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Article 

Steady Radial Diverging Flow of a Particle-Laden 

Fluid with Particle Migration 

C.Q. Ru 

Department of Mechanical Engineering, University of Alberta, Edmonton, Canada T6G 2G8; cru@ualberta.ca 

Abstract 

Steady plane radial diverging flow of a viscous or inviscid particle-fluid suspension is studied using 

a novel two-fluid model. For the initial flow field with uniform particle distribution, our results 

show that the relative velocity of particles with respect to the fluid depend on their inlet velocity 

ratio at the entrance, the mass density ratio and the Stokes number of particles, and the particles 

heavier (or lighter) than the fluid will move faster (or slower) than the fluid when their inlet 

velocities are equal (then Stokes drag vanishes at the entrance). The relative motion of particles with 

respect to the fluid leads to particle migration and non-uniform distribution of particles. An explicit 

expression is obtained for the steady particle distribution attained eventually due to particle 

migration. Our results demonstrated for both light particles (gas bubbles) and heavy particles 

confirm that, depending on the particle-to-fluid mass density ratio, the volume fraction of particles 

attains its maximum or minimum value near the entrance of the radial flow and after then 

monotonically decreases or increases with the radial coordinate and converges to an asymptotic 

value determined by the particle-to-fluid inlet velocity ratio. Explicit solutions given here could help 

quantify the steady particle distribution in decelerating radial flow of a particle-fluid suspension. 

Keywords: Jeffery-Hamel flow; radial flow; diverging flow; particle-laden fluid; bubbly flow 

 

1. Introduction 

Plane radial flow of an incompressible viscous fluid in a diverging channel with two non-parallel 

straight walls, called “Jeffery-Hamel (JH) flow” [1–5], remains an active research topic with 

significant practical application [6–12]. Remarkably, the exact solution of Navier-Stokes equations in 

this case admits the so-called “similarity solution” and the problem is reduced to a simpler 2nd-order 

nonlinear ordinary differential equation with constant coefficients. Recently, the research on JH 

channel flow has been extended to nanofluids with dispersed nanometer particles. However, to the 

best of our knowledge, almost all related works on JH channel flow of nanofluids (see e.g. [13–15]) 

have adopted the single-phase model [16–18] which assumes that the dispersed particles and the 

carrier fluid share the same velocity field and therefore cannot explain many important multiphase 

flow phenomena such as particle migration. In spite of active researches on various JH-like radial 

flows in a diverging/converging channel (see e.g. [19–21]), the steady spatial distribution of non-

neutrally buoyant particles in radial flow of a viscous or inviscid particle-laden suspension is rarely 

studied in the literature. 
In an attempt to study multiphase particulate radial flow in a diverging channel, it turns out that 

the governing equations of the multiphase model for particle-laden viscous fluids (with a larger 

number of equations than the Navier-Stokes equations for a clear fluid without dispersed particles) 

do not admit a similarity solution of JH type due to the required no-slip wall conditions. As a matter 

of fact, the similarity solution of JH type is not admitted even in the diverging pipe flow of a clear 

fluid without particles [22]. 

Therefore, the present work will focus on the JH-like plane radial flow of a particle-laden 

suspension when the no-slip wall conditions are not applied (see the two types of problems shown 
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in Figure 1 below), with specific interest in the steady particle distribution of a particle-laden 

suspension attained eventually as a result of particle migration. 

 

Figure 1. Plane decelerating radial flow of a particle-laden fluid with the r-dependent velocity field. 

The general equations of the two-fluid model for the present problem are given in section 2. In 

section 3, the initial particle velocity field of a particle-laden suspension with uniform particle 

distribution is studied with an emphasis on the velocity shift between the particles and the 

suspension. The steady particle distribution of plane radial flow due to particle migration is studied 

in section 4 with demonstrated results for various values of the Stokes number of particles heavier or 

lighter than the carrier fluid, and an asymptotic expression is given for the steady particle distribution 

for the vanishingly small particle Stokes number. Finally, the main results are summarized in section 

5. 

2. Equations of the Present Model 

Let us consider an incompressible (viscous or inviscid) fluid with initially uniform distribution 

of identical rigid spherical particles of radius rS, as an incompressible particle-fluid suspension. 

2.1. General Equations of the Model with Particle Migration 

With the present model, hydrodynamics of an incompressible suspension with dispersed solid 

spheres is governed by the modified form of Navier-Stokes equations (the gravity not involved) 

𝜌
𝑑𝒗𝑚

𝑑𝑡
= 𝜌 [

𝜕𝒗𝑚

𝜕𝑡
+ (𝒗𝑚 ∙ 𝛻)𝒗𝑚] = −∇𝑝 + ∇ ∙ (𝜇[𝛻𝒗 + (𝛻𝒗)𝑇]), (1) 

div𝒗 = 0, (2) 

𝜕

𝜕𝑡
𝜌 + div[𝜌𝒗𝑚] = 0. (3) 

where x and t are the spatial coordinates and time, p(x, t) is the pressure field of the suspension, v(x, 

t) is the velocity field of the suspension (defined as the velocity field of the geometrical center of the 

representative unit cell of suspension), vm(x, t) is the velocity field of the mass center of the 

representative unit cell defined by (A3) in Appendix, the effective density ρ (per unit volume) of the 

suspension is given by (A2) in Appendix, ρS and ρf are the densities of the particles and the carrier 

fluid, respectively. Here, δ is the volume fraction of particles, μ is the effective viscosity of the 

suspension which can be estimated by Einstein formula 𝜇 = 𝜇𝑓(1 + 2.5𝛿) with the viscosity μf of the 

carrier fluid in the dilute limit, and ∇ and 𝛻2 are the gradient and Laplacian operators. In general, 

if the particle volume fraction δ changes with the spatial position and time due to particle migration, 

the mass density ρ and the effective viscosity μ can depend on the spatial position and time. 

As explained in Appendix, the Newton’s second and third laws imply that the resultant external 

force acting on the representative unit cell, given by the terms on right-hand side of (1), equates to 

the mass of the unit cell multiplied by the acceleration dvm/dt of its mass center (rather than the 

acceleration field dv/dt of its geometrical center), which leads to the above modified form of Navier-

Stokes equations (1). Clearly, for a homogenous clear fluid (δ=0), vm(x, t)=v(x, t) and the equation (1) 

reduces to the classical form of Navier-Stokes equations. 
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For a suspension with non-neutrally buoyant particles (ρS≠ρf), we have vm(x, t)≠v(x, t). As 

explained in Appendix, with the gravity not involved, an additional relationship between vm(x, t) and 

v(x, t) is given as 

𝒗𝑚 + 𝑎
𝑑𝒗𝑚

𝑑𝑡
+ 𝐶𝐿

2𝜌𝑟𝑆
2

9𝜇
[𝒗𝑚 × (𝛻 × 𝒗)] = 𝒗 + 𝑏

𝑑𝒗

𝑑𝑡
+ 𝐶𝐿

2𝜌𝑟𝑆
2

9𝜇
[𝒗 × (𝛻 × 𝒗)], (4) 

𝑎 = (1 + 𝐶𝑎
𝜌

𝜌𝑆
)

2𝜌𝑆𝑟𝑆
2

9𝜇
, 𝑏 = 𝑎 (

𝜌𝑓

𝜌
+

(1+𝐶𝑎)(𝜌𝑆−𝜌𝑓)𝛿

(𝐶𝑎𝜌+𝜌𝑆)
). (5) 

Here, d/dt denotes the material derivative of the associated velocity field along its own 

streamlines, Ca and CL are the added mass and the lift force coefficients (Ca=CL=0.5 is often adopted 

in literature), respectively, the coefficients a and b are derived by considering the Stokes drag, the 

forces acting on particles due to added mass and fluid acceleration [23,24], and the lift force [25–28], 

although the lift force vanishes for the present problem of r-dependent radial flow with (𝛻 × 𝒗 = 𝟎). 

Here, it should be stated that the Stokes drag-based models of particle-laden inviscid fluids have been 

widely adopted for inviscid particulate flows [29–33]. For instance, the inviscid version of Stokes 

drag-based Saffman model [29] was used by Michael [30] to study Kelvin-Helmholtz instability of 

particle-laden inviscid flows. 

It is stated that the second terms inside the brackets in the expressions of a and b in (5) will be 

absent (then 𝑎 =
2𝜌𝑆𝑟𝑆

2

9𝜇
, 𝑏 = (

𝜌𝑓

𝜌
) 𝑎) if only the Stokes drag is considered, and a=b and vm(x,t)=v(x,t) 

when either δ=0 or ρS=ρf (“neutrally buoyant particles”) and then the present model reduces to the 

single-phase models [16–18] (see (A1) in Appendix). 

2.2. Equations for Steady Plane Radial Flow 

It can be verified that, unlike a clear viscous fluid (without dispersed particles) which admits the 

similarity solution of JH-type for radial flow in a diverging channel, the particle-laden viscous 

suspensions do not admit such a similarity solution for radial flow in a diverging channel. Therefore, 

in the present paper we shall focus on the following two problems of steady plane radial flow of an 

incompressible viscous or inviscid particle-laden fluid shown in Figure 1 whose flow fields depend 

solely on the radial coordinate r: 

(a) axisymmetric plane viscous radial flow from a point source; 

(b) inviscid radial flow in a diverging channel. 

To our knowledge, radial flow of a particle-laden (viscous or inviscid) suspension shown in 

Figure 1 has been rarely studied in literature, although radial flow of a clear fluid (without dispersed 

particles) from a point source has been the topic of several known works [34–37]. Clearly, the case (a) 

is an r-dependent axisymmetric flow, and the inviscid radial flow in a diverging channel shown in 

the case (b) depends solely on the radial coordinate r because the inviscid flow is free to slip on the 

straight walls. 

The steady r-dependent radial flow field (u(r), um(r), p(r), δ(r)) in the cylindrical coordinate (r, θ, 

z) system are given by 

𝒗 = (𝑢(𝑟),0, 0), 𝒗𝒎 = (𝑢𝑚(𝑟), 0, 0), 𝑝(𝑟), 𝛿(𝑟). (6) 

Note that 

∇𝒗+(∇𝒗)T = 2 [

𝑢,𝑟 0 0

0
𝑢

𝑟
0

0 0 0

] , ∇ ∙ (𝜇(𝑟)[𝛻𝒗 + (𝛻𝒗)𝑇]) = 2 [
𝜇(𝑟)

𝜕

𝜕𝑟
(

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢)) + 𝑢,𝑟

𝜕𝜇

𝜕𝑟

0
0

]. (7) 

where the subscript “, “ denotes the partial derivative with respect to r. Thus, when the particle 

migration is involved, it is verified that equations (1-4) give the following 4 nonlinear equations for 

(u, um, p, δ) as the functions of the single variable r 

𝑢𝑚
𝜕𝑢𝑚

𝜕𝑟
= −

1

𝜌(𝑟)

𝜕𝑝

𝜕𝑟
+

2

𝜌(𝑟)
𝑢,𝑟

𝜕𝜇

𝜕𝑟
, (8) 
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𝜕

𝜕𝑟
(𝑟𝑢) = 0, (9) 

𝑢𝑚
𝜕𝜌

𝜕𝑟
+ 𝜌(𝑟)

1

𝑟
(𝑟𝑢𝑚),𝑟 = 0. (10) 

𝑢𝑚 + 𝑎 (𝑢𝑚
𝜕𝑢𝑚

𝜕𝑟
) = 𝑢 + 𝑏 (𝑢

𝜕𝑢

𝜕𝑟
), (11) 

Let us assume that the particles and fluid have two independent inlet velocities (u0S, u0f) with the 

constant inlet particle fraction δ0 at the entrance r=r0 shown in Figure 1, thus the inlet values of (um, 

u) are given by 

𝑢|𝑟=𝑟0 = 𝑢0 = 𝛿0𝑢0𝑆 + (1 − 𝛿0)𝑢0𝑓 , 𝑢𝑚|𝑟=𝑟0 = (𝑢𝑚)0 =
𝜌𝑆𝛿0𝑢0𝑆+𝜌𝑓(1−𝛿0)𝑢0𝑓

(𝜌𝑆−𝜌𝑓)𝛿0+𝜌𝑓
. (12) 

For the conciseness of mathematical analysis, let us confine ourselves to case when the inlet 

velocity of fluid is not zero (u0f>0). The results derived could offer a qualitative understanding of the 

limiting case (u0f=0) by considering sufficiently small inlet velocity of the fluid. 

It follows from (9) that 𝑢(𝑟) =
𝑓

𝑟
, where f is a constant. In the present work, with 𝑢(𝑟) =

𝑓

𝑟
, we 

shall focus on equations (10, 11) for the steady velocity field um(r) and the particle distribution δ(r), 

and the pressure p(r) can be determined from (8) once um(r) and δ(r) are known. 

3. Initial Velocity Field with the Uniform Particle Distribution 

In this section, to illustrate why the particulate radial flow with initially uniform particle 

distribution leads to particle migration, let us first study the initial particle velocity field of a particle-

laden viscous suspension with uniformly distributed particles under the assumption that the particle 

migration is slow enough so that the initial flow field is nearly steady with the constant particle 

volume fraction and equation (10) associated with particle migration can be ignored. 

Thus, the parameters (δ=δ0, ρ, μ) are all constants in this section, and the unknown radial velocity 

um(r) is determined by (11) which gives 

𝑢𝑚 + 𝑎 (𝑢𝑚
𝜕𝑢𝑚

𝜕𝑟
) =

𝑓

𝑟
− 𝑏

1

𝑟3 𝑓2, 𝑢(𝑟) =
𝑓

𝑟
. (13) 

For a clear fluid (δ0=0) without dispersed particles, it follows from the definition (A3) that vm(x, 

t)=v(x, t), and we have a=b and 

𝛿0 = 0:  𝑢𝑚(𝑟) = 𝑢(𝑟) = 𝑢0(𝑟) =
𝑓0

𝑟
, 𝑓0 = 𝑟0𝑢0𝑓 > 0. (14) 

For the particle-laden fluid (δ0>0), let us write the particle-disturbed flow field um(r) as 

𝛿0 > 0: 𝑢𝑚(𝑟) = 𝑢(𝑟) + ∆(𝑟), 𝑓 = 𝑓0 + 𝑟0𝛿0(𝑢0𝑆 − 𝑢0𝑓). (15) 

Here, let us focus on the dilute limit of particle-laden fluids when the volume fraction of particles 

is much smaller than the unity. With the Einstein formula 𝜇 = 𝜇𝑓(1 + 𝛼𝛿), up to the first powers of 

δ, the δ–dependent coefficients (μ, ρ, a, b) are expanded as 

𝜌 = 𝜌𝑓 [1 +
(𝜌𝑆 − 𝜌𝑓)

𝜌𝑓
𝛿] ,

𝜇

𝜇𝑓
= 1 + 𝛼𝛿, 

𝑎 = 𝑎0 (1 − [𝛼 −
𝐶𝑎(𝜌𝑆 − 𝜌𝑓)

𝐶𝑎𝜌𝑓 + 𝜌𝑆
] 𝛿) ,  𝑎0 = (1 + 𝐶𝑎

𝜌𝑓

𝜌𝑆
)
2𝜌𝑆𝑟𝑆

2

9𝜇𝑓
, 

𝑏 = 𝑎0 [1 − ([𝛼 −
𝐶𝑎(𝜌𝑆−𝜌𝑓)

𝐶𝑎𝜌𝑓+𝜌𝑆
] +

(𝜌𝑆−𝜌𝑓)
2

𝜌𝑓(𝐶𝑎𝜌𝑓+𝜌𝑆)
) 𝛿]. (16) 
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where (
2𝜌𝑆𝑟𝑆

2

9𝜇𝑓
) is the dimensional relaxation time of suspended particles, and 𝑎0 = 𝐶𝑎

2𝜌𝑓𝑟𝑆
2

9𝜇𝑓
 is the 

modified relaxation time for massless gas bubbles due to the added mass. The coefficient α depends 

on the nature of dispersed particles. Typically, α=2.5 is commonly adopted for rigid spheres, and α=1 

is suggested for spherical gas bubbles in a liquid [38,39]. 

For the dilute particle-fluid suspensions with the small number δ<<1, the disturbed velocity field 

Δ(r)=um(r)-u(r) scales with the number δ, and therefore Δ(r) is of the order δ. Substituting (14, 15) into 

(12) and ignoring all nonlinear terms of Δ(r) and δ, the linear equation for Δ(r) gives 

𝜕∆

𝜕𝑟
+ (

𝑟2−𝑎0𝑓0

𝑎0𝑓0𝑟
) ∆=

𝛿0

𝑟2
[

𝑓0(𝜌𝑆−𝜌𝑓)
2

𝜌𝑓(𝐶𝑎𝜌𝑓+𝜌𝑆)
], (17) 

with the boundary condition at the entrance 

∆|𝑟=𝑟0 = (𝑢𝑚)0 − 𝑢0 =
(𝜌𝑆−𝜌𝑓)𝛿0(1−𝛿0)(𝑢0𝑆−𝑢0𝑓)

(𝜌𝑆−𝜌𝑓)𝛿0+𝜌𝑓
. (18) 

The homogeneous solution of (17) is of the form (𝑟𝑒
(

−𝑟2

2𝑎0𝑓0
)
). Here, in the case f0≠0, using the 

method of variation of constant for (17), explicit solution of Δ(r) for (17) is given by 

∆(𝑟) =

[
 
 
 
 (𝜌𝑆−𝜌𝑓)𝛿0(1−𝛿0)(𝑢0𝑆−𝑢0𝑓)

[(𝜌𝑆−𝜌𝑓)𝛿0+𝜌𝑓]𝑟0
𝑒

(
𝑟0
2

2𝑎0𝑓0
)

+𝛿0 [
𝑓0(𝜌𝑆−𝜌𝑓)

2

𝜌𝑓(𝐶𝑎𝜌𝑓+𝜌𝑆)
] ∫

𝑒
(

𝑡2

2𝑎0𝑓0
)

𝑡3 𝑑𝑡
𝑟

𝑟0 ]
 
 
 
 

𝑟𝑒
(

−𝑟2

2𝑎0𝑓0
)
. (19) 

We are particularly interested in the relative velocity of the particles with respect to the fluid. 

Based on the general relation (A4), we have 

(𝑢𝑆 − 𝑢) =
𝜌(𝑢𝑚−𝑢)

𝛿(𝜌𝑆−𝜌𝑓)
, (𝑢𝑆 − 𝑢𝑓) =

𝜌(𝑢𝑚−𝑢)

𝛿(1−𝛿)(𝜌𝑆−𝜌𝑓)
. (20) 

Thus, up to the lowest order of δ, the velocity difference between the particles and the fluid 

normalized by the volume-averaged velocity of the suspension is given by 

(𝑢𝑆−𝑢𝑓)

𝑢
=

[
 
 
 
 𝜌(𝑢0𝑆−𝑢0𝑓)𝑟0

[(𝜌𝑆−𝜌𝑓)𝛿0+𝜌𝑓]𝑓
𝑒

(
𝑟0
2

2𝑎0𝑓0
)

+[
𝜌(𝜌𝑆−𝜌𝑓)𝑓0

𝜌𝑓(𝐶𝑎𝜌𝑓+𝜌𝑆)𝑓
] ∫

𝑒
(

𝑟0
2

2𝑎0𝑓0
𝑡2)

𝑡3 𝑑𝑡
𝑟∗

1 ]
 
 
 
 

𝑟∗2𝑒
(

−𝑟0
2

2𝑎0𝑓0
)𝑟∗2

, 𝑟∗ =
𝑟

𝑟0
≥ 1. (21) 

It is seen from (21) that the velocity shift between particles and the fluid vanishes for the 

neutrally buoyant particles (ρS=ρf), this is consistent with the fact that the lift force [25–28] responsible 

for migration of the neutrally buoyant particles vanishes for the r-dependent radial flow with 

(𝛻 × 𝒗 = 𝟎). 

3.1. Lighter Particles with Higher Inlet Velocity (u0S>u0f) 

Let us first discuss the case when the radial flow is driven by the high-speed injection of lighter 

particle with (u0S>u0f). This problem is of major interest in the literature on bubble-driven gas-liquid 

two-phase flow [40–46]. It should be stated that the physical concepts and mathematical equations 

formulated in two-fluid models for dispersed solid spherical particles can be largely applied to fluids 

with dispersed small spherical gas bubbles when the effects of deformation and non-uniform size 

distribution of gas bubbles can be ignored [47–50]. 

For massless bubbles with (ρS<<ρf) and Ca=0.5 [47–50], it follows from (21) that 

(𝑢𝑆−𝑢𝑓)

𝑢
= [

(𝑢0𝑆−𝑢0𝑓)

𝑢0𝑓
𝑒

(
𝑟0
2

2𝑎0𝑓0
)
− 2∫

𝑒
(

𝑟0
2

2𝑎0𝑓0
𝑡2)

𝑡3 𝑑𝑡
𝑟∗

1
] 𝑟∗2𝑒

(
−𝑟0

2

2𝑎0𝑓0
)𝑟∗2

, 𝑟∗ =
𝑟

𝑟0
≥ 1. (22) 
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Here, let us consider two cases when the inlet velocity of bubbles is moderately or much higher 

than the inlet velocity of the fluid at the entrance of the flow, with u0S=2u0f and u0S=10u0f, respectively. 

The normalized velocity difference ((uS-uf)/u) between the massless bubbles and the fluid given by 

(22) are shown in Figures 2 and 3 for several typical values of the ratio (
𝑟0
2

2𝑎0𝑓0
) which is considered 

to be inversely proportional to the (modified) Stokes number of bubbles with 𝑎0 = 𝐶𝑎
2𝜌𝑓𝑟𝑆

2

9𝜇𝑓
 , where 

uS , uf and u are the velocities of the bubbles, the fluid and the suspension, respectively. 

It is seen from Figures 2 and 3 that although the bubbles move faster than the fluid within a finite 

distance from the entrance (r*=r/r0=1), the velocity of bubbles becomes lower than the velocity of fluid 

beyond that distance. This distance is determined by the bubble-to-fluid inlet velocity ratio and the 

Stokes number of bubbles. For example, it is seen from Figure 2 for u0S=2u0f that the velocity of bubbles 

of a moderate Stokes number presented by (
𝑟0
2

2𝑎0𝑓0
)=1 becomes lower than the velocity of fluid beyond 

a distance slightly above (r*=2), while the velocity of bubbles of a larger Stokes number presented by 

(
𝑟0
2

2𝑎0𝑓0
)=0.01 remains faster than the fluid within the distance above (r*=6). 

For the higher bubble-to-fluid inlet velocity ratio u0S=10u0f, it is seen from Figure 3 that the 

velocity of bubbles of a moderate Stokes number presented by (
𝑟0
2

2𝑎0𝑓0
)=1 remains faster than the fluid 

within the distance above (r*=3), while the velocity of bubbles of a larger Stokes number presented 

by (
𝑟0
2

2𝑎0𝑓0
)=0.01 remains faster than the fluid within the large distance abound (r*=33). In particular, 

it is seen from Figure 3 that the normalized velocity difference given by (22) in the case (
𝑟0
2

2𝑎0𝑓0
)=0.01 

can be very high (beyond 100, too high to be shown entirely in Figure 3) because the suspension 

velocity diminishes quickly while the bubbles of large Stokes number respond to the decelerating 

flow field much slower than the suspension. 

 

Figure 2. The velocity difference ((uS-uf)/u) between the massless bubbles and the fluid given by (22) with the 

inlet velocity ratio u0S=2u0f, where uS , uf and u are the velocities of the bubbles, the fluid and the suspension, 

respectively, for three larger values of the bubble Stokes number presented by (
𝑟0

2

2𝑎0𝑓0
)=1 (solid black), 0.1 (dotted 

blue), and 0.01 (dashed orange), respectively. 
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Figure 3. The velocity difference ((uS-uf)/u) between the massless bubbles and the fluid given by (22) with the 

inlet velocity ratio u0S=10u0f, for three larger values of the bubble Stokes number presented by (
𝑟0

2

2𝑎0𝑓0
)=1 (solid 

black), 0.1 (dotted blue), and 0.01 (dashed orange), respectively. 

Since most experiments and numerical simulations on high speed bubble-driven decelerating 

gas-liquid flow are limited to a diverging channel or pipe of limited finite length [41–43] and the 

liquid is nearly stationary, our results shown in Figures 2 and 3 could suggest that the bubbles of 

even a moderate Stokes number will move faster than the fluid within a sufficiently long distance 

when the bubble-to-fluid inlet velocity ratio is very high, consistent with some known experimental 

observations and numerical simulations. 

In addition, it is worthy mention that when the inlet velocities (and therefore the coefficient f) 

change their signs simultaneously, the normalized velocity difference given by the right-hand side of 

(21) remains unchanged. This could suggest that the results derived here for a diverging channel may 

be qualitatively valid for a converging channel. Consistent with this, it is noted that the bubbles 

accelerate faster than the fluid in the accelerating bubbly flow in a converging channel of finite length, 

as reported by Auton et al. [40] and reviewed by Magnaudet & Eames [47]. 

3.2. Particles and Fluid Have the Same Inlet Velocity 

When the particles and the fluid get into the decelerating flow field (du/dr<0) in a diverging 

radial flow with the same inlet velocity (u0S=u0f) at the entrance, because the Stokes drag vanishes 

there, the heavier (lighter) particles of larger (less) inertia will respond to the decelerating flow field 

slower (faster) than the fluid. Therefore, the particles heavier (lighter) than the fluid will move faster 

(slower) than the fluid at least within a certain distance from the entrance. In particular, for the 

massless bubbles with Ca=0.5, it is readily seen from (A7) of Appendix that the deceleration of the 

bubbles is 3 times the deceleration of the fluid at the entrance when the bubbles and the fluid have 

the same inlet velocity and the Stokes drag vanishes at the entrance, which implies that the velocity 

of bubbles is slower than the velocity of fluid at least within a certain distance from the entrance. 

Beyond the entrance, the motion of bubbles is determined by the three terms on the right-hand 

side of (A7) of Appendix, although the motion of heavy particles (ρS>>ρf) is dominated by the Stokes 

drag and the other two terms on the right-hand side of (A7) can be ignored. Actually, with the 

condition (u0S=u0f), it follows from (19) that 
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𝑢𝑖𝑛𝑓 = 𝑢𝑖𝑛𝑆: ∆(𝑟) = 𝛿0 [
𝑓0(𝜌𝑆−𝜌𝑓)

2

𝜌𝑓(𝐶𝑎𝜌𝑓+𝜌𝑆)
] [∫

𝑒
(

𝑡2

2𝑎0𝑓0
)

𝑡3 𝑑𝑡
𝑟

𝑟0
] 𝑟𝑒

(
−𝑟2

2𝑎0𝑓0
)
. (23) 

It follows from (21) that 

(𝑢𝑆−𝑢𝑓)

𝑢
=

𝜌(𝜌𝑆−𝜌𝑓)

𝜌𝑓(1−𝛿0)(𝐶𝑎𝜌𝑓+𝜌𝑆)
𝛺(𝑟∗), 𝛺(𝑟∗) ≡ 𝑟∗2𝑒

(
−𝑟0

2

2𝑎0𝑓0
)𝑟∗2

[∫
𝑒

(
𝑟0
2

2𝑎0𝑓0
)𝑡2

𝑡3 𝑑𝑡
𝑟∗

1
] , 𝑟∗ =

𝑟

𝑟0
≥ 1. (24) 

With the dimension r0 of the present problem and the inlet velocity 
𝑓0

𝑟0
 at the entrance (r=r0), the 

ratio (
𝑟0
2

2𝑎0𝑓0
) is inversely proportional to the Stokes number of particles. 

The dimensionless function Ω(r*) defined in (24), which determines the velocity difference 

between the particles and the fluid, is plotted in Figure 4 for three different values of (
𝑟0
2

2𝑎0𝑓0
)=1, 3 and 

10, respectively. It is seen from Figure 4 and (24) that the particles heavier (or lighter) than the fluid 

will move faster (or slower) than the fluid velocity. In addition, because the ratio (
𝑟0
2

2𝑎0𝑓0
) is inversely 

proportional to the Stokes number of particles, it is seen from (24) that the velocity difference between 

the particles and the fluid decreases with increasing value of (
𝑟0
2

2𝑎0𝑓0
) (or decreasing Stokes number 

of particles), which suggests that the particle migration can be slow for nanofluids of nanometer 

particles although the long-term particle migration of nanofluids can be relevant and cannot be 

ignored for a sufficiently long period of time. 

 

Figure 4. The function Ω(r*) defined by (24) for the velocity difference ((uS-uf)/u), for the three values of (
𝑟0

2

2𝑎0𝑓0
)=1 

(dotted blue), 3 (dashed orange), and 10 (solid black), respectively. 

It should be stated that all results derived in section 3 are based on the assumed steady initial 

flow field with constant parameters (δ, ρ, μ), which only serve to explain the particle migration at the 

initial stage of the radial flow but cannot offer any detailed data on the steady flow attained 

eventually as a result of particle migration beyond the initial stage of flow. 
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4. Steady Particle Distribution of Plane Radial Diverging Flow 

Since the radial flow of a particulate fluid with initially uniform distribution of particles cannot 

remain the uniform particle distribution due to particle migration, it is of major interest to study the 

steady particle distribution attained eventually as a result of long-term particle migration. 

Here, to determine the steady volume fraction δ(r) of particles, substituting (15, 16) into (10, 11) 

and ignoring all nonlinear terms of Δ(r) and δ(r), the linear equations for Δ(r) and 𝛿(𝑟) give 

(𝜌𝑆 − 𝜌𝑓)
𝑓0

𝑟

𝑑𝛿

𝑑𝑟
+

𝜌𝑓

𝑟
(𝑟𝛥),𝑟 = 0, (25) 

𝑑Δ

𝑑𝑟
+ (

𝑟2−𝑎0𝑓0

𝑎0𝑓0𝑟
)Δ = [

𝑓0(𝜌𝑆−𝜌𝑓)
2

𝜌𝑓(𝐶𝑎𝜌𝑓+𝜌𝑆)
𝛿(𝑟)]

1

𝑟2
, (26) 

with the boundary conditions 

∆|𝑟=𝑟0 =
(𝜌𝑆−𝜌𝑓)𝛿0(1−𝛿0)(𝑢0𝑆−𝑢0𝑓)

(𝜌𝑆−𝜌𝑓)𝛿0+𝜌𝑓
, 𝛿|

𝑟=𝑟0

= 𝛿0. (27) 

It follows from (25) and the conditions (27) that 

[
(𝜌𝑆−𝜌𝑓)𝛿0(1−𝛿0)(𝑢0𝑆−𝑢0𝑓)

(𝜌𝑆−𝜌𝑓)𝛿0+𝜌𝑓
𝑟0 − 𝑟𝛥(𝑟)] = (𝜌𝑆 − 𝜌𝑓)

𝑓0

𝜌𝑓
(𝛿(𝑟) − 𝛿𝑖𝑛). (28) 

Using (28) to eliminate Δ(r) in (26), the following first-order linear equation for δ(r) can be 

verified 

𝑑𝛿

𝑑𝑟
+ [

𝑟

𝑎0𝑓0
−

(𝜌𝑆+(2𝐶𝑎+1)𝜌𝑓)

(𝐶𝑎𝜌𝑓+𝜌𝑆)𝑟
] 𝛿(𝑟) = 𝐵

𝛿0𝑟

𝑎0𝑓0
(1 − 2

𝑎0𝑓0

𝑟2 ), (29) 

With the constant B is given by 

𝐵 = [1 +
(1−𝛿0)(𝑢0𝑆−𝑢0𝑓)𝜌𝑓

[(𝜌𝑆−𝜌𝑓)𝛿0+𝜌𝑓]𝑢0𝑓
]. (30) 

The homogeneous solution of (29) is of the form 

𝛿(𝑟) ∝ 𝑟
[
𝜌𝑆+(2𝐶𝑎+1)𝜌𝑓

(𝐶𝑎𝜌𝑓+𝜌𝑆)
]

𝑒
−𝑟2

2𝑎0𝑓0 . (31) 

On using the variation of constant, explicit solution of the non-homogeneous equation (29) with 

the boundary condition (27) gives 

𝛿(𝑟∗)

𝛿0
= [𝑒

𝑟0
2

2𝑎0𝑓0 + 𝐵
𝑟0

2

𝑎0𝑓0
∫ (1 − 2

𝑎0𝑓0

𝑡2𝑟0
2)

𝑟∗

1

𝑡
[1−(

𝜌𝑆+(2𝐶𝑎+1)𝜌𝑓

(𝐶𝑎𝜌𝑓+𝜌𝑆)
)]

𝑒
(

𝑟0
2𝑡2

2𝑎0𝑓0
)
𝑑𝑡] 

× 𝑟∗
[
𝜌𝑆+(2𝐶𝑎+1)𝜌𝑓

(𝐶𝑎𝜌𝑓+𝜌𝑆)
]

𝑒
(

−𝑟0
2

2𝑎0𝑓0
)𝑟∗2

, 𝑟∗ ≡
𝑟

𝑟0
≥ 1. (32) 

As expected, it can be verified from (32) that δ(r*)/δ0 ≡1 for the neutrally buoyant particles (ρS=ρf). 

4.1. Light Particles with Higher Inlet Velocity 

Let us first discuss the two cases discussed in section 3.1 when the inlet velocity of bubbles are 

higher than the inlet velocity of the fluid. In these case with Ca=0.5 for bubbles, up to the lowest order 

of δ, we have 

𝛿(𝑟∗)

𝛿0
= [𝑒

𝑟0
2

2𝑎0𝑓0 + 𝐵
𝑟0

2

𝑎0𝑓0
∫ (1 − 2

𝑎0𝑓0

𝑡2𝑟0
2)

𝑟∗

1
𝑡−3𝑒

(
𝑟0
2𝑡2

2𝑎0𝑓0
)
𝑑𝑡] 𝑟∗4𝑒

(
−𝑟0

2

2𝑎0𝑓0
)𝑟∗2

, 𝑟∗ ≡
𝑟

𝑟0
≥ 1;  𝐵 =

(𝑢0𝑆−𝑢0𝑓)

𝑢0𝑓
. (33) 
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The dimensionless steady volume fraction of bubbles given by (33), with u0S=2u0f and u0S=10u0f, 

are shown in Figures 5 and 6, respectively, for three values of (
𝑟0
2

2𝑎0𝑓0
). It is seen from Figures 5 and 6 

that the volume fraction of bubbles attains its maximum at a location near the entrance of the flow 

and after then monotonically decreases with increasing radial coordinate and converges to a finite 

value determined by the inlet velocity ratio of the bubbles and the fluid, consistent with the 

conservation of bubbles without considering the breakup of bubbles. In addition, the maximum 

volume fraction and its location approach the inlet volume fraction multiplied by the inlet velocity 

ratio and the entrance location of the flow, respectively, as the Stokes number of bubbles approaches 

zero (or equivalently, as (
𝑟0
2

2𝑎0𝑓0
) tends to infinity). 

 

Figure 5. The dimensionless steady bubble volume fraction given by (33) with u0S=2u0f, for the three values of 

(
𝑟0

2

2𝑎0𝑓0
)=10 (solid black), 3 (dotted blue), and 1 (dashed orange), respectively. 
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Figure 6. The dimensionless steady bubble volume fraction given by (33) with u0S=10u0f, for the three values of 

(
𝑟0

2

2𝑎0𝑓0
)=10 (dashed orange), 3 (dotted blue), and 1 (solid black), respectively. 

4.2. Particles and Fluid Have the Same Inlet Velocity 

On the other hand, when the particles and the fluid have the same inlet velocity (u0S=u0f) with 

Ca=0.5, we have B=1 and 

𝛿(𝑟∗)

𝛿0
= [𝑒

𝑟0
2

2𝑎0𝑓0 +
𝑟0

2

𝑎0𝑓0
∫ (1 −

2𝑎0𝑓0

𝑡2𝑟0
2 )

𝑟∗

1
𝑡
[1−

2(𝜌𝑆+2𝜌𝑓)

(𝜌𝑓+2𝜌𝑆)
]

𝑒
(

𝑟0
2

2𝑎0𝑓
)𝑡2

𝑑𝑡] 𝑟∗
[
2(𝜌𝑆+2𝜌𝑓)

(𝜌𝑓+2𝜌𝑆)
]

𝑒
(

−𝑟0
2

2𝑎0𝑓
)𝑟∗2

, 𝑟∗ ≡

𝑟

𝑟0
≥ 1. (34) 

The dimensionless steady volume fraction of particles given by (34) is plotted in Figure 7 for 

heavy particles (
2(𝜌𝑆+2𝜌𝑓)

(𝜌𝑓+2𝜌𝑆)
≈ 1) with three values of (

𝑟0
2

2𝑎0𝑓0
)=1, 3 and 10, respectively. It is seen from 

Figure 7 that the volume fraction of heavy particles attains its minimum at a location nearby the 

entrance of the flow, and after then the particle volume fraction monotonically increases with 

increasing radial coordinate and converges to a finite value. Particularly, the minimum value of the 

particle volume fraction and its location approach the inlet value δ0 and the entrance location r=r0 as 

the value of (
𝑟0
2

2𝑎0𝑓0
) approaches infinity, or equivalently as the Stokes number of particles approaches 

zero. 

On the other hand, the dimensionless steady volume fraction of particles given by (34) is plotted 

in Figure 8 for massless bubbles (
2(𝜌𝑆+2𝜌𝑓)

(𝜌𝑓+2𝜌𝑆)
≈ 4) with three values of (

𝑟0
2

2𝑎0𝑓0
)=1, 3 and 10, respectively. 

It is seen from Figure 8 that the volume fraction of massless bubbles attains its maximum at a location 

nearby the entrance of the flow, and after then the bubble volume fraction monotonically decreases 

with increasing radial coordinate and converges to a finite value. Particularly, the maximum value 

of the particle volume fraction and its location approach the inlet particle volume fraction δ0 and the 

entrance location r=r0 as the value of (
𝑟0
2

2𝑎0𝑓0
) approaches infinity, or equivalently as the modified 

Stokes number of bubbles approaches zero. 
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Figure 7. The dimensionless steady volume fraction of heavy particles given by (34) with the same inlet velocity 

of particles and fluid (u0S=u0f), for the three values of (
𝑟0

2

2𝑎0𝑓0
)=10 (solid black), 3 (dotted blue), and 1 (dashed 

orange), respectively. 

 

Figure 8. The dimensionless steady volume fraction of massless bubbles (ρS<<ρf) given by (34) with the same 

inlet velocity of bubbles and fluid (u0S=u0f), for the three values of (
𝑟0

2

2𝑎0𝑓0
)=10 (solid black), 3 (dotted blue), and 1 

(dashed orange), respectively. 

To our current knowledge, the existence of the location with the minimum (or maximum) 

volume fraction of heavier (or lighter) particles in the steady particle distribution of a diverging radial 

flow has not been addressed in literature, and therefore a comparison of this interesting prediction 

with known data cannot be made here due to the lack of available related results in literature. 

5. Conclusions 

Steady spatial distribution of particles in various flow problems of particle-laden viscous or 

inviscid fluids is not extensively addressed in literature. The present work focuses on the diverging 

plane radial flow of a particle-fluid viscous or inviscid suspension when the velocity field depends 

on the radial coordinate solely, with particular interest in the steady spatial particle distribution 

attained eventually as a result of particle migration. Our main results include 

(1) In the initial flow field of a particle-fluid suspension with uniformly distributed particles, the 

relative velocity of particles with respect to the fluid depends on their inlet velocity ratio, the 

mass density ratio and the Stokes number of particles. For example, when their inlet velocities 

are equal (then Stokes drag vanishes at the entrance), the particles heavier (or lighter) than the 

fluid will move faster (or slower) than the fluid. On the other hand, the particles lighter than the 

fluid can remain faster than the fluid within a sufficiently long distance provided that the inlet 

velocity of lighter particles is much higher than the inlet velocity of the fluid. This result is 

qualitatively consistent with some known simulations and experiments on gas-liquid bubbly 

flow in a diverging channel of finite length driven by high-speed injection of gas bubbles into a 

nearly stationary liquid. 

(2) An explicit expression is obtained for the steady spatial distribution of particles attained 

eventually as a result of particle migration. In particular, for massless gas bubbles with the inlet 

velocity higher than the inlet velocity of the fluid, our results show that the volume fraction of 

bubbles attains its maximum at a location close to the entrance of the flow and after then 
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monotonically decreases with increasing radial coordinate and converges to a finite value 

determined by the inlet velocity ratio of the bubbles and the fluid. In addition, the maximum 

volume fraction and its location approach the inlet volume fraction of the bubbles multiplied by 

the inlet velocity ratio and the entrance location of the flow, respectively, as the Stokes number 

of bubbles approaches zero. 

(3) When the particles and the fluid have the same inlet velocity, our results show that the particles 

heavier than the fluid attains its minimum at a location close to the entrance of the flow and after 

then monotonically increases with increasing radial coordinate and converges to a finite value, 

and the minimum volume fraction and its location approach the inlet particle volume fraction 

and the entrance location of the flow as the Stokes number of heavy particles approaches zero. 

On the other hand, the volume fraction of light particles attains its maximum at a location close 

to the entrance of the flow and after then monotonically decreases with increasing radial 

coordinate and converges to a finite value, and the maximum volume fraction of light particles 

and its location approach the inlet particle volume fraction and the entrance location of the flow 

as the Stokes number of light particles approaches zero 
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Appendix A. Derivation of Equations (1-5) 

For an incompressible Newtonian fluid with uniformly suspended identical solid spheres, the 

single-phase models [16–18] treat it as a homogeneous incompressible viscous fluid with constant 

effective viscosity μ and mass density ρ, governed by the classical Navier-Stokes equations (in the 

absence of body force) 

𝜌
𝑑𝒗

𝑑𝑡
= 𝜌 [

𝜕𝒗

𝜕𝑡
+ (𝒗 ∙ 𝛻)𝒗] = −∇𝑝 + 𝜇𝛻2𝒗, div𝒗 = 0, (A1) 

where x and t are the spatial coordinates and time, v(x, t) is the velocity field of the particle-fluid 

suspension (defined as the velocity field of the geometrical center of the representative unit cell of 

suspension), p(x, t) is pressure field of the suspension, ∇ and 𝛻2 are gradient and the Laplacian 

operators, the mass density ρ (per unit volume) of the suspension is given by 

𝜌 = 𝜌𝑆𝛿 + 𝜌𝑓(1 − 𝛿 ), (A2) 

where ρs and ρf are the mass densities of the particles and the carrier fluid, respectively, δ is the 

volume fraction of the particles, μ is the effective viscosity of the suspension which can be estimated 

by Einstein formula 𝜇 = 𝜇𝑓(1 + 2.5𝛿) with the viscosity μf of the carrier fluid in the dilute limit. 

Single-phase models cannot explain some multiphase flow phenomena of particle-laden fluids such 

as particle migration. 

The present model addresses the decisive role of the relative shift between the velocity field vS(x, 

t) of dispersed particles and the velocity field vf(x, t) of carrier fluid when the particles are not 

neutrally buoyant (ρS≠ρf). Actually, the Newton’s second and third laws imply that the resultant 

external force acting on the representative unit cell, given by the terms on right-hand side of eq.(A1), 

equates to the mass of the unit cell multiplied by the acceleration dvm/dt of its mass center (rather 

than the acceleration field dv/dt of its geometrical center), and therefore, instead of eq.(A1), dv/dt on 

left-hand side of (A1) should be replaced by dvm/dt and the suspension is governed by the modified 
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form of Navier-Stokes equations (1), where vm(x, t) is the velocity field of the mass center of the 

representative unit cell defined by the mass-averaged velocity field 

𝜌(𝒙, 𝑡)𝒗𝑚 = 𝛿(𝒙, 𝑡)𝜌𝑆𝒗𝑆 + 𝜌𝑓(1 − 𝛿(𝒙, 𝑡))𝒗𝑓 , (A3) 

where δ(x, t) can change with the spatial position and time due to particle migration, and 

consequently, the density ρ and the effective viscosity μ of the suspension may vary with the spatial 

position and time. 

To derive a relationship between vm(x, t) and v(x, t), let us start with the suspension’s velocity 

v(x, t) given by the volume-averaged mixture rule 𝒗 = 𝛿(𝒙, 𝑡)𝒗𝑆 + 𝒗𝑓(1 − 𝛿(𝒙, 𝑡)). Thus, (A3) gives 

the following mass-averaged velocity field relation 

𝜌(𝒙, 𝑡)𝒗𝑚 = 𝛿(𝒙, 𝑡)(𝜌𝑆 − 𝜌𝑓)𝒗𝑆 + 𝜌𝑓𝒗. (A4) 

And the mass-averaged acceleration field relation of (A4) gives 

𝜌
𝑑𝒗𝑚

𝑑𝑡
= (𝜌𝑆 − 𝜌𝑓)𝛿

𝑑𝒗𝑆

𝑑𝑡
+ 𝜌𝑓

𝑑𝒗

𝑑𝑡
, (A5) 

where d/dt denotes the material derivative of the associated velocity field along its own streamlines, 

and vS(x, t) can be given in terms of v(x, t) and vm(x, t) from (A4). 

Considering the Stokes drag, forces due to added mass and particle acceleration and the lift force 

acting on a suspended sphere (of radius rS) which moves with respect to the particulate fluid of the 

effective viscosity μ and effective mass density ρ, we have (the gravity not involved) [23–28] 

6𝜋𝑟𝑆𝜇(𝒗 − 𝒗𝑆) + 𝜌𝑉𝑆
𝑑𝒗

𝑑𝑡
+ 𝐶𝑎𝜌𝑉𝑆 (

𝑑𝒗

𝑑𝑡
−

𝑑𝒗𝑆

𝑑𝑡
) + 𝐶𝐿𝜌𝑉𝑆(𝒗 − 𝒗𝑆) × (𝛻 × 𝒗), 𝑉𝑆 =

4𝜋𝑟𝑆
3

3
, (A6) 

where Ca and CL are the added mass and the lift force coefficients, respectively. Dynamics of the solid 

sphere is governed by 

𝜌𝑆𝑉𝑆
𝑑𝒗𝑆

𝑑𝑡
= 6𝜋𝑟𝑆𝜇(𝒗 − 𝒗𝑆) + 𝜌𝑉𝑆

𝑑𝒗

𝑑𝑡
+ 𝐶𝑎𝜌𝑉𝑆 (

𝑑𝒗

𝑑𝑡
−

𝑑𝒗𝑆

𝑑𝑡
) + 𝐶𝐿𝜌𝑉𝑆(𝒗 − 𝒗𝑆) × (𝛻 × 𝒗). (A7) 

Diving both sides by 6𝜋𝑟𝑆𝜇, the above equation is reorganized into 

𝑎
𝑑𝒗𝑆

𝑑𝑡
= (𝒗 − 𝒗𝑆) + 𝑎 (

(1+𝐶𝑎)𝜌

𝐶𝑎𝜌+𝜌𝑆
)

𝑑𝒗

𝑑𝑡
+ 𝐶𝐿

2𝜌𝑟𝑆
2

9𝜇
(𝒗 − 𝒗𝑆) × (𝛻 × 𝒗). (A8) 

Multiplying (
𝛿(𝜌𝑆−𝜌𝑓)

𝜌
) to both sides of (A8), on using (A4) and (A5) to eliminate the velocity field 

vS and its material derivative dvS/dt in (A8), we have the relation (4) with the coefficients a and b 

given by (5). 

Finally, in the case of particle migration with time-varying non-uniform volume fraction δ(x, t) 

of particles, the conservation of mass for the carrier fluid and solid particles gives 

𝜕

𝜕𝑡
𝛿(𝒙, 𝑡) + div[𝛿(𝒙, 𝑡)𝒗𝑆] = 0, (A9) 

𝜕

𝜕𝑡
(1 − 𝛿(𝒙, 𝑡)) + div[(1 − 𝛿(𝒙, 𝑡))𝒗𝑓] = 0, (A10) 

respectively. In view of (A3) and the above volume-averaged velocity relation, (A9, A10) give 

equations (2, 3) in terms of v(x, t) and vm(x, t). In summary, we have eight equations (1-4) for δ(x, t), 

two velocity fields v(x, t) and vm(x, t) and the pressure field p(x, t). 

The present model based on the Stokes drag alone has been used to study the linear stability of 

plane parallel flow [51] and Kelvin-Helmholtz instability of fluid interface [52], and it is showed that 

the results derived by the present model for heavy particles in a dusty gas are identical to the 

Saffman’s classical results [29] and the results of Michael [30] derived by the classical Saffman model, 

respectively. This offers supporting evidence for the efficiency and accuracy of the present model. In 

addition, for the gas bubble-liquid two-phase suspensions, the physical concepts and mathematical 

equations formulated in the two-fluid models [23–28] for spherical solid particles can be largely 

applied to bubbly fluids with dispersed spherical gas bubbles [47–50]. 
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