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Abstract

Steady plane radial diverging flow of a viscous or inviscid particle-fluid suspension is studied using
a novel two-fluid model. For the initial flow field with uniform particle distribution, our results
show that the relative velocity of particles with respect to the fluid depend on their inlet velocity
ratio at the entrance, the mass density ratio and the Stokes number of particles, and the particles
heavier (or lighter) than the fluid will move faster (or slower) than the fluid when their inlet
velocities are equal (then Stokes drag vanishes at the entrance). The relative motion of particles with
respect to the fluid leads to particle migration and non-uniform distribution of particles. An explicit
expression is obtained for the steady particle distribution attained eventually due to particle
migration. Our results demonstrated for both light particles (gas bubbles) and heavy particles
confirm that, depending on the particle-to-fluid mass density ratio, the volume fraction of particles
attains its maximum or minimum value near the entrance of the radial flow and after then
monotonically decreases or increases with the radial coordinate and converges to an asymptotic
value determined by the particle-to-fluid inlet velocity ratio. Explicit solutions given here could help
quantify the steady particle distribution in decelerating radial flow of a particle-fluid suspension.

Keywords: Jeffery-Hamel flow; radial flow; diverging flow; particle-laden fluid; bubbly flow

1. Introduction

Plane radial flow of an incompressible viscous fluid in a diverging channel with two non-parallel
straight walls, called “Jeffery-Hamel (JH) flow” [1-5], remains an active research topic with
significant practical application [6-12]. Remarkably, the exact solution of Navier-Stokes equations in
this case admits the so-called “similarity solution” and the problem is reduced to a simpler 2nd-order
nonlinear ordinary differential equation with constant coefficients. Recently, the research on JH
channel flow has been extended to nanofluids with dispersed nanometer particles. However, to the
best of our knowledge, almost all related works on JH channel flow of nanofluids (see e.g. [13-15])
have adopted the single-phase model [16-18] which assumes that the dispersed particles and the
carrier fluid share the same velocity field and therefore cannot explain many important multiphase
flow phenomena such as particle migration. In spite of active researches on various JH-like radial
flows in a diverging/converging channel (see e.g. [19-21]), the steady spatial distribution of non-
neutrally buoyant particles in radial flow of a viscous or inviscid particle-laden suspension is rarely
studied in the literature.

In an attempt to study multiphase particulate radial flow in a diverging channel, it turns out that
the governing equations of the multiphase model for particle-laden viscous fluids (with a larger
number of equations than the Navier-Stokes equations for a clear fluid without dispersed particles)
do not admit a similarity solution of JH type due to the required no-slip wall conditions. As a matter
of fact, the similarity solution of JH type is not admitted even in the diverging pipe flow of a clear
fluid without particles [22].

Therefore, the present work will focus on the JH-like plane radial flow of a particle-laden
suspension when the no-slip wall conditions are not applied (see the two types of problems shown
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in Figure 1 below), with specific interest in the steady particle distribution of a particle-laden
suspension attained eventually as a result of particle migration.
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(a) plane viscous radial flow from a point source (b) inviscid radial flow in a diverging channel
Figure 1. Plane decelerating radial flow of a particle-laden fluid with the r-dependent velocity field.

The general equations of the two-fluid model for the present problem are given in section 2. In
section 3, the initial particle velocity field of a particle-laden suspension with uniform particle
distribution is studied with an emphasis on the velocity shift between the particles and the
suspension. The steady particle distribution of plane radial flow due to particle migration is studied
in section 4 with demonstrated results for various values of the Stokes number of particles heavier or
lighter than the carrier fluid, and an asymptotic expression is given for the steady particle distribution
for the vanishingly small particle Stokes number. Finally, the main results are summarized in section
5.

2. Equations of the Present Model

Let us consider an incompressible (viscous or inviscid) fluid with initially uniform distribution
of identical rigid spherical particles of radius rs, as an incompressible particle-fluid suspension.

2.1. General Equations of the Model with Particle Migration

With the present model, hydrodynamics of an incompressible suspension with dispersed solid
spheres is governed by the modified form of Navier-Stokes equations (the gravity not involved)

pLn = p [Z 4 (v Vv | = ~Vp + V- (ulTw + (70)™D), (1)
divv = 0, (2)

%p + div[pv,,] = 0. (3)

where x and t are the spatial coordinates and time, p(x, t) is the pressure field of the suspension, v(x,
t) is the velocity field of the suspension (defined as the velocity field of the geometrical center of the
representative unit cell of suspension), vm(x, t) is the velocity field of the mass center of the
representative unit cell defined by (A3) in Appendix, the effective density p (per unit volume) of the
suspension is given by (A2) in Appendix, ps and pr are the densities of the particles and the carrier
fluid, respectively. Here, 6 is the volume fraction of particles, u is the effective viscosity of the
suspension which can be estimated by Einstein formula u = u;(1 + 2.58) with the viscosity ur of the
carrier fluid in the dilute limit, and V and V? are the gradient and Laplacian operators. In general,
if the particle volume fraction 6 changes with the spatial position and time due to particle migration,
the mass density p and the effective viscosity y can depend on the spatial position and time.

As explained in Appendix, the Newton’s second and third laws imply that the resultant external
force acting on the representative unit cell, given by the terms on right-hand side of (1), equates to
the mass of the unit cell multiplied by the acceleration dum/dt of its mass center (rather than the
acceleration field dv/dt of its geometrical center), which leads to the above modified form of Navier-
Stokes equations (1). Clearly, for a homogenous clear fluid (6=0), vm(x, t)=0v(x, t) and the equation (1)
reduces to the classical form of Navier-Stokes equations.
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For a suspension with non-neutrally buoyant particles (ps#pr), we have vm(x, t)#v(x, t). As
explained in Appendix, with the gravity not involved, an additional relationship between vm(x, t) and
v(x, t) is given as

dvm

v, +a +cL2f”S [v,, X (V X )] _v+b—+cL2f”S [vx (VX v)], (4)

_ p\2psté o, _ (Pr  (1+Ca)(ps—py)S
a= (1 + Caps) o b= a(p + (Cap+ps) ) ©)

Here, d/dt denotes the material derivative of the associated velocity field along its own

streamlines, Ca and CL are the added mass and the lift force coefficients (Ca=CL=0.5 is often adopted
in literature), respectively, the coefficients a and b are derived by considering the Stokes drag, the
forces acting on particles due to added mass and fluid acceleration [23,24], and the lift force [25-28],
although the lift force vanishes for the present problem of r-dependent radial flow with (V x v = 0).
Here, it should be stated that the Stokes drag-based models of particle-laden inviscid fluids have been
widely adopted for inviscid particulate flows [29-33]. For instance, the inviscid version of Stokes
drag-based Saffman model [29] was used by Michael [30] to study Kelvin-Helmholtz instability of
particle-laden inviscid flows.

It is stated that the second terms inside the brackets in the expressions of a and b in (5) will be

absent (then a = 20 i:s b= (pf ) a) if only the Stokes drag is considered, and a=b and vm(x,t)=v(x,t)

when either 6=0 or ps=ps (“neutrally buoyant particles”) and then the present model reduces to the
single-phase models [16-18] (see (A1) in Appendix).

2.2. Equations for Steady Plane Radial Flow

It can be verified that, unlike a clear viscous fluid (without dispersed particles) which admits the
similarity solution of JH-type for radial flow in a diverging channel, the particle-laden viscous
suspensions do not admit such a similarity solution for radial flow in a diverging channel. Therefore,
in the present paper we shall focus on the following two problems of steady plane radial flow of an
incompressible viscous or inviscid particle-laden fluid shown in Figure 1 whose flow fields depend
solely on the radial coordinate 7:

(a) axisymmetric plane viscous radial flow from a point source;
(b) inviscid radial flow in a diverging channel.

To our knowledge, radial flow of a particle-laden (viscous or inviscid) suspension shown in
Figure 1 has been rarely studied in literature, although radial flow of a clear fluid (without dispersed
particles) from a point source has been the topic of several known works [34-37]. Clearly, the case (a)
is an r-dependent axisymmetric flow, and the inviscid radial flow in a diverging channel shown in
the case (b) depends solely on the radial coordinate r because the inviscid flow is free to slip on the
straight walls.

The steady r-dependent radial flow field (u(r), um(r), p(r), 6(r)) in the cylindrical coordinate (r, O,
z) system are given by

v = (u(r),0,0), vy = (Uun(r),0,0),p(r),5(r). (6)

Note that
b o 1) 5 (o )+, 5
Vo+(Ww)T =2| 0 % 0|,V-(um[Vv+ (Vo)) =2 0 . (7)
0 0 0 0

where the subscript “, “ denotes the partial derivative with respect to r. Thus, when the particle
migration is involved, it is verified that equations (1-4) give the following 4 nonlinear equations for
(u, um, p, 6) as the functions of the single variable r

Oum _ _ 1 op 2
Um ar p(r)or + p(r) WUr 6r (8)
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ad
2 (ru) =0, (9)

a
50+ p(); (ritm) ;= 0. (10)

"
Uy + a(uma:—rm) =u+b (uz—l:), (11)

Let us assume that the particles and fluid have two independent inlet velocities (uos, 1) with the
constant inlet particle fraction do at the entrance r=ro shown in Figure 1, thus the inlet values of (um,
u) are given by

psSougstpr(1-8g)ugys

Ulpey = Uy = OgUps + (1 — ) Ugr, U lr=r, = (U = . (12

|r ) 0 0“0S ( 0) of mlr 1o ( m)O (Ps—Pf)50+Pf ( )

For the conciseness of mathematical analysis, let us confine ourselves to case when the inlet

velocity of fluid is not zero (uo>0). The results derived could offer a qualitative understanding of the
limiting case (10=0) by considering sufficiently small inlet velocity of the fluid.

It follows from (9) that u(r) = 5, where fis a constant. In the present work, with u(r) = ; we
shall focus on equations (10, 11) for the steady velocity field um(r) and the particle distribution 0(r),
and the pressure p(r) can be determined from (8) once um(r) and 6(r) are known.

3. Initial Velocity Field with the Uniform Particle Distribution

In this section, to illustrate why the particulate radial flow with initially uniform particle
distribution leads to particle migration, let us first study the initial particle velocity field of a particle-
laden viscous suspension with uniformly distributed particles under the assumption that the particle
migration is slow enough so that the initial flow field is nearly steady with the constant particle
volume fraction and equation (10) associated with particle migration can be ignored.

Thus, the parameters (d=0, o, 1) are all constants in this section, and the unknown radial velocity
um(r) is determined by (11) which gives

. 1
um+a(umg—r) =£—br—3f2,u(r) =£. (13)

For a clear fluid (60=0) without dispersed particles, it follows from the definition (A3) that um(x,
t)=v(x, t), and we have a=b and

f
8o =0: up(r) =ulr) =uy(r) = 7°,f0 = Tougs > 0. (14)
For the particle-laden fluid (d0>0), let us write the particle-disturbed flow field um(r) as
6o > 0:up(r) =ulr) +A(), f=fo + TOSO(uOS — uof). (15)

Here, let us focus on the dilute limit of particle-laden fluids when the volume fraction of particles
is much smaller than the unity. With the Einstein formula u = puf(1 + ad), up to the first powers of
0, the 5—dependent coefficients (i, p, a, b) are expanded as

Pr Ky

“Z“"(l‘l“‘w 5> %:(HC P_f)ZP_srsz
Capy + Ps ’ “ps/ us’

b= aq [1 - ([a _ Cales=op)] | _(os=py) )5]. (16)

Capstps |~ pr(Caps+ps)
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2ps7. . : . Lo . 20572 .
where (%) is the dimensional relaxation time of suspended particles, and a, = C, ZZ % is the
f f

modified relaxation time for massless gas bubbles due to the added mass. The coefficient a depends
on the nature of dispersed particles. Typically, a=2.5 is commonly adopted for rigid spheres, and a=1
is suggested for spherical gas bubbles in a liquid [38,39].

For the dilute particle-fluid suspensions with the small number 5<<1, the disturbed velocity field
A(r)=um(r)-u(r) scales with the number d, and therefore A(r) is of the order d. Substituting (14, 15) into
(12) and ignoring all nonlinear terms of A(r) and 9, the linear equation for A(r) gives

94 + (Tz—aofo) A= [ fo(PS pf) ] ( )
or aofor 72 [pr(Capstps)|
with the boundary condition at the entrance

_ _ (ps=pf)8o(1=80) (uos—uof)
Alyery, = Wm)o — Up = (oo, - (18

2

The homogeneous solution of (17) is of the form <re (Zaof 0)> Here, in the case fo#0, using the

method of variation of constant for (17), explicit solution of A(r) for (17) is given by

[(PS Pr)80(1=80) (uos—ttor) <21102f0>—I

s -r?
AGF) = [(ps=pf)Sotprlro re(zaofo). (19)
[ fo(Ps—Pf) Za"fo
0 pf(Capf+ps)

We are particularly interested in the relative velocity of the particles with respect to the fluid.
Based on the general relation (A4), we have

_ Pum—u) _ plum-u)
(us —u) = 5(P5 rr)’ ( Us = f) ~8(1-8)(ps—py) (20)

Thus, up to the lowest order of d, the velocity difference between the particles and the fluid
normalized by the volume-averaged velocity of the suspension is given by

3
P(uos—uof)ro e 2a0fo

—_— 2
- ps—pf)Sotprlf ('Tf))*z
(us—uy) _ [(ps—pf)o+py] . 2 \200f0 r = =T12 L (21)
+[ p(ps—pf)fo ]fr e 2aof0t> " ()
pr(Capr+ps)f

It is seen from (21) that the velocity shift between particles and the fluid vanishes for the
neutrally buoyant particles (ps=p), this is consistent with the fact that the lift force [25-28] responsible
for migration of the neutrally buoyant particles vanishes for the r-dependent radial flow with
(Vxv=0).

3.1. Lighter Particles with Higher Inlet Velocity (uos>uof)

Let us first discuss the case when the radial flow is driven by the high-speed injection of lighter
particle with (uos>uor). This problem is of major interest in the literature on bubble-driven gas-liquid
two-phase flow [40-46]. It should be stated that the physical concepts and mathematical equations
formulated in two-fluid models for dispersed solid spherical particles can be largely applied to fluids
with dispersed small spherical gas bubbles when the effects of deformation and non-uniform size
distribution of gas bubbles can be ignored [47-50].

For massless bubbles with (ps<<pr) and Ca=0.5 [47-50], it follows from (21) that

r(z) ( T%f tz) _r(Z) 2
(us_uf) (uOS—uOf) <2a0f0> r* e 2ao0fo *2 <2a0f0>r* * r
e i - = >
” oy e 2 f1 3 dt|r*“e 7 g 1. (22)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Here, let us consider two cases when the inlet velocity of bubbles is moderately or much higher
than the inlet velocity of the fluid at the entrance of the flow, with uos=2uot and uos=10uot, respectively.
The normalized velocity difference ((us-ut)/u) between the massless bubbles and the fluid given by
U

(22) are shown in Figures 2 and 3 for several typical values of the ratio (ﬁ) which is considered
0/o

prr‘()z
ouyg

to be inversely proportional to the (modified) Stokes number of bubbles with a4 = C, , where

us, us and u are the velocities of the bubbles, the fluid and the suspension, respectively.

It is seen from Figures 2 and 3 that although the bubbles move faster than the fluid within a finite
distance from the entrance (r*=r/ro=1), the velocity of bubbles becomes lower than the velocity of fluid
beyond that distance. This distance is determined by the bubble-to-fluid inlet velocity ratio and the
Stokes number of bubbles. For example, it is seen from Figure 2 for uos=2uot that the velocity of bubbles

g

of a moderate Stokes number presented by ( )=1 becomes lower than the velocity of fluid beyond

2aofo
a distance slightly above (r*=2), while the velocity of bubbles of a larger Stokes number presented by

2
(zlof )=0.01 remains faster than the fluid within the distance above (r*=6).

0J0

For the higher bubble-to-fluid inlet velocity ratio uos=10uo, it is seen from Figure 3 that the
g

2aofo
within the distance above (r*=3), while the velocity of bubbles of a larger Stokes number presented

velocity of bubbles of a moderate Stokes number presented by ( )=1 remains faster than the fluid

2
by (z:)f )=0.01 remains faster than the fluid within the large distance abound (r*=33). In particular,
oJo

2
it is seen from Figure 3 that the normalized velocity difference given by (22) in the case (z:)f )=0.01
oJo

can be very high (beyond 100, too high to be shown entirely in Figure 3) because the suspension
velocity diminishes quickly while the bubbles of large Stokes number respond to the decelerating

flow field much slower than the suspension.

{us-uf)JL-ll

£\
\
\
|f‘ (TR e e e e gy i
H 'l-" -"/ r
d /
El
H .fl
\ /
Voo
\
\ oy
\s

Figure 2. The velocity difference ((us-us)/u) between the massless bubbles and the fluid given by (22) with the

inlet velocity ratio uos=2uor, where us , ur and u are the velocities of the bubbles, the fluid and the suspension,

respectively, for three larger values of the bubble Stokes number presented by ( s )=1 (solid black), 0.1 (dotted

2a0fo

blue), and 0.01 (dashed orange), respectively.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.0209.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 July 2025

7 of 16

Tt (us-ufyu |

"__-_'_' T T
gaeet
o
-
-
-
P
y

-1
10 20 a0 40 a0

Figure 3. The velocity difference ((us-us)/u) between the massless bubbles and the fluid given by (22) with the
inlet velocity ratio uos=10uos, for three larger values of the bubble Stokes number presented by (
black), 0.1 (dotted blue), and 0.01 (dashed orange), respectively.
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2
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2a0fo

Since most experiments and numerical simulations on high speed bubble-driven decelerating
gas-liquid flow are limited to a diverging channel or pipe of limited finite length [41-43] and the
liquid is nearly stationary, our results shown in Figures 2 and 3 could suggest that the bubbles of
even a moderate Stokes number will move faster than the fluid within a sufficiently long distance
when the bubble-to-fluid inlet velocity ratio is very high, consistent with some known experimental
observations and numerical simulations.

In addition, it is worthy mention that when the inlet velocities (and therefore the coefficient f)
change their signs simultaneously, the normalized velocity difference given by the right-hand side of
(21) remains unchanged. This could suggest that the results derived here for a diverging channel may
be qualitatively valid for a converging channel. Consistent with this, it is noted that the bubbles

accelerate faster than the fluid in the accelerating bubbly flow in a converging channel of finite length,
as reported by Auton et al. [40] and reviewed by Magnaudet & Eames [47].

3.2. Particles and Fluid Have the Same Inlet Velocity

When the particles and the fluid get into the decelerating flow field (du/dr<0) in a diverging
radial flow with the same inlet velocity (uos=uof) at the entrance, because the Stokes drag vanishes
there, the heavier (lighter) particles of larger (less) inertia will respond to the decelerating flow field
slower (faster) than the fluid. Therefore, the particles heavier (lighter) than the fluid will move faster
(slower) than the fluid at least within a certain distance from the entrance. In particular, for the
massless bubbles with C.=0.5, it is readily seen from (A7) of Appendix that the deceleration of the
bubbles is 3 times the deceleration of the fluid at the entrance when the bubbles and the fluid have
the same inlet velocity and the Stokes drag vanishes at the entrance, which implies that the velocity
of bubbles is slower than the velocity of fluid at least within a certain distance from the entrance.

Beyond the entrance, the motion of bubbles is determined by the three terms on the right-hand
side of (A7) of Appendix, although the motion of heavy particles (ps>>pr) is dominated by the Stokes

drag and the other two terms on the right-hand side of (A7) can be ignored. Actually, with the
condition (uos=uor), it follows from (19) that

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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—r2

dt|re (m) (23)

Uiny = Uins: A(r) =6 [Pf(Capf+Ps) 3

folps=py)° ] Ifrt, e(ﬂf—fo)

It follows from (21) that

—r2 3 >tz
(uS_uf) _ P(Ps—Pf) * *) — .%2 <ﬁ>r*2 r* e<2a0f0 « _ T
= f(l_ao)(capf+ps)ﬂ(r ),20") =1 J; —F—dt|,r = —21(29)

With the dimension ro of the present problem and the inlet velocity ];—0 at the entrance (r=ro), the
0

2

. r§ .. . .
ratio (Zaofo) is inversely proportional to the Stokes number of particles.

The dimensionless function ((r*) defined in (24), which determines the velocity difference

2
between the particles and the fluid, is plotted in Figure 4 for three different values of ( 0 )=1, 3 and

2a0fo
10, respectively. It is seen from Figure 4 and (24) that the particles heavier (or lighter) than the fluid
LA
aofo) is inversely

proportional to the Stokes number of particles, it is seen from (24) that the velocity difference between

will move faster (or slower) than the fluid velocity. In addition, because the ratio (2

1t
2aofo
of particles), which suggests that the particle migration can be slow for nanofluids of nanometer

the particles and the fluid decreases with increasing value of ( ) (or decreasing Stokes number

particles although the long-term particle migration of nanofluids can be relevant and cannot be
ignored for a sufficiently long period of time.

Figure 4. The function Q(r") defined by (24) for the velocity difference ((us-us)/u), for the three values of (2:% ; )=1

(dotted blue), 3 (dashed orange), and 10 (solid black), respectively.

It should be stated that all results derived in section 3 are based on the assumed steady initial
flow field with constant parameters (9, o, i), which only serve to explain the particle migration at the
initial stage of the radial flow but cannot offer any detailed data on the steady flow attained
eventually as a result of particle migration beyond the initial stage of flow.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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4. Steady Particle Distribution of Plane Radial Diverging Flow

Since the radial flow of a particulate fluid with initially uniform distribution of particles cannot
remain the uniform particle distribution due to particle migration, it is of major interest to study the
steady particle distribution attained eventually as a result of long-term particle migration.

Here, to determine the steady volume fraction 6(r) of particles, substituting (15, 16) into (10, 11)
and ignoring all nonlinear terms of A(r) and 6(r), the linear equations for A(r) and §(r) give

dé
(ps — py b, pr—f(m),r =0, (25)

r dr

% n (rz—aofo)A = [fo(ps——pf)z) 6(7‘)] riz' (26)

aofor Pf(Capf+pS
with the boundary conditions

= &,. (27)

=79

Al — (ps=pf)80(1=80)(uos—tof) 5
=T (ps—pf)So+ps ’

It follows from (25) and the conditions (27) that

= p?pss()(rllf)g;js:;s uOf) rA(T)] (ps — Pf) 5 (6(r) 8in)- (28)

Using (28) to eliminate A(r) in (26), the following flrst—order linear equation for d(r) can be

verified

as ro (P5+(2Ca+1)Pf)] _plor (4 aofo
ar + [aofo (Capr+ps)r 8(r) =B aofo (1 ) (29)

With the constant B is given by

(1 80) (uos— uof)pf]
B =
[ [(ps=pf)So+pfluor (30)

The homogeneous solution of (29) is of the form

p5+(2Ca+1)pf] 2
8(r) o rl (carsros) lozacts, (31)

On using the variation of constant, explicit solution of the non-homogeneous equation (29) with
the boundary condition (27) gives

* 72 2 - p5+(2Ca+1)pf>] <rgt2 )
5() = eZagfo +B "o j <1 — 2a0_f0> [ < (Caprtps) e\2a0fo/ 4+
1

8o Aojo 1

[Ps+(2ca+1)Pf] < —r2 > v
r r
x r*l (carses) lg\2aofo)" po = T 5 q (32)
To
As expected, it can be verified from (32) that 5(r*)/d0 =1 for the neutrally buoyant particles (0s=0t).

4.1. Light Particles with Higher Inlet Velocity

Let us first discuss the two cases discussed in section 3.1 when the inlet velocity of bubbles are
higher than the inlet velocity of the fluid. In these case with Ca=0.5 for bubbles, up to the lowest order
of d, we have

e (),
8@ _ eZaofo +B i (1 -2 a°f°) t~3e\2a0f0 dt] r**e\2a0f0 r*

121;B=

To

8o aofo t2r¢ ’

(os—uor) (33)
uof
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The dimensionless steady volume fraction of bubbles given by (33), with uos=2uot and uos=10u0t,
2
0 ) It is seen from Figures 5 and 6

are shown in Figures 5 and 6, respectively, for three values of (Zao -
that the volume fraction of bubbles attains its maximum at a location near the entrance of the flow
and after then monotonically decreases with increasing radial coordinate and converges to a finite
value determined by the inlet velocity ratio of the bubbles and the fluid, consistent with the
conservation of bubbles without considering the breakup of bubbles. In addition, the maximum
volume fraction and its location approach the inlet volume fraction multiplied by the inlet velocity
ratio and the entrance location of the flow, respectively, as the Stokes number of bubbles approaches

2
zero (or equivalently, as (2:°f ) tends to infinity).
0Jo
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Figure 5. The dimensionless steady bubble volume fraction given by (33) with uos=2uor, for the three values of

( ré )=1O (solid black), 3 (dotted blue), and 1 (dashed orange), respectively.
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Figure 6. The dimensionless steady bubble volume fraction given by (33) with uos=10uor, for the three values of
(%)40 (dashed orange), 3 (dotted blue), and 1 (solid black), respectively.
o/o

4.2. Particles and Fluid Have the Same Inlet Velocity

On the other hand, when the particles and the fluid have the same inlet velocity (uos=uof) with
Ca=0.5, we have B=1 and

: 3 * [1__2(P5+2Pf>] () [_Z(Psﬂpf)] ()
8(r") _ em_l_r_oz r (1—2a0f0)t (pf+2ps) e \2a0f t dtlr (pf+2ps) e \2a0f T r* =

8o aofo 1 t2rg ’

L >1.(34)
To

The dimensionless steady volume fraction of particles given by (34) is plotted in Figure 7 for

2
heavy particles (% =~ 1) with three values of (222f0)=1, 3 and 10, respectively. It is seen from

Figure 7 that the volume fraction of heavy particles attains its minimum at a location nearby the
entrance of the flow, and after then the particle volume fraction monotonically increases with
increasing radial coordinate and converges to a finite value. Particularly, the minimum value of the
particle volume fraction and its location approach the inlet value do and the entrance location r=ro as

2
the value of (zlof ) approaches infinity, or equivalently as the Stokes number of particles approaches
0J0

zero.

On the other hand, the dimensionless steady volume fraction of particles given by (34) is plotted

2
in Figure 8 for massless bubbles (2(31%22:,;) ~ 4) with three values of (2;"f )=1, 3 and 10, respectively.
frepPs ofo

It is seen from Figure 8 that the volume fraction of massless bubbles attains its maximum at a location
nearby the entrance of the flow, and after then the bubble volume fraction monotonically decreases
with increasing radial coordinate and converges to a finite value. Particularly, the maximum value
of the particle volume fraction and its location approach the inlet particle volume fraction do and the

2
entrance location r=ro as the value of ( :Of) approaches infinity, or equivalently as the modified
0/0

Stokes number of bubbles approaches zero.
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Figure 7. The dimensionless steady volume fraction of heavy particles given by (34) with the same inlet velocity
3 )=10 (solid black), 3 (dotted blue), and 1 (dashed

of particles and fluid (uos=uor), for the three values of (2£°f
0J0

orange), respectively.
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Figure 8. The dimensionless steady volume fraction of massless bubbles (ps<<pr) given by (34) with the same

inlet velocity of bubbles and fluid (uos=u0r), for the three values of (2;"; )=1O (solid black), 3 (dotted blue), and 1
0J0

(dashed orange), respectively.

To our current knowledge, the existence of the location with the minimum (or maximum)
volume fraction of heavier (or lighter) particles in the steady particle distribution of a diverging radial
flow has not been addressed in literature, and therefore a comparison of this interesting prediction
with known data cannot be made here due to the lack of available related results in literature.

5. Conclusions

Steady spatial distribution of particles in various flow problems of particle-laden viscous or
inviscid fluids is not extensively addressed in literature. The present work focuses on the diverging
plane radial flow of a particle-fluid viscous or inviscid suspension when the velocity field depends
on the radial coordinate solely, with particular interest in the steady spatial particle distribution
attained eventually as a result of particle migration. Our main results include
(1) In the initial flow field of a particle-fluid suspension with uniformly distributed particles, the

relative velocity of particles with respect to the fluid depends on their inlet velocity ratio, the

mass density ratio and the Stokes number of particles. For example, when their inlet velocities
are equal (then Stokes drag vanishes at the entrance), the particles heavier (or lighter) than the
fluid will move faster (or slower) than the fluid. On the other hand, the particles lighter than the
fluid can remain faster than the fluid within a sufficiently long distance provided that the inlet
velocity of lighter particles is much higher than the inlet velocity of the fluid. This result is
qualitatively consistent with some known simulations and experiments on gas-liquid bubbly

flow in a diverging channel of finite length driven by high-speed injection of gas bubbles into a

nearly stationary liquid.

(2) An explicit expression is obtained for the steady spatial distribution of particles attained
eventually as a result of particle migration. In particular, for massless gas bubbles with the inlet
velocity higher than the inlet velocity of the fluid, our results show that the volume fraction of
bubbles attains its maximum at a location close to the entrance of the flow and after then
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monotonically decreases with increasing radial coordinate and converges to a finite value
determined by the inlet velocity ratio of the bubbles and the fluid. In addition, the maximum
volume fraction and its location approach the inlet volume fraction of the bubbles multiplied by
the inlet velocity ratio and the entrance location of the flow, respectively, as the Stokes number
of bubbles approaches zero.

(3) When the particles and the fluid have the same inlet velocity, our results show that the particles
heavier than the fluid attains its minimum at a location close to the entrance of the flow and after
then monotonically increases with increasing radial coordinate and converges to a finite value,
and the minimum volume fraction and its location approach the inlet particle volume fraction
and the entrance location of the flow as the Stokes number of heavy particles approaches zero.
On the other hand, the volume fraction of light particles attains its maximum at a location close
to the entrance of the flow and after then monotonically decreases with increasing radial
coordinate and converges to a finite value, and the maximum volume fraction of light particles
and its location approach the inlet particle volume fraction and the entrance location of the flow
as the Stokes number of light particles approaches zero
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Appendix A. Derivation of Equations (1-5)

For an incompressible Newtonian fluid with uniformly suspended identical solid spheres, the
single-phase models [16-18] treat it as a homogeneous incompressible viscous fluid with constant
effective viscosity p and mass density p, governed by the classical Navier-Stokes equations (in the
absence of body force)

P2 = o[+ - V)v] = ~Vp + ur2v,divw = 0, (A1)

where x and t are the spatial coordinates and time, v(x, t) is the velocity field of the particle-fluid
suspension (defined as the velocity field of the geometrical center of the representative unit cell of
suspension), p(x, t) is pressure field of the suspension, V and V? are gradient and the Laplacian
operators, the mass density p (per unit volume) of the suspension is given by

p=psé +pr(1—5), (A2)

where ps and pr are the mass densities of the particles and the carrier fluid, respectively, 0 is the
volume fraction of the particles, y is the effective viscosity of the suspension which can be estimated
by Einstein formula p = u(1 + 2.56) with the viscosity ur of the carrier fluid in the dilute limit.
Single-phase models cannot explain some multiphase flow phenomena of particle-laden fluids such
as particle migration.

The present model addresses the decisive role of the relative shift between the velocity field vs(x,

t) of dispersed particles and the velocity field vf(x, f) of carrier fluid when the particles are not
neutrally buoyant (ps#ps). Actually, the Newton’s second and third laws imply that the resultant
external force acting on the representative unit cell, given by the terms on right-hand side of eq.(A1),
equates to the mass of the unit cell multiplied by the acceleration dum/dt of its mass center (rather
than the acceleration field dv/dt of its geometrical center), and therefore, instead of eq.(A1l), dv/dt on
left-hand side of (A1) should be replaced by dum/dt and the suspension is governed by the modified

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

d0i:10.20944/preprints202507.0209.v1


https://doi.org/10.20944/preprints202507.0209.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 July 2025 d0i:10.20944/preprints202507.0209.v1

14 of 16

form of Navier-Stokes equations (1), where vnm(x, t) is the velocity field of the mass center of the
representative unit cell defined by the mass-averaged velocity field

p(xX, )V = 8(x,0)psvs + pr(1— 8(x, 1) )vy, (A3)

where 6(x, t) can change with the spatial position and time due to particle migration, and
consequently, the density p and the effective viscosity p of the suspension may vary with the spatial
position and time.

To derive a relationship between vm(x, t) and v(x, t), let us start with the suspension’s velocity
v(x, t) given by the volume-averaged mixture rule v = §(x, t)vs + v(1 — §(x,t)). Thus, (A3) gives
the following mass-averaged velocity field relation

p(x, vy, = 5(x,0)(ps — pr)vs + prv. (A4)

And the mass-averaged acceleration field relation of (A4) gives

dvy,

p—2=(ps—ps)6—>

5+ pp, (AS)
where d/dt denotes the material derivative of the associated velocity field along its own streamlines,
and vs(x, t) can be given in terms of v(x, t) and vm(x, t) from (A4).

Considering the Stokes drag, forces due to added mass and particle acceleration and the lift force
acting on a suspended sphere (of radius rs) which moves with respect to the particulate fluid of the
effective viscosity p and effective mass density o, we have (the gravity not involved) [23-28]

» (A6)

v dvg

61 (v — v5) + pVs 52 + CapVs (5 — %) + CLpVs(v — ) X (7 X v), Vs =

4nrs

where Ca and CL are the added mass and the lift force coefficients, respectively. Dynamlcs of the solid
sphere is governed by
dv  dvg

d d
Psvsf = 6nrsu(v —vs) + PVsd_: + CopVs (E - _) + CpVs(v — vs) X (V X v). (A7)

Diving both sides by 6mrsp, the above equation is reorganized into
avs _ o ((1+ca)p) dv 2075 (1)
a—== (w—vs)+a Cpips) at +C, o (v —vs) X (VX v). (A8)

(Ps of)

Multiplying (———) to both sides of (A8), on using (A4) and (A5) to eliminate the velocity field

vs and its material derlvatlve dvs/dt in (A8), we have the relation (4) with the coefficients a and b
given by (5).

Finally, in the case of particle migration with time-varying non-uniform volume fraction 6(x, t)
of particles, the conservation of mass for the carrier fluid and solid particles gives

2 5(x,t) + div[8(x, )vg] = 0, (A9)

2 (1-6(x,0)) + div[(1 - 8(x,))vy] = 0, (AL0)

respectively. In view of (A3) and the above volume-averaged velocity relation, (A9, Al0) give
equations (2, 3) in terms of v(x, f) and vm(x, t). In summary, we have eight equations (1-4) for o(x, t),
two velocity fields v(x, t) and vm(x, t) and the pressure field p(x, ).

The present model based on the Stokes drag alone has been used to study the linear stability of
plane parallel flow [51] and Kelvin-Helmholtz instability of fluid interface [52], and it is showed that
the results derived by the present model for heavy particles in a dusty gas are identical to the
Saffman’s classical results [29] and the results of Michael [30] derived by the classical Saffman model,
respectively. This offers supporting evidence for the efficiency and accuracy of the present model. In
addition, for the gas bubble-liquid two-phase suspensions, the physical concepts and mathematical
equations formulated in the two-fluid models [23-28] for spherical solid particles can be largely
applied to bubbly fluids with dispersed spherical gas bubbles [47-50].
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