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Abstract: Predicted natural ventilation (NV) often diverges from actual performance in dwellings. 

This discrepancy arises in part because most design tools do not account for how occupants actually 

operate windows. This study aims to determine how window geometry and orientation should be 

adjusted when occupant behavior is considered. Survey data from 150 Melbourne residents were 

converted into two window-operation schedules: Same Behavior (SB), representing average patterns, 

and Probable Behavior (PB), capturing stochastic responses to comfort, privacy, and climate. Both 

schedules were embedded in EnergyPlus and applied to over 200 annual simulations across five 

window design stories that varied orientations, placements, and window-to-wall ratios (WWR). Each 

story was tested across two living room wall dimensions (7 m and 4.5 m) and evaluated for air-change 

rate per hour (ACH) and solar gains. PB increased annual ACH by 5–12 % over SB, with the greatest 

uplift in north-facing cross-ventilated layouts on the wider wall. Integrating probabilistic occupant 

behavior into window design remarkably improves NV effectiveness, with peak summer ACH 

reaching 4.8, indicating high ventilation rates that support thermal comfort and improved IAQ 

without mechanical assistance. These results highlight the potential of occupant-responsive window 

configurations to reduce reliance on mechanical cooling and enhance indoor air quality (IAQ). The 

study contributes a replicable occupant-centered workflow and ready-to-apply design rules for 

Australian temperate climates, adapted to different climate zones. Future research will extend the 

method to different climates, housing types, and user profiles, and integrate smart-sensor feedback, 

adaptive glazing, and hybrid ventilation strategies through multi-objective optimization. 

Keywords: indoor air quality (IAQ); natural ventilation (NV); occupants' behavior; occupants' 

perceptions; window design 

 

1. Introduction 

Despite progressive building codes, sophisticated simulation tools [1], and increasingly 

ambitious energy-efficiency targets, a significant gap [2] often exists between predicted and actual 

measured building performance [3,4]. While inaccuracies due to construction practices and simplified 

modelling assumptions explain part of the discrepancy [5], recent field studies consistently highlight 

occupant behavior [6] as the significant yet overlooked factor influencing real-world outcomes [7–9]. 

In Australia, rating systems such as the Nationwide House Energy Rating Scheme (NatHERS) 

acknowledge occupant-related factors, but their standard schedules rarely reflect the day-to-day 

variability of human decisions that directly shape indoor environmental quality (IEQ) and energy 

usage [10,12].  

Among occupant-controlled actions, window operation has the most immediate and profound 

influence on natural ventilation (NV), indoor air quality (IAQ), and thermal comfort [13,14]. Unlike 
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thermostat adjustments [15], shading control [16], or fan use, window interactions directly mediate 

airflow between indoor and outdoor environments [17–19]. Window opening decisions are 

influenced by diverse personal, cultural, climatic, and socio-economic factors, such as energy cost 

sensitivity, housing type and density, and occupants’ awareness [20–22]. The COVID-19 lockdowns 

amplified awareness of the health implications of inadequate ventilation and further highlighted the 

critical role windows play in maintaining safe and comfortable indoor environments [23–25]. 

While geometric characteristics, such as orientation, size, placement, operability [26,27], and 

window-to-wall ratio (WWR) [28,29], inherently determine ventilation potential, these features also 

significantly influence occupant behavior [30,31]. For instance, larger and well-oriented openings can 

physically facilitate higher air-change rates [32–34], yet can unintentionally introduce excessive solar 

heat gains [35], a trade-off examined in studies on energy performance optimization in various 

climates [36–38]. Current standard simulation practices simplify these complex interactions by 

relying on static, rule-based schedules [39,40], ignoring the dynamic, adaptive nature of occupant 

responses, such as thermal comfort or privacy-driven behaviors, explored in previous studies [17,18]. 

Agent-based models, like those developed in the literature [41], attempt to capture more realism, but 

common simulation practices still struggle with behavioral nuances [42,43]. Consequently, many 

design recommendations mis-predict real-world NV performance [44,45], especially in mild 

temperate climates where window use is highly variable and adaptive comfort models are crucial 

[46,47]. 

Effectively closing this performance gap requires more integrated, behavior-aware modelling 

workflows that combine empirical occupant observations, such as those gathered from surveys and 

post-occupancy evaluations (POE) [48–50], which reveal occupant preferences and actions [17,51], 

with computational tools like Computational Fluid Dynamics (CFD) [31,52] and energy models that 

assess physical performance [53,54]. Furthermore, emerging data-driven techniques, such as 

Artificial Intelligence (AI) in building energy management [55], machine learning models predicting 

occupancy and window use [56,57], and multi-criteria decision methods (MCDM) for evaluating 

complex systems [58,59], offer powerful ways to analyze these interactions. Such hybrid approaches 

can reveal how occupants respond to thermal and visual cues [60,61], and how window geometry 

can nudge them towards healthier and more energy-efficient patterns [62,63]. However, existing 

studies have not combined empirical behavior models with systematic window design exploration 

in a replicable simulation-based framework. Although these sophisticated methods exist, practical 

integration into current design practices remains limited. This highlights the need for straightforward 

yet realistic simulation approaches that blend detailed occupant insights with proven simulation 

tools to provide clear, actionable guidance on how window designs influence real occupant behaviors 

and NV performance.  

Addressing this critical gap, the present study introduces a novel user-centric simulation 

framework, explicitly coupling probabilistic occupant behavior models derived from empirical 

surveys with systematic window design exploration. Adapted to Australian temperate climates, this 

approach leverages two distinct window-operation schedules, Same Behavior (SB), reflecting typical 

use patterns, and Probable Behavior (PB), capturing more realistic occupant variability, and evaluates 

them within the EnergyPlus simulation environment. Through more than 200 annual simulations, 

this research aims to answer two main questions: (i) Which specific window design attributes most 

enhance NV when real occupant actions are considered? and (ii) How much does incorporating 

realistic occupant behavior (PB) improve ventilation outcomes compared to standard simulation 

assumptions (SB)? By quantifying these links, the study offers new, ready-to-apply design rules 

tailored for behavior-integrated window design, helping architects and engineers narrow the 

ventilation performance gap in residential buildings [64,65]. The following sections detail the survey 

methodology, simulation framework (Section 2), results and practical implications (Section 3), 

discuss limitations and directions for future research (Section 4), and conclude by summarizing key 

insights and recommendations (Section 5). 
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2. Methodology 

This study deploys a behavior-integrated simulation framework to explore how window design 

features and real-world occupants collectively affect NV performance in residential buildings located 

in the temperate climate of Melbourne, Australia. Two distinct occupant-window operation 

schedules were developed based on survey data from 150 Melbourne households [20]: 

• Same Behavior (SB): a deterministic schedule representing average occupant behavior. 

• Probable Behavior (PB): a stochastic (probabilistic) schedule capturing variations due to factors 

like comfort, privacy, and climate conditions. PB was derived by assigning time-of-day-

dependent probabilities to window actions based on survey responses; no thermal comfort 

models (e.g., Fanger) were used. Further details are available in Appendix A. 

Both schedules were integrated into EnergyPlus simulations to quantify their impacts on air-

change rate per hour (ACH), indoor temperatures, and solar gains. Five distinct window-design 

scenarios, named stories, including different orientations, placements, and WWR = 0.25–0.60, were 

evaluated across two typical living-room wall sizes: a larger wall (7 m) and a smaller wall (4.5 m). A 

total of 200 annual simulations (five design scenarios × two wall sizes × multiple configurations × two 

behavior schedules) form the basis for the resulting design guidelines. Figure 1 summarizes the 

overall workflow, while detailed dimensions and behavior schedules are provided in Appendix A. 

 

Figure 1. Methodological Flowchart. 

2.1. Simulation Model Setup 

The simulation approach uses clearly defined types of inputs:  

• Fixed inputs, such as building characteristics, materials, spatial dimensions, and climatic data 

(temperature, humidity, wind speed), remain constant across all simulations to ensure 

comparability. 

• Variable inputs, window configurations, and occupant behavior schedules change systematically 

to evaluate their individual and combined impacts on NV performance.  

The methodological workflow, including input categorization, simulation configuration, and 

result analysis, is illustrated in Figure 1. 

2.1.1. Fixed Inputs 

The fixed inputs were defined to reflect a typical residential living room in Melbourne, Australia, 

consistent with local construction practices [66] and aligned with the National Construction Code 

(NCC) [67]. The model includes two wall dimensions (7 m and 4.5 m) and a standard ceiling height 

of 2.4 m, representing approximately 13.3% of an average 235.8 m² detached home, based on typical 
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Australian housing data and industry practices [66,68]. The construction follows a common brick 

veneer system with an air cavity, reflective sarking, and internal plasterboard, selected for its 

durability and thermal performance in temperate climates [10]. Windows are specified as double-

glazed low-emissivity (low-E) glass with thermally broken aluminum frames [69], offering a U-value 

of 2.8-3.2 W/m²·K and a solar heat gain coefficient (SHGC) of 0.40-0.50, suitable for NCC Climate Zone 

6 [10]. Weather data were sourced from the Bureau of Meteorology (BOM), providing hourly records 

of temperature, humidity, wind speed, and solar radiation for Melbourne. These fixed parameters 

established a realistic and standardized simulation baseline for assessing the influence of variable 

window configurations and occupant behaviors on natural ventilation performance. Hourly 

meteorological files from the Bureau of Meteorology supply temperature, humidity, wind speed and 

direction, and solar radiation for a Typical Meteorological Year in Melbourne [70]. Locking these 

boundary conditions, together with geometry, construction, and glazing, creates a common baseline 

against which 200 alternative window layouts and two occupant-schedule sets (SB and PB) can be 

compared. Literature highlights that these attributes- room geometry, wall mass, glazing 

performance [69], and boundary climate- govern both the physical potential for airflow and the 

energy penalty of unwanted heat gains [14,71]. By locking them as fixed inputs (Table 1), the study 

removes confounding factors and isolates the effects of the variable inputs explored later (window 

layout and occupant schedules), thereby creating a rigorous baseline for assessing behavior-sensitive 

natural-ventilation performance. 

Table 1. Fixed Input Parameters Used across all Simulations. 

Parameter Type Fixed Inputs Description 

Building 

Dimensions 

Typical living room, ceiling height 2.4 

m 

Living room with wider and smaller wall dimensions, which 

match standard dimensions for Melbourne homes 

Wall 

Construction 

Brick veneer, air cavity, reflective 

sarking, plasterboard 

Standard local wall construction 

Window 

Specifications 

Double-glazed low-E glass, thermally 

broken aluminium frames 

U-value: 2.8–3.2 W/m²·K; SHGC: 0.40–0.50 

Weather Data Hourly temperature, humidity, wind 

speed, and solar radiation 

Melbourne climate, typical meteorological year 

2.1.2. Variable Inputs 

These inputs included window configurations and occupant behavior schedules, adjusted across 

different design stories to capture dynamic interactions affecting NV. Window configurations were 

organized into five design stories, each focusing on a specific orientation to reflect occupant 

preferences identified in a prior post-occupancy evaluation (POE) conducted through a qualitative 

questionnaire targeting 135 residents aged 18 and older in Melbourne, Australia, as detailed in earlier 

work. The survey covered demographics, building features, occupant behaviors, ventilation options, 

and comfort perceptions. These primarily consisted of detached and semi-detached dwellings located 

across Melbourne suburbs. The average residence size was 196.7 m², with living rooms averaging 

33.5 m². In terms of orientation, 79% of the buildings had windows on the north wall, 67% on the east, 

58% on the west, and 55% on the south wall, providing useful context for the orientation-focused 

design stories. An analysis using Pearson’s correlation identified factors influencing window 

operation, such as preferences for certain orientations, motivations for opening windows, and 

barriers like privacy and heat, particularly at night, with details available in prior work [20]. 

Each scenario (design story) was tested using two spatial scenarios, Scenario A (wider wall: 7 m 

× 2.6 m) and Scenario B (smaller wall: 4.5 m × 2.6 m), to understand the impact of room geometry on 

occupant-window interactions and resulting ventilation outcomes. While adapted to Melbourne’s 

temperate climate, this framework is easily transferable: users can replace the weather file with local 

climate data and adjust fixed inputs such as materials or occupancy assumptions accordingly. 
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Table 2. Summary of Window Design Stories and Behavior Model Rationales. 

Design 

Story 

Orientation Configuration  WWR  Configuration Rational 

Story 1 North Dual window  45%  -Directly responds to the strongest orientation 

preferences. 

-Side-by-side configurations showed high occupant 

interaction, particularly for achieving fresh air. 

-Size 45% WWR represents the occupant's desire for 

ample daylight/view.  

Story 2 East-West Single window  E 40% 

W 30% 

- Large east-facing window extending towards the ceiling 

for optimal light, and takes advantage of morning light 

and passive heating. 

- The west window helps manage afternoon heat gain. 

- Providing cross-ventilation. 

Story 3 South Dual window  30% Each -Investigate occupant interaction with an orientation 

known for consistent, diffuse daylight and minimal direct 

solar heat gain/glare.  

-Side-by-side configuration, which has high occupant 

interaction for ventilation and general use. 

-Moderate 60% WWR, provides substantial natural light, 

aligning with occupant preference for light/view.  

Story 4  North & 

South 

Dual North 

Single South 

S 40% 

N 25% Each  

-Preferred North orientation for potential winter solar 

gain and ventilation. 

-The large, ceiling-height south-facing dimension 

enhances daylight penetration 

-Design maximizes cross-ventilation potential by utilising 

both north and south orientations. 

Story 5 North &East Single North 

Dual South 

N 40% 

E 25% Each 

Combination of preferred orientations. 

-The North Window incorporates the strongly preferred 

North orientation for ventilation and stable daylight.  

-East Windows: Leverage the benefits of the East morning 

light   

These models included adaptive strategies where occupant behavior varied by wall size and 

window orientation, for example, residents opened north-facing windows more frequently on larger 

walls to maximize airflow but were more conservative with south-facing windows to minimize heat 

gains during midday hours (Table 3). 

Table 3. Behavior Model Rationale by Design Story and Room Scenario. 

Design 

Story 

Orientation Scenario A Scenario B SB Rationale PB Rationale 

Story 1 North 

  

Regular 

morning and 

evening 

openings 

On wider walls, it increases 

morning openings for wind; on 

smaller walls, less frequent due 

to limited airflow. 

Story 2 East and 

West 
 

 

Morning 

openings 

(east), 

evening 

On wider walls, boosts east 

morning openings for light; on 

smaller walls, reduces west 

midday openings for heat 

control. 
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openings 

(west) 

Story 3 South 

  

Less frequent 

openings due 

to limited 

wind 

exposure. 

On wider walls, reduce midday 

openings to manage heat; on 

smaller walls, further limited 

due to weaker ventilation 

potential. 

Story 4 North and 

South 
  

Frequent 

openings for 

cross-

ventilation, 

especially 

mornings. 

On wider walls, enhances 

morning cross-ventilation; on 

smaller walls, reduces south 

midday openings for heat 

control. 

Story 5 North-East 

  

East morning 

openings for 

light, north 

for steady 

ventilation. 

On wider walls, boosts east 

morning openings; on smaller 

walls, adjusts north for 

consistent airflow throughout 

the day. 

This structured and systematic approach, outlined in Figure 2, produced 200 simulation 

variations, enabling comprehensive examination of how occupant behaviors and window 

configurations jointly influence NV performance. 

 

Figure 2. Design Stories and design scenarios. 

All simulations were conducted from 6:00 AM to 10:00 PM daily, with windows considered fully 

closed from 10:00 PM to 6:00 AM due to privacy and safety concerns at night, and fully closed in June, 

July, and August due to Melbourne’s cold winter weather conditions, where occupants typically 

prioritize heat retention. Window openings were represented by percentages of the total operable 

area open at each time interval, reflecting realistic occupant interactions (SB and PB models). Solar 

gain was calculated directly from window orientation and WWR, independent of occupant actions. 
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2.2. Results Analysis Method 

Simulation outputs from EnergyPlus were analyzed using two primary performance indicators: 

natural ventilation rates (ACH) and solar gains (kWh). These metrics allowed assessment of the 

effectiveness of different window configurations and occupant behaviors in enhancing airflow and 

managing heat gains. Results were comparatively evaluated across the five design stories and two 

wall-size scenarios under both SB and PB behavior models. Additional factors, such as seasonal 

climate variations and detailed occupant interactions, were considered, enabling a systematic and 

realistic evaluation of how window configurations and occupant behaviors interact to influence NV 

performance in residential buildings. 

3. Results and Discussion 

This section presents the detailed results from simulations evaluating five different window-

design stories, aimed at optimizing NV by accounting for realistic occupant behaviors in Melbourne's 

temperate climate. Each design story considers two distinct room sizes: Scenario A (7 m × 2.6 m wall) 

and Scenario B (4.5 m × 2.6 m wall), to assess how window geometry and occupant interaction 

patterns affect ventilation and solar heat gains. Results focus primarily on identifying window 

features that encourage frequent occupant engagement, rather than simply increasing window size 

or quantity. 

3.1. Design Story One: North-Facing Windows (WWR 45%) 

The configuration features two side-by-side north-facing windows, tested under two scenarios: 

Scenario A and Scenario B, as detailed in Sections 3.1.1 and 3.2.2.  

3.1.1. Scenario A: 7.0 m × 2.6 m  

North-facing dual-window configurations demonstrated strong NV performance, particularly 

when window height was maximised. As shown in Table 4, the tallest configuration (Config. 1) 

achieved a peak rate of 4.67 ACH in March and an annual average of 3.47 ACH, outperforming the 

shortest configuration by up to 17%. The PB model, which reflects adaptive user patterns such as 

morning and evening ventilation, further improved monthly ACH by 8.7% to 12.7% over the SB 

model, particularly during transitional months like March and May (Figure 3). Across all 

configurations, PB increased monthly ventilation by approximately 10% on average, with peak gains 

reaching nearly 13%. These results underscore the value of aligning window design with actual 

occupant routines rather than relying on static operation assumptions. The findings confirm that 

occupant interaction plays a pivotal role in achieving optimal NV, even when geometric 

configurations are already favourable. 

However, greater window height and width also resulted in increased solar gains, advantageous 

in cooler months but potentially problematic during summer. For instance, solar heat gains were 

substantial in spring (exceeding 400 kWh in March and May), indicating that without shading, large 

north windows could cause overheating. Although solar exposure was not directly modelled as an 

input to occupant behaviour, the correlation between elevated internal heat and increased window 

operation suggests that users instinctively respond to thermal cues. To optimise year-round 

performance, it is recommended that shading devices or dynamic glazing be integrated into designs 

featuring large north-facing windows. This approach balances passive solar benefits with the need to 

avoid overheating during warmer periods. 

Table 4. Natural Ventilation Performance of North-Facing Windows (Scenario A, SB Model). 

Configuration Peak (ACH) (Month) Lowest (ACH) (Month) Average (ACH) 

1 4.67 (March) 1.95 (May) 3.47 

2 4.52 (March) 1.89 (May) 3.36 

3 4.40 (March) 1.89 (May) 3.31 
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4 4.31 (March) 1.86 (May) 3.23 

5 3.95 (March) 1.72 (May) 2.97 

6 4.06 (March) 1.78 (May) 3.06 

7 4.06 (March) 1.77 (May) 3.06 

 

Figure 3. Story 1, Scenario A - Average Monthly Ventilation Rates (ACH) - Baseline vs. Probable Behaviors. 

Solar gain in Scenario A was also substantial, with peak monthly values exceeding 400 kWh, 

particularly in configurations with taller or wider glazing (Table 5). Although solar gain was not 

explicitly modelled as a behavioural input, it likely influenced window use, especially during cooler 

months when passive heating is desirable. Notably, in warmer months such as February, higher solar 

exposure coincided with increased ventilation rates, indicating that heat buildup may have prompted 

occupants to open windows for thermal comfort. These observations highlight the dual function of 

north-facing windows in supporting both passive heating and ventilation. To prevent overheating in 

summer while preserving these benefits, the use of external shading or low-SHGC glazing is strongly 

recommended. 

Table 5. Ventilation and Solar Gain - Design Story 1, Scenario B (Baseline and Probable Behaviors). 

Month Highest 

NV 

Probable 

(ACH) 

(Config.) 

Lowest 

NV 

Probable 

(ACH) 

(Config.) 

Avg. 

NV 

Baseline 

(ACH) 

Avg. NV 

Probable 

(ACH) 

% 

Change 

Avg. 

Solar 

Gain 

(kWh) 

Peak 

Solar 

Gain 

(kWh) 

(Config.) 

Lowest 

Solar 

Gain 

(kWh) 

(Config.) 

Jan 4.12 (1) 3.49 (5) 3.80 4.23 +11.2% 228.15 238.93 (4) 219.66 (1) 

Feb 4.63 (1) 3.90 (5) 4.24 4.72 +11.3% 235.29 275.27 (4) 219.66 (1) 

Mar 4.67 (1) 3.95 (5) 4.28 4.83 +12.7% 294.62 408.14 (4) 219.66 (1) 

Apr 3.80 (1) 3.27 (5) 3.52 3.86 +9.6% 291.09 404.11 (4) 219.66 (1) 

May 1.95 (1) 1.72 (5) 1.84 2.05 +11.3% 298.98 436.76 (4) 219.66 (1) 

Sep 2.41 (1) 2.16 (5) 2.29 2.51 +9.5% 237.18 404.32 (4) 219.66 (1) 

Oct 2.92 (1) 2.55 (5) 2.74 2.97 +8.7% 246.09 336.10 (4) 219.66 (1) 

Nov 3.00 (1) 2.60 (5) 2.78 3.08 +10.8% 228.13 242.85 (4) 219.66 (1) 

Dec 3.67 (1) 3.13 (5) 3.37 3.70 +9.6% 223.04 223.81 (4) 219.52 (2) 

3.1.2. Scenario B: 4.5 m × 2.6 m  
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Scenario B applied the same north-facing orientation and 45% WWR to a shorter 4.5 m wall, with 

proportionally scaled window dimensions. NV performance followed a similar seasonal pattern to 

Scenario A, peaking in late summer, particularly February, when prevailing winds were more 

favourable, and declining sharply into late autumn. As shown in Table 6, Configuration 9 achieved 

the highest peak ventilation rate of 2.86 ACH in February and the highest average of 2.09 ACH across 

the year, while Configuration 12 recorded the lowest performance with a peak of 2.44 ACH and an 

average of 1.84 ACH. These results confirm that taller window configurations continued to 

outperform shorter ones even on smaller wall areas, although the overall ventilation potential was 

lower than in Scenario A due to reduced façade dimensions. Complete window closure in the coldest 

winter months further constrained NV performance, reinforcing the need to balance spatial 

constraints with design elements that support airflow under varying seasonal conditions. 

Table 6. Natural Ventilation Performance of North-Facing Windows (Scenario B, SB Model). 

Configuration Peak (ACH) (Month) Lowest (ACH) (Month) Average (ACH) 

9 2.86 (February) 1.00 (May) 2.09 

10 2.67 (February) 0.96 (May) 1.97 

11 2.58 (February) 0.95 (May) 1.92 

12 2.44 (February) 0.92 (May) 1.84 

13 2.79 (February) 1.00 (May) 2.06 

14 2.52 (February) 0.95 (May) 1.89 

15 2.52 (February) 0.94 (May) 1.89 

Figure 4 further illustrates the average monthly ventilation rates for Scenario B under both BS 

and PB models. The figure highlights a consistent uplift in ventilation performance when occupant 

variability is considered. Across all months, PB yields higher ACH values than the BS, with the most 

pronounced gains observed during transitional months like May, September, and October, ranging 

from approximately 8% to 12%. In summer months (January–March), the difference between PB and 

SB narrows, suggesting that even baseline patterns align reasonably well with environmental drivers. 

However, during shoulder seasons, occupants under PB adapt window use more responsively to 

temperature and airflow cues, enhancing NV effectiveness. These results reinforce the importance of 

integrating adaptive behavior into window design strategies, particularly in spatially constrained 

layouts like Scenario B. 

 

Figure 4. Natural Ventilation Rates Across Stories - Baseline Behavior (Scenario B). 
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Table 7 compares the monthly performance of NV and solar gain for Design Story 1, Scenario B, 

under BS and PB models. Configuration 9 consistently achieved the highest NV rates, while 

Configuration 12 remained the lowest performer. The PB model led to steady gains in ventilation 

across all months, with average increases ranging from 5.1% in May to 10.6% in January, particularly 

notable during warmer and transitional months like February (+10.3%) and December (+9.0%). 

Although solar gains were moderate due to smaller glazing areas, they peaked at nearly 272 kWh in 

May (Config. 15) and aligned with higher ventilation activity during warmer months, suggesting that 

internal heat build-up prompted increased window operation. These results highlight the importance 

of accounting for both adaptive occupant behavior and passive solar exposure, especially in compact 

wall designs where spatial constraints limit airflow potential. 

Table 7. Ventilation and Solar Gain under SB and PB Models (Scenario B). 

Month Highest 

NV 

Probable 

(ACH) 

(Config.) 

Lowest 

NV 

Probable 

(ACH) 

(Config.) 

Avg. 

NV 

Baseline 

(ACH) 

Avg. NV 

Probable 

(ACH) 

% 

Change 

Avg. 

Solar 

Gain 

(kWh) 

Peak 

Solar 

Gain 

(kWh) 

(Config.) 

Lowest 

Solar 

Gain 

(kWh) 

(Config.) 

Jan 2.65 (9) 2.28 (12) 2.44 2.70 +10.6% 148.05 149.23 

(15) 

146.07 

(10) 

Feb 2.86 (9) 2.44 (12) 2.63 2.90 +10.3% 171.27 171.63 

(15) 

168.05 

(10) 

Mar 2.75 (9) 2.37 (12) 2.53 2.74 +8.1% 251.70 254.26 

(15) 

248.99 

(10) 

Apr 2.14 (9) 1.91 (12) 2.02 2.15 +6.4% 249.46 251.69 

(15) 

246.49 

(10) 

May 1.00 (9) 0.92 (12) 0.96 1.01 +5.1% 269.41 271.97 

(15) 

266.36 

(10) 

Sep 1.41 (9) 1.29 (12) 1.33 1.40 +5.2% 249.51 251.86 

(15) 

246.65 

(10) 

Oct 1.70 (9) 1.51 (12) 1.60 1.69 +5.5% 207.85 209.49 

(15) 

205.12 

(10) 

Nov 1.92 (9) 1.70 (12) 1.80 1.95 +8.6% 150.15 151.62 

(15) 

148.42 

(10) 

Dec 2.40 (9) 2.10 (12) 2.23 2.43 +9.0% 148.62 149.94 

(15) 

136.96 

(10) 

Solar gain in Scenario B, while lower than those in Scenario A due to reduced total glazing area, 

remained significant, ranging from 148 kWh in January to a peak of nearly 272 kWh in May. These 

values, though modest, are sufficient to influence indoor thermal conditions during transitional 

seasons and likely contributed to increased ventilation activity under the PB model. As shown in 

Table 7, months with higher solar gain, such as February and March, coincided with elevated NV 

rates, reinforcing the hypothesis that internal heat accumulation encourages occupants to open 

windows for cooling. Configuration 15 consistently exhibited the highest solar gains across all 

months, reflecting the role of window dimensions in modulating passive heat entry. This finding 

highlights the dual influence of geometry and adaptive behavior in shaping NV outcomes. To 

enhance thermal comfort without compromising airflow, especially during warmer periods, the 

integration of external shading or advanced glazing strategies should be considered in future 

adaptive design solutions. 

3.1.3. Discussion: Design Implications and Behavioral Insights 
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Larger north-facing windows clearly improved ventilation, but effective passive design also 

required occupant-responsive use and shading to avoid overheating. Scenario A suits cooler contexts 

needing passive heating, while Scenario B may be better for warmer climates, offering effective NV 

without excessive solar heat gain.  

3.2. Design Story Two-East and Two-West Configuration 

Design Story two examines a system with a large east-facing window, 40% WWR, and a smaller 

west-facing window, 30% WWR, on opposing walls. This design story aims to promote NV and 

support occupant comfort throughout the day. A large east-facing window, extending to the ceiling, 

captures early daylight and warmth, while a smaller west-facing window supports cross-ventilation 

in the afternoon. The configuration is tailored to Melbourne’s climate, where mornings are often cool 

and breezy, and afternoons can become warm and still. Occupant behavior in this scenario involves 

using the east window actively in the morning and gradually shifting to the west-facing opening later 

in the day, with both windows opened fully in the evening to maximize cross-ventilation. Nine 

configurations were tested for both Scenarios A and B, each varying in window dimensions to assess 

their impact on ventilation performance and occupant interaction.  

3.2.1. Scenario A: 7 m × 2.6 m East and West Walls 

The NV rates across configurations show seasonal fluctuations, peaking in summer due to 

stronger winds, warmer temperatures, and increased occupant tendency to open windows, and 

dipping in late autumn as winds weaken and temperatures cool. Scenario A consistently exhibited 

strong ventilation performance, with peak average NV occurring in January and the lowest rates in 

May, when outdoor conditions were less favorable. This seasonal dip also aligns with occupant 

reluctance to open windows during colder periods. 

Table 8. Natural Ventilation Performance of East–West Window Designs (Scenario A). 

Configuration Peak (ACH) Lowest (ACH) Average (ACH) 

1 26.83 (January) 1.81 (May) 13.83 

2 26.82 (January) 1.79 (May) 13.79 

3 26.74 (January) 1.79 (May) 13.77 

4 26.58 (January) 1.73 (May) 13.54 

5 27.22 (January) 1.80 (May) 14.02 

6 25.40 (January) 1.65 (May) 12.70 

7 26.44 (January) 1.74 (May) 13.45 

8 26.31 (January) 1.74 (May) 13.38 

9 26.46 (January) 1.77 (May) 13.43 

Configurations with wider east-facing windows and balanced west-facing openings consistently 

outperformed others, highlighting the critical role of window sizing and placement in promoting 

cross-ventilation. Configuration 5 recorded the highest NV rates, while Configuration 6 had the 

lowest. Wider east-facing windows proved effective in capturing morning inflow, while balanced 

west openings enhanced afternoon exhaust. Configurations with smaller west-facing windows 

performed less effectively, particularly in cooler months.  

Probable occupant behavior modeled to reflect daily routines and adaptive use of the window 

resulted in consistent, albeit modest, improvements in NV across all months.  
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Figure 5. Natural Ventilation Rates Across Configurations - Baseline Behavior (Scenario A)These gains ranged 

from +0.9% to +4.0%, with the highest improvements seen in cooler months like May, when strategic use of the 

west-facing window contributed to better airflow. These findings indicate that while the configurations 

themselves already support robust natural airflow, occupant engagement can further enhance performance, 

especially during transitional times of day like early evening. 

Solar gain also followed a seasonal trend, with the highest values recorded in summer. In 

December, Configuration 5 reached a peak of 707.88 kWh, largely due to its large glazed east-facing 

surface and favorable morning solar angles. High solar gain was also observed in January and 

February, with levels exceeding 690 kWh across several configurations. These conditions support 

passive heating during cooler months but may increase thermal load in summer if not mitigated 

through shading or occupant action. Notably, increased solar gain in February aligned with higher 

NV rates, suggesting a behavioral response, occupants opening windows more to counteract heat 

buildup. 

Table 9. Ventilation and Solar Gain Across Configurations (Scenario A). 

Month Highest 

NV 

(ACH) 

(Config.) 

Lowest 

NV 

(ACH) 

(Config.) 

Avg. 

NV 

Baseline 

(ACH) 

Avg. NV 

Probable 

(ACH) 

% 

Change 

Avg. 

Solar 

Gain 

(kWh) 

Peak 

Solar 

Gain 

(kWh) 

(Config.) 

Lowest 

Solar 

Gain 

(kWh) 

(Config.) 

Jan 27.22 (5) 25.40 (6) 26.53 26.94 +1.5% 675.85 692.78 (5) 651.07 (6) 

Feb 27.08 (5) 25.27 (6) 26.37 26.62 +0.9% 588.15 602.76 (5) 567.72 (6) 

Mar 19.90 (5) 18.44 (6) 19.30 19.65 +1.8% 502.96 515.37 (5) 484.88 (6) 

Apr 8.29 (3) 7.83 (6) 8.16 8.36 +2.5% 324.56 332.28 (5) 313.24 (6) 

May 1.80 (5) 1.65 (6) 1.76 1.83 +4.0% 252.71 259.14 (5) 243.35 (6) 

Sep 4.75 (3) 4.35 (6) 4.64 4.70 +1.3% 426.45 437.02 (5) 412.11 (6) 

Oct 11.34 (5) 10.60 (6) 11.05 11.22 +1.5% 531.93 543.68 (5) 514.41 (6) 

Nov 19.00 (5) 17.90 (6) 18.63 18.85 +1.2% 624.50 638.66 (5) 603.80 (6) 

Dec 24.93 (5) 23.05 (6) 24.11 24.51 +1.7% 691.49 707.88 (5) 667.50 (6) 

The results analysis reinforces the significance of east–west window arrangements, which, when 

aligned with Melbourne’s wind and sun patterns, can deliver high levels of ventilation and solar 

access year-round. The influence of window size, orientation, and user interaction is evident in both 
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airflow and thermal outcomes, highlighting the importance of integrating architectural and 

behavioral strategies in passive design. In overall, the table illustrates how east–west window 

arrangements can support high levels of both ventilation and solar gain, with design details (e.g., 

window sizing and placement) and occupant behavior both playing critical roles in optimizing 

performance. 

3.2.2. Scenario B: 4.5 m × 2.6 m East and West Walls 

Scenario B follows the same design and behavioral logic on a smaller wall, and while total 

airflow rates were naturally lower due to reduced window area, the seasonal patterns and behavioral 

responsiveness mirrored Scenario A. Peak ventilation again occurred in January (15.35 ACH), with 

the lowest average in May (0.91 ACH).  

Table 10. Natural Ventilation Performance of East–West Windows (Scenario B). 

Configuration Peak (ACH) (Month) Lowest (ACH) (Month) Average (ACH) (Sep–May) 

1 15.52 (January) 0.90 (May) 7.90 

2 15.55 (January) 0.91 (May) 7.96 

3 15.71 (January) 0.93 (May) 8.07 

4 15.40 (January) 0.90 (May) 7.87 

5 15.45 (January) 0.92 (May) 7.87 

6 15.26 (January) 0.91 (May) 7.80 

7 15.21 (January) 0.90 (May) 7.74 

8 14.87 (January) 0.89 (May) 7.60 

9 15.18 (January) 0.90 (May) 7.73 

The behavior-adjusted gains ranged from +1.4% to +3.3%, with the largest improvement in May, 

as seen in figure six.This scenario reinforces the idea that occupant behavior can make a subtle but 

consistent difference particularly during marginal weather months, where windows might otherwise 

remain closed or be used less efficiently. The design's responsiveness to behavior is especially visible 

in the transitional seasons (April, September, October), where increased use of the west window in 

the afternoon helped extend ventilation into the evening. 

 

Figure 6. Natural Ventilation Rates Across Configurations - Baseline Behavior (Scenario B). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 May 2025 doi:10.20944/preprints202505.1019.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1019.v1
http://creativecommons.org/licenses/by/4.0/


 14 of 32 

 

Solar gain values were naturally lower in Scenario B due to smaller window areas, but still 

substantial, reaching 438.28 kWh in December. These levels are sufficient to influence thermal 

comfort and occupant decisions around window usage or shading devices, highlighting the link 

between passive solar exposure and user behavior. 

Table 11. Ventilation and Solar Gain Under SB and PB Models (Scenario B). 

Month Highest 

NV 

Probable 

(ACH) 

(Config.) 

Lowest 

NV 

Probable 

(ACH) 

(Config.) 

Avg. 

NV 

Baseline 

(ACH) 

Avg. NV 

Probable 

(ACH) 

% 

Change 

Avg. 

Solar 

Gain 

(kWh) 

Peak 

Solar 

Gain 

(kWh) 

(Config.) 

Lowest 

Solar 

Gain 

(kWh) 

(Config.) 

Jan 15.71 (3) 14.87 (8) 15.35 15.62 +1.8% 421.33 428.61 (3) 411.11 (8) 

Feb 15.49 (3) 14.65 (8) 15.14 15.45 +2.0% 367.55 373.29 (3) 358.56 (8) 

Mar 11.64 (3) 11.04 (8) 11.31 11.54 +2.0% 313.62 318.93 (3) 306.37 (8) 

Apr 4.84 (3) 4.52 (8) 4.67 4.79 +2.6% 202.74 206.07 (3) 198.15 (8) 

May 0.93 (3) 0.89 (8) 0.91 0.94 +3.3% 157.65 160.58 (3) 153.94 (8) 

Sep 2.72 (5) 2.55 (9) 2.64 2.71 +2.7% 266.40 270.89 (3) 260.51 (8) 

Oct 6.50 (3) 6.12 (8) 6.33 6.47 +2.2% 332.32 337.49 (3) 325.42 (8) 

Nov 10.78 (3) 10.14 (8) 10.49 10.64 +1.4% 389.68 395.90 (3) 381.66 (8) 

Dec 14.06 (3) 13.18 (8) 13.64 13.89 +1.8% 431.23 438.28 (3) 421.61 (8) 

3.1.3. Discussion: Design Implications and Behavioral Insights 

Design Story Two underscores the value of east-west window configurations for effective cross-

ventilation, leveraging larger east-facing windows to harness morning breezes and smaller west-

facing windows for afternoon airflow. Scenario A’s larger walls boost ventilation, making it well-

suited for temperate climates with diurnal wind patterns, while Scenario B’s compact layout fits 

space-limited settings. Occupant adaptability, enabled by strategic window sizing, enhances natural 

ventilation (NV) and thermal comfort by aligning with daily wind cycles. 

The configuration’s strength lies in its synergy with natural occupant routines, favoring east 

windows in the morning and west windows later in the day. This demonstrates that windows should 

be purposefully placed and proportioned to complement how people live, not just maximize size. By 

encouraging proactive window use, this design improves ventilation efficiency and strengthens 

occupants’ connection to their surroundings, a cornerstone of human-centered passive design.3.3  

Design Story Three: Two South-Facing Windows 45% 

Design Story three explores a single-sided ventilation strategy using two south-facing windows 

with a combined WWR of 45%, ten configurations in Scenario A and nine in Scenario B. The south 

orientation capitalizes on Melbourne’s consistent diffuse daylight and gentle breezes while 

minimizing direct solar impact, offering glare-free lighting and thermally stable conditions. For 

south-facing windows, occupants typically open windows in the morning to capture gentle breezes 

and diffuse light, adjust openings around midday to manage glare and heat, and reopen them in the 

evening to facilitate stack-driven exhaust 

3.3.2. Scenario A: 7.0m × 2.6 m  

NV rates vary seasonally, peaking in summer due to higher temperatures and stronger winds, 

and declining in late autumn as outdoor conditions cool and wind speeds drop. 

Table 12. Ventilation and Solar Gain - Design Story 2, Scenario B (Baseline and Probable Behaviors). 

Story Peak (ACH) (Month) Lowest (ACH) (Month) Average (ACH)  

Story 1 24.79 (January) 1.70 (May) 13.40 

Story 2 24.76 (January) 1.69 (May) 13.38 
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Story 3 24.08 (January) 1.63 (May) 12.96 

Story 4 24.99 (January) 1.73 (May) 13.57 

Story 5 30.07 (January) 2.27 (May) 16.67 

Story 6 23.21 (January) 1.58 (May) 12.49 

Story 7 27.82 (January) 1.91 (May) 15.27 

Story 8 27.60 (January) 1.94 (May) 15.17 

Story 9 21.76 (January) 1.57 (May) 11.68 

Story 10 28.18 (January) 1.91 (May) 15.42 

Configurations with taller, evenly sized windows outperform others, leveraging vertical 

openings to enhance stack-driven airflow. In contrast, narrower or uneven windows yield lower NV 

rates, especially in cooler months. On average, designs with balanced dimensions consistently 

perform well. Under the probable behavior model, NV performance improves slightly by +1.1% to 

+3.2% as occupants respond dynamically to environmental conditions, particularly during morning 

and evening periods when ventilation is most effective. 

 

Figure 7. Natural Ventilation Rates Across Configurations - Baseline Behavior (Scenario A). 

Solar gain is highest in December and January, with wide and tall windows like Configuration 

5, capturing the most heat up to 708.39 kWh in December. This thermal input enhances comfort in 

winter but may pose overheating risks in summer unless managed through shading devices or 

reduced opening durations. Notably, higher solar gain often coincides with increased ventilation, 

suggesting that elevated indoor temperatures may encourage window use for thermal regulation. 

Table 13. Ventilation and Solar Gain - Design Story 3, Scenario A (Baseline and Probable Behaviors). 

Month Highest 

NV 

Probable 

(ACH) 

(Config.) 

Lowest 

NV 

Probable 

(ACH) 

(Config.) 

Avg. 

NV 

Baseline 

(ACH) 

Avg. NV 

Probable 

(ACH) 

% 

Change 

Avg. 

Solar 

Gain 

(kWh) 

Peak 

Solar 

Gain 

(kWh) 

(Config.) 

Lowest 

Solar 

Gain 

(kWh) 

(Config.) 

Jan 30.07 (5) 21.76 (9) 25.75 25.70 -0.2% 626.69 708.39 (5) 535.21 (9) 

Feb 29.64 (5) 21.46 (9) 25.20 25.22 +0.1% 547.62 603.69 (5) 466.66 (9) 

Mar 21.86 (5) 15.92 (9) 18.61 18.89 +1.5% 467.46 515.69 (5) 398.63 (9) 

Apr 9.62 (5) 7.00 (9) 8.16 8.18 +0.2% 302.59 332.61 (5) 257.57 (9) 
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May 2.27 (5) 1.57 (9) 1.79 1.78 -0.6% 233.97 259.52 (5) 199.95 (9) 

Sep 5.47 (5) 3.87 (9) 4.64 4.56 -1.7% 398.31 437.60 (5) 338.82 (9) 

Oct 12.84 (5) 9.20 (9) 10.98 11.00 +0.2% 499.50 543.92 (5) 423.22 (9) 

Nov 20.99 (5) 14.89 (9) 17.82 17.66 -0.9% 585.16 638.89 (5) 496.55 (9) 

Dec 27.36 (5) 19.46 (9) 23.27 23.36 +0.4% 645.04 708.39 (5) 548.90 (9) 

Scenario A’s symmetrical layout promotes balanced airflow and spatial comfort. Occupants 

engage more actively with both windows during midday and early afternoon, especially when 

external conditions support comfortable indoor temperatures.  

Although some months e.g., January, May, September, November, show slightly lower NV 

values under probable behavior , these variations reflect nuanced behavioral responses such as 

shorter opening durations due to thermal comfort, noise, or privacy concerns rather than design 

inefficiencies. 

3.3.2. Scenario B: 4.5 m × 2.6 m  

Scenario B used the same two south-facing windows but on a shorter 4.5-meter wall, maintaining 

a 45% WWR. The smaller wall area gave the windows a more prominent presence in the space and 

subtly shifted the way air moved indoors. As expected, overall ventilation was lower compared to 

Scenario A due to the limited wall surface, with airflow peaking around 13.11 air changes per hour 

(ACH) in January and dropping to just 0.79 ACH in May see Table 14. 

Table 14. Natural Ventilation Rates Across Stories - Baseline Behavior (Scenario B). 

Configuration Peak (ACH) (Month) Lowest (ACH) (Month) Average (ACH) (Sep–May) 

10 15.61 (February) 0.88 (May) 8.92 

11 15.59 (February) 0.87 (May) 8.90 

12 16.63 (February) 0.88 (May) 8.94 

13 15.62 (February) 0.88 (May) 8.93 

14 15.63 (February) 0.85 (May) 8.94 

15 15.61 (February) 0.88 (May) 8.92 

16 15.60 (February) 0.87 (May) 8.91 

17 16.18 (February) 0.88 (May) 8.92 

18 15.62 (February) 0.88 (May) 8.93 

Despite the lower ventilation potential, occupant behavior still played a meaningful role. When 

likely behaviors were factored in such as opening windows at certain times of day or in response to 

comfort needs modest improvements were seen, especially during mild months like May and 

October. These months showed relative gains of +0.8% to +2.9% compared to baseline, suggesting 

people are more inclined to open windows when temperatures are comfortable and indoor comfort 

can be fine-tuned naturally. 

In some months, however, the model showed slight decreases in ventilation under probable 

behavior.These drops don't suggest a flaw in the design, but rather reflect realistic tendencies, people 

don’t always open windows when models assume they would. They might delay it until the room 

feels warm enough or avoid it due to noise, wind, or privacy concerns. These subtleties highlight how 

important it is to design for actual behavior, not just theoretical use. 
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Figure 8. Story 3, Scenario B - Average Monthly Ventilation Rates (ACH) - Baseline vs. Probable Behaviors. 

Solar gain also followed a similar pattern. Though overall heat gain was lower than in Scenario 

A, it was still significant, peaking at around 408.92 kWh in December. Taller window configurations 

captured more sunlight, especially around midday, helping to passively warm interiors during cooler 

months. This natural warmth often meant windows were opened later in the day, after indoor 

temperatures had already risen a subtle but telling sign of how solar gain can shape how and when 

people engage with their space. 

Table 15. Ventilation and Solar Gain - Design Story 3, Scenario B (Baseline and Probable Behaviors). 

Month Highest 

NV 

Probable 

(ACH) 

(Config.) 

Lowest 

NV 

Probable 

(ACH) 

(Config.) 

Avg. 

NV 

Baseline 

(ACH) 

Avg. NV 

Probable 

(ACH) 

% 

Change 

Avg. 

Solar 

Gain 

(kWh) 

Peak 

Solar 

Gain 

(kWh) 

(Config.) 

Lowest 

Solar 

Gain 

(kWh) 

(Config.) 

Jan 16.47 (12) 15.95 (17) 13.82 13.47 -2.5% 369.65 424.69 (3) 334.32 (5) 

Feb 16.63 (12) 16.18 (17) 13.91 13.74 -1.2% 322.39 370.33 (3) 291.50 (5) 

Mar 11.89 (12) 11.49 (17) 10.17 10.11 -0.6% 275.41 316.28 (3) 249.11 (5) 

Apr 4.76 (12) 4.59 (17) 4.09 3.92 -4.2% 178.04 204.54 (3) 161.06 (5) 

May 0.88 (10) 0.88 (17) 0.88 0.85 -3.4% 138.41 158.99 (3) 125.21 (5) 

Sep 2.99 (12) 2.89 (17) 2.57 2.41 -6.2% 234.12 268.99 (3) 211.78 (5) 

Oct 6.86 (12) 6.63 (17) 5.90 5.68 -3.7% 292.26 335.83 (3) 264.34 (5) 

Nov 9.98 (12) 9.65 (17) 8.56 8.25 -3.6% 342.86 393.87 (3) 309.99 (5) 

Dec 14.25 (12) 13.76 (17) 12.20 11.75 -3.7% 378.88 435.32 (3) 342.72 (5) 

Overall, Scenario B underscores the idea that good design isn’t just about maximizing 

performance on paper it’s about aligning with how people actually live. Even small shifts in behavior 

can shape how effectively a space breathes. Designing windows that naturally encourage 

engagement by being easy to use, well-placed, and responsive to daylight and temperature can make 

all the difference in how a space feels and functions day to day. 

3.3.3. Discussion: Design Implications and Behavioural Insights 

One of the standout findings is that symmetry supports user perception of balance and 

encourages even use of windows, making the act of opening feel intuitive. Furthermore, the 

alignment with solar paths favoring midday and early afternoon gain means that this configuration 
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can effectively reduce heating needs in winter and still offer good ventilation if overheating is 

addressed through timing or shading. 

This design story offers a practical example of how symmetrical, south-facing windows can 

serve as both a thermal comfort tool and a behavioral cue. By placing equal openings along a single 

orientation that receives stable solar exposure, the design encourages occupants to open both 

windows simultaneously, maximizing perceived and actual airflow. The absence of extreme sun 

angles unlike east or west windows supports prolonged, low-glare usage ideal for work or relaxation 

spaces. 

From a design perspective, this configuration demonstrates that user-friendly ventilation 

doesn’t necessarily require dynamic geometry or multi-orientation setups. Instead, it shows how 

clear, simple design aligned with occupant habits and climate-driven needs can foster better 

interaction with the building envelope. The south-facing orientation becomes a mediator of light, 

heat, and airflow, and the behavioral data suggests that when such windows are comfortable to use 

and visually balanced, occupants are more likely to engage with them throughout the year. 

3.4. Design Story Four: North-South Window Configuration 

Design Story four examines two north-facing windows , 25% WWR each, and one large south-

facing window 40% WWR, on opposing walls. The primary design intent was to optimize cross-

ventilation by establishing airflow between opposing walls, while simultaneously taking advantage 

of diffuse daylight from the north and solar warmth from the south especially beneficial during 

Melbourne’s cooler seasons.Ten configurations for Scenario A and nine for Scenario B vary window 

dimensions to assess their impact on ventilation and occupant interaction, with specific dimensions. 

For north and south windows, occupants are likely to open north-facing windows in the morning to 

capture fresh air and breezes, adjust midday to manage heat or glare, and increase south-facing 

window openings in the evening for exhaust, adapting to thermal conditions, glare, and privacy 

needs. 

3.4.1. Scenario A: 7 m × 2.6 m North and South Walls  

The NV rates across configurations in Scenario A, display clear seasonal variation. Rates peak in 

late summer, driven by stronger winds, warmer temperatures, and occupants’ increased tendency to 

open windows. They drop in late autumn as wind speeds diminish and temperatures cool. 

Configurations with larger north-facing windows consistently outperform others, highlighting the 

benefit of increased window area in capturing prevailing winds for cross-ventilation. Table 16 

summarizes these monthly ventilation patterns under baseline behavior. 

Table 16. Natural Ventilation Rates Across Stories - Baseline Behavior (Scenario A). 

Configurations Peak (ACH) (Month) Lowest (ACH) (Month) Average (ACH) 

A1 36.24 (February) 3.38 (May) 21.48 

A2 35.95 (February) 3.33 (May) 21.21 

A3 36.18 (February) 3.35 (May) 21.56 

A4 36.05 (February) 3.33 (May) 21.33 

A5 35.82 (February) 3.30 (May) 21.01 

A6 35.92 (February) 3.33 (May) 21.14 

A7 35.93 (February) 3.36 (May) 21.14 

A8 36.10 (February) 3.35 (May) 21.36 

A9 35.76 (February) 3.34 (May) 21.07 

A10 35.75 (February) 3.32 (May) 20.93 

When occupant behavior is adjusted to reflect probable patterns such as prioritizing morning 

inflow via north-facing windows and evening exhaust through south-facing ones, NV rates improve 

further. Configurations where occupants make fewer or smaller window adjustments, particularly 
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during midday, tend to show reduced performance. This reflects common behaviors such as 

managing indoor heat or glare. 

 

Figure 9. Natural Ventilation Rates Across Configurations - Baseline Behavior (Scenario A). 

Solar gain, peaks in February across all configurations. Configurations with wider south-facing 

windows capture more solar heat, which aligns with increased NV activity in that month. This 

suggests that higher indoor temperatures may encourage occupants to open windows for cooling, 

supporting the link between solar gain and adaptive ventilation behavior. This balance can be further 

optimized with shading devices to modulate thermal comfort without compromising airflow. 

Table 17 provides a clear summary of monthly NV and solar gain outcomes for Scenario A under 

both baseline and probable behavior models. Compared to the baseline, the probable behavior model 

results in consistent improvements in NV rates across all months, with increases ranging from +7.6% 

in December to a substantial +21.6% in May. 

These improvements suggest that occupants are more inclined to interact with windows when 

comfort conditions are favorable and window operation feels intuitive and effective. 

Overall, the cross-orientation layout of Scenario A supported natural airflow regulation across 

seasons. The size and vertical placement of the south-facing window encouraged its use during 

periods of heat buildup, while the dual north-facing windows remained consistently accessible for 

fresh air intake, especially during milder and humid conditions. The resulting ventilation paths were 

stable, long, and intuitively activated by occupant behavior, reflecting strong synergy between form 

and function. 

Table 17. Ventilation and Solar Gain - Design Story 4, Scenario A (Baseline and Probable Behaviors). 

Month Highest 

NV 

Probable 

(ACH) 

(Config.) 

Lowest 

NV 

Probable 

(ACH) 

(Config.) 

Avg. 

NV 

Baseline 

(ACH) 

Avg. NV 

Probable 

(ACH) 

% 

Change 

Avg. 

Solar 

Gain 

(kWh) 

Peak 

Solar 

Gain 

(kWh) 

(Config.) 

Lowest 

Solar 

Gain 

(kWh) 

(Config.) 

Jan 35.90 (1) 35.75 (10) 34.04 37.00 +8.7% 423.94 427.89 (3) 420.58 

(10) 

Feb 36.24 (1) 35.75 (10) 35.97 39.41 +9.6% 421.31 426.44 (3) 418.49 

(10) 
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Mar 25.60 (1) 25.40 (10) 27.31 31.00 +13.5% 547.37 553.22 (3) 541.82 

(10) 

Apr 10.25 (1) 10.15 (10) 15.09 17.71 +17.4% 515.99 521.83 (3) 510.71 

(10) 

May 3.38 (1) 3.32 (10) 3.34 4.06 +21.6% 534.33 541.11 (3) 529.02 

(10) 

Sep 8.55 (1) 8.45 (10) 7.29 8.64 +18.5% 532.32 538.21 (3) 526.98 

(10) 

Oct 15.35 (1) 15.25 (10) 15.63 18.28 +16.9% 487.98 493.01 (3) 483.56 

(10) 

Nov 22.50 (1) 22.30 (10) 19.39 21.38 +10.3% 419.25 423.27 (3) 415.71 

(10) 

Dec 30.20 (1) 30.00 (10) 28.22 31.37 +7.6% 431.23 434.96 (3) 428.02 

(10) 

3.4.2. Scenario B: 4.5 m × 2.6 m North and South Walls 

In Scenario B, the same window layout was applied to shorter 4.5-meter walls, maintaining the 

original WWRs but adapting the probable behavior. As observed , ventilation performance decreased 

somewhat due to the reduced cross-sectional area for airflow. Ventilation peaked in January, while 

May recorded the lowest rate. 

Table 18. Natural Ventilation Rates Across Stories - Baseline Behavior (Scenario B). 

Configuration Peak (ACH) (Month) Lowest (ACH) (Month) Average (ACH) (Sep–May) 

A1 21.41 (January) 1.87 (May) 11.22 

A2 22.58 (February) 1.63 (May) 11.45 

A3 22.30 (February) 1.64 (May) 11.05 

A4 22.44 (February) 1.72 (May) 11.33 

A5 20.87 (February) 1.60 (May) 10.47 

A6 23.75 (February) 1.77 (May) 12.09 

A7 22.12 (February) 1.64 (May) 10.88 

A8 22.57 (February) 1.75 (May) 11.28 

A9 22.26 (February) 1.66 (May) 11.11 

Behaviorally, probable interaction again boosted performance modestly, with relative increases 

of +0.9% to +3.1%, especially in transition months like October and March, where internal conditions 

prompted more nuanced occupant decisions. 
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Figure 10. Natural Ventilation Rates Across Configurations - Baseline Behavior (Scenario B). 

The south-facing window continued to deliver strong solar gains, reaching 474.85 kWh in 

December, a meaningful figure given the smaller room volume and surface area. This gain improved 

thermal conditions in winter and shoulder seasons, often leading occupants to delay window 

opening until later in the afternoon, once internal heat gain had leveled off. This deferred engagement 

points to a more strategic interaction pattern, where in users modulate ventilation not only for 

airflow, but also for thermal preservation. 

Although airflow capacity was reduced compared to Scenario A, Scenario B retained effective 

thermal regulation and ventilation bursts, particularly when all three windows were operated in 

coordination. The slightly compressed spatial dimensions made window timing more critical; short 

openings had stronger impacts on room conditions due to the smaller volume, and users appeared 

to adjust accordingly. 

Table 19. Highest and Lowest Ventilation Performers by Month for Probable Behavior (Scenario B). 

Month Highest 

NV 

(ACH) 

(Config.) 

Lowest 

NV 

(ACH) 

(Config.) 

Avg. 

NV 

Baseline 

(ACH) 

Avg. NV 

Probable 

(ACH) 

% 

Change 

Avg. 

Solar 

Gain 

(kWh) 

Peak 

Solar 

Gain 

(kWh) 

(Config.) 

Lowest 

Solar 

Gain 

(kWh) 

(Config.) 

Jan 22.42 (6) 19.65 (5) 21.23 23.86 +12.4% 269.77 280.93 (6) 263.57 (1) 

Feb 23.75 (6) 20.87 (5) 22.36 25.18 +12.6% 268.43 277.28 (6) 261.87 (1) 

Mar 17.48 (6) 15.56 (5) 16.67 18.43 +10.6% 346.27 356.11 (6) 338.75 (1) 

Apr 9.13 (6) 8.52 (10) 8.78 10.52 +19.8% 326.68 333.73 (6) 318.47 (1) 

May 1.87 (1) 1.60 (5) 1.72 2.05 +19.2% 338.21 344.38 (6) 329.53 (1) 

Sep 4.58 (6) 4.31 (5) 4.48 5.22 +16.5% 337.44 345.46 (6) 329.07 (1) 

Oct 8.41 (6) 7.76 (5) 8.12 9.48 +16.7% 309.82 318.88 (6) 302.05 (1) 

Nov 10.96 (6) 9.75 (5) 10.36 11.41 +10.1% 266.79 277.31 (6) 260.43 (1) 

Dec 16.63 (6) 14.91 (5) 15.74 17.21 +9.3% 274.85 287.18 (6) 268.53 (1) 

3.4.2.4. Discussion: Design Implications and Behavioral Insights 

Design Story Four illustrates how cross-ventilation can be effectively achieved through 

thoughtful window placement on opposing walls. The combination of two north-facing windows 

and one larger south-facing window created a natural airflow loop that aligned with daily occupant 
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routines—inviting cool air in the morning and exhausting warm air in the evening. This intuitive 

setup encouraged more frequent window use and improved overall ventilation, particularly in larger 

rooms. 

Scenario A, with its longer walls, better supported airflow and daylighting, while Scenario B 

demonstrated that the same configuration could still work in smaller spaces, though with slightly 

reduced effectiveness. Occupant behavior played a key role: when windows were used proactively, 

comfort improved noticeably. However, if windows were kept closed due to glare or external 

conditions, the benefits diminished. 

Overall, this design highlights the importance of aligning architectural elements with natural 

patterns and occupant habits. By supporting easy and meaningful interaction, the window 

configuration promoted both thermal comfort and energy-efficient performance without relying on 

complex systems 

3.5. Design Story 5: North-East Window Configuration 

Design Story 5 examines a system with one north-facing window with 40% WWR, and two east-

facing windows with 25% WWR each. The north and east orientation leverages Melbourne’s morning 

sunlight and prevailing winds to optimize cross-ventilation. Ten configurations for Scenario A and 

ten for Scenario B vary window dimensions to assess their impact on ventilation and occupant 

interaction, with specific dimensions. For north-east windows, occupants are likely to open east-

facing windows in the morning to capture fresh air and morning sunlight, adjust midday to manage 

heat or glare, and increase north-facing window openings in the evening for exhaust, adapting to 

thermal conditions, glare, and privacy needs. 

3.5.1. Scenario A: 7 m × 2.6 m North Wall and 4.5 m × 2.6 m East Wall 

NV rates in Scenario A exhibit seasonal variation, peaking in late summer when warmer 

temperatures, stronger winds, and increased occupant window use align to enhance cross-

ventilation. In contrast, rates decline in late autumn as outdoor conditions become less favorable. 

Among the various story configurations, those with wider north-facing windows consistently 

outperformed others highlighting the role of window size in facilitating effective exhaust in a cross-

ventilation strategy.  

Table 20. Natural Ventilation Rates Across Stories - Baseline Behavior (Scenario A). 

Configuration Peak (ACH) (Month) Lowest (ACH) (Month) Average (ACH)  

A1 23.81 (March) 5.36 (May) 16.22 

A2 25.39 (March) 5.89 (May) 17.32 

A3 23.86 (March) 5.39 (May) 16.25 

A4 24.09 (March) 5.38 (May) 16.37 

A5 23.66 (March) 5.30 (May) 15.95 

A6 24.08 (March) 5.38 (May) 16.29 

A7 23.73 (March) 5.38 (May) 16.07 

A8 25.18 (March) 5.87 (May) 16.92 

A9 24.06 (March) 5.43 (May) 16.24 

A10 24.73 (March) 5.82 (May) 16.58 

In Scenario A, where the layout prioritizes a wider north-facing façade and a narrower east-

facing one, NV consistently performs well, particularly during the warmer months. March stands out 

with the highest average NV rate of 26.18 ACH under the "probable" occupant behavior model, a 

significant improvement from the baseline 24.36 ACH, marking a 7.5% increase. This trend is not 

isolated, other months like January and December also show notable gains of 7.1% and 11.1%, 

respectively, when occupants actively respond to their environment by opening windows at optimal 

times. Configuration 2 consistently yields the highest NV rates, peaking at 25.39 ACH in March, while 
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Configuration 5 tends to underperform, showing the lowest values across most months. The data 

reinforces the effectiveness of a well-sized north-facing window acting as a strong exhaust pathway, 

especially when paired with strategic east-facing intake openings. 

 

Figure 11. Story 5, Scenario A - Average Monthly Ventilation Rates (ACH) - Baseline vs. Probable Behaviors. 

In Scenario A, solar gain tends to follow a predictable seasonal rhythm, with the highest values 

appearing in March. During this month, the average solar gain reached 578.86 kWh, peaking at 605.23 

kWh in Configuration 2. This spike can largely be attributed to the larger north-facing windows, 

which allow more sunlight to pour into the space. As the indoor temperatures rise, it’s natural for 

occupants to respond by opening windows more frequently, increasing NV to stay comfortable. 

While this extra sunlight can be beneficial for boosting airflow, it also presents a challenge. Too much 

solar gain can lead to overheating, especially during peak sun hours. That’s why it's important to 

consider solutions like shading devices or specially treated glazing to strike a balance between letting 

in light and maintaining a comfortable indoor environment. 

Table 21 compares average NV rates under probable and baseline behaviors. Across all months, 

probable behaviors improved NV rates by 5.5–11.1%, with the most significant gains observed during 

transitional seasons like October and December. 

Table 21. Ventilation and Solar Gain - Design Story 5, Scenario A (Baseline and Probable Behaviors). 

Month Highest 

NV 

Probable 

(ACH) 

(Config.) 

Lowest 

NV 

Probable 

(ACH) 

(Config.) 

Avg. 

NV 

Baseline 

(ACH) 

Avg. NV 

Probable 

(ACH) 

% 

Change 

Avg. 

Solar 

Gain 

(kWh) 

Peak 

Solar 

Gain 

(kWh) 

(Config.) 

Lowest 

Solar 

Gain 

(kWh) 

(Config.) 

Jan 22.72 (2) 21.29 (5) 22.00 23.57 +7.1% 485.17 502.49 (2) 472.70 (5) 

Feb 21.77 (2) 20.38 (5) 20.88 22.05 +5.6% 491.50 510.64 (2) 479.15 (5) 

Mar 25.39 (2) 23.66 (5) 24.36 26.18 +7.5% 578.86 605.23 (2) 564.66 (5) 

Apr 15.63 (2) 14.42 (5) 14.90 16.28 +9.3% 506.61 531.74 (2) 494.55 (5) 

May 5.89 (2) 5.30 (5) 5.55 5.86 +5.6% 501.00 527.52 (2) 488.48 (5) 

Sep 10.63 

(2,10) 

9.93 (5) 10.23 10.79 +5.5% 548.05 575.75 (2) 536.79 (5) 

Oct 17.83 

(2,8) 

16.58 (5) 17.24 18.89 +9.6% 543.71 566.28 (2) 530.11 (5) 

Nov 19.19 (2) 18.04 (7) 18.50 20.05 +8.4% 492.50 510.21 (2) 479.97 (5) 
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Dec 23.01 (2) 21.00 (5) 22.16 24.61 +11.1% 493.05 509.82 (2) 480.14 (5) 

3.5.2. Scenario B: 4.5 m × 2.6 m North Wall and 7 m × 2.6 m East Wall 

Scenario B, by contrast, reconfigures the orientation; it emphasizes a broader east-facing wall 

and a more limited north-facing surface. This layout favors early morning ventilation but slightly 

reduces exhaust potential due to the smaller north window. Despite this, the scenario still performs 

commendably, particularly when occupant behavior is responsive. December records the highest 

probable NV rate showing a 12.4% increase, the largest monthly gain across both scenarios. Overall, 

Scenario B shows a consistently higher behavioral impact on ventilation, with most months posting 

improvements around 9–12%. 

Interestingly, although Scenario B’s ventilation rates are marginally lower than Scenario A’s, its 

solar gain values are generally higher. This is largely due to the extensive east-facing glazing, which 

receives strong morning sun. While this can be beneficial for passive heating during winter mornings, 

it also heightens the risk of overheating in warmer months. Configurations with wider and taller 

windows consistently register the peak solar gain, indicating the importance of thoughtful sizing and 

potential need for adjustable shading. 

Table 22. Natural Ventilation Rates Across Stories - Baseline Behavior (Scenario B). 

Configuration Peak (ACH) (Month) Lowest (ACH) (Month) Average (ACH) 

1 20.62 (January) 4.18 (May) 15.47 

2 20.92 (January) 4.23 (May) 15.56 

3 21.87 (March) 4.20 (May) 15.99 

4 21.73 (March) 4.14 (May) 15.85 

5 22.94 (December) 4.12 (May) 15.93 

6 20.87 (January) 4.21 (May) 15.48 

7 21.43 (March) 4.11 (May) 15.32 

8 20.98 (January) 4.19 (May) 15.54 

9 20.47 (January) 4.13 (May) 15.41 

10 20.80 (January) 4.19 (May) 15.50 

Under the probable behavior model in Scenario B, occupants play a more active role in 

influencing ventilation outcomes. This model assumes that people respond intuitively to indoor 

conditions by opening windows during warmer periods or when solar exposure increases. The data 

shows that this behavior leads to a meaningful increase in NV across the board, with increases 

ranging from about 8% to over 12%. The highest behavioral impact occurs in December, with a 12.4% 

improvement in NV, highlighting how even layouts with limited exhaust capacity can still perform 

well when occupants are engaged. Notably, the consistently higher gains in Scenario B suggest that 

this configuration is more sensitive to user interaction, meaning thoughtful behavior can significantly 

offset design limitations. 

As for solar gain, Scenario B consistently records higher values than Scenario A, despite its 

slightly less favorable orientation for NV. This is due to the expansive east-facing glazing that 

captures intense morning sunlight, especially during the cooler months. For instance, in December, 

Scenario B achieves an average solar gain of 582.15 kWh, substantially higher than Scenario A’s 493.05 

kWh. 
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Figure 12. Story 5, Scenario B - Average Monthly Ventilation Rates (ACH) - Baseline vs. Probable Behaviors. 

Configuration 1 frequently records the highest gains, indicating that wider, taller windows 

facing east are particularly influential in heat accumulation. While this can be beneficial for passive 

warming in winter, it poses a risk of overheating during warmer months. These findings underscore 

the importance of integrating adaptable shading or selective glazing into the design, particularly in 

east-facing zones, to ensure comfort throughout the year. 

Table 23. Ventilation and Solar Gain - Design Story 5, Scenario B (Baseline and Probable Behaviors). 

Month Highest 

NV 

Probable 

(ACH) 

(Config.) 

Lowest 

NV 

Probable 

(ACH) 

(Config.) 

Avg. 

NV 

Baseline 

(ACH) 

Avg. NV 

Probable 

(ACH) 

% 

Change 

Avg. 

Solar 

Gain 

(kWh) 

Peak 

Solar 

Gain 

(kWh) 

(Config.) 

Lowest 

Solar 

Gain 

(kWh) 

(Config.) 

Jan 21.32 (5) 20.34 (7) 20.89 22.80 +9.1% 555.42 564.86 (1) 548.82 (9) 

Feb 20.42 (3) 19.66 (7) 20.02 21.61 +8.0% 532.91 541.37 (1) 526.73 (9) 

Mar 21.87 (3) 21.43 (7) 21.70 23.91 +10.2% 552.50 559.62 (1) 546.51 (9) 

Apr 13.22 (3) 12.87 (7) 13.09 14.52 +11.0% 441.47 446.34 (1) 436.76 (9) 

May 4.23 (2) 4.11 (7) 4.17 4.67 +12.0% 403.35 406.77 (1) 399.15 (9) 

Sep 8.92 (4) 8.67 (7) 8.83 9.92 +12.3% 509.27 516.59 (1) 504.76 (9) 

Oct 16.22 (4) 15.43 (7) 15.90 17.84 +12.2% 561.58 569.92 (1) 555.23 (9) 

Nov 18.09 (3) 17.55 (7) 17.81 19.53 +9.7% 564.13 573.79 (1) 557.46 (9) 

Dec 22.99 (3) 22.06 (9) 22.52 25.31 +12.4% 582.15 592.25 (1) 574.96 (9) 

3.5.3. Discussion: Design Implications and Behavioral Insights 

In comparing both scenarios, it becomes clear that Scenario A slightly outperforms Scenario B in 

terms of raw ventilation potential, with a peak of 25.39 ACH versus 22.99 ACH. This advantage is 

attributed to the wider north-facing window acting as a superior exhaust outlet. However, Scenario 

B demonstrates a stronger relative response to behavioral changes, suggesting that occupant 

engagement, such as adjusting windows during specific times, can substantially enhance 

performance, even when the layout is less inherently optimal. The broader implication is that design 

alone doesn’t dictate performance; the combination of window orientation, sizing, and occupant 

behavior collectively determines indoor comfort. Designers should consider not only optimal 

window configurations but also how adaptable the space is to user interaction. Moreover, to mitigate 
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the risk of excessive solar heat gain while preserving NV, integrating passive design elements like 

eaves, blinds, or operable shading systems becomes essential, especially in east- and north-facing 

facades. 

In summary, Scenario A offers stronger baseline performance in ventilation and is particularly 

suited for maximizing daily cross-ventilation, while Scenario B, although slightly weaker in exhaust 

efficiency, excels in leveraging user behavior and morning solar exposure. Both designs benefit 

significantly from engaged occupants and show clear seasonal patterns that could inform adaptive 

strategies year-round. 

3.5. Broader Applicability and Transferability 

Although the specific numeric results presented here are context-dependent (Melbourne, 

Australia), the demonstrated relative improvements (5–12% increases in ACH from incorporating 

occupant behavior) and methodological insights remain valid and transferable. By utilizing the 

provided workflow, integrating realistic occupant behavior into dynamic simulations, researchers 

and practitioners globally can achieve similarly optimized results tailored to their local conditions. 

For example, while in hotter climates, the approach can highlight necessary shading strategies or 

window operation schedules during peak solar gains, in colder climates, adaptive window 

configurations could optimize passive solar heating and ventilation trade-offs. Thus, the 

methodology and core insights have global relevance and can be widely implemented, informing 

both practical design guidelines and policy recommendations. 

3.7. Summary & Guideline 

The study highlights that occupant behavior significantly alters window performance outcomes. 

Simulation results demonstrated considerable differences in ventilation rates and thermal comfort 

between behavior-informed scenarios and base-case assumptions. Designs that initially appeared 

optimal under default usage patterns often underperformed when realistic occupant behaviors were 

introduced. Specifically, in the context of Melbourne's climate, north- and south-facing window 

designs performed best when aligned with actual occupant use patterns. Large, operable north-facing 

windows, as seen in Scenarios 1 and 4, enhanced ventilation potential, particularly when placement 

encouraged interaction. Similarly, high south-facing windows contributed to improved thermal 

comfort during cooler seasons without introducing excessive overheating risk. Moreover, window 

placement strongly influenced usability: windows positioned near the ceiling or with restricted 

access were less likely to be operated, regardless of their ventilation potential, indicating that 

usability is just as critical as physical performance. Designs with asymmetrical and mixed-orientation 

windows, such as in Stories 4 and 5, were particularly effective, balancing natural light and airflow 

while promoting more consistent use throughout the year, especially in transitional seasons. Overall, 

the findings underscore the necessity for early-stage design processes to integrate realistic occupant 

behavior models. Relying solely on default assumptions risk overestimating NV performance, 

whereas behavior-sensitive simulations enable more accurate predictions and support the 

development of human-centric, high-performing building designs. 

Table 24. Window design recommendations. 

Orientation Window 

Design 

Strategy 

Key 

Parameters 

Behavioral 

Insight 

Simulation 

Outcome 

Final 

Recommendation 

North  

Two 

windows 

(equal size) 

45% WWR Frequent 

opening due to 

glare-free 

daylight 

High 

ventilation, 

low solar 

gain 

     Recommend for 

daylight + 

ventilation 
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One large 

central 

window 

45% WWR, 

high 

placement 

Less use due to 

unreachable 

height 

Medium 

ventilation, 

better view 

     Only if view is 

priority 

South  

One large 

window + 

two side 

windows 

Total 65% 

WWR 

Overheating 

during 

afternoon, 

limited 

opening 

High solar 

gain, glare 

issues 

    Not ideal 

without shading 

Two 

medium 

windows 

45% WWR Balanced use, 

easy to open 

Moderate 

ventilation 

and daylight 

     Preferred for 

comfort 

East Large 

ceiling 

height 

window 

40% WWR Low opening 

frequency in 

morning 

Glare issues 

in early hours 

     Use only with 

shading 

East Smaller 

west-facing 

window 

30% WWR Opened more 

in late day 

Supports 

cross 

ventilation 

     Good for 

morning-evening 

balance 

West One large 

window 

40% WWR Often kept 

shut due to 

heat 

Poor thermal 

comfort 

    Avoid large 

west-facing glass 

West Two 

smaller 

splits  

windows 

45% total 

WWR 

More likely to 

be opened 

Better air 

flow, lower 

overheating 

     Recommended 

with shading 

Overall, the guideline table isn’t just a set of random numbers; it’s a thoughtful response to 

consider Melbourne’s climate. The dimensions are based on simulations that consider local solar 

angles, wind patterns, and temperature changes, ensuring that homes and buildings maximize 

energy efficiency and comfort throughout the year. By aligning window sizes and placements with 

these conditions, the guidelines create practical, climate-responsive designs that work for 

Melbourne’s residents. 

Table 25. Window design recommendations. 

Orientation Recommended Window Dimensions Additional Considerations 

North 
- Height: 2.0 m - 2.4 m 

- Width: 1.5 m - 2.0 m 

- Aspect ratio (H/W): >1.0 (taller than 

wide) 

- Place operable part within 1.0-1.5 m from floor for easy 

access 

- Total WWR: 40-50% 

- Ideal for maximizing ventilation and daylight with 

minimal glare 

East 
- Height: 1.8 m - 2.0 m 

- Width: 2.0 m - 3.0 m 

- Aspect ratio: <1.0 (wider than tall) 

- Use shading devices e.g., blinds, overhangs to control 

morning glare 

- Suitable for capturing morning light and ventilation 

West 
- Height: 1.5 m - 1.8 m 

- Width: 1.5 m - 2.0 m 

- Aspect ratio: ~1.0 (square or slightly 

rectangular) 

- Use external shading or low-E glass to reduce afternoon 

heat gain 

- Smaller windows help manage excessive solar exposure 
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South 
- Height: 1.8 m - 2.0 m 

- Width: 1.8 m - 2.5 m 

- Aspect ratio: ~1.0 (square or slightly 

rectangular) 

- Provides consistent daylight without excessive heat gain 

- Suitable for spaces where glare is less of an issue 

4. Limitations and Future Works 

While this study provides valuable insights into optimizing window design for NV by 

integrating occupant behavior, several limitations should be acknowledged. First, the simulations 

relied on survey data from Melbourne residents, which may not fully represent behavioral patterns 

in other climatic or cultural contexts, potentially limiting the generalizability of the findings. Second, 

the study focused on a single living room model with fixed building characteristics, which may not 

capture the diversity of residential building typologies or construction materials. Third, the occupant 

behavior models (same behavior and probable behavior) were based on aggregated survey 

responses, which may oversimplify the complexity of individual preferences and dynamic 

interactions with windows, such as responses to real-time environmental feedback or socio-economic 

factors. Additionally, the study did not account for external factors like urban surroundings (e.g., 

adjacent buildings or vegetation) that could influence wind patterns and ventilation performance. 

Future research could address these limitations by expanding the scope to include diverse climatic 

zones, building types, and occupant demographics to enhance the applicability of the findings. 

Incorporating real-time occupant feedback through smart sensors or machine learning could refine 

behavior models, enabling more precise predictions of window use. Additionally, exploring hybrid 

ventilation systems that combine natural and mechanical strategies could provide practical solutions 

for challenging urban environments. Finally, integrating multi-objective optimization frameworks, 

such as cost-benefit analyses or life-cycle assessments, could further evaluate the trade-offs between 

ventilation performance, energy efficiency, and economic feasibility, supporting practical adoption 

by architects and builders. 

5. Conclusion 

This research presented a novel behavior-integrated simulation framework combining occupant 

behavior models (Same Behavior and Probable Behavior), derived from empirical survey data, with 

dynamic EnergyPlus simulations to optimize window design for Natural Ventilation in Melbourne’s 

temperate residential buildings. This research uniquely incorporates realistic occupant behavior, 

addressing a critical gap often overlooked in conventional simulations. Key numerical findings and 

insights include: 

• Probable Behavior models significantly increased ventilation rates by approximately 5% to over 

20% compared to static (Same Behavior) assumptions, highlighting the critical impact of realistic 

occupant engagement. 

• Moderately sized north-facing windows (around 45% WWR) and balanced cross-ventilation 

designs (e.g., North–South, East–West, North–East) consistently delivered the highest ventilation 

performance, achieving peak rates around 25–36 ACH in optimal configurations. 

• Windows placed within occupant reach (below 1.6 m height) significantly improved usability 

and thus increased ventilation frequency and effectiveness. 

• Large windows placed near ceilings or on west and south orientations resulted in increased solar 

gain (up to ~700 kWh/month in extreme cases), causing potential overheating and lower window-

use frequency. 

• Balanced and symmetrical window layouts on the same façade encouraged simultaneous 

occupant use, enhancing overall ventilation effectiveness. 

The study contributes a practical, occupant-sensitive design guideline matrix, enabling 

architects and engineers to make evidence-based decisions, improving real-world NV performance. 

While initially tailored to Melbourne’s temperate climate, the occupant-responsive methodology is 

inherently adaptable; future researchers and practitioners can apply it to other regions by updating 
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climate files, occupant models, and construction standards. Policymakers can also leverage this 

framework to refine building codes and sustainability policies by aligning them with real-world 

occupant behavior. Future research directions should explore extending this occupant-integrated 

approach to different climates, incorporating real-time occupant feedback mechanisms, and 

integrating advanced adaptive shading and smart ventilation controls for enhanced comfort and 

energy efficiency. 
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