
5182 @*(x, py)

Finally, in analogy with graphene study, we obtain the following expression

1/2 p 2 1/2
=11 y } , 42
{ + o } 2

and now the wave function in Equation (12) is fully determined.
Up to now, we have eventually obtained the semi-classical action in Equation (34), the x-dependent

0) (1) — pi(x) +py
“"H”‘[ e

momentum py(x), and the WKB wave function in Equation (12). This concludes constructing a
semi-classical theory for Kek-Y graphene.

4. Electron tunneling in Kekulé-patterned graphene

The primary application of the obtained WKB approximation is a good numerical estimate of the
electron transmission amplitude for a fast-moving electron. This method is easily applicable to the
cases of non-square potential barriers and a wide class of potential profiles as long as this profile V' (x)
is smooth and there is no abrupt change in the particle’s momentum p(x). At the same time, WKB
calculations were used to predict or verify the existence of the Klein paradox for a normally incident
particle on a square barrier in graphene and other Dirac cone materials, i.e., could be formally applied
to a square barrier as well.

doi:10.20944/preprints202304.1054.v1
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The transmission amplitude is defined as the ratio of the electron current passing through the
barrier to the incoming current. Since the total current in the direction perpendicular to a potential
barrier is conserved, the reflect current could be also easily calculated as the difference between them.
The biggest loss of a transmitted current occurs in the classically forbidden regions (CFR) in which the
longitudinal momentum p, (x) becomes purely imaginary and the moving particle is represented by
an evanescent wave whose amplitude is exponentially decreasing along the x-axis. The transmission
amplitude T(py | a, Ag) in WKB theory is estimated by the integral of the purely imaginary momentum
px(x) over each of the classically forbidden regions along the x-direction. This results in the following
equation

2
T(pyla,80) =exp |~ [ Ipx(x)]dx @)
CFR

as long as the condition / |px(x)| dx > h is satisfied. Based on Equation (31), squared longitudinal

CFR
momentum IT(5)(x) = p2(x) is determined from

() + pﬂz —2A} { [ (S>(x)]2 - p;*} =20 = V@) [T () + 3] (1+83) +[eo— V(x)]* = 0. (44)

The calculated locations of CFRs are presented in Figure 3 for Ag = 0 and in Figure 4 for Ay # 0.
We see that the former case is pretty much equivalent to graphene and the boundaries of the CFR’s are
linear and symmetric with respect to x = 0. The width of the classically inaccessible region along the
x-axis obviously depends on the slope of the potential profile, i.e., a higher slope a corresponds to

reduced width of a CFR.
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Figure 3. (Color online) Regions for the classically forbidden (or classically inaccessible regions) with
Im [px(x)] # 0 for an incoming electron with a linear potential V(x) = ax. Here, we select a crossing
point, corresponding to the electron-to-hole (and back) state transition ey (s1,s; |k, Ag) = 0 at x = 0.
All panels (a—d) are calculated for Ag = 0 but different values of a.
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Figure 4. (Color online) Regions for the classically forbidden (or classically inaccessible regions) with
Im [px(x)] # 0 for an incoming electron with a linear potential V(x) = ax. Here we select a crossing
point, corresponding to the electron-to-hole (and back) state transition ey (s1,s; |k, Ag) = 0 atx = 0.
Panels (a—d) are calculated with 2 = 1 and various finite values of Ag.

When Ag # 0, the equation with classically forbidden regions is much more complicated and
the region itself is extended in a non-trivial way, as seen from Figure 4. However, the boundaries of
CEFR are still linear and symmetric with respect to x = 0. This is in stark contrast with gapped a-73
materials in which the classically inaccessible regions are very complicated, asymmetric and even
involve curved boundaries.

Our results for the transmission are presented in Figure 5. First, we find that the expansion of
the classical and accessible region leads to lower transmission so that it is more suppressed for a
smaller slope 2 in the potential profile V(x), as found from Figure 5a. Similarly, the suppression of
transmission T(py, | 2, Ag) increases for a finite Ag due to the appearance of extended CFRs, However,
its dependence on Aj is much smaller compared to that on the potential profile slope 4, as can be
verified by Figure 5a.

1.00
by

Figure 5. (Color online) Transmissions amplitudes T (py |4, Ag) calculated by using Equation (43).
Panel (a) presents T (py |a, AO) as a function of transverse momentum py for Ag = 0 and different
slopes a = 0.2 and 0.5. Panel (b) displays calculated T (py | a4, Ag) as a function of p;, for a = 0.2 and
different energy gaps Ag = 0 and 0.5.

It is important to mention that the WKB approximation provides a fairly satisfactory estimate for
the electron transmission in the cases as standard techniques are either not applicable or would lead to
tremendously complicated equations. This is exactly the case for Kek-Y graphene in which similarly
to tunneling of Rashba electrons there are two non-equivalent solutions for wave vector k at a given
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energy [76]. However, in the case of Kek-Y graphene, we would need solve a quartic equation so as to
obtain the k value for a given energy ¢y, and then use these expressions to find transmission which
seems hardly possible.

5. Concluding remarks

In conclusion, we have built a complete semi-classical WKB theory for recently discovered
Kek-Y patterned graphene with two coupled gapless Dirac cones with different Fermi velocities
vp(1 £ Ap). This includes finding the semi-classical action, x-dependent longitudinal momentum
px(x) and leading-order WKB wave function. Meanwhile, we have also derived and solved the
transport equation which connects every two successive orders of a sought wave function.

Our obtained WKB equations are further applied to calculate the electron transmission amplitudes
based on classically inaccessible regions. We have demonstrated that the slope a of a linear potential
V(x) = ax can strongly affect electron transmission, while the coupling parameter Ay has a very
limited effect on transmission because it only slightly modifies the location and size of a classically
forbidden region for a specified incoming electron.

Based on the present study, we are strongly convinced that this work reveals a crucial step in
advancing our knowledge on the electronic properties of newly discovered Dirac materials. Our
obtained WKB theory provides a powerful tool for systematically investigating crucial electronic and
transport properties of novel Dirac materials, which have numerous applications in modern electronic
and opto-electronic devices, and especially in valleytronics.
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