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Abstract: Epithelial–mesenchymal transition (EMT) is defined as a cellular process during which epithelial cells 

acquire mesenchymal phenotypes and behavior following the downregulation of epithelial features. EMT and 

its  reversed  process,  the  mesenchymal‐epithelial  transition  (MET),  and  the  special  form  of  EMT,  the 

endothelial‐mesenchymal  transition  (EndMT),  have  been  thought  as  a  universal  dogma  controlling 

developmental and pathological processes. More than half a century of EMT study has made it a large research 

field and a mainstream concept. However, discrepancies and disputes over EMT and EMT research have also 

grown over time. Particularly, neither the epithelial and mesenchymal states/properties nor their regulatory 

networks nor specific markers have been defined, rendering the EMT, MET and EndMT concepts groundless. 

Moreover, EMT and MET effects should not be a cause, but rather a consequence of or an accompanying effect 

during developmental and pathological processes. EMT and MET represented by the change in cell shapes or 

adhesiveness or symbolized by EMT factors are biased interpretation of the overall change in cellular property 

and regulatory networks during development and cancer progression. The  true meaning of EMT effects  in 

some developmental and pathological processes, such as fibrosis, needs re‐evaluation. But the core EMT factors 

are actually a few components of the regulatory networks of neural stemness, which determines tumorigenicity 

and pluripotency. The EMT effects in cancer progression and neural crest formation are wrong attribution of 

the role of neural stemness during cancer progression and the cell‐intrinsic property of neural crest cells to the 

unknown mesenchymal state. It is time to reassess the significance of EMT and its related concepts in scientific 

research. 
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1. Introduction 

Since  the  initial  description  of  the  epithelial‐mesenchymal  transition  (EMT)  effect  in  the 

regulation  of  embryonic  developmental  process  by  Elizabeth  Dexter  “Betty”  Hay  (1927–2007, 

Harvard Medical School) (Hay, 1995), EMT has been reported as a universal cellular event involved 

in many  different  aspect  of  life  process,  including  organogenesis,  tissue  repair, wound  healing, 

inflammation, fibrosis, cancer progression, and even COVID‐19 (Haensel and Dai, 2018; Kalluri and 

Neilson, 2003; Kalluri and Weinberg, 2009; Lamouille et al., 2014; Marconi et al., 2021; Pandolfi et al., 

2021; Stone et al., 2016; Suarez‐Carmona et al., 2017; Vincent and Fuxe, 2017). Particularly, EMT was 

employed to explain cancer metastasis initially but now has been implicated in every feature of cancer 

cells,  including  stemness,  proliferation,  evasion  of  death  and  immunosurveillance,  dysregulated 

epigenetics, dysregulated metabolism, resistance to therapies, cancer heterogeneity, etc. (Bakir et al., 

2020; Brabletz et al., 2021; Celià‐Terrassa and Jolly, 2020; Dongre and Weinberg, 2019; Lu and Kang, 

2019; Mittal, 2018; Nieto et al., 2016; Pastushenko and Blanpain, 2019; Polyak and Weinberg, 2009; 

Romano et al., 2020; Sato et al., 2016; Sciacovelli and Frezza, 2017; Shibue and Weinberg, 2017). EMT 

research has become a large research field and generated about 46,000 papers so far, and the number 

of publications is still growing rapidly. This makes EMT appearing as a mainstream concept (Sheng 
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et al., 2022). Nevertheless, behind the prosperous EMT research are essential flaws in the rationale of 

EMT concept. The  flaws might make  it a groundless concept  rather  than a universal dogma  that 

dictates developmental biology and pathology. 

2. Outline of the history of EMT research 

2.1. Hay and the Initiation of EMT Research 

It is generally credited that the American cellular and developmental biologist Elizabeth D. Hay 

played  the pioneering  role of EMT  research  (Sheng  et  al.,  2022; Yang  et  al.,  2020). She observed 

initially that cartilage cells of limbs of Ambystoma larvae are able to dedifferentiate and re‐differentiate 

again into cartilage cells, thereby contributing to limb regeneration (Hay, 1958). Later, she found that 

regeneration of newt amputated limb needs the migration of epidermal cells over the wound surface 

of  the  limb  (Hay  and  Fischman,  1961).  These  EMT‐like  processes  implied  that  they may  play 

important roles in wound healing and tissue regeneration, and led her to study the differentiation of 

epithelial cells and embryonic development. Hay and co‐workers observed that extracellular matrix 

could  influence  differentiation  of  corneal  epithelial  cells  (Meier  and Hay,  1974). Using  chicken 

embryos  as  a model  and  optical  and  electronic microscopy,  she  could  identify different  cellular 

phenotypes in chicken embryos. At the 18th Hahnemann symposium in Baltimore, she reported how 

mesenchymal cells are transformed from epithelial cells during the migration of neural crest cells in 

neural tube formation. This was considered as a description of EMT effect before the term “EMT” 

was created. The 18th Hahnemann symposium was therefore considered as the birthplace of EMT 

research. 

Around the 1970s, studies by other groups demonstrated epithelial‐mesenchymal interactions 

during tissue formation and organogenesis, including heart, neural crest, Mullerian duct, intestinal 

brush border membrane, embryonic lungs, etc. (Bluemink et al., 1976; Dyche, 1979; Kedinger et al., 

1981; Markwald et al., 1977; Newgreen et al., 1979). In a publication reporting adult cells undergoing 

EMT in 1982, Hay and colleague used the term “epithelial‐mesenchymal transformation” for the first 

time. They demonstrated that chicken lens epithelial cells cultured in vitro looked like mesenchymal 

cells and were able to move in collagen matrix (Greenburg and Hay, 1982). Different term or phrase 

were also devised by other groups to represent the EMT‐like effect during the same period. Dulbecco 

and  colleagues  used  “cuboid‐to‐fusiform  transition”  to  describe  their  observation  that  cuboid 

epithelial cells of rat mammary tumors changed to  fibroblast‐like cells with  fusiform morphology 

(Dulbecco et al., 1981). The phrase “rapid change from epithelial to mesenchymal character” was used 

by Illmensee’s group to represent an EMT‐like effect observed during mouse embryogenesis (Franke 

et al., 1982).   

In subsequent studies, Hay continued to describe the morphological changes during EMT, and 

tried  to  delineate  EMT with molecular  changes.  For  instances,  her  team  showed  that  cultured 

embryonic lens epithelial cells underwent an EMT‐like phenotypic change, and lose type IV collagen 

expression and  γ‐crystallin while expressing  type  I collagen  (characteristic of mesenchymal cells) 

(Greenburg and Hay, 1986). They also  showed  that  thyroid epithelial  cells undergoing EMT  lose 

thyroglobulin but gain vimentin expression, suggestive of a dedifferentiation effect (Greenburg and 

Hay,  1988).  The  term  “epithelial‐mesenchymal  transition”  appeared  for  the  first  time  in  a  cited 

literature in a review by Hay and Zuk (1995) (Hay and Zuk, 1995). It became the official term after 

the  first TEMTIA  (The EMT  International Association) meeting  in 2003. “Epithelial‐mesenchymal 

transition” was used instead of “epithelial‐mesenchymal transformation” to distinguish it from the 

neoplastic transformation commonly used by cancer researchers (Yang et al., 2020). 

2.2. Transition from Morphological to Molecular Description of EMT 

After  extensive  phenotypic  description  of  EMT,  EMT  research  began  to  shift  to molecular 

analysis. Hepatocyte growth factor (HGF) was observed to dissolve the  junction proteins between 

epithelial  cells,  causing  transformation  of  epithelial  cells  into migratory  fibroblasts  (Stoker  and 

Perryman, 1985; Stoker  et al., 1987). Thiery’s group  found  that  fibroblast growth  factor 1  (FGF1) 
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induced an EMT effect  in rat bladder carcinoma cells,  linking EMT  to cancer  (Vallés et al., 1990). 

Epidermal growth factor (EGF) was also shown to promote EMT in rat neonatal hepatocytes (Pagan 

et al., 1997). Transforming growth factor (TGF) family proteins were more extensively investigated 

for their roles in EMT. It was reported that TGF‐α was able to induce a mesenchymal and invasive 

phenotype in rat prostate cancer cell (Gavrilović et al., 1990). TGF‐β proteins were shown to play an 

important role in embryonic heart endothelial cells (Potts et al., 1991) and in embryonic palatal cells 

undergoing EMT (Sun et al., 1998), and mammary epithelial cells treated with TGF‐β can undergo 

EMT (Miettinen et al., 1994). TGF‐β mediated EMT effect involves activation of TGF‐β receptor and 

Smad signal transducers (Piek et al., 1999). TGF‐β receptor also activates Rho‐GTPase, PI3K/AKT and 

MAPK pathways that can induce an EMT effect in embryonic chick heart, lens epithelial cells, renal 

epithelial cells, in vitro cultured tumor and non‐tumor mammary epithelial cells (Bakin et al., 2002; 

Cho and Yoo, 2007; Kattla et al., 2008; Tavares et al., 2006; Xie et al., 2004). In the pursuit of molecular 

mechanisms of EMT, Hay’s  group demonstrated  in  2008  that  the  Snail  family  of EMT  activated 

transcription factors could induce TGF‐β3 expression in cancer cell lines (Medici et al., 2008). 

Studies of identifying molecular regulators of EMT increased dramatically in the 1990s. These 

led to the identification of EMT transcription factors (EMT‐TFs), the first of which were Snail (Snai1) 

and Slug (Snai2) (Nieto et al., 1992; Nieto et al., 1994; Smith et al., 1992). Nieto et al. (1994) showed for 

the first time that knockdown of Snail or Slug impaired EMT and subsequent cell migration during 

mesoderm and neural crest formation in chicken embryos (Nieto et al., 1994). Later, they were shown 

to promote an EMT effect in cancer cells (Batlle et al., 2000; Cano et al., 2000; Savagner et al., 1997). In 

2001, E12/E47 basic helix‐loop‐helix transcription factor (also called TCF3) was shown to evoke an 

EMT  effect  in MDCK kidney  cells  (Perez‐Moreno  et  al.,  2001),  and  the ZEB  family  transcription 

factors, ZEB1 and ZEB2, were reported to induce an invasive phenotype in cancer cells (Comijn et al., 

2001), linking their function in regulating EMT. Later on, Weinberg’s group revealed that TWIST1 

plays an essential role in cancer metastasis via promoting EMT (Yang et al., 2004). These EMT‐TFs 

were  capable  of  inducing  EMT‐associated  morphological  and  molecular  changes,  particularly 

transcriptional repression of the typical epithelial gene E‐cadherin (Batlle et al., 2000; Bolós et al., 2003; 

Cano et al., 2000; Comijn et al., 2001; Eger et al., 2005; Hajra et al., 2002; Perez‐Moreno et al., 2001).   

Jean Paul Thiery in the 1980s clutched “the gospel of developmental EMT to bravely jump from 

development to oncology, and finally grab cancer biologists by the scruff of the neck and force them 

to see the light. It was really from this point that the EMT field commenced its exponential growth” 

(Sheng et al., 2022). Since then, a large number of studies have demonstrated that EMT‐TFs regulate 

not only cancer metastasis but eventually every aspect of cancer initiation and progression, and every 

feature of  cancer  cells,  including  stemness, unlimited  cell proliferation, evasion of  cell death and 

immunosuppression,  chemoresistance,  genomic  instability,  metabolic  reprogramming,  etc. 

Correspondingly,  molecular  mechanisms  underlying  regulation  of  cancer  by  EMT‐TFs  and 

regulation of EMT‐TFs in cancer have also been extensively investigated (Bakir et al., 2020; Brabletz 

et al., 2021; Celià‐Terrassa and Jolly, 2020; Dongre and Weinberg, 2019; Fischer et al., 2015; Haerinck 

et al., 2023; Lamouille et al., 2014; Lu and Kang, 2019; Mittal, 2018; Nieto et al., 2016; Pastushenko and 

Blanpain, 2019; Romano et al., 2020; Saitoh, 2023; Sato et al., 2016; Sciacovelli and Frezza, 2017; Shibue 

and Weinberg, 2017; Thiery et al., 2009). Due to their central role in EMT and extensive studies in 

cancer, ZEB1, ZEB2, SNAI1, SNAI2 and TWIST1 are considered as the core EMT‐TFs (Kalluri and 

Weinberg, 2009; Nieto et al., 2016; Yang et al., 2020). Besides these core factors, a number of additional 

EMT‐TFs have been identified, including FOXC2 (Mani et al., 2007), GSC (Hartwell et al., 2007), KLF8 

(Wang et al., 2007), PRRX (Ocaña et al., 2012; Takano et al., 2016), RUNX2 (Tavares et al., 2018), SIX1 

(McCoy et al., 2009), TCF3 (also known as E47 or ITF1) (Perez‐Moreno et al., 2001), and TCF4 (also 

known as E2‐2 or ITF2) (Sobrado et al., 2009). 

3. Mesenchymal‐Epithelial Transition (MET) and Endothelial‐Mesenchymal Transition (EndMT) 

Other two EMT‐related cellular state transitions that have been extensively investigated are MET 

and EndMT.  It  is believed  that  transition  from  epithelial  to mesenchymal  state  is  reversible. The 

reversed process is known as mesenchymal‐epithelial transition (MET) (Hay and Zuk, 1995; Pei et al., 
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2019;  Polyak  and Weinberg,  2009).  This means  that mesenchyme  derived  from  epithelium  can 

sometimes reverts back to the epithelial phenotype. At the molecular level, MET is characterized by 

the decreased expression of mesenchymal  factors and  increased expression  in epithelial markers, 

particularly E‐cadherin  (Polyak and Weinberg, 2009; Bakir  et al., 2020). Putative  roles of MET  in 

embryogenesis and cancer have also been widely reported or proposed (Bakir et al., 2020; Hay and 

Zuk, 1995; Pei et al., 2019; Polyak and Weinberg, 2009).   

The inner surface of all vessels in the body, including capillaries, arterioles, arteries, veins, and 

lymphatic vessels, is lined by a thin membrane‐like structure, the endothelium. It plays primary roles 

in regulating and maintaining vessel wall permeability (Piera‐Velazquez and Jimenez, 2019). EndMT 

is cellular differentiation process by which resident endothelial cells delaminate and migrate away 

from  the  endothelium,  progressively  lose  their  endothelial  features  and  acquire  mesenchymal 

features. Accordingly, there is a tendency of decreased expression of endothelial markers and gain of 

mesenchymal marker expression in cells undergoing EndMT (Bischoff, 2019; Clere et al., 2020; Piera‐

Velazquez and Jimenez, 2019; Potenta et al., 2008). The molecular pathways regulating EndMT have 

been  extensively  investigated  (Xu  and  Kovacic,  2023),  which  substantially  overlap  with  those 

regulating EMT. Endothelial cells can be considered as a special type of epithelial cells. Therefore, 

EndMT is often considered as a special form of EMT. EndMT has been reported or proposed to play 

essential roles in many normal developmental and pathological processes, including cancer (Bischoff, 

2019; Clere et al., 2020; Piera‐Velazquez and Jimenez, 2019; Potenta et al., 2008; Simons, 2023; Xu and 

Kovacic, 2023) 

4. EMT and Development, Fibrosis and Cancer 

It  seems  that  EMT  and  MET  are  employed  generally  throughout  embryogenesis  to 

organogenesis. EMT was first observed during gastrulation in vertebrate embryos when some cells 

of the epiblast (the definitive ectoderm) undergo EMT and move between the epiblast and hypoblast 

(the definitive  endoderm)  to  form  the  third  germ  layer:  the mesoderm  (Akhurst,  2023; Lim  and 

Thiery, 2012; Nakaya and Sheng, 2008; Pérez‐Pomares and Muñoz‐Chápuli, 2002; Solnica‐Krezel and 

Sepich, 2012; Tam and Beddington, 1987), from which the embryonic and adult mesenchymal cells 

are  derived.  Conversely, MET  turns  early mesoderm  into  somites  (Nakaya  et  al.,  2004), which 

differentiate  into  dermamyotome,  cartilage  and  bone  by  subsequent  EMT  (Noden,  1988).  It  is 

believed that EMT drives the formation of migratory neural crest cells from neuroectoderm, leading 

to  the  loss  of  the  original  neuroepithelial morphology  and  gain  of migratory  phenotype with  a 

fibroblast‐like shape (Bronner, 2012; Duband et al., 1995; Nieto et al., 1994; Mancilla and Mayor, 1996; 

Strobl‐Mazzulla and Bronner, 2012; Theveneau and Mayor, 2012). During organogenesis, EMT has 

been reported to involve in the formation of many different types of cells or tissues in an animal, such 

as  fetal  liver  stroma  (Chagraoui  et  al.,  2003),  the  cardiac  cushion  tissue  (Markwald  et  al.,  1977; 

Markwald et al., 1996; Person et al., 2005), and oral palatal shelves (Ferguson, 1988; Fitchett and Hay, 

1989; Sweney and Shapiro, 1970). 

Many  reports  have  shown  that  EMT  is  involved  in  fibrosis  or  scarring  in different  organs, 

including liver, lung, kidney, and heart. During normal wound healing, myofibroblasts, which are 

mesenchymal  cells,  undergo  apoptosis  and  disappear  once  upon  the  completion  of  re‐

epithelialization.  Pathologically  prolonged  myofibroblast  activity  leads  to  fibrogenesis.  In  fact, 

persistent myofibroblast activation is a common feature of fibrogenesis, in which EMT is believed to 

play an essential role (Stone et al., 2016; Nieto et al., 2016; Yang et al., 2020). Myofibroblasts can be 

derived from a variety of sources. However, many lines of evidence showed that a major part of them 

are generated through EMT during organ fibrosis (Stone et al., 2016). During kidney fibrosis, tubular 

epithelial cells turn into myofibroblasts via EMT and adopt fibroblast morphology, as evidenced by 

studies with animal models, human kidney biopsies, epithelial and mesenchymal marker staining, 

and lineage tracing with the mesenchymal marker FSP1 (also known as S100A4) (Kriz et al., 2011; 

Loeffler and Wolf, 2015; Stone et al., 2016).  It  is believed  that  in  lungs, epithelial cells experience 

repeated injury and persistent inflammation could undergo EMT, leading to fibrosis. The origin of 

myofibroblasts  in  lung  fibrosis  is  not  certain.  Some  studies  showed  that  alveolar  epithelial  cells 
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undergo EMT or partial EMT and contribute to fibrotic pathology. In a TGF‐β1 murine model of lung 

fibrosis,  β‐galactosidase  (β‐gal)‐labeling  epithelial  cells  also  expressed  mesenchymal  markers, 

indicating epithelial cells as the progenitors for the fibroblasts (Bartis et al., 2014; Jolly et al., 2018; 

Rout‐Pitt et al., 2018; Stone et al., 2016). Origin of activated myofibroblasts during liver fibrosis is also 

not  clear, but  epithelial  cells undergoing EMT has been proposed  as  the  source. Lineage‐tracing 

studies with mouse models demonstrated hepatocytes underwent EMT, thereby contributing to the 

population of cells with the morphology of fibroblasts or expression mesenchymal markers (Stone et 

al., 2016; Xie and Diehl, 2013; Munker et al., 2017; Taura et al., 2016). EMT regulated  fibrogenesis 

following heart injury has been reported. Adult epicardial cells undergo EMT, and migrate into the 

injured myocardium  where  they  generate  different  types  of  cells,  including  cardiac  interstitial 

fibroblasts and coronary smooth muscle cells, to help  tissue repair  (Stone et al., 2016). The role of 

EndMT during heart fibrosis has been more widely investigated because fibroblasts are derived from 

endothelial cells via EndMT (Anbara et al., 2020; Chua et al., 2011; Li et al., 2018). During fibrogenesis 

of different organs, TGF‐β signaling seems to play a general role in mediating EMT or EndMT. 

Cancer has been  the primary  focus of EMT research. At the time of writing, 36,700 out of all 

~46,000 EMT papers are studies dealing with cancer according to Pubmed. Among 4,246 EMT papers 

published in 2023, 3,325 are related with cancer. Since the initial studies about the link of EMT‐TFs 

with cancer cell metastasis, EMT program mediated by EMT‐TFs has been reported to endow nearly 

all malignant features to cancer cells, including stemness, fast cell cycle/proliferation, evasion of cell 

death  and  immunosuppression,  therapy  resistance,  etc.,  and  involve  in  nearly  all  aspects  of 

carcinogenesis. Molecular mechanisms underlying how EMT‐TFs regulates carcinogenesis or how 

EMT‐TFs are regulated by other factors at gene, transcriptional and translational levels in cancer have 

been extensively  reviewed  (Bakir et al., 2020; Brabletz et al., 2021; Celià‐Terrassa and  Jolly, 2020; 

Dongre and Weinberg, 2019; Haerinck et al., 2023; Lambert et al., 2017; Lambert and Weinberg, 2021; 

Lu and Kang, 2019; Mittal,  2018; Nieto  et al., 2016; Pastushenko and Blanpain, 2019; Polyak and 

Weinberg, 2009; Romano  et al., 2020; Saitoh, 2023; Sato  et  al.,  2016; Sciacovelli  and Frezza,  2017; 

Shibue and Weinberg, 2017; Tam and Weinberg, 2013). 

Based  on  EMT  functions,  EMT  is  classified  into  three  subtypes.  Type  I  is  associated with 

implantation,  embryonic gastrulation  and organogenesis during  embryonic development;  type  II 

plays roles in inflammation and fibrosis; and type III is involved in cancer (Kalluri and Weinberg, 

2009). 

5. The Controversies over EMT Research on Fibrosis and Cancer 

5.1. The Earliest Arguments against EMT 

Although EMT has become a formidable research discipline and a mainstream concept (Sheng et al., 2022), 

it has been under intense debate since its early stage of study. When EMT events were increasingly reported 

during  tissue  formation and organogenesis around  the 1970s  (Bluemink et al., 1976; Dyche, 1979; 

Kedinger  et  al.,  1981; Markwald  et  al.,  1977; Newgreen  et  al.,  1979),  studies  from  two  groups 

demonstrated the co‐existence of differentiated and undifferentiated cell types, including epithelial 

and mesenchymal cells, in mesodermal mixed uterus tumors (Böcker and Stegner, 1975; Ishikawa et 

al., 1979). Contrary to the view that mesenchymal cells are derived directly from epithelial cells, these 

studies considered that it was not possible for epithelial cells to acquire a mesenchymal shape or vice 

versa, and concluded that epithelial and mesenchymal cells share a common cancer stem cell origin 

(Böcker and Stegner, 1975; Ishikawa et al., 1979). This viewpoint was not considered by mainstream 

research, of course. Nevertheless, it might reflect the truth (see text below).   

5.2. The Controversies over EMT in Fibrosis 

With the progress of EMT research, the disputes over EMT have been also growing but primarily 

concentrated on the EMT effects in fibrosis of different organs. In a study in which double transgenic 

mice  Alb‐Cre  ×  ROSA26‐floxSTOPflox‐LacZ  were  bred  with  transgenic  mice  expressing  green 

fluorescent protein (GFP) driven by the collagen 1α1 promoter to generate triple transgenic mice in 
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which  β‐galactosidase  was  expressed  in  “hepatocyte‐derived”  cells  and  GFP was  expressed  in 

“collagen‐expressing” cells, transition of LacZ‐positive (hepatocyte‐derived) cells into GFP‐positive 

(collagen‐expressing) myofibroblasts in induced fibrotic liver was not detected (Taura et al., 2010). 

By  using  Alfp‐Cre  ×  Rosa26‐YFP  mice  in  which  the  epithelial  cells  of  the  liver  (hepatocytes, 

cholangiocytes, and their bipotential progenitors) are heritably labeled at high efficiency with yellow 

fluorescent protein (YFP), the study by Chu et al. (2011) showed that in induced liver fibrosis in Alfp‐

Cre × Rosa26‐YFP mice, EMT did not occur because no evidence of colocalization of YFP with the 

mesenchymal markers S100A4, vimentin, α‐SMA, or procollagen 1α2 was found (Chu et al., 2011). 

Moreover, there was also no evidence for cholangiocyte EMT during hepatic fibrosis (Chu et al., 2011; 

Scholten et al., 2010). These elaborate lineage‐tracing studies argue against EMT in liver fibrosis, and 

thus, it was suggested that the term EMT should be abandoned in cholangiocyte biology (Fabris et 

al., 2015; Kisseleva and Brenner, 2011; Munker et al., 2017; Popov and Schuppan, 2010; Taura et al., 

2016; Wells, 2010; Xie and Diehl, 2013). The role of EMT in kidney and lung fibrosis are controversial, 

too. Cell fate tracing studies and absence of cells with mesenchymal morphology do not support EMT 

as an in vivo process in kidney and lung fibrosis (Bartis et al., 2014; Bielesz et al., 2010; Humphreys 

et al., 2008; Humphreys et al., 2010; Koesters et al., 2010; Kriz et al., 2011; Loeffler and Wolf, 2015; 

Rock et al., 2011; Taura et al., 2016). Involvement of EndMT in fibroblast contribution during cardiac 

fibrosis  is  also  not  certain.  Evidence  of  lineage‐tracing  studies  showed  that  the  majority  of 

myofibroblasts after  injury was derived  from  resident  fibroblasts, but not  from EndMT  (Li et al., 

2018). The reasons  for  the  inconsistencies  in  the  involvement of EMT or EndMT  in organ  fibrosis 

might be the unreliability fibroblast‐specific protein‐1 (FSP1/S100A4) as a mesechymal‐specific marker 

to  identify  fibroblasts  and  cells  undergoing  EMT,  and  the  unreliability  of  the  detection  of  β‐

galactosidase colocalizing with FSP1 (Taura et al., 2016). Absence of solid evidence raised the serious 

concern why EMT has become so deeply ingrained into fibrosis research (Kriz et al., 2011). 

5.3. The Disputes over EMT in Cancer 

As EMT was  questioned  intensely  in  fibrosis  research,  studies  of EMT  in  cancer have  been 

flourishing, and the number of papers had kept growing dramatically each year (Yang et al., 2020). 

Nevertheless, some controversies over EMT in cancer also arose, including the two earliest arguments 

against EMT in mesodermal mixed uterus tumors (Böcker and Stegner, 1975; Ishikawa et al., 1979). 

In 2005, Tarin pointed out that EMT is a misconception due to some reasons (Tarin, 2005). Firstly, it 

is difficult to define EMT precisely and most descriptions refer to changes in tumor cell morphology. 

Moreover, identification of cells as epithelial or mesenchymal based on shape and morphology or a 

few epithelial and mesenchymal markers is just subjective and unreliable. The earliest EMT effect is 

believed to occur during mesodermal formation in gastrulating embryos. However, the invaginating 

mesodermal cells in amphibian gastrulae are not spindle‐shaped and do not lose cohesion with each 

other. Importantly, evidence of EMT in cancer metastasis is lacking (Tarin, 2005). Nevertheless, Tarin 

suggested that EMT in neural crest is of particular interests (Tarin, 2005). It was not surprising that 

EMT advocates did not agree with  these points  (Cardiff, 2005; Thompson et al., 2005). One major 

piece of evidence supporting EMT in cancer is the downregulation of epithelial marker E‐cadherin 

and  upregulation  of  mesenchymal  markers,  particularly  the  core  EMT‐TFs,  which  predict 

invasiveness  and  metastatic  potential  and  are  negatively  correlated  with  overall  survival. 

Paradoxically,  carcinoma  cells  within  primary  and  metastatic  lesions  with  well‐differentiated 

epithelial  morphology  were  also  reported.  Key  epithelial  markers,  particularly  E‐cadherin,  are 

expressed in invasive carcinomas (Christiansen and Rajasekaran, 2006), and E‐cadherin is required 

for  metastasis  in  multiple  models  of  breast  cancer  (Padmanaban  et  al.,  2019).  The  paradox  is 

reconciled by MET  in metastatic outgrowth, but  the mechanism underlying activation of MET  in 

metastatic cancer cells remains largely unknown (Bakir et al., 2020; Sun and Ma, 2024; Williams et al., 

2019). It is a rather incomprehensible situation that both EMT and its reversed process contribute to 

metastasis. Despite these disputes, EMT studies in cancer grow and proliferate quickly, showing EMT 

as the endower of nearly all malignant features to cancer cells, as mentioned above. However, two 

studies in 2015, one using lineage tracing with Fsp1 or Vimentin promoter driving Cre recombinase 
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(Fsp1‐Cre or Vim‐Cre) and the other using genetically engineered mouse models with deletion of 

Snail or Twist gene, demonstrated that EMT is not required for cancer metastasis but contributes to 

chemoresistance (Fischer et al., 2015; Zheng et al., 2015). Later, another two studies fought back by 

indicating  that  the markers used  in  the previous  two  studies are not universal markers  for EMT 

programs or are not reliable as EMT markers (Aiello et al., 2017; Ye et al., 2017). 

5.4. Compromising the Discrepancies in EMT Studies 

An  appealing  feature  of  EMT  to  cancer  researchers  is  that  EMT  can  convert  adhesive  and 

stationary state of epithelial cells into non‐adhesive and individually migratory state of mesenchymal 

cells.  Cell migration  is  fundamental  for  setting  up  and maintaining  the  correct  organization  of 

tissues/organs and body plan during animal development. In adults, cell migration is required for 

immune response, wound repair, and tissue homeostasis. Many cell types exhibit active migration, 

including collective migration of epithelial cells during gastrulation or lateral line primordium cells 

during development of  fish,  and  single‐cell migration of neural  stem/progenitor  cells during  the 

development  of  the  nervous  system  (Mayor  and  Etienne‐Manneville,  2016;  Trepat  et  al.,  2012). 

Therefore, single‐cell migration is not specific to mesenchymal cells, and epithelial cells are also not 

just stationary.  Interestingly, mesenchymal cells also migrate collectively  (Theveneau and Mayor, 

2013; Campbell and Casanova, 2016). This means that there is no clear‐cut distinction in the migratory 

feature of epithelial and mesenchymal cells. The complex issue in migratory feature of epithelial and 

mesenchymal cells is compromised that EMT should not be interpreted as a binary switch from one 

cellular state to the other but should be interpreted as graded processes with a range of intermediate 

effects  (Campbell  and  Casanova,  2016). Meanwhile,  tumor  cells  with  co‐expression  of  various 

epithelial  and  mesenchymal  markers  were  frequently  observed,  meaning  that  transition  from 

epithelial  to mesenchymal state  is a multi‐step, multi‐state, and dynamic process, ranging  from a 

completely  epithelial  to a  completely mesenchymal phenotype,  as  represented by  the  expression 

levels  of  epithelial  and mesenchymal markers.  Therefore,  new  terms  ‘EMT‐like’,  ‘partial  EMT’, 

‘intermediate EMT’,  ‘hybrid EMT’, or  ‘dynamic EMT’, etc., were  introduced  (Brabletz et al., 2021; 

Grigore et al., 2016; Jolly et al., 2015; Nieto, 2013; Nieto et al., 2016; Ye and Weinberg, 2015), and the 

EMT concept itself was recommended to be elastic to compromise the discrepancies and complexity 

of EMT effect  in cancer (Savagner, 2015; Williams et al., 2019; Yang et al., 2020; Ye and Weinberg, 

2015). Thus, ‘EMT plasticity (EMP)’ was suggested to replace EMT to reflect the high heterogeneity 

of EMT phenotypes  (Yang et al., 2020; Haerinck et al., 2023). With  these  improvements,  the EMT 

concept can now fit smoothly with any situation encountered in EMT research. 

5.5. Neural Stemness Representing the Core Property of Cancer Cells Suggests that EMT in Cancer 

Represented by EMT‐TFs is a Misinterpretation 

In 2017, co‐workers and  I  reported  that cancer cells are characteristic of neural stem cells or 

embryonic  neural  cells  (Zhang  et  al.,  2017). One  reason  is  that  inhibition  of  endogenous  cancer 

promoting  factors  in  cells  of  different  cancer  types  led  to  neuronal‐like  differentiation  in  vitro, 

suggestive  of  the  property  of  neural  stem/embryonic  neural  cells,  i.e.,  neural  stemness.  After 

comprehensive analysis on more  than 3,000  cancer  related genes, we  found  that most  (if not all) 

cancer promoting genes or genes upregulated/activated in different cancer cells are neural stemness 

genes, or are specifically expressed or at least enriched in embryonic neural cells. By contrast, a major 

part of cancer suppressor genes or genes downregulated/silenced in cancer cells are non‐neural genes 

in embryos. Therefore, cancer cells share the regulatory networks with neural stem/embryonic neural 

cells,  thereby acquiring neural  stemness  in  cancer  cells  (Zhang  et al., 2017).  In  this  study,  it was 

noticed  that  core EMT‐TF genes, which  are upregulated  in  cancer  cells  and promote  cancer,  are 

embryonic neural genes, whereas  the  typical epithelial gene E‐cadherin, a tumor suppressor gene 

(Birchmeier, 1995; Semb and Christofori, 1998), is expressed in epidermis only, excluding embryonic 

neural tissues (Zhang et al., 2017). These patterns of EMT gene expression match very well with the 

rules about cancer promoting or suppressor genes mentioned above, and suggest that the EMT effects 

observed  in cancer  should be a misinterpretation. The EMT‐TFs are a  few  components of neural 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 April 2024                   doi:10.20944/preprints202402.1729.v2

https://doi.org/10.20944/preprints202402.1729.v2


  8 

 

regulatory networks that confer cancer cells with neural stemness, rather than mesenchymal state. 

In‐depth analysis revealed that, unfortunately, the so‐called epithelial and mesenchymal states in the 

EMT  concept  have  remained  unclear  or  undefined  in  spite  of  large  scales  of  EMT  research.  In 

combination  with  other  studies  in  cancer  and  developmental  biology,  I  proposed  that  cancer 

initiation and progression represent a process of progressive loss of original cell identity and gain of 

neural stemness. Meanwhile, the plausibility of EMT concept itself, but not merely its roles in cancer, 

was  put  into  question  because what  are  the  general  epithelial  and mesenchymal  states  is  still 

unknown  (Cao,  2017).  In  2020,  after  two  years  of  discussion,  TEMTIA  published  a  consensus 

statement  about  the  guidelines  and  definitions  for  EMT  research  due  to  discrepancies  in  data 

interpretation and persistent disagreements about whether the process studied is EMT (Yang et al., 

2020). The consensus statement listed some critical problems about EMT and EMT research. Firstly, 

“while the characteristics of fully epithelial cells are relatively clearly defined, our current knowledge 

does not allow us to define the mesenchymal state with specific cellular characteristic or molecular 

markers that are universal end‐products of all EMT programmes”, indicating that the epithelial state 

is  relatively  known  but  the  mesenchymal  state  is  unknown.  Most  EMT  studies  have  been 

concentrated on a few EMT factors/markers. However, “EMT status cannot be assessed on the basis 

of one or a small number of molecular markers”. Therefore, “the primary criteria for defining EMT 

status should be changes in cellular properties together with a set of molecular markers, rather than 

relying solely on molecular markers” (Yang et al., 2020). 

Subsequent  studies  of  mine  revealed  that  neural  stemness  is  the  key  cellular  property 

determining  and  unifying  tumorigenicity  and  pluripotency,  which  govern  tumorigenesis  and 

embryogenesis, respectively. Such a superiority of neural stemness is predestined by the evolutionary 

advantage of neural genes and neural cell state (Cao, 2022; Cao, 2023; Chen et al., 2021; Lei et al., 2019; 

Xu et al., 2021; Zhang et al., 2022). Characterization of neural stemness and its regulatory networks 

revealed that they determine malignant features and tumorigenicity of cancer cells. It is hard to know 

what the undefined mesenchymal state shares in common with cancer cells (Cao, 2022; Cao, 2023). 

6. Reassessing the Rationale of EMT Concept 

Analysis above indicates many discrepancies and defects in EMT research, it also casts doubts 

on the plausibility of the EMT concept. 

6.1. The Epithelial and Mesenchymal States Have Not Been Clearly Defined 

According  to  the  consensus  statement  on  the  guidelines  and  definitions  for  research  on 

epithelial–mesenchymal  transition  by  TEMTIA,  “Epithelial–mesenchymal  transition  (EMT)  is  a 

cellular  process  during  which  epithelial  cells  acquire  mesenchymal  phenotypes  and  behavior 

following  the  downregulation  of  epithelial  features”  (Yang  et  al.,  2020).  This  means  that  the 

plausibility of EMT concept depends entirely on the understanding of the phenotypes and behaviors 

of  epithelial  and  mesenchymal  cells.  In  fact,  epithelial  and  mesenchymal  cells  are  highly 

heterogeneous populations of cells with diverse phenotypes and functions. In general, epithelial cells 

are tightly packed together in cell sheets, form covering on all internal and external surfaces of animal 

body, and make up lining of hollow organs. During early embryogenesis, pluripotent epiblast cells 

are considered as the earliest epithelial cells. Later, there are epithelial cells, including neuroepithelial 

cells, that give rise to neural crest cells and palatal epithelial cells, etc. Types of epithelial cells are 

more diverse in adults, since each organ is covered by epithelial cells specific to the type of organ, 

such as those  in skin,  lung, kidney, etc. This means  that epithelial cells of different  tissues/organs 

have  different  intrinsic  regulatory  networks  to  define  cell  properties  including  tissue  or  organ‐

specific functions. For example, epithelial cells of lung, which is derived from endoderm, must be 

different  in  function and cellular property and regulatory networks from  those of kidney or skin, 

which are derived from mesoderm and ectoderm, respectively. During embryogenesis, mesenchymal 

cells are derived from mesoderm and form multipotential embryonic connective tissue, and give rise 

to  all  adult  connective  tissues,  as well  as  the  lymphatic  and  circulatory  systems.  In  adulthood, 

mesenchymal  cells  are  commonly  described  as  non‐epithelial,  non‐hematopoietic  and  non‐
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endothelial  cells  that support and connect  tissues,  including muscle,  tendon, and  fat  tissues, and 

encompass diverse populations of fibroblasts, stromal cells, pericytes, perivascular smooth muscle 

cells and mesenchymal progenitors.   

Heterogeneity of the types of epithelial and mesenchymal cells raises the question whether there 

exist the general states or properties of all epithelial cells and mesenchymal cells based on which EMT 

can be  established  as  a  scientifically meaningful  concept  and  serves  as  a general  rule  to  explain 

developmental and pathological effects. Stable epithelial cell–cell junctions, apical–basal polarity and 

interactions with basement membrane  are  recognized  as  the  common  features of  epithelial  state 

(Yang et al., 2020). However, these are  just an  integral part of the property of a particular type of 

epithelial cells. For example, when epiblast cells turn into embryonic mesenchyme via EMT during 

gastrulation, not only do they lose their apical–basal polarity, change their cytoskeleton and show 

decreased cell–cell adhesion, but their regulatory networks defining epiblast pluripotency are also 

changed overall to the networks defining non‐pluripotent mesodermal cells. During carcinogenesis 

of  the  lung,  epithelial  cells  lose  not  only  cell  adhesion,  but  also  their  function  in  respiration. 

Correspondingly,  the  regulatory  networks  change  in  addition  to  the  decreased  expression  of 

epithelial markers, e.g., E‐cadherin. Moreover, epithelial cells show a wide range of differentiation 

potential,  from  pluripotent  epiblast  cells  to  terminally  differentiated  epithelial  cells  in  different 

organs. Therefore, focus on the loss of epithelial state only in the EMT concept is an oversimplification 

and biased interpretation of the change in cellular properties and regulatory networks of epithelial 

cells. The mesenchymal state is more confusing, because there has been no way to define this cellular 

state with specific cellular characteristic or molecular markers (Cao, 2017; Cao, 2023; Yang et al., 2020). 

Therefore, EMT means a transition from an almost unknown cellular state to an unknown cellular 

state. It is incomprehensible how an unknown cellular state can be used as standard reference for the 

properties of other cells or endow different cellular properties to cancer cells, and how EMT can be a 

scientifically meaningful concept. No matter whether EMT is interpreted as a binary switch from one 

cellular  state  to  the other or as graded processes with a  range of different outcomes,  ‘EMT‐like’, 

‘partial EMT’, ‘intermediate EMT’, ‘hybrid EMT’, and ‘dynamic EMT’, and ‘EMT plasticity’, express 

no essential difference  from EMT because  they all depend on  the understanding of mesenchymal 

state. Classification of  the  three subtypes of EMT  is superfluous when what  is EMT  is unknown. 

Similarly, MET and EndMT are also groundless concepts without knowing the mesenchymal state. 

It was claimed that a pressing issue for EMT is to resolve the controversy on the contribution played 

by EMT in metastasis (Sheng et al., 2022; Williams et al., 2019). A more pressing issue to resolve seems 

to be whether EMT is a plausible concept. 

6.2. EMT as a Secondary But Not Causal Effect during Cell State Transition 

EMT is considered as a driving force for developmental and pathological processes. However, 

it has not been confirmed whether the change from epithelial state to mesenchymal state observed in 

vivo is a cause, consequence or just an accompanying event of the change in overall cellular property 

during developmental or pathological processes. The EMT community considers that mesoderm and 

neural crest formation are typical events driven by EMT. Nevertheless, it is well characterized that 

mesoderm formation is induced by signals from hypoblast or endoderm (Akhurst, 2023; Kimelman, 

2006), and neural crest formation is induced by interation of neural plate with adjacent non‐neural 

cells (Buitrago‐Delgado et al., 2015; Gilbert and Barresi, 2016; Knecht and Bronner‐Fraser, 2002; Pla 

and Monsoro‐Burq, 2018; Selleck and Bronner‐Fraser, 1995). Therefore, the loss of epithelial state and 

gain  of mesenchymal  state  should  be  a  subsequent  but  not  causal  effect.  Similarly,  the  loss  of 

epithelial state and gain of mesenchymal state during carcinogenesis might be also a secondary effect 

caused by signaling cascades driven initially by different factors, e.g., cancer‐driving mutations in 

KRAS, TP53, etc. E‐cadherin is a key adhesion molecule and its loss is considered as the hallmark of 

EMT (Sun and Ma, 2024). It is funny that E‐cadherin loss does not cause an EMT effect (Chen et al., 

2014). E‐cadherin  knockout  causes defects  in  embryos  and  organs,  and promotes  tumorigenesis. 

However, no EMT effects were observed in the defects or tumorigenesis in response to E‐cadherin 

loss (Boussadia et al., 2002; Bruner and Derksen, 2018; Ghosh et al., 2002; Wakae‐Takada et al., 2013). 
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Latest  studies  demonstrated  that mesoderm  and  neural  crest  formation  are  not  driven  by  EMT 

(Bulger et al., 2024; Moore et al., 2024). 

6.3. Interpretation of EMT and the Functions of EMT‐TFs in the Context of Embryonic Development 

It  remains  an  essential  question  how  to  interpret  the  ‘EMT’  effects.  In  the  context  of 

developmental biology, embryonic development is a progressive process of differentiation from the 

totipotent unicellular state of a fertilized egg to the pluripotent state of inner cell mass and epiblast 

cells, which  further differentiate  into multipotent/oligopotent/unipotent progenitor/precursor cells 

of tissues/organs of different lineages. These cells finally differentiate into different types of mature 

and  functional  cells  of  tissues/organs.  In  the  context  of  EMT/MET,  however,  the  progressive 

differentiation of embryonic cells and the change in cellular properties and corresponding regulatory 

networks are described only as transitions between the undefined epithelial and mesenchymal states. 

This is not helpful but a confusion for understanding embryogenesis. The renowned example of EMT, 

in which epiblast cells turns into embryonic mesenchymal cells, is the differentiation of epiblast cells 

into mesodermal  cells  induced  by  signals  from  hypoblast  cells.  The  commonality  of mesoderm 

induction in different vertebrate embryos has been extensively investigated (Kimelman, 2006). But 

EMT  is  not  suggested  to  play  a  role  in mesoderm  induction. Neuroepithelial  cells  turning  into 

migratory neural crest cells is another typical EMT event. According to definition, mesenchymal cells 

are  cells  from mesodermal  lineage. However,  neural  crest  cells  are  precursors  of  the  peripheral 

nervous system, which belongs to the neural lineage, and the general epithelial marker E‐cadherin is 

not expressed  in neuroepithelium  (Stemmler et al., 2005; Zhang et al., 2017). Neuroepithelial and 

neural crest cells are of particular interest, which will be discussed  later. The  true meaning of the 

‘EMT’ effects observed during organogenesis and fibrosis based on marker expression or  lineage‐

tracing studies is unclear and needs re‐evaluation. 

Core EMT‐TFs have been extensively studied for their roles in EMT. Nevertheless, numerous 

other studies revealed their functions beyond EMT. Zeb2 is critical for exit from the epiblast state in 

mouse  ESCs  and  for  neural  and  general  differentiation  (Stryjewska  et  al.,  2017).  Mice  with 

homozygous mutation of Zeb2 display defects in neural tube closure, early arrest of neural crest cell 

migration, and absence of neural crest cells. Meanwhile, E‐cadherin expression domain extends to 

the neuroepithelium in mutant mice. By contrast, homozygous Zeb1‐deficient mice exhibit multiple 

skeletal defects but no distinctive phenotypic change in the central nervous system (Vandewalle et 

al., 2009). Zeb1 and Zeb2 exhibit opposite functions in Xenopus embryos. Overexpression of Zeb2 led 

to neutralization/dorsalization of embryos with  extra  formation of neuroectoderm and decreased 

epidermal ectoderm, and overexpression of Zeb1 induced ectopic formation of mesoderm without 

change in neuroectoderm (Postigo et al., 2003). Latest studies showed that ZEB1 is required for the 

mesodermal‐to‐myogenic  specification  but  ZEB2  promotes  neural  fate  specification  of  human 

embryonic  stem  cells. Moreover, ZEB1  functions  as  an  inhibitor  rather  than  an  inducer  of EMT 

(Ninfali  et  al.,  2023;  Sánchez‐Tilló  et  al.,  2023).  It  can  be  seen  that  ZEB2  is mainly  involved  in 

regulation of neural development, while ZEB1  is principally  in mesodermal tissue differentiation. 

The  functional  difference  corresponds  to  their  expression  patterns  during  embryogenesis.  zeb1 

expression is localized to the paraxial mesoderm, which gives rise to somites, the precursor of muscle 

and skeleton; whereas zeb2 is selectively expressed in the precursor tissues of the nervous system 

during embryogenesis, including neural plate and neural crest (van Grunsven et al., 2006) (Figure 1). 

Similar expression patterns of Zeb1 and Zeb2 are also present during mouse embryonic development 

(Vandewalle et al., 2009). TWIST1 and its orthologues are involved in regulation of gastrulation and 

body axis patterning of Drosophila embryos  (Simpson, 1983), pluripotency and differentiation of 

embryonic  stem  cells  (Fan  et  al.,  2020), mesoderm  differentiation,  differentiation  of  embryonic 

hematopoietic  stem/progenitor  cells  (Kulkeaw  et  al.,  2017),  and particularly,  cell  fate decision  of 

neural crest and development of neural crest derived structures (Bertol et al., 2022; Fan et al., 2021; 

OʹRourke  and  Tam,  2002;  Soldatov  et  al.,  2019).  Snai1  and  Snai2 were  intensely  studied  in  the 

specification and migration of neural crest in vertebrates (Aybar et al., 2003; LaBonne and Bronner‐

Fraser, 2000; Nieto et al., 1994; Tríbulo et al., 2004). Similar to ZEB2, SNAI1, SNAI2 and TWIST1 are 
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mainly involved in regulation of neural development. Correspondingly, expression of snai1, snai2 

and twist1 is localized or at least enriched in neural plate and neural crest at the neurodevelopmental 

stage (Zhang et al., 2017; Cao, 2023) (Figure 2). Therefore, the contrasting roles of ZEB1 and ZEB2, 

together with the functions of other EMT‐TFs, match exactly with their localized expression patterns 

that  reflect  their  endogenous  functions  in  different  tissue  differentiation  or  specification  during 

embryonic development but not EMT. These functional studies demonstrated that the EMT‐TFs are 

simply developmental factors. A key piece of evidence for these proteins functioning as EMT‐TFs is 

their repression of E‐cadherin transcription. Such a regulatory relationship is also reflected by that E‐

cadherin is specifically expressed in epidermis, excluding from the expression domains of EMT‐TF 

genes (Figures 1 and 2). 

 

Figure 1. Distinct expression patterns of zeb1 and zeb2 in neurula embryos of Xenopus. Whole mount 

in situ hybridization revealed specific expression of zeb1 in paraxial mesoderm (somites) excluding 

embryonic neural tissues, whereas zeb2  is  localized to neural plate and neural crest, the precursor 

tissues of  the central nervous system and peripheral nervous system, respectively. Dorsal view  is 

shown for each embryo with the anterior (A) to the right. A, anterior; nc, neural crest; np, neural plate; 

nt, neural tube; P, posterior; S, somites. Expression pattern data were from van Grunsven et al. (2006) 

(van Grunsven et al., 2006). 

 

Figure 2. Localized embryonic expression of ‘EMT’ factors/markers and the genes regulating or being 

regulated  by  ‘EMT’  in  cancer  reveals  that  they  are  components  of  the  regulatory  networks  of 

embryonic  neural  cells,  suggesting  the  key  role  of  neural  stemness  rather  than  the  unknown 
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mesenchymal  state  in  the  determination  of  different  features  of  cancer  cells.  Epidermal‐specific 

expression  of  the  typical  epithelial  gene  cdh1  (E‐cadherin)  and  the  neural  expression  of  ‘EMT’ 

factor/marker  genes  and  other  genes  suggest  strongly  their  regulatory  relationship, which  was 

demonstrated in many studies (see text). Expression patterns were detected with whole mount in situ 

hybridization. Expression pattern of Abcc4 in mouse embryo was from Jukkola et al. (2006) (Jukkola 

et al., 2006). Expression of pkm (pkm2) in zebrafish embryo was from Thisse et al. (2001) (Thisse et 

al., 2001). Expression of other genes were detected in Xenopus embryos. Expression patterns of cdh1, 

cdh2, vim,  snai1,  sox2,  cdk1, plk1, birc5, ezh2,  lsd1, akt1 and ptk2 were  from Zhang et al.  (2017) 

(Zhang et al., 2017); sox9 was from Lee and Saint‐Jeannet (2011) (Lee and Saint‐Jeannet, 2011); mcl1 

from Sena et al. (2020) (Sena et al., 2020); h2ax from Lee et al. (2010) (Lee et al., 2010); src from Lewis 

et al. (2017) (Lewis et al., 2017); and snai2 and twist1 were from Wang et al. (2015) (Wang et al., 2015). 

Dorsal view is shown for Xenopus embryos, with the anterior of embryos to the left. epi, epidermis; 

nc, neural crest; np, neural plate; nt, neural tube. 

EMT‐TFs are generally upregulated or activated in cancer cells and promote cancer progression. 

By  contrast,  E‐cadherin  is  generally  downregulated  in  cancer  cells  and  functions  as  a  cancer 

suppressor. This fashion of expression change in EMT genes is actually within a much broader range 

of gene  expression  change  in  cancer  cells. Detailed  investigations on  cancer genes  and  the basic 

property of cancer cells suggest that it is neural stemness, but not the unfathomable mesenchymal 

state,  that  is  the endower of not only malignant  features and  tumorigenicity but also pluripotent 

differentiation potential to cancer cells (Xu et al., 2021; Cao, 2022; Zhang et al., 2022). 

6.4. EMT and EMT‐TFs in Cancer: The Tail Wagging the Dog 

EMT,  which  is  symbolized  by  EMT  factors,  is  believed  to  be  a  driving  force  for  cancer 

progression. However, neural  specific or  enriched  expression of EMT‐TFs during  embryogenesis 

implies otherwise. It was generalized that most cancer promoting genes, including those for EMT‐

TFs, are neural stemness genes or genes with specific or at least enriched expression in embryonic 

neural cells, and the embryonic neural regulatory networks confer neural stemness to cancer cells 

(Zhang  et  al.,  2017). Neural  stemness  contributes  to  and  is  required  for  both  tumorigenic  and 

differentiation  potentials  of  tumorigenic  cells.  Embryonic  pluripotent  stem  cells  and  induced 

pluripotent stem cells have been well characterized for their tumorigenicity and pluripotency, and 

cancer cells are well known for their tumorigenicity. However, increasing data showed that neural 

stem cells are both pluripotent and tumorigenic, and cancer cells are characteristic of neural stemness 

and display pluripotent differentiation potential (Brinster, 1974; Clarke et al., 2000; Chen et al., 2021; 

Cooper  and  Pinkus,  1977; Gerschenson  et  al.,  1986; Gootwine  et  al.,  1982; Hendrix  et  al.,  2007; 

Illmensee and Mintz, 1976; Kulesa et al., 2006; Papaioannou et al., 1975; Podesta et al., 1984; Tropepe 

et al., 2001; Webb et al., 1984; Wells and Miotto, 1986; Xu et al., 2021; Zhang et al., 2017; Zhang et al., 

2022). Moreover, loss of pro‐differentiation genes leads to acquirement of tumorigenicity and neural 

stemness in differentiated or tissue stem cells (Li et al., 2020; Southall et al., 2014; Xu et al., 2021). A 

latest study using genetic mouse models demonstrated that metaplastic tuft cells turn into neural‐

like progenitor cells in the progression of pancreatic cancer (Salas‐Escabillas et al., 2024). Vice versa, 

loss of neural stemness in cancer cells and neural stem cells via differentiation  leads to the loss of 

both tumorigenicity and pluripotency (Zhang et al., 2017; Chen et al., 2021; Yang et al., 2021; Zhang 

et al., 2022). It may be argued why neural stemness but not the stemness of embryonic pluripotent 

cells plays the key role  in tumorigenicity and pluripotency. The uniqueness of neural stemness  is 

reflected by that 1) neural genes are the most conserved genes during evolution as compared with 

non‐neural genes  since  founders of most neural genes have  emerged during  the  transition  from 

unicellularity  to multicellularity;  2)  the  last  common unicellular  ancestor of metazoans  is  biased 

towards a neural state because of over‐representation of founders of neural genes in the genome of 

Monosiga  brevicollis,  the  closest  unicellular  relative  of metazoans;  3)  genes  for  basic  functional 

machineries  or  developmental  programs,  such  as  cell  cycle,  ribosome,  spliceosome,  epigenetic 

modifications, are mostly enriched in embryonic neural cells; 4) as compared with non‐neural genes, 

neural genes are characteristic of over‐representation of longer genes with more exons and introns, 
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which can generate more splicing variants and serve as more flexible scaffolds for gene regulation 

required  for  differentiation.  Contrary  to  the  unknown  mesenchymal  state  and  its  regulatory 

networks,  the property of neural stem cells  is well characterized, and  its  regulatory networks are 

composed of more than 5,000 genes that are specific to or enriched in embryonic neural cells (Xu et 

al., 2021; Cao,  2022). These  features  together define neural  stemness as a pluripotent and highly 

proliferative state upon which other cell  types are derived  (Cao, 2022; Chen et al., 2021; Xu et al., 

2021). This notion is reinforced by that pluripotency has a unicellular origin (Sogabe et al., 2019) and 

the default fate of embryonic pluripotent cells is neural stem cells, i.e., the “neural default model” of 

embryonic pluripotent cells (Grunz and Tacke, 1989; Muñoz‐Sanjuán and Brivanlou, 2002; Smukler 

et al., 2006; Tropepe et al., 2001; Ying et al., 2003). It is further supported that the pluripotency‐like 

signature is maintained in the ectoderm that gives rise to neural plate, and later becomes restricted 

to neural crest (Pajanoja et al., 2023). The critical importance of neural stemness in contribution to 

pluripotency and tumorigenicity was systematically reviewed (Cao, 2017; Cao, 2022; Cao, 2023).   

EMT contributing to cancer is mainly evidenced by the correlation between expression of EMT 

factors in cancer cells and cancer progression, regulation of different features of cancer cells by EMT 

factors, and regulation of EMT factors by others during cancer progression (Dongre and Weinberg, 

2019; Mittal, 2018; Nieto et al., 2016).  It  is believed  that EMT confers stemness  to cancer cells but 

without knowing the concrete mechanisms behind (Lambert and Weinberg, 2021; Mani et al., 2008). 

A few studies showed the clue that stemness factors SOX2, BMI1, OCT4, or SOX9 can be regulated 

by ZEB1, SNAI1, or SNAI2, thereby promoting not only stemness and metastasis of cancer cells, but 

also resistance to radio‐ and chemotherapy (Kurrey et al., 2009; Luanpitpong et al., 2017; Mitra et al., 

2018; Wellner et al., 2010). Interestingly, Sox2, Sox9, Bmi1 and Oct4 gene expression is localized to 

embryonic neural cells during vertebrate embryogenesis (Cao, 2022) (Figure 2). Genes promoting cell 

proliferation, such as CDK1 and PLK1, promote or are required for EMT in cancer cells (Iliaki et al., 

2021; Ren et al., 2022; Wu et al., 2016). Their expression is enriched in embryonic neural cells (Figure 

2). The pro‐survival protein BIRC5 and MCL1, whose genes are enriched in embryonic neural cells 

(Figure 2), were shown to regulate EMT in liver and gastric cancer cells (Lee et al., 2015; Xu R et al., 

2021). Cancer cells are characteristic of upregulated expression of epigenetic modification  factors, 

such as LSD1 and EZH2. They are not only involved in EMT, but also regulators of immune evasion, 

immunotherapy resistance and stemness of cancer cells (Burr et al., 2019; Gan et al., 2018; Lin et al., 

2010; Liu et al., 2021; Zhou et al., 2020). Genes of most epigenetic factors show enriched expression in 

embryonic neural cells  (Cao, 2022)  (Figure 2). One major mechanism underlying EMT associated 

chemoresistance  is  that  EMT  factors  are  able  to  induce  transcription  of  genes  encoding  ABC 

transporters, such as ABCC4 (Gan et al., 2018; Saxena et al., 2011), which is localized to the midbrain‐

hindbrain region of mouse embryo (Figure 2). PI3K/AKT pathway plays essential roles in regulating 

EMT‐TFs (Larue and Bellacosa, 2005) and cancer metabolism (Hoxhaj and Manning, 2020). PKM2 is 

involved in the regulation of aerobic glycolysis in cancer. Stimulation of EMT results in the nuclear 

translocation of PKM2 in colon cancer cells, which is pivotal in promoting EMT (Hamabe et al., 2014). 

Genes  of  Pkm2  and  Akt1  exhibit  enriched  expression  in  embryonic  neural  cells  (Figure  2). 

Chromosomal  instability  is a hallmark of cancer. EMT  is associated with chromosomal  instability 

(Roschke et al., 2008) and the EMT transcription factor TWIST1 induces chromosomal instability and 

the  expression  of  the DNA  damage marker H2AX  in  cancer  cells  (Khot  et  al.,  2020).  EMT was 

introduced to cancer research because it might explain cancer metastasis. Src/FAK signaling plays a 

central role in cancer cell migration via regulating EMT (Avizienyte and Frame, 2005). Accordingly, 

the  genes  for  H2AX,  Src  and  FAK  are  enriched  in  embryonic  neural  cells  (Figure  2).  All  the 

information indicates that neural stemness and its regulatory networks are responsible for different 

features of cancer cells. EMT factors are a few components of neural regulatory networks, it is rather 

rational that different components may regulate each other in cancer cells. EMT appearing almighty 

in the regulation of cancer cell features is merely a fiction by assigning mistakenly the roles of neural 

stemness to the mythical mesenchymal state. 
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6.5. EMT Effect in Neural Crest Formation: Also the Tail Wagging the Dog   

Looking back on the EMT effect during neural crest development reveals  the same. Locating 

between neural plate and epidermal ectoderm, neural crest is induced by interactions between neural 

plate and adjacent tissues. Neural crest cells are migratory, pluripotent and share regulatory network 

with cleavage stage embryos, differentiating into peripheral nervous system and many types of non‐

neural  tissues/cells, such as melanocytes, skeletal and connective  tissues, and medulla cells of  the 

adrenal gland, etc.  (Buitrago‐Delgado et al., 2015; Gilbert and Barresi, 2016; Knecht and Bronner‐

Fraser, 2002; Pla and Monsoro‐Burq, 2018; Selleck and Bronner‐Fraser, 1995). The neuroepithelial or 

neural  plate  cells  are  primitive  neural  stem  cells, which  are  pluripotent  and  tumorigenic. Once 

committed to neuronal differentiation, they delaminate and migrate away to form the central nervous 

system. The property of neural crest cells is ultimately derived from neural plate cells. The typical 

EMT  factors  or markers,  such  as  Snai1/2,  Twist,  Zeb2,  Sox9/10, N‐Cadherin, Vimentin,  etc.,  are 

specifically expressed or at least enriched in either neural plate or in neural crest (Cao, 2023) (Figure 

2). This means that migratory behavior of neural crest cells is their intrinsic property. It is really weird 

that the property of neural crest cells must be explained by the unknown mesenchymal state with the 

help of genes specific to or enriched in neural crest (Leathers and Rogers, 2022; Piacentino et al., 2020; 

Szabó and Mayor, 2018). 

7. The Confusing EMT‐MET Cycles in Developmental Process and Cancer Progression 

The mesenchyme  and  epithelium  are  considered  as  the  basic  cell  types  that  constitute  the 

metazoan  embryos  (Pérez‐Pomares  and  Muñoz‐Chápuli,  2002).  Therefore,  the  developmental 

process  and  cancer  progression  are  explained  by  the  EMT‐MET  cycle.  During  embryonic 

development, it is believed that MET operates as early as the 8‐cell mouse embryo to form epithelial 

trophectoderm.  In gastrula, EMT drives mesoderm  formation. Both EMT and MET are employed 

during development  of definitive  embryonic  endoderm, which  give  rise  to  the  gut  and  internal 

epithelia of pancreas,  liver, and associated glands  (Bakir, et al., 2020; Pei et al., 2019). This binary 

classification of mesenchyme and epithelium and transitions between them mess up the process of 

progressive differentiation during embryogenesis, which give rise to the large diversity of cell types 

with  specific  cellular  properties  and  physiological  functions.  The  EMT‐MET  cycle  describes  the 

normal developmental process, which  is generally a unidirectional process of differentiation, as a 

closed circle formed by adhesive and non‐adhesive status, as delineated recently (Thiery et al., 2024). 

It  is hard  to understand why  the change  in  cell adhesiveness and shape can drive  the change  in 

cellular properties including differentiation status and tissue‐specific functions throughout the whole 

developmental  process.  But  rather,  the  change  should  be  a  consequence  but  not  the  cause  of 

differentiation because differentiation needs inducing signals from other cells. 

EMT  symbolized  by  expression  of EMT  factors during  cancer  progression  has  been widely 

reported. Problems occur when E‐cadherin‐expressing cells are present at a metastatic site.  In  the 

context of EMT, why tumor cells sustain the expression of E‐cadherin at a metastatic site remains 

unclear  (Bakir  et al., 2020). MET  is  an  explanation of  choice. This  raises  the  same question  as  in 

development, in that cells in a tumor are classified as epithelial and mesenchymal, and intermediate 

states between fully epithelial and mesenchymal states. This EMT‐MET cycle does not consider the 

fact that cancer (tumorigenic) cells exhibit stemness and can differentiate. As mentioned above, the 

core property of cancer cells is neural stemness, which determines tumorigenicity and pluripotency. 

It was thus proposed that tumorigenesis represents the process of progressive  loss of original cell 

identity  and  acquirement  of  neural  stemness,  thereby  acquiring  tumorigenicity  and  pluripotent 

differentiation  potential  (Cao,  2017;  Cao,  2022;  Cao,  2023).  This  reminds  of  embryonic  neural 

induction, a process during which ectodermal cells during gastrulation lose their epidermis fate and 

gain the fate of neuroectoderm, thereby acquiring pluripotency and tumorigenicity. It further gives 

rise to the nervous system and other non‐neural cells that are essential for the establishment of body 

axis. Failure of neural induction leads to failure of body axis formation, and ectopic neural induction 

during gastrulation causes the formation of a secondary body axis, i.e., a conjoined twin. Tumorigenic 

cells,  including embryonic stem cells, neural stem cells, and cancer cells, exhibit pluripotency and 
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differentiate  into normal cells under  instruction of embryonic  inducing signals and  integrate  into 

embryonic development, contributing to formation of chimeric embryos; they cannot differentiate 

into normal adult tissue/organ cells and integrate into tissues/organs because of lacking of inducing 

signals and thus form tumors in the environment of a postnatal animal. The mutually exchangeable 

property  of  pluripotency  and  tumorigenicity  in  embryonic  and  postnatal  stages  of  animals  and 

human, and the commonality of neural induction during embryogenesis and the neural induction‐

like process during tumorigenesis suggest that tumors are severely degenerated conjoined twin‐like 

structures formed in postnatal animals and human (Cao, 2023). In fact, it has been well documented 

that different types of cells and expression of different tissue markers are detected in different tumors, 

including the epithelial and mesenchymal cells and their markers. The so‐called tumor phenotypic 

heterogeneity is at least partially the result of differentiation of cancer cells, either at the primary or 

metastatic site  (Cao, 2022; Cao, 2023, and references therein). From historic view,  it was a  type of 

cancer cells, the teratocarcinoma cells, that enlightened the study on pluripotency (Andrews, 2002; 

Solter, 2006). But the pluripotent property of cancer cells in contributing to phenotypic heterogeneity 

has  been  rarely  considered.  Two  studies  at  the  beginning  stage  of  EMT  research  proposed  that 

epithelial and mesenchymal cells within a tumor are not generated from EMT but from cancer stem 

cell differentiation (Böcker and Stegner, 1975; Ishikawa et al., 1979). Unfortunately, the insightful idea 

was not considered by mainstream studies and faded into oblivion over time. In summary, like that 

EMT‐MET cycle cannot be helpful for understanding embryogenesis, it cannot help to understand 

cancer progression. 

8. Conclusions and Perspectives 

After half a century of EMT research, it is unfortunate to find there is almost no basis on which 

the EMT concept can be established. First, epithelial and mesenchymal cells being classified as two 

cell types  is not appropriate. In general, cells within a type exhibit similar structure, function and 

regulatory networks that are distinct from cells in other types (Arendt, 2008; Zeng, 2022). However, 

epithelial and mesenchymal cells are defined according to their shapes and adhesiveness only, and 

both include many different cell types from embryonic stage to adulthood. It is difficult to generalize 

their cell state from the heterogeneity in epithelial and mesenchymal cells, and find suitable markers 

or the core regulatory networks to distinguish these cells from other cell types ambiguously. Second, 

cells are broadly labeled as epithelial and mesenchymal from embryos to adults, and EMT/MET are 

considered  as  a universal dogma dictiating development  and pathology. This  is  a  circular,  self‐

fulfilling argument. Third, no evidence confirms that EMT and MET could function as driving forces 

to promote embryogenesis and tumorigenesis. By contrast, the change in cell shape and adhesiveness 

should be the consequence rather than the cause of developmental process and cancer progression. 

Fourth, EMT is interpreted as a transition from stationary to migratory state. However, there is no 

clear‐cut distinction  in  the migratory  feature of epithelial and mesenchymal cells. Fifth, cells of a 

particular type exhibit features like shape, adhesiveness, mobility, and physiological functions. They 

are coupled together and defined by cell type‐specific regulatory networks. Therefore, interpretation 

of change in cell property or state solely by the change in shape and adhesiveness is a sheer bias. 

Sixth, EMT cannot be described in a molecular way because of lack of reliable and universal EMT 

markers or factors. The history of EMT research raises the concern whether the gene‐centric or cell‐

centric way is better for understanding developmental and cancer biology. The former has achieved 

great successes, but also failed in numerous cases. A cell state/property is determined by concerted 

co‐regulation of many genes, and  individual genes may not directly  reflect or determine  cellular 

phenotypes and functions. Therefore, a cell‐centric view might be a better choice for understanding 

life and pathological processes. Literally, EMT sounds like a cell‐centric concept. But in most cases, it 

uses a gene‐centric way to answer questions in development and pathology. 

The  core EMT‐TFs  reveal actually  the  critical  importance of neural  stemness  rather  than  the 

mesenchymal  state  in  determination  of  cell  properties.  The  privilege  of  neural  stemness  is 

predestined  by  the  evolutionary  advantage  of  neural  genes  and  neural  state.  In  contrast  to  the 

unknown mesenchymal state, the property of neural stem cells and regulatory networks of neural 
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stemness has been largely characterized. The EMT effect during neural crest formation and cancer 

progression is a wrong attribution of the role of neural stemness to mesenchymal state. It is time to 

re‐evaluate its significance as a scientifically meaningful concept. Moreover, the importance of neural 

stemness in determining pluripotency and tumorigenicity suggests that studies on developmental 

and cancer biology might benefit more from the research focus on neural stemness. 
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