Pre prints.org

Article Not peer-reviewed version

The Machine Translation of Landau's
Analysis of Foundations in Rocq

Yue Guan, Yaoshun Fu i , Xiangtao Meng

Posted Date: 26 November 2025
doi: 10.20944/preprints202511.2012.v1

Keywords: formal verification; foundations of analysis; axiomatic set theory; Rocq; Recursion Theorem

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4885339
https://sciprofiles.com/profile/4735682
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
The Machine Translation of Landau’s Analysis of
Foundations in Rocq

Yue Guan !, Yaoshun Fu * and XiangTao Meng >

College of Electromechanical , Changchun Polytechnic University, Changchun 130033, China

2 Beijing Aerospace Times Optical-Electronic Co, Ltd, Beijing 100089, China

*

Correspondence: fuys_qd@163.com

Abstract

Formal verification has achieved remarkable outcomes in both theory advancement and engineer-
ing practice, with the formalization of mathematical theories serving as its foundational corner-
stone—making this process particularly critical. Axiomatic set theory underpins modern mathematics,
providing the rigorous basis for constructing almost all theories. Landau’s Foundations of Analysis
starts with pure logical axioms from set theory, does not rely on geometric intuition, strictly constructs
number systems, and is a benchmark for axiomatic analysis in modern mathematics. In this paper, we
first develop a machine proof system for axiomatic set theory rooted in the Morse-Kelley (MK) system.
This system encompasses proof automation, scale simplification, and specialized handling of the
Classification Axiom for ordered pairs. We then prove the Transfinite Recursion Theorem, leveraging it
to further prove the Recursion Theorem for natural numbers the key result for defining natural number
operations. Finally, we detail the implementation of a machine proof system for analysis, which adopts
MK as its description language and adheres to Landau’s Foundations of Analysis. This formalization
can be relatively seamlessly ported to type theory-based real analysis. Implemented using the Rocq
proof assistant, the formalization has undergone verification to ensure completeness and consistency.
This work holds broader applicability, and it can be extended to the formalization of point-set topology
and abstract algebra, while also serving as a valuable resource for teaching axiomatic set theory and
mathematical analysis.

Keywords: formal verification; foundations of analysis; axiomatic set theory; Rocq; Recursion
Theorem

MSC: 68V20

1. Introduction

Formal verification for mathematics aims to formalize mathematical theories through computers
verification. Godel once stated, "The development of mathematics towards greater exactness has, as is
well-known, lead to formalization of large areas of it such that you can carry out proofs by following a
few mechanical rules. " In recent decades, formalization technology has become an important tool in
mathematical theory [36,37] and program verification[1,39].

Formal tools have rapidly developed alongside innovations in underlying theories, resulting
in stronger expressive power, closer alignment with mathematical notation, better interactivity, and
higher levels of automation[24,26,38]. The pioneering computer proof tool Automath was developed
by de Bruijn in the late 1960s, with the aim of expressing mathematical proofs through a computer
language[2]. As the first successful application of the Curry-Howard isomorphism, many of its
design principles were not fully appreciated at the time. However, as type theory and computer
tools advanced, it provided a strong foundation for the development of modern higher-order logic
provers[29,30].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0003-4744-9529
https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

20f19

Rocq(formerly known as Coq)[3,7,8], an interactive proof assistant based on constructive calculus
theory[10,11,34], is one of the most popular provers founded on the type theory. Gonthier and his
team completed the formal proof of the "Four Color Theorem"[18] and the "Odd Order Theorem" [16],
causing a great sensation in the mathematical and computer fields. Boldo had formalized the Lebesgue
integration of nonnegative functions, whcih is of great significance for toward the formalization of
spaces LP such as Banach spaces. Cao introduced Rocq into teaching to help students understand
the contents in a deep and comprehensive way, without missing any key concepts. Shao Zhong,
Gu Ronghui and other researchers successfully developed the world’s first fully formally verified
operating system kernel with no vulnerabilities: CertiKOS[21]. Cohen and Johnson-Freyd developed
a natural deduction proof system for Why3. It can be seen from these abundant achievements that
formal verification has achieved fruitful results both in theoretical development and engineering
applications[12,25,28], and the formalization of mathematical theories as foundation, is particularly
important.

Set theory plays an extremely important role in mathematics because its concepts are involved in
nearly every branch of mathematics[23]. At the same time, set theory has significant applications in
computer science, artificial intelligence, logic and other fields. The third mathematical crisis prompted
mathematicians to begin the axiomatization of set theory, which involved limiting the definitions
in naive set theory through axioms[4]. In 1908, the German mathematician Zermelo first published
an axiomatic system for set theory, which was later improved and modified by mathematicians
Fraenkel and Skolem, forming the well-known Zermelo-Fraenkel set theory axiom system(ZF). In 1920,
Hungarian-American mathematician von Neumann proposed another axiomatic system[27], which
was modified by Bernays starting in 1937 and further simplified by Godel in 1940, resulting in the
famous von Neumann-Bernays-Godel set theory axiom system(NBG). Subsequently, other axiomatic
set theory systems such as Morse-Kelley(MK) set theory[31,35] and Tarski-Grothendieck set theory
were developed. Axiomatic set theory has provided a convenient and practical language and tool for
mathematical research, thereby making set theory the foundation of modern mathematical theory once
again.

The axiomatic system for natural number took shape based on basic properties summarized
by Dedekind, with its landmark being Peano’s 1889 work Arithmetices Principia, Nova Methodo
Exposita (The Principles of Arithmetic, Presented by a New Method). After numerous failures and
setbacks, efforts to find a foundation for analytical mathematics[42] gradually gained clarity — the
process known as the "arithmetization of analysis" in the 19th century, which generally unfolded in
three stages[9,19]: (1) establishment of the limit theory: marked primarily by the work of Cauchy
and Weierstrass. (2) establishment of the real number theory: defined mainly by the real number
construction theories developed by Dedekind, Cantor, and Weierstrass, among others. (3) completion
of the arithmetization process: symbolized by the natural number theories proposed by Dedekind and
Peano. It is evident that the arithmetization of analysis is closely linked to the resolution of the three
famous crises in the history of mathematics.

In this work, we first present the machine proof system of Morse-Kelley axiomatic set theory
which is concise yet comprehensive for analysis. This part of the content includes not only our
formalization but also the optimization and vulnerability patching compared to previous work[40].
Next, we prove Transfinite Recursion Theorem which is one of most important conclusions in MK.
Moreover, through this theorem we prove Recursion Theorem for natural numbers, which is a crucial
conclusion for defining natural number operations. At last, we present the implementation details of
machine proof system for analysis including natural numbers, fractions, cuts, real numbers, complex
numbers which follows Landau’s Foundations of Analysis and uses the MK as the foundational
description language. Every proof is verified by Rocq to show rigor and correctness and we make up
for missing proof details to make it more complete.

The paper is organized in the following way. Section 2 is dedicated to related work. Section 3
states contents of the MK including axioms, notations, definitions and properties for understanding

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

30f19

this work. Section 4 introduces the proof details of Transfinite Recursion Theorem and Recursion
Theorem for natural numbers. Section 5 presents the formalization of analysis from natural numbers
to complex numbers. Finally, we draw our conclusions and discuss some potential further work in
Section 6.

2. Related Work

In the formalizations of set theory, Simpson developed the axiomatization of ZFC and formalized
common set-theoretic concepts. Kirst and Smolka completed the formal construction of second-order
ZF set theory[32]. Paulson constructed the ZFC set theory based on the formalization tool Isabelle/ZF.
On the other hand, there already exists some formalizations of Landau’s “Foundations of Analysis”[33].
de Bruijn designed earliest proof checker Automath, and his student van Benthem Jutting has com-
pleted the formalization of Landau’s “Foundations of Analysis” in AUT-QE[2]. Moreover, Brown
has given a particular faithful reproduction of a signature corresponding to the Automath version of
Landau’s book[6]. Guidi encoded this book into the formal language ‘A ¢, furthermore, presents an
implemented procedure producing a representation of the “Foundations of Analysis” in Rocq[22]. In
addition to the above work, Grimm has defined real numbers from set theory, and he aims to formalize
the fundamental notations of mathematics referring to “Elements of Mathematics” of Bourbaki[20]. In
Rocq’s standard library, there is already a set of real number theories based on a dozen axioms[17].
The excellent real analysis library—Coquelicot[5]—is developed by Boldo et al. as an extension of the
library.

In our previous work, we had completed the machine proof system of axiomatic set theory
and analysis[41], which are significantly different from the work in this paper. Regarding axiomatic
set theory, we have addressed the existing defects about classifier, added a series of automated
strategies and conclusions with independent significance to facilitate expansion, and furthermore, we
have proven the key proposition Recursion Theorem for defining natural number operations. The
formalization of Recursion Theorem based on the Transfinite Recursion Theorem is the first of its
kind to our knowledge. In terms of analysis, we completed the formalization of the equivalence
among completeness theorems of real number[14], the properties of continuous functions on closed
intervals[13] and the rigor of calculus without limit theory[15], however, all this work is based on type
theory, which is fundamentally different from our work at the underlying level.

3. Morse-Kelley Axiomatic Set Theory

Considering consistency the description of the axioms, definitions and theorems involved in the
formalization corresponds to one in Kelley’s General Topology. Meanwhile, we just extract the content
required by the formalization for the sake of code simplicity and readability. The MK theory itself
is a metalanguage, and few additional elements need to be introduced such as logical constants and
quantifications, that and equality in MK are consistent with the conventional meaning. Moreover, this
theory is built on classical logic, hence the law of excluded middle need be introduced. Then the MK
system can be start builded with these foundations.

We first declare a "class," which is the type of all objects (whether they are sets or not). The formal
description in Rocq is as follows:

Parameter Class :Type.

Additionally, two mathematical constants and the concept of set need to be introduced. The first
constant of these is “€” and “e € C” is called “e is a element of C ” or “e belongs to C”. The second
constant one of these is “{..|... }” which denotes a classifier, that is, the class composed of all classes

7 "
S S

that satisfy a certain property. Next, if “s” is a set, it indicates that “s” belongs to a certain class. Their

formal descriptions in Rocq is as follows:

Parameter In : Class -> Class -> Prop.
Notation "x € y" := (In x y) (at level 10).
Parameter Classifier : (Class -> Prop) -> Class.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

40f19

Notation "\{ P \}" := (Classifier P) (at level 0).
Definition Ensemble (s :Class) = 4 C, s € C.

There are a total of 8 axioms and 1 axiomatic-scheme about the extensionality of equality, classifier,
the judgment of whether a special class is a set, the existence of countably infinite sets and the axiom
of choice. The descriptions of these propositions and their formalizations in Rocq are as follows:
Axiom of extent: x =y <> (Vz,z € x <> z € y).

Classification axiom-scheme: g € {a : P(a)} <> Bis asetand P(B).
Axiom of subsets: xisasset — Jyisasset, (Vz,z C x — z € y).

Axiom of union: Both x, y are sets — x Uy is a set.

Axiom of substitution: The domain of function f is a set — Ran(f) is a set.
Axiom of amalgamation: x is a set — Ux is a set.

Axiom of regularity: x #Q® = Jy € x,x Ny = @.

Axiom of infinity: 3y isaset, ® € yand x U {x} € y wheneverx c y.
Axiom of choice: There is a choice function c whose domainis y ~ @ .

Axiom AxiomI : Vxy, x =y <> (Vz, z€x<>2z€y.

Axiom AxiomII : V b P, b € \{ P \} <-> Ensemble b /\ (P b).

Axiom AxiomIII : V {x}, Ensemble x -> J y, Ensemble y /\ (V z, z C x -> z € y).
Axiom AxiomIV : V {x y}, Ensemble x -> Ensemble y -> Ensemble (xUy).

Axiom AxiomV : V {f}, Function f -> Ensemble dom(f) -> Ensemble ran(f).

Axiom AxiomVI : V x, Ensemble x -> Ensemble (U x).

Axiom AxiomVII : V x, x # @ ->3Jy,yex/\NxNy=0Q.

Axiom AxiomVIII : J y, Ensemble y /\ @ € y /\ (V x, x € y -> xU[x] € y).

Axiom AxiomIX : 3 c¢, ChoiceFunction ¢ /\ dom(c) = u ~ [QD].

Except for the details of classification axiom-scheme, all the axioms above is similar to other
axiomatic set theory systems, but this one is the key that cannot be lacking. We can resolve Russell
Paradox, that is, proper class is not a set by the classification axiom-scheme. Firstly, we named Russell’s
class as R whose definition is as follows:

R = {x|x & x}

Supposing the R is a set. If R € R, we can get R is a set and R ¢ R by classification axiom-scheme.
If R ¢ R, we can get R € R by classification axiom-scheme and R is a set. Both situations above are
self-contradictory, therefore Russell’s class is not a set. In addition, it can be concluded that u is not a
set by this conclusion.

In our early formalization for MK, we had completed almost the all content, however, there are
some aspects need to be improved. Therefore, we upgrade the original system, and solve the remaining
problems in this work.

3.1. Optimization and Automation

In Rocq, the integration of proof tactics can be achieved through "Ltac", which is highly necessary
in the machine proof system for axiomatic set theory. This is because it can help reduce the proofs
related to sets in subgoals and provide concise instructions to replace lengthy commands, thereby
improving efficiency. The following briefly shows the handling of instructions, quantifiers, sets, and
other aspects in the code.

(*x Simplification for existential quantifier in the hypothesis *)
Ltac deHexl :=
match goal with
H: 3 x, 7P
|- _ => destruct H as []
end.

Ltac rdeHex := repeat deHexl; deand.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025

d0i:10.20944/preprints202511.2012.v1

(* Simplification for empty-class *)

Ltac eqext := apply AxiomI; split; intros.

(* Simplification for classification axiom-scheme *)

Ltac appA2G := apply AxiomII; split; eauto.

Ltac appA2H H := apply AxiomII in H as [].

Ltac PP H a b := apply AxiomII in H as [? [a [b []]]1]; subst.
Ltac appoA2G := apply AxiomII’; split; eauto.

Ltac appoA2H H := apply AxiomII’ in H as [].

(* Simplification for intersection and union *)
Ltac deHun :=
match goal with
| H: ?c € 7a U 7b
|- _ => apply MKT4 in H as [] ; deHun
| _ => idtac
end.
Ltac deGun :=
match goal with
| |- ?c € 7aU?b => apply MKT4 ; deGun
| _ => idtac
end.
Ltac deHin :=
match goal with
| H: ?c € 7a N 7b
|- _ => apply MKT4’ in H as []; deHin
| _ => idtac
end.
Ltac deGin :=
match goal with
| I- ?2c € ?a N ?b => apply MKT4’; split; deGin
| _ => idtac

end.

(* Simplification for empty-class *)
Ltac emf :=
match goal with
H: ?7a € @
|- _ => destruct (MKT16 H)
end.
Ltac eqE := eqgext; try emf; auto.
Ltac feine z := destruct (@ MKT16 z).
Ltac NEele H := apply NEexE in H as [].

(* Simplification for ordered pair *)
Ltac opel :=
match goal with
H: Ensemble ([?x,?7y])
|- Ensemble ?x => eapply MKT49cl; eauto
end.
Ltac ope2 :=
match goal with
H: Ensemble ([?x,?7y])
|- Ensemble 7y => eapply MKT49c2; eauto

50f19

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

6 of 19

end.
Ltac ope3d :=
match goal with
H: [7x,7y] € 7z
|- Ensemble ?x => eapply MKT49cl; eauto
end.
Ltac ope4 :=
match goal with
H: [7x,7y] € 7z
|- Ensemble 7y => eapply MKT49c2; eauto
end.
Ltac ope := try opel; try ope2; try ope3; try ope4.
Ltac xo :=
match goal with
|- Ensemble ([7a, 7b]) => try apply MKT49a
end.

Ltac rxo := eauto; repeat xo; eauto.

(* Simplification for mathematical induction *)

Ltac MI x := apply Mathematical_Induction with (n:=x); auto; intros.

Furthermore, enabling researchers to focus their proof ideas on the core part, we have extracted
many propositions with general significance and added numerous inferences with wide applica-
tions. There are 40 lemmas,16 corollaries, 50 facts, and 30 integrated proof strategies carrying out
simplification work. As a result, we reduce the overall code size to half of its original size.

3.2. Classification Axiom-Scheme for Ordered Pair

When classification axiom-scheme was first proposed in MK, it took a general form, so it should
naturally be applicable to various situations. However, when the elements in a class are ordered pairs
(i.e., there exist two variables), they must be handled reasonably in formalization; otherwise, the kernel
verification cannot be passed. In the early work, we newly defined a classifier for ordered pairs and
added 2 axioms following the example of classification axiom-scheme. The specific details of the
formalization are as follows.

Origin code:

Parameter Classifier_P : (Class -> Class -> Prop) -> Class.

Notation "\{\ P \}\" := (Classifier_P P) (at level 0).

Axiom AxiomII_P : V a b P, [a, b] € \{\ P \}\ <-> Ensemble [a, b] /\ (P a b).
Axiom Property P : V z P, z € \{\ P\} -> (3 ab, z=1[a, bl]) /\ z € \{\ P \}\.

It should be noted here that the statements of "Parameter" and "Axiom" are directly acknowledged
without the need for proof, therefore it is necessary to propose with caution. In this work, we prove the
additional three admitted propositions about the ordered pair and provide a better handling method
to address the weakness. The formalization of the classification axiom-scheme for ordered pair is
shown in the following code.

Updated code:

Notation "\{\ P \}\" :=\{ Az, I xy, z=1[x, y] /\ Pxy\}at level 0).
Fact AxiomII’ : V a b P, [a, b] € \{\ P \}\ <-> Ensemble [a, b] /\ (P a b).

The statements of “Fact” need to be proven, which means the description is rigorous. Hence we
can get the additional three axioms previously added is rational but unnecessary. These propositions
verified by Rocq ensure the non-contradiction of the entire system.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

7 of 19

3.3. Essential Content for Analysis

The formalization of analysis does not need to introduce the content related to the Axiom of
Choice and subsequent content concerning cardinal numbers in MK. Meanwhile, the machine proof
system of axiomatic set theory can be designed to be self enclosed and does not require the introduction
of additional content, hence we only retained previous content of Axiom of Choice but not including
Axiom of Choice. The following table lists the essential definitions and their corresponding symbols in

MK to formalize FA.
Table 1. Definitions and meanings in MK.
Rocq Symbol Meaning
ac A a is an element of the class A
Ensemble A A is a set
AUB {x|x € Aorx € B}
ANB {x|x € Aand x € B}
A~B {x|x € Aand x ¢ B}
%) empty class
U proper class
ACB A is a subclass of B
[a] {xlx =a}
[a, b] ordered pair (a,b)
Function f f is a function
dom(f) domain of f
ran(f) range of f
flx] value of f ata
Oridinal r r is an ordinal
R class of all ordinal numbers
Oridinal_Number r r is an ordinal number
fl(x) restriction of f on x
OnToF AB function F is from A to B
PlusOne n successor of n
W class of all integer numbers

For sake of understanding, the specific content of the definitions and their respective formaliza-
tions are presented as follows.
e The empty class @ is a class without any elements.

Definition @ := \{A x, x # x \}.
o Their proper class y is a class composed of all sets.
Definition p := \{A x, x = x \}.

e f is a function that means it is composed of ordered pairs, and if the first coordinate of any element
in f is fixed, its second coordinate is unique.

Definition Relation r :=V z, z € r -> 3 xvy, z= [x, yl.
Definition Function f :=
Relation £ /\ W xy z, [x, y] € £ > [x,2z] € £f >y =2).

o The domain of f is composed of first coordinates of all elements in f.

Definition Domain f := \{ A x, Iy, [x,y] € £ \}.
Notation "dom(f)" := (Domain f)(at level 5).

o The domain of f is composed of second coordinates of all elements in f.

Definition Range f := \{ A y, 3 x, [x,y] € £ \}.
Notation "ran(f)" := (Range f)(at level 5).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

8 of 19

o The value of f at x is the second coordinate of an ordered pair whose first coordinate is x, and f is
usually a function, otherwise it is meaningless.

Definition Value f x := N \{ A y, [x,y] € £ \}.
Notation "f [x 1" := (Value f x)(at level 5).

e [is an ordinal that means it satisfies the following two properties.
Full :Na€ F —-aCF
Connect :Vu,vn e F >u€ovV oveuvVo=u

Definition Connect r x :=
Vuv,ue€ex->vex->@ev) \V/xeuw \/ w=v).
Definition full x :=Vm, m € x ->m C x.

Definition Ordinal x := Connect E x /\ full x.

e F is an ordinal number that means F is not only an ordinal but also a set.
Definition Ordinal_Number x := x € R.

o The restriction of f on x means the subclass of f whose domain is x.

Definition Restriction f x := f N (x X u).
Notation "f | (x)" := (Restriction f x)(at level 30).

e function f is from A to B that means Dom(f) is A and Ran(f) is subclass of B.
Definition OnTo F A B := Function F /\ dom(F) = A /\ ran(F) C B.

e Successor of n is n U [n]

Definition PlusOne n := n U [n].

So far, all the fundamental content of the machine proof system of axiomatic set theory has been
completed. Next, the Recursion Theorem on natural numbers is derived through the Transfinite
Recursion Theorem in MK, which completes the interface between axiomatic set theory and analysis.

4. Key Theorems

The proof of Recursion Theorem is scattered in various literature, however, we don’t follow these
conventional approach. but rather want to start from some conclusions of ordinal number in MK.
We therefore use the Transfinite Recursion Theorem in MK to prove the Recursion Theorem, which
enables the recursive definition of natural number operations and then complete the formalization of
the analysis. We first present essential conclusion in MK and the formal proof details of Transfinite
Recursion Theorem and Recursion Theorem on natural numbers.

4.1. Preliminary Property

There are 4 propositions used in the proof, and these descriptions and formalizations are as
follows.

Property 1. If x is an ordinal E well-orders x.
Property 2. R is and ordinal and R is not a set.
Property 3. Each E-Section of R is an ordinal.

Property 4. Let f be a function such that Dom(f) is an ordinal and f(u) = g(f|u) for uin Dom(f). If h is
also a function such that Dom(h) is an ordinal and h(u) = g(h|u) for u in Dom(h), then h C for f C h.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

90f19

Property MKT107 : V x, Ordinal x -> WellOrdered E x.

Property MKT113 : Ordinal R /\ ~ Ensemble R.

Property MKT114 : V x, Section x E R -> Ordinal x.

Property MKT127 : V {f h g},
Function f -> Ordinal dom(f) -> (V u, u € dom(f) -> f[u] = glfl(W]1) ->
Function h -> Ordinal dom(h) -> (V u, u € dom(h) -> hl[ul gl (1) ->
hCf\/fCh.

4.2. Transfinite Recursion Theorem

Theorem 1. For each g there is a unique function f such that the Dom(f) is an ordinal and f(x) = g(f|x)
for each ordinal number.

The formalization of the theorem is expressed directly in Rocq as follows:

Theorem TfRecursion : V g, d! f,
Function f /\ Ordinal dom(f) /\ (V x, Ordinal_Number x -> f[x] = glfl|(x)]).

Proof. Uniqueness is easy to prove, and the following contents focus on existence. We first construct a
ordered pair class f as follows, and prove that f is exactly what is required.

f={(u,v) | u € Rand there is a function % such that its domain is an ordinal, h(z) = g(h|z) for
z in the domain of h and (u,v) € h }

Let (1,v1), (4, v3) be the elements of f, then there exists functions /1, i, with domain ordinal, that
satisfy hy(x) = g(h1|x) and hy(x) = g(ha|x) for any ordinal number x and (u,v1) € hy, (u,v3) € hy.
According to Property 4, we have h; C hy or hy C hy. For the former case i1 C hy we can get that
(u,v1) € hy then v1 = v, since hy is a function. For the latter case, the same reasoning applies, so we
have v; = vy; thus, f is a function.

According to Property 3, Dom(f) is an ordinal if Dom(f) is an E-section of R. As the construction
of f, Dom(f) is a subclass of R. We can get E well-orders R by Property 1 and Property 2.

Then we discuss ordinal number x in two cases.

Case 1 (x € Dom(f)): We have (x, f(x)) € f in this case. Next, it can be inferred that x € R by the
construction of f, and there is a function &, whose properties are described above. We can get i C f
then h(x) = f(x) and h|x = f|x. Hence this conclusion is proved in this case.

Case 2 (x ¢ Dom(f)): We have (x, f(x)) ¢ f in this case. This case only requires proof of g(f) = u,
thatis f ¢ Dom(g). Assume to the contrary that it is. Supposing f € Dom(g), there is a E-first member
y of R Dom(f), and then we construct a new class h = f U {y, g(f)}. It is not difficult to prove that i
is a function and its domain is an ordinal. In addition, we get that h(z) = g(h|z) for z € Dom(h) so
h C f, which is in contradiction with y ¢ Dom(f). Therefore, this theorem is proven. [

4.3. Recursion Theorem on Natural Numbers

Theorem 2. A isaset, a is the element of A, and function F is from A to A, then there is a unique function h
which is from W to A, such that h(®) = aand Yn € W,h(n+ 1) = F(h(n))

The formalization of the theorem is expressed directly in Rocq as follows:

Theorem RecursionW: V F A a, Ensemble A -> a € A -> OnTo F A A ->
d!' h, OnTo h W A /\ h[®@] = a /\ Vn, n € W -> h[PlusOne n] = F[h[n]].

Proof. Uniqueness is easy to prove, and the following contents focus on existence. We first construct a
ordered pair class g as follows.

¢ = {(u,v)|[(u = @,v = a)V Dom(u) is successor of natural number z and v = F(u(z))} Let
(u,v1), (4, v2) be the elements of . For u = @, v1 = v, = a, if not, then it cause the contradiction that
@ is equal to the successor of a class. For another case, then there exists integer numbers 71, 1 whose

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

10 of 19

successors of the two are equal, then n; = n,. Moreover, we have v; = F(u(n1)) = F(u(ny)) = vp, so
g is a function.

By the construction of g, we can get that Ran(g) C A and any function f, whose domain is an
ordinal, has the following properties:

Vu € W,u € Dom(f), f(u) € A= g(fl(u+1)) = F(f(u))

According to Theorem 1, there is a function &, whose domain is an ordinal, such that h(x) = g(h|x)
for every ordinal number x. We can prove @ € Dom(h) C W, and further we get Dom(h) = W by
Mathematical Induction. By the properties of &, we can obtain Ran(h) C A. Atlast, by the construction
of gwe can get Vn € W, h(n+1) = F(h(n)). Hence h is the function desired in the theorem. [

The formalizations of Transfinite Recursion Theorem and Recursion Theorem on natural numbers
have completed, and the specific details of formal proof can be found in the appendix.

5. Machine Proof System of Analysis

The machine proof system of analysis is strictly following Landau’s "Foundations of Analysis".
Starting from the Peano axioms, natural numbers (positive integers), fractions (positive), and rational
numbers/integers (positive) are defined in order. The positive real numbers (called "Cut" in this book)
are defined by Dedekind cut, and furthermore, adding negative real numbers and 0 to construct all
real numbers. Finally, defining complex numbers by real number pairs and then the whole number
system theory is realized naturally. Overall, "Foundations of Analysis" defines real numbers through
construction rather than a series of axioms, and introduces the Dedekind fundamental theorem instead
of admitting it as an axiom. The formalization of this book is sufficient as the basis in most areas of
analysis.

5.1. Natural Nnumbers

To unify with it, we first define 1" and the set of positive natural numbers, which are formally
described as follows.

Definition One := PlusOne @.
Definition Nat := W ~ [@].

The successor function of positive natural numbers is formally described as follows:

Definition Nsuc := \{\ A u v, u € Nat /\ v = PlusOne u \}\.
Notation " xT " := Nsuc[x](at level 0).

This further proves the mathematical induction method of positive natural numbers, which is
formally described as follows:

Theorem MathInd : V P : Class -> Prop,
POne -> (Vk, k € Nat ->Pk ->Pkt) -> (Vn, n € Nat -> P n).

Finally, provide a formal proof of the recursion theorem for positive natural numbers, as well as a
function for constructing recursive operations.

Theorem RecursionNex : {F A a}, Ensemble A -> a € A -> OnTo F A A ->
J h, OnTo h Nat A /\ h[One]l = a /\ ¥V n, n € Nat -> h[n™] = F[h[n]].
Theorem RecursionNun : V hl h2 F A a,
OnTo hl Nat A -> hi[One] a->(Vn, n€ Nat -> hi[nt]
OnTo h2 Nat A -> h2[Onel a->(Vn, n€ Nat -> h2[n']
Definition NArith F a :=
N \{ A h, OnTo h Nat Nat /\ h[One] = a /\ ¥V n, n € Nat -> h[nt] = F[h[n]] \}.

F[hi[n]]l) ->
F[h2[n]]) -> hl = h2.

By using the above function, one only needs to provide a function from Nat to Nat, as well as a
positive natural number, to obtain the corresponding recursive function, because recursive functions

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

11 0f19

are unique. From this, we can proceed to related contents of the natural number part. Starting with the
formal proof of the Peano axioms as follows.

Theorem FAA1 : One € Nat.

Theorem FAA2 : V xy, x € Nat ->y € Nat -> x =y -> x" = yT.

Theorem FAA3 : V x, x € Nat -> x <> One.

Theorem FAAA : V x y, x € Nat -=> y € Nat -> x* =y > x = y.

Theorem FAA5 : V M, M C Nat -> One € M -> (VY u, u € M -> u" € M) -> M = Nat.

The formal definition of natural number addition and its correctness verification are as follows.

Definition addN := A m, NArith Nsuc m™T.
Notation " x + y " := (addN x) [y].
Fact addnT : V {n}, n € Nat ->
OnTo (addN n) Nat Nat /\ n + One =nt /\ Vm, m € Nat ->n +m" = (n + m)*.

Furthermore, we provide the formal definition of natural number subtraction and verify its
correctness.

Definition minN x y := N \{ A 2z, z € Nat /\ x =y + z \}.

Notation " x - y " := (minN x y).

Fact MinNUn : V {x y 2}, x € Nat -> y € Nat -> z € Nat ->x +y =2 ->y =z - x.
Fact MinNEx : V {x y}, y > x -> x € Nat -> y € Nat -> x + (y - x) = y.

Finally, we provide the formal definition of natural number multiplication and verify its correct-
ness.

Definition mulN := A m, NArith (addN m) m.
Notation " x - y " := (mulN x)[y](at level 40).
Fact mulNT : V {n}, n € Nat ->
OnTo (mulN n) Nat Nat /\n - One =n /\ Vm, m € Nat -=>n - ot = (0 - m) + n.

5.2. Fractions and Rational Numbers

Fractions are composed of ordered pairs of natural numbers, that is, fractions set is the cartesian
product of the set of natural numbers with itself. Related definitions and properties of fractions are
formally described as follows.

(* Fractions set, Numerator and Denominator *)
Definition FC := Nat X Nat.
Notation " p ! " := (First p)(at level 0) : FC_scope.

Notation " p 2 " := (Second p)(at level 0) : FC_scope.

(* Relation(™,>,<) *)

Definition eqv f1 £f2 :

(£11 - £22)%Nat = (£2! - £12)%Nat.

Notation " f1 = £2 " := (eqv f1 £2): FC_scope.
Definition gtf f1 £2 := (f1! - £22 > £21 . £12)%Nat.
Notation " x > y " := (gtf x y) : FC_scope.
Definition 1tf f£1 £2 := (f1l - £22 < £2! . £12)YNat.
Notation " x <y " := (1tf x y) : FC_scope.

(* Operation(+,-,-,+) *)
Definition addF f1 £f2 := [f1l . £22 + £21 . £12, £12 . £22]%Nat.

Notation "f1 + £2" := (addF f1 £f2) : FC_scope.

Definition minF £1 £2 := [(£1' - £22) - (£2' - £12), £12 . £22]%Nat.
Notation "f1 - £2" := (minF f1 £f2) : FC_scope.

Definition mulF £1 £2 := [£1! . £21, £12 . £22]YNat.

Notation " f1 - £2 " := (mulF f1 £2)(at level 40) : FC_scope.
Definition divF f1 £2 := f1 - ([£22, £211).

Notation "f1 / £2" := (divF f1 £2) : FC_scope.

r(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

12 of 19

A rational number is a class composed of all equivalent fractions of a certain fraction. Related
definitions and properties of rational numbers are formally described as follows.

(* Rational Numbers *)

Definition rC := \{A S, I F, Fe FC /\ S=\{A f, f € FC /\ f ~ F \} \}VYFC.

(* Relation(>,<) *)
Definition gtr rl r2 :=V f1 £f2, f1 € r2 -> f2 € r1 -> (£2 > £f1)%FC.

Notation " x > y " := (gtr x y) : rC_scope.
Definition 1ltr rl1 r2 :=V f1 f2, f1 € r1 -> f2 € r2 -> (f1 < £2)JFC.
Notation " x < y " := (ltr x y) : rC_scope.

(* Operation(+,-,-,+) *)
Definition addr r1l r2 :=

\{Af, £feFC/\ 3Jf1lf2, f1 € r1 /\ £2 € r2 /\ £ ~ (f1 + £2) \}/FC.
Notation "rl + r2" := (addr rl r2) : rC_scope.
Definition minr rl r2 :=

\{Af, £feFC/\ 3Jfl f2, f1 € r1 /\ £f2 € r2 /\ £ ~ (f1 - £2) \}JFC.
Notation " rl - r2 " := (minr rl r2) : rC_scope.
Definition mulr rl r2 :=

\{ A f, £feFC/\3Jflf2, f1 € r1 /\ f2 € r2 /\ £ ~ (f1 - £2) \}/FC.
Notation " rl - r2 " := (mulr rl r2)(at level 40) : rC_scope.
Definition divr rl r2 :=

\{ A £, £fe€FC/\ J£f1l f2, f1 € r1 /\ £2 € r2 /\ £ ~ (£f1 / £2) \}JFC.
Notation " rl / r2 " := (divr rl r2)(at level 40) : rC_scope.

This part presents the definition of fractions and establishes a direct connection with rational
numbers through the concept of equivalence classes. Additionally, we prove the Archimedean property
for rational numbers.

5.3. Cuts

Landau’s definition of Cuts(positive real numbers) refers to Dedekind cut. A rational number set
M is a the cut (positive real number), if it satisfies these properties as follows:
(1) M is not empty and there exists rational numbers don’t belong to M;
(2) M contains all rational numbers smaller than any element in M;
(3) With every number it contains, the M also contains a greater one.
Related definitions and properties of cuts are formally described as follows.

(* Cuts, Lower Number and Upper Number *)

Definition CC :=\{A S, SCrC/\ 8<>® /N Jr, rerC/\ " res /\
Wrir2, r1 €S >r2¢c€rC->r2<rl1 ->r2e¢e38)/\
(Wrl, r1 € S ->3r2, r2 € S /\ r1 < r2) \}rC.

Definition Num_ L r ¢ :=r € c.

Definition Num_U r c := r € c.

(* Relation(>,<) *)
Definition gtc ¢l ¢2 := 3 r, Num L r c¢1 /\ Num_U r c2.

Notation " x > y " := (gtc x y) : CC_scope.
Definition 1tc ¢l ¢2 := 3 r, Num_L r ¢c2 /\ Num_U r ci.
Notation " x <y " := (ltc x y) : CC_scope.

(* 0peration(+,—,-,l,4%,\/) *)
Definition addc cl c2 :=
\{A ¢, 3 r1 r2, Num_ L r1 c1 /\ Num_L r2 c2 /\ ¢ = (r1 + r2) \}4rC.
Notation "cl + c2" := (addc cl c2) : CC_scope.
Definition minc c1 ¢c2 := \{A r, 3 r1 r2,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

13 of 19

Num_L rl c1 /\ r2 € rC /\ Num_U r2 c2 /\ r2 < r1 /\ r = (r1 - r2) \})rC.

Notation " x - y "

:= (minc x y) : CC_scope.
Definition mulc cl c2 :=

\{A ¢, 3 r1 r2, Num L r1l c1 /\ Num_ L r2 c2 /\ c = (rl1 - r2)%xC \}.
Notation " ¢l - ¢2 " := (mulc cl c2)(at level 40) : CC_scope.
Definition recC ¢ := \{ A r, r € rC /\

d r0, r0 € rC /\ Num_U r0O ¢ /\ (T LNU r0 ¢c) /\ r = (Ntor One) / r0) \}.

Notation " ¢l / ¢2 " := cl1 - (recC c2).(at level 40) : CC_scope.
Definition Sqrt_C ¢ := \{ A r, r € rC /\ (rtoC r) - (rtoC r) < c \}.
Notation " /¢ " := (8qrt_C c)(at level 0) : CC_scope.

This part presents the construction method of cuts, moreover, we prove the existence of irrational

numbers(v/2).

5.4. Real Numbers

Every cut is a positive real number, and each positive real number corresponds to a negative
real number. At the same time, we define the 0 distinct from positive real number and negative real
number, then the specific implementation is as follows.

(1) @ represents 0.
(2) (u,0) represents positive real number, where u is a cut.
(3) (0, u) represents negative real number, where u is a cut.
Related definitions and properties of real numbers are formally described as follows.

(* 0, positive, negative, real numbers class and value of real numbers *)
Definition zero := @.

Notation " O " :
Definition PRC := \{\ A u v, u € CC /\ v = 0 \}\.
Definition NRC := \{\ A u v, u=0/\ v € CC \}.
Definition RC := PRC U [0] U NRC.

Notation " p 1 " (First p)(at level 0) : RC_scope.
(Second p) (at level 0) : RC_scope.

zero : RC_scope.

Notation " p 2w

(* Relation(>,<) *)
Definition gtR rl r2 := (r2 € PRC /\ r1 € PRC /\ (2! < rih)%cc) \/
(r2 = 0 /\ r1 € PRC) \/ (r2 € NRC /\ rl1 € PRC) \/
(r2 € NRC /\ r1 = 0) \/ (r2 € NRC /\ r1 € NRC /\ (r1? < r22)%cC).
Notation " x > y " := (gtR x y) : RC_scope.
Definition 1tR r1l r2 := (r1 € PRC /\ r2 € PRC /\ (r1! < r2h)¥%cc) \/
(r1t =0 /\ r2 € PRC) \/ (r1 € NRC /\ r2 € PRC) \/
(r1 € NRC /\ r2 = 0) \/ (r1 € NRC /\ r2 € NRC /\ (r2? < r12)%cC).
Notation " x <y " := (1tR x y) : RC_scope.

(* Uperation(||,+,—,'r%,\/) *)
Definition AbsR := \{\ A r z, r € RC /\
(r € NRC > z = [r?,0]) /\ (r €EPRC >z =1) /\ (r =0 -> z = 0) \}\.
Notation " | X | " := (AbsR[X]) (at level 10) : RC_scope.
Definition addR a := \{\ A b c, b € RC /\
(a € PRC -> b € PRC -> ¢ = [al + b',0]) /\
(a € NRC -> b € NRC -> ¢ = [0, a> + b%]) /\ (a =0 -> c =b) /\
(b=0->c=2a) /\ (@a €PRC ->b € NRC -> (al =% -> c =0) /\
(gtc al b2 -> ¢ = [a! - b2,0]) /\ (Qtc a' b2 -> ¢ = [0,b% - all)) /\
(a € NRC -> b € PRC -> (a2 = bl -> ¢ = 0) /\
(gtc a® bl -> ¢ = [0,a% - b']) /\ (Itc a? b' -> c = [b' - a%,01)) \}\.
Notation "x + y" := ((addR x) [y]) : RC_scope.
Definition minR := \{\ A a b, a € RC /\

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

14 of 19

(a € PRC -> b = [0,a!]) /\ (a € NRC -> b = [a%,0]) /\ (a =0 -> b = 0) \}\.

Notation "- x" := (minR[x]) : RC_scope.

Definition MinR x y := x + (-y).

Notation "x - y" := MinR x y : RC_scope.

Definition mulR a := \{\ A b c, b € RC /\ (a € PRC -> b € PRC -> ¢ = [al-bl,0]) /\
(a € NRC -> b € NRC -> ¢ = [a?b?,0]) /\ (a € PRC -> b € NRC -> ¢ = [al-b?,0]) /\
(a € NRC -> b € PRC -> ¢ = [a2b1,0]) /AN (@=0 ->c=0) /\ (b =0 ->c =0) \}.

Notation " x - y " := ((mulR x) [y])(at level 40) : RC_scope.

Definition divR a := \{\ A b ¢, b € RC /\ b <> 0 /\

(b € PRC -> ¢ = a - [(recC b!),0]) /\ (b € NRC -> ¢ = a - [0, (recC b2)1) \}\.

Notation " x / y " := ((divR x) [y]) : RC_scope.

Definition Sqrt_R := \{\ A a b, a € RC /\ ~ a € NRC /\

(a € PRC -> b = [(/ (a!))%cC, 01) /\ (a = 0 -> b= 0) \}\.

Notation " \/ a " := (Sqrt_R [a])(at level 0): RC_scope.

This part presents how to extend from cuts to real numbers and further realize their various order
relations and operations. Meanwhile, we prove the Dedekind fundamental theorem in last.

5.5. Complex Numbers

Complex numbers are composed of ordered pairs of real numbers that is similar to the relationship
between fractions and natural numbers. Related definitions and properties of fractions are formally
described as follows.

(* Complex numbers set, Real part and Imaginary part *)
Definition c¢C := RC X RC.

Notation " p I " := (First p)(at level 0) : cC_scope_.
Notation " p 2 " := (Second p)(at level 0) : cC_scope.

(* Operation(+,-,-,=,5, 1) %)

Definition addC x y := [x! + y!, %2 + y2]%RC.

Notation "x + y" := (addC x y) : cC_scope.

Definition minC x y := [x! - y!, %% - y2]%RC.

Notation " x - y " := (minC x y) : cC_scope.

Definition mulC x y := ! - y1 - %% yz, %! - y2 + x2 - yl]%RC.
Notation " x - y " := (mulC x y) : cC_scope.

Definition Out_1 x := ((x!) / (Square_cC x))%RC.
(- ((x?) / (Square_cC x)))%RC.

[(yl) / (Square_cC y), (-x2)/ (Square_cC x)] - x.

Definition Out_2 x :

Definition DivC x y:

Notation " x / y " := (DivC x y) : cC_scope.
Definition Conj x := [x', (-x?)]%RC.
Notation " x ~— " := (Conj x)(at level 0) : cC_scope.

Definition Abs_cC x := \/((xl x4 (2 x2)).

Notation " | x | " := (Abs_cC x) : cC_scope.

All content of the complex numbers part has also been fully formalized, but we will not elaborate
on it in detail here because of space limitations. Researchers who are interested can refer to our source
code for more information.

6. Conclusions and Future Work

We completed the formalization of the machine proof system of analysis based on Morse-Kelley
axiomatic set theory. Firstly, we introduce the machine proof system of Morse-Kelley axiomatic set
theory that is concise while remaining comprehensive enough for analysis. This content covers not only
our formalization work but also highlights the distinctions and advantages of our approach relative
to prior research. Next, we provide the proof for the Transfinite Recursion Theorem key conclusion
within the MK system. Furthermore, leveraging this theorem, we prove the Recursion Theorem for

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

150f 19

natural numbers, the critical result for defining operations on natural numbers. Finally, we present the
implementation details of the machine proof system designed for analysis, which encompasses natural
numbers, fractions, cuts, real numbers and complex numbers. This system adheres to the framework
of Landau’s "Foundations of Analysis" and adopts MK as its foundational descriptive language. All
proofs undergo verification in Rocq to ensure rigor and correctness, and we supplement any missing
proof details to enhance the formal system’s completeness.

In the future, we will complete the formalization of deeper contents of this theory such as calculus,
point set topology and abstract algebra. Meanwhile, We will complete the extension to previous work.
Furthermore, this work can be promoted to undergraduate teaching to help students better understand
the specific contents on axiomatic set theory and mathematical analysis.

Author Contributions: Conceptualization, Y.G.; methodology, Y.G. and Y.F; software, Y.F; validation, Y.F.; formal
analysis, Y.G. and Y.F,; investigation,Y.G. and X.M.; resources, Y.F.; data curation, Y.G.; writing—original draft
preparation, Y.G. and Y.F; writing—review and editing, Y.G and Y.F,; visualization, X.M.; supervision, Y.F; project
administration, X.M.; funding acquisition, Y.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Natural Science Foundation (NNSF) of China under Grant
62388101 and 62476028.

Acknowledgments: We are grateful to the anonymous reviewers, whose comments greatly helped to improve the
presentation of our research in this article.

Conflicts of Interest: The authors declare no conflict of interest.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

16 of 19

Appendix A.

The formal proof of Transfinite Recursion Theorem is shown in Figure Al.

1 Theorem TfRecursion : V g, 3! £,

2 Function £ /\ Ordinal dom(f) /\ (V x, Ordinal Number x -> f[x] = g[f] (x)]).
3 Proof.

4 intros. set (£:=\{\ A uwv, u € R /\ (3T h, Function h /\ Ordinal dom(h) /\
5 (V¥ z, z € dom(h) -> h[z] =g [hI(z)]) /\ [u,v] € h) \}\).

6 assert (Function f).

7 { split; [unfold £; auto|]; intros. appoA2H H. appoA2H HO.

8 destruct H1 as [? [h1]], H2 as [? [h2]]. rdea.

9 destruct (MKT127 H3 H8 H9 H4 HS5 H6); [eapply H3|eapply H4]; eauto. }

10 assert (Ordinal dom(f)).

11 { apply MKT114; unfold Section; rdeaG; intros.

12 - red; intros. appA2H HO. destruct El. appoAZH Hl; tauto.

13 - apply MKT107, MKT1ll3a.

14 - appA2H Hl. destruct H3. appoA2H H3. destruct H4 as [? [h]]. rdea.
15 apply Property dom in H8. appoA2E H2. eapply H6 in HY9; eauto.

16 apply Property Value in H9; auto.

17 appA2G. exists h[u]. appoA2G. split; eauto. }

18 assert (Kl1: ¥V x, x € dom(f) -> £[x] = g[£](x)]); intros.
19 { appA2H Hl. destruct H2. appoA2H H2. destruct H3 as [? [h]]. rdea.
20 assert (h C £f); try red; intros.

21 { New H8. rewrite MKT70 in HB8; auto. PP HB a b. New H9.
22 apply Property dom in H9. apply MKT1ll in H9; auto.
23 appoA2G; split; [appA2G;ope|eauto]. }

24 apply Property dom in H7. rewrite <- (subval H8), H6; auto. f£_equal.
25 egext; appAZE HY9; destruct H10; appA2G; split; auto.

26 New H10. apply H in H10 as [? []]. subst. appoA2H HIl.

27 destruct Hll. eapply H5 in H1l; eauto.

28 rewrite MKT70 in H12; auto. appoA2H H12. subst.

29 erewrite <- subval; eauto. apply Property Value; auto. }

30 exists f. rdeaG; auto. intros. TF (x € dom(f)); auto.

31 assert (K2: V z, ~ z £ dom(f) -> Ordinal z -> £|(z) = £); intros.
32 { destruct (ThllQOano E4 HQ); try tauto. apply frebig; auto. }

33 rewrite K2, MKT69a; auto; [|applA2H H1l; auto]. TF(f £ dom(g)).

34 - azsert (3 y, FirstMember y E (R~dom(f))).

35 { apply (MKT107 MKT113a); red; intros.

36 - appA2H E4; tauto.

37 - intro. feine x. rewrite <- H4. auto. }

38 destruct H4 as [y []]. apply MKT4' in H4 as []. appA2H H6.

39 apply MKT69b in H3; auto. set (h:=fU[[y,gl[£f]]1]).

40 assert (h C f); try red; intros.

41 { appA2H HB8. deor; auto. eins H9. appoA2G. split; auto.

42 assert (Function h). { apply fupf; auto. }

43 assert (Ordinal dom(h)).

44 { apply MKT114; unfold Section, h; rdeaG; intros.

45 - red; intres. rewrite undom in H10. deHun.

46 + appA2G. eapply MKT1ll; eauto.

47 + rewrite domor in H10; auto. eins H10.

48 - apply MKT107, MKT1l3a.

49 - rewrite undom in Hll|-*. deGun. deHun.

50 + left. appoAZH H12. eapply E(0; eauto.

51 + rewrite domor in H1ll; auto. eins H11l.

52 appoA2H H12. left. Absurd. destruct (H5 u); auto. appoA2G. }
53 exists h. rdeaG; auto; try appA2G; unfold h; intros.

54 rewrite undom in Hll; auto. deHun.

85 - rewrite uvinf; eauto. unfold f. rewrite fuprv, K1, auto.
56 intro. apply H7. eapply HO;, eauto.

57 - rewrite domor in H1l; auto. eins Hll. rewrite uvinp; auto.
58 appA2H H4. rewrite fuprv, K2; aute. apply MKTI101. }

59 elim H7. eapply subdom; eauto. appA2G. exists g[f]. appA2G.
60 - rewrite MKT69a; auto.

61 Qad.

Figure A1. Formal proof of Transfinite Recursion Theorem.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

17 of 19

Appendix B.

The formal proof of Recursion Theorem on natural numbers is shown in Figure A2.

1Theoren RecursionW : V {F A a), Ensemble A ->a EA->OnTe FAA ->

2 31 h, OnTohw A /\ h[é] =a /\ Vn, n € ¢ -> h[PlusOne n] = F[h[n]].

3 Proof.

4 intros. destruct Hl as [?[]].

set (g :=\{\Auv, ((u=% /\v=a) \/ (T z, z €a/\ dom(u)=PlusOne z /\ v=F[ulz]1)) \}\).
Local Ltac 1l := deand; deor; deand; subst; auto.

assert (Kl: Function g).

{ unfold g; split; intros; auto. appoA2E H4. appoAZKE HS. 1l1.

9 - destruct H6. deand. rewrite domem in H6. destruct (Empl H6).

10 - destruct H7. deand. rewrite domem in H6. destruct (Empl H6).

11 - destruct H6, H7. deand. subst. rewrite H7 in H9.

12 apply MKT136 in HY; subst; aute. }

13 assert (K2: ran(g) C 3).

14 { red; intros. appA2E H4. destruct HS. appoA2H HS.

15 destruet H6. 11. destruct H6. deand. subst.

16 apply H3, Property dm, MKT6%'; auto. }

17 assert (K3: V £ u, Function £ -> Ordinal dom(f) -> u € @

18 ->u € dom(f) -> £[u] € A -> g[f] (PlusOne u)] = F[£f[u]]).

19 intros. subst. apply Property dm in EB; auto.

20 symmetry. apply Property Fun; auto.

21 appoA2G; [rxo; apply free; eauto|]. rewrite odp; auto.

22 right. exists u. rewrite odv; auto. }

23 assert (K4 : Vu uca-> Ordinal Number u).

24 | intros. appA2G. eapply MKT1ll; eauto. }

25 destruct (MKT128a ¢) as [h]. deand.

26 assert ([#,a] € h).

27 { rewrite MKT70; auto. appoA2G. rewrite H6, frem; auto. apply Property Fun; auto. appoR2G. }
28 assert (dom(h) C w).

29 { destruct (Thll0ano Property W H3); auto.

30 assert (Ordinal Number o). { appA2G. } apply H6 in HO.

Sl assert (h|(0) € dom(g)).

32 { apply MKT69b',6 MKT19. rewrite <- H9. apply MKT19, MKT69b; auto. }

33 appAZH H10. destruct H1l. appoAZH H11. 11.

34 + destruct (@ MKT16 [%,a]). pattern ¢ at 2. rewrite <- H12. appA2G. split; aute. appoA2G.
35 + destruct H12. deand. subst. rewrite MKT126b in H12;

36 auto. New HB8. apply H5 in HB. apply MKT30 in HS8.

37 apply MKT134 in H2. rewrite H8 in H12. rewrite H12 in H2. destruct (MKT101 _ H2). }
38 assert (dom(h) = a).

39 { apply MKT137; intres; auto.

oo -1 o i

—

40 - eapply Property dom; eauto.

41 - New HY. appA2H HY. destruct H1l.

42 assert (h|(u) € dom(g)). { apply MKT69b'. rewrite <- H6; auto. apply MKT6%b; auto. }
43 apply MKT6Sb'. rewrite H6; auto. New H12. apply Property dm, K2 in H12; auto.

44 rewrite <- H2, <- K6 in H12; auto. subst. New H12.

45 apply Property dm in H12; auto. rewrite K3; eauto. }

46 apply Property Fun in H7; auto. symmetry in H7.

47 assert (ran(h) C A).

48 { red; intros. appA2H H10. destruct H11. New HI1.

49 apply Property dom in H12. rewrite H9 in H12. apply Property Fun in H1l; auto. subst.
50 apply Mathematical Induction with (n := X); auto; intros.

51 New H2. rewrite <- HS in H2. rewrite H6, K3; auto. apply H3, Property dm; auto. }
52 assert (V u, u € @ -> h[PlusOne u] = F[h[u]]).

53 { intros. New Hll. rewrite <- H9 in H1I.

54 rewrite H6, K3; auto. apply H10, Property dm; auto. }

35 exists h. unfold OnTo. aute.

56 Qad.

Figure A2. Formal proof of Recursion Theorem on natural numbers.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

18 of 19

References

1. Beeson, M. Mixing computations and proofs. |. Formaliz. Reason. 2016, 9, 71-99.

2. Van Benthem Jutting, L.S. Checking Landau’s "Grundlagen" in the AUTOMATH System. Ph.D. Thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands, 1977.

3. Bertot, Y,; Castéran, P. Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of Inductive
Constructions; Texts in Theoretical Computer Science; Springer: Berlin/Heidelberg, Germany, 2004.

4. Bernays, P; Fraenkel, A. A. Axiomatic Set Theory. North Holland Publishing Company:Amsterdam,
Netherlandish, 1958.

5. Boldo, S; Lelay, C.; Melquiond, G. Coquelicot: A User-Friendly Library of Real Analysis. Math. Comput. Sci.
2015, 9, 41-62.

6. Brown, C.E. Faithful Reproductions of the Automath Landau Formalization. Technical Report. 2011.
Available online: https://www.ps.uni-saarland.de/Publications/documents/Brown2011b.pdf (accessed on
28 July 2018).

7. Chlipala, A. Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq Proof Assistant;
MIT Press: Cambridge, MA, USA, 2013.

8. The Coq Development Team. The Coq Proof Assistant Reference Manual (Version 8.9.1). 2019. Available
online: https://coq.inria.fr/distrib/8.9.1/refman/ (accessed on 4 August 2019).

9. Courant, R;; John, F; Blank, A. A,, et al. Introduction to Calculus and Analysis; Interscience Publishers: New
York, USA, 1965.

10. Coquand, T.; Paulin, C. Inductively Defined Types. In Lecture Notes in Computer Science, Proceedings of the
International Conference on Computer Logic (COLOG 1988), 12-16 December 1988; Springer: Berlin/Heidelberg,
Germany, 1990; Volume 417, pp. 50-66.

11. Coquand, T.; Huet, G. The calculus of constructions. Inf. Comput. 1988, 76, 95-120.

12. Cruz-Filipe, L.; Marques-Silva, J.; Schneider-Kamp, P. Formally verifying the solution to the Boolean
Pythagorean triples problem. J. Autom. Reason. 2019, 63, 695-722.

13. Fu, Y,; Yu, W. A Formalization of Properties of Continuous Functions on Closed Intervals. I Lecture Notes in
Computer Science, Proceedings of the International Congress on Mathematical Software(ICMS 2020), Braunschweig,
Germany, 13-16 July 2020; Bigatti A., Carette J., Joswig M., de Wolff T., Eds; Springer: Cham, Switzerland,
2020; Volume 12097, pp. 272-280.

14. Fu, Y,; Yu, W. Formalizing equivalence between real number completeness and intermediate value theorem.
China Automation Congress(CAC 2021), Beijing, China, 22—-24 October 2021; Volume 12097, pp. 5337-5340.

15. Fu, Y; Yu, W. Formalizing Calculus without Limit Theory in Coq. Mathematics 2021, 9, 1377,
https://doi.org/10.3390/math9121377.

16. Gonthier, G.; Asperti, A.; Avigad, J.; Bertot, Y.; Cohen, C.; Garillot, F; Roux, S.L.; Mahboubi, A.; O’Connor,
R.; Biha, S.O,; et al. Machine-checked proof of the Odd Order Theorem. In Lecture Notes in Computer
Science, Proceedings of the Interactive Theorem Proving 2013 (ITP 2013), Rennes, France, 22-26 July 2013; Blazy,
S., Paulin-Mohring, C., Pichardie, D., Eds; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7998, pp.
163-179.

17. Geuvers, H.; Niqui, M. Constructive reals in Coq: Axioms and categoricity. Types for Proofs and Pro-
grams(TYPES 2000), Durham, UK, 8-12 December, 2000; Goos, G., Hartmanis, J., van Leeuwen, J., Eds; Springer:
Berlin/Heidelberg, Germany, Volume 2277, pp. 79-95.

18. Gonthier, G. Formal proof—The Four Color Theorem. Not. Am. Math. Soc. 2008, 55, 1382-1393.

19. Grabiner,].V. Who gave you the epsilon? Cauchy and the origins of rigorous calculus. Am. Math. Mon. 1983,
90, 185-194.

20. Grimm, J. Implementation of Bourbaki’s mathematics in Coq: Part two, from natural to real numbers. Journal
of Formalized Reasoning. 1983, 90, 185-194.

21. Gu, R;Shao, Z.; Chen, H., et al. CertiKOS: An Extensible Architecture for Building Certified Concurrent OS
Kernels. Proc of the USENIX Symp. Operating Syst. Design Implement,Savannah, GA, USA, 2-4 November,2016,
USENIX Association: Berkeley, USA, 2016; pp. 653-669.

22. Guidi, E Verified Representations of Landau’s "Grundlagen" in the lambda-delta Family and in the Calculus
of Constructions. J. Formaliz. Reason. 2016, 8, 93-116.

23. Halmos, P. R. Naive Set Theory. Springer-Verlag: New York, USA, 1974.

24. Hales, T. Formal proof. Not. Am. Math. Soc. 2008, 55, 1370-1380.

25. Hales, T.; Adams, M.; Bauer, G.; Dang, T.D. A Formal Proof of the Kepler Conjecture. Forum of Mathematics, Pi;
Cambridge University Press: Cambridge, UK, 2017; Volume 5, pp. 1-29.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.ps.uni-saarland.de/Publications/documents/Brown2011b.pdf
https://coq.inria.fr/distrib/8.9.1/refman/
https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 November 2025 d0i:10.20944/preprints202511.2012.v1

19 of 19

26. Harrision, J. Formal proof—Theory and practice. Not. Am. Math. Soc. 2008, 55, 1395-1406.

27. Heijenoort J. V. From Frege to Godel: A Source Book in Mathematical Logic. Harvard University Press :
Cambridge, UK, 1967.

28. Heule, M.; Kullmann, O.; Marek, V. Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-
and-Conquer. In Lecture Notes in Computer Science, Proceedings of the Theory and Applications of Satisfiability
Testing 2016(SAT 2016), Bordeaux, France, 5-8 July 2016; Creignou, N., Le Berre, D., Eds; Springer: Cham,
Switzerland, 2016; Volume 9710, pp. 228-245.

29. Harrison, J.; Urban, J.; Wiedijk, F. History of Interactive Theorem Proving. Handbook of the History of Logic:
Computational Logic. 2014, 9, 135-214.

30. Jiang, N.; Li, Q; Wang, L; et al. Overview on Mechanized Theorem Proving. Journal of software 2020, 31(1),
82-112.

31. Kelley, J. L. General Topology. Springer-Verlag: New York, USA, 1955.

32. Kirst, D.; Smolka, G. Categoricity Results for Second-Order ZF in Dependent Type Theory. In Lecture Notes
in Computer Science, Proceedings of the Interactive Theorem Proving 2017 (ITP 2017), Brasilia, Brazil, September
26-29, 2017; Ayala-Rincén, M., Munoz, C.A., Eds; Springer: Cham, 2017; Volume 10499, pp. 304-318.

33. Landau, E. Foundations of Analysis: The Arithmetic of Whole, Rational, Irrational, and Complex Numbers; Chelsea
Publishing Company: New York, NY, USA, 1966.

34. Luo, Z. ECC, an extended calculus of constructions. In Proceedings of the Fourth Annual Symposium on
Logic in Computer Science, California, USA, 5-8 June 1989; IEEE Press: Piscataway, NJ, USA, 1989; pp.
386-395.

35. Morse, A. P. A Theory of Sets. Academic: New York, USA, 1965.

36. Vivant, C. Théoréme Vivamt; Grasset: Prais, France, 2012.

37. Voevodsky, V. Univalent Foundations of Mathematics; Beklemishev, L., De Queiroz, R., Eds; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6642, p. 4.

38. Wiedijk, F. Formal proof—Getting started. Not. Am. Math. Soc. 2008, 55, 1408-1414.

39. Wang, J.; Zhan, N; Feng, X; et al. Overview of Formal Methods. Journal of software 2019, 30(1), 33-61.

40. Yu, W,; Sun, T.; Fu, Y. Machine Proof System of Axiomatic Set Theory; Science Press: Beijing, China, 2020.

41. Yu, W.; Fu, Y;; Guo. L. Machine Proof System of Analysis of foundatios; Science Press: Beijing, China, 2022.

42. Zorich, V. A; Paniagua, O. Mathematical analysis; Springer: New York, USA, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202511.2012.v1
http://creativecommons.org/licenses/by/4.0/

