
Article

Not peer-reviewed version

Give Me A Sign: Using Data

Gloves For Static Hand Shape

Recognition

Philipp Achenbach

*

 , Sebastian Laux , Dennis Purdack , Philipp Niklas Müller , Stefan Peter Göbel

Posted Date: 22 November 2023

doi: 10.20944/preprints202311.1385.v1

Keywords: machine learning: classification; support vector machines; random forest classifier; outlier

detection; feature selection; data augmentation; hand shape recognition; sign language; virtual reality

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3271118
https://sciprofiles.com/profile/2788225
https://sciprofiles.com/profile/2208455

Article

Give Me A Sign: Using Data Gloves For Static Hand
Shape Recognition

Philipp Achenbach * , Sebastian Laux , Dennis Purdack , Philipp Niklas Müller

and Stefan Göbel

Serious Games Group, Technical University of Darmstadt, 64289 Darmstadt, Germany

* Correspondence: philipp.achenbach@tu-darmstadt.de

Abstract: Human-to-human communication via the computer is mainly done using a keyboard or

microphone. In the field of Virtual Reality (VR), where the most immersive experience possible is

desired, the use of a keyboard contradicts this goal, while the use of a microphone is not always

desirable (e.g. silent commands during task force training) or simply not possible (e.g. if the user

has a hearing loss). Data gloves help to increase immersion within the VR as they correspond to our

natural interaction. At the same time, they offer the possibility to accurately capture hand shapes,

such as those used in non-verbal communication (e.g. thumbs up, okay gesture, ...) and in sign

language. In this paper, we present a hand shape recognition system using Manus Prime X data

gloves, including data acquisition, data preprocessing, and data classification to enable nonverbal

communication within VR. We investigate the impact on accuracy and classification time of using

an Outlier Detection and a Feature Selection approach in our data preprocessing. To obtain a more

generalized approach, we also studied the impact of artificial Data Augmentation, i.e., we create new

artificial data from the recorded and filtered data to augment the training data set. With our approach,

56 different hand shapes could be distinguished with an accuracy of up to 93.28%. With a reduced

number of 27 hand shapes, an accuracy of up to 95.55% could be achieved. Voting Meta-Classifier

(VL2) has proven to be the most accurate, albeit slowest, classifier. A good alternative is Random

Forest (RF), which was even able to achieve better accuracy values in a few cases and was generally

somewhat faster. Outlier Detection has proven to be an effective approach, especially in improving

classification time. Overall, we have shown that our hand shape recognition system using data gloves

is suitable for communication within VR.

Keywords: machine learning; classification; support vector machines; random forest classifier; outlier

detection; feature selection; data augmentation; hand shape recognition; sign language; virtual reality

1. Introduction

In everyday communication, non-verbal language plays an important role alongside verbal

language, for example through the use of hand gestures. They help us to express feelings and thoughts,

to give context to spoken language (e.g., by pointing to something while speaking), or even to replace

spoken language completely (e.g., by using the thumbs up gesture to signal to the other person that

everything is okay).

With technological progress, the desire to transfer this natural way of interpersonal interaction to

computers is increasing. Thus, machines could be controlled directly using gestures: Instead of the

user learning to control the machines, they should use natural and instinctive means of communication,

and the machine learns to understand them.

In addition, even within a computer-generated environment, such as Virtual Reality (VR),

interpersonal communication could be accomplished through the use of gestures. This would allow

simple hand gestures, such as the aforementioned thumbs up gesture, to be used in the context of

operational force training. Significantly more complex issues could also be presented in the context of

sign language, either because this is given by the application (e.g., sign learning software) or because

this is the user’s primary form of communication, e.g., for deaf and hard of hearing people. This is an

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0003-4948-4440
https://orcid.org/0000-0002-7972-417X
https://orcid.org/0000-0002-7916-0765
https://orcid.org/0000-0001-9660-691X
https://orcid.org/0000-0003-3651-8744
https://doi.org/10.20944/preprints202311.1385.v1
http://creativecommons.org/licenses/by/4.0/

2 of 31

aspect that is becoming increasingly important because, according to the World Health Organization [1],

there are approximately 430 million people worldwide with some degree of hearing loss, and the trend

is increasing. Where hearing people within VR communicate predominantly by microphone in their

spoken language, the deaf and hard of hearing have to express themselves non-verbally, for example

via a chat function. In addition, they cannot hear when other users communicate via the microphone.

There are speech-to-text solutions that can display the spoken word as text, but an approach that can

also convert signs into text or speech would still have to be developed for bidirectional communication.

Developing a system that can recognize and translate signs requires first determining how signs

are structured. Linguist William C. Stokoe [2,3] was one of the first to break down signs into their

characteristic components. According to him, a sign consists essentially of the parameters of the

hand shape, the orientation of the hand, the movement of the hand, and the location of execution of

the sign. Other non-manual parameters such as facial expression are also conceivable, but the most

important parameter is the hand shape [4]. This is also evident when looking at the American Sign

Language (ASL) finger alphabet: There are 26 signs with a total of 21 different hand shapes, which

are all performed with the dominant hand. Two pairs of signs have the same hand shapes, but differ

by having a movement of the hand (I ⇔ J and 1 ⇔ Z). Three other pairs of signs have the same hand

shapes, but differ in the orientation of the hand (K ⇔ P, G ⇔ Q and H ⇔ U).

To determine the hand shapes of an entire vocabulary, a suitable data set is needed. ASL-Lex is a

public sign lexicon for ASL [5,6]. It contains videos and information on 2,723 signs. One component of

this information is the so-called Phonological Coding System, which is based on the Prosodic Model of

Sign Language by Brentari [7]. It describes signs based on their characteristic features, similar to the

aforementioned notation system of Stokoe [3], only with significantly more parameters. To the best

of our knowledge, there is no other publicly accessible database of this size that displays gestures in

parametric form.

To recognize hand shapes reasonably, it also needs the appropriate hardware. There are different

approaches, which can be distinguished in particular into video-based and (other) sensor-based

approaches. In VR, data gloves are often used as an alternative to traditional controllers because they

can capture hand shapes and movements even in complex motion sequences and are independent of

occlusions [8].

The main application of data gloves is hand gesture recognition, especially for static gestures.

Between 2015 and 2022, more than 100 papers were published in English on this topic in reputable

sources, like Institute of Electrical and Electronics Engineers (IEEE) or Association for Computing

Machinery (ACM), according to the Web of Science (WoS). More than 70% of these examine static

gestures [9].

Even though these papers all pursue the topic of hand gesture recognition with data gloves, they

differ in some points: i) Used classification methods, ii) number of participants, iii) number of samples,

iv) number of hand gestures, v) type of hand gestures. The type of hand gestures is defined by the

used features. The more features are present, the more information is available for the classifier to

successfully recognize the hand gesture. Therefore, many of these papers ([10–12]) not only use hand

shape information for classification, but also add hand orientation as an additional feature.

A distinction is also made between static and dynamic gestures: Static gestures possess spatial

information, like the already mentioned hand shape, the orientation of the hand or the location of the

hand where the gesture is performed. Dynamic gestures additionally possess temporal information,

such as the movement of the hand [12], the rotation of the ulnar, or a change in finger pose (e.g., closed

fingers that are spread) [5]. Therefore, some of the papers use dynamic gestures instead of static ones

[10,12–14].

1.1. Goal and Methodology

In this work, we focus on the recognition of static hand shapes with data gloves. We investigate

whether commercially available data gloves are suitable for recognizing hand shapes of sign language

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

3 of 31

in the use of VR. For this purpose, we designed a classification pipeline to reliably detect static hand

shapes using a generalizable approach that can be used for other static data. The individual steps

of data preprocessing will be examined with respect to their performance (accuracy and time for

classification) and a recommendation is made as to which steps should be used for which use case.

The classification pipeline can be seen in Figure 1.

Data Acquisition

Outlier Detection

Feature Selection

Data Augmentation

Classification

Hand Shape

Data Scaling

D
a

ta
 p

re
p

ro
ce

ss
in

g

“Horns”

Figure 1. Our classification pipeline

First, we acquire the hand shape with a Manus Prime X data glove. To ensure high quality data, an

Outlier Detection method Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is applied

to the training data. The data is further augmented using a proprietary method and thus artificially

duplicated with the goal to counteract overfitting of the classification. To reduce the amount of training

data and increase the speed of training and classification, we apply Feature Selection in the form of

Genetic Algorithm (GA).

For evaluation, we chose two different data sets: 27 hand shapes from the ASL finger alphabet

(letters and numbers) and 56 hand shapes from a 2,700+ word lexicon of ASL. On the one hand, this

covers a variety of different hand shapes and, at the same time, serves to be able to create a basis for a

sign language application within VR.

Our pipeline is generic and can be applied to any type of static data as long as it is in the correct

data format. However, it is recommended to adjust the various parameters of the pipeline, such as the

hyperparameters of the classifiers to the new data.

2. Data Acquisition

To reliably recognize hand shapes, these must be recorded in a suitable form. The recordings

can then be used to train Machine Learning (ML) classifiers. Attention must be paid to the choice of

suitable hardware and the selection of features to be captured.

The data gloves that were used during our experiment are the Manus Prime X Haptic1 and are

specifically designed for use within VR. The gloves can be seen on Figure 2.

1 https://www.manus-meta.com/products/prime-x-haptic (Last visited on 21. October 2023)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

4 of 31

(a) Green circles indicates the IMUs. (b) Brown strips indicates the flex sensors.

Figure 2. Manus Prime X data glove and bare sensors of the glove [15].

A 9-Degrees of Freedom (DoF) IMU and a 2D flex sensor is attached on each finger to obtain

reliable values about the flexion/stretch of the fingers but also the spread between each finger. The latter

information is not available in some data gloves, but is indispensable for distinguishing individual

hand shapes such as R, U and V (see Figure 3) [9]. A 6-DoF IMU is attached to the back of the hand to

get its orientation. The accuracy of each finger measurement is ±2.5 degrees.

(a) R (b) H/U (c) V

Figure 3. Hand shapes R, H (identical to U, only different in orientation) and V differ only in spread.

The acquired sensor values are internally fused and preprocessed by the Manus Core C++ SDK2.

The preprocessed data is transferred to the computer via Bluetooth. According to the manufacturer,

the latency is less than 5ms, and the glove’s sensor sampling rate is 90Hz. Table 1 shows all spread and

stretch values given by the SDK that we use as features to represent each static gesture.

To obtain the best quality sensor data, the gloves must be calibrated. This is done by performing

three simple gestures via the SDK. This also compensates for deviations that may occur due to

differently sized user hands. The calibration is stored in the glove so that it is immediately ready for

use for the next session.

2 https://documentation.manus-meta.com/v1.9.0/cpp-sdk/ (Last visited on 21. October 2023)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://documentation.manus-meta.com/v1.9.0/cpp-sdk/
https://doi.org/10.20944/preprints202311.1385.v1

5 of 31

Table 1. Features and Joint Values with their respective range of motion (normalized output of Manus

Core SDK and corresponding degree range). Names of joints can be seen in Figure 6.

Feature Finger Joint Value
SDK Range Degree Range
Min Max Min Max

0 Thumb Spread CMC 0.0 1.0 5◦ 50◦

1 Index Spread MCP −1.0 1.0 −20◦ 20◦

2 Middle Spread MCP −1.0 1.0 −20◦ 20◦

3 Ring Spread MCP −1.0 1.0 −20◦ 20◦

4 Pinky Spread MCP −1.0 1.0 −20◦ 20◦

5 Thumb Stretch CMC 0.0 1.0 −20◦ 25◦

6 Thumb Stretch MCP 0.0 1.0 −20◦ 45◦

7 Thumb Stretch IP 0.0 1.0 −15◦ 80◦

8 Index Stretch MCP 0.0 1.0 0◦ 80◦

9 Index Stretch PIP 0.0 1.0 0◦ 100◦

10 Index Stretch DIP 0.0 1.0 0◦ 90◦

11 Middle Stretch MCP 0.0 1.0 0◦ 80◦

12 Middle Stretch PIP 0.0 1.0 0◦ 100◦

13 Middle Stretch DIP 0.0 1.0 0◦ 90◦

14 Ring Stretch MCP 0.0 1.0 0◦ 80◦

15 Ring Stretch PIP 0.0 1.0 0◦ 100◦

16 Ring Stretch DIP 0.0 1.0 0◦ 90◦

17 Pinky Stretch MCP 0.0 1.0 0◦ 80◦

18 Pinky Stretch PIP 0.0 1.0 0◦ 100◦

19 Pinky Stretch DIP 0.0 1.0 0◦ 90◦

3. Data Preprocessing

The main idea of Data Preprocessing is to highlight important information in the available data

while also removing some of the redundant or misleading data that may be present [10].

The first step of Data Preprocessing is often to scale all data to a predetermined interval. [0, 1] or

[−1, 1] are often used. Alternatively, statistical properties of the training data can be used for scaling.

In this work, we use sklearn’s StandardScaler.3 It calculates the average value of each feature i, subtracts

it from each data point and divides it by the standard deviation.

Zi =
Xi − µi

σi

In this way, all features follow a normal distribution with zero mean and unit variance. We chose

this scaling procedure because it has been shown that some models, such as Support Vector Machine

(SVM) or certain linear models, may perform worse when the data are not scaled and centered around

zero [16,17].

Other than scaling the data, we implemented several Outlier Detection and Feature Selection

methods that sort out misleading data samples or unimportant features. We also experimented with

various Data Augmentation techniques to artificially enrich our data set with the goal to improve the

generalizability of our approach. The best methods in each category are presented in the following.

3 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html (Last visited 27. September
2023)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://doi.org/10.20944/preprints202311.1385.v1

6 of 31

3.1. Outlier Detection

Outliers are samples that differ greatly from the other recorded samples. Outliers can occur during

data acquisition, for example due to sensor drift or because a user performs a gesture incorrectly. Such

outliers can negatively impact the performance of ML classifiers, as it is often best for these models to

be able to generalize and not over-fit the data [18]. Outlier Detection therefore aims to find and remove

all outliers within the given data.

Many algorithms used to achieve this goal are similar to clustering algorithms in that samples are

also combined to form clusters. Points that do not belong to any cluster are then identified as outliers.

In this work, we used the DBSCAN algorithm. DBSCAN starts at a random data point and searches for

other samples within a predefined distance ε. If the number of samples within this distance is greater

than the minPoints parameter, the original point is marked as a Core Point. This step is repeated for all

data points. Afterwards a random Core Point is selected and the point itself and all neighboring points

within ε are added to a cluster. When all Core Points have been assigned to a cluster, the algorithm

terminates. All samples that are not part of any cluster are considered outliers.

The algorithm can be controlled by the ε and minPoints parameters. Figure 4 shows how DBSCAN

assigns multiple points into two clusters. minPoints is set to four in this example4.

ε

Core point

Border point

Noise point

Cluster 1

Cluster 2

Figure 4. DBSCAN assigning points into core, border and noise points4.

Outlier Detection is rarely used in other works on gesture recognition. Most often, outliers are

removed from the test set. This is usually done, when outliers and incorrect predictions in the

application phase can have serious consequences, such as in the medical field. In these scenarios it

is often more favourable to detect outliers and output a warning alongside the models’ prediction.

Related works that operate in this way are, for example, by Zhang et al. [19] or by Palipana et al. [20].

In this work, we focused on detecting outliers only in the training data, since our application

phase is not as critical at this time and it can be more easily compared to most other gesture recognition

work. Test data should also, in our opinion, represent a possible real-world scenario, this includes

biases in sensor values or erroneous user executions.

Once the Outlier Detection has been performed, the remaining data is scaled again according to

the principle described above.

3.2. Data Augmentation

In order to use ML models for reliable hand shape classification, a sufficient amount of high-quality

training data must be available. In particular, in the application area of gesture recognition with the

4 https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html (Last visited 21. October 2023)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html
https://doi.org/10.20944/preprints202311.1385.v1

7 of 31

use of wearable sensors as a data source, the acquisition of large amounts of data for learning poses

one of the main challenges due to the cumbersome acquisition process. This is because the data

must be physically gathered from individuals equipped with wearable sensors and then carefully

labeled afterwards (see Section 2), which takes time and effort and usually yields inadequate quantities,

especially for deep learning approaches [21]. In addition, further challenges may arise, for example, at

the time of the Covid 19 pandemic, which required even stricter hygiene standards and therefore may

increase the cost of physical data acquisition with wearable sensors. Thus, building a rich and diverse

data set may become even more laborious. This potential scarcity of training data can then lead to

poor generalization capabilities of the model.

One way to deal with these problems is the use of Data Augmentation to artificially enrich the

training data set. This is usually done by applying transformations to the existing data to create new,

synthetic data samples. Data Augmentation can therefore be employed as a preprocessing step in order

to ultimately reduce overfitting and enhance the robustness and generalizability of the ML models

used. [22]

However, the applicability of different Data Augmentation methods depends on the type of data

available and corresponding sensor technology, and therefore must be evaluated for the specific task

at hand. Depending on these factors, and additionally on the ML classifiers used, the effectiveness of

Data Augmentation may vary.

As introduced in Section 2, static spread and stretch values for each joint are used in this work

as features. However, the available literature on Data Augmentation for wearable sensors is mainly

concerned with dynamic data consisting of a gesture performed within a certain time interval. For

example, Um et al. [22] conducted one of the most comprehensive evaluations of Data Augmentation

techniques for wearable sensor data used in dynamic approaches. These methods leverage variations

in orientation or timing and are therefore not applicable in this setting since the available data does

not capture positional or dynamic properties. In contrast, the literature on Data Augmentation for static

hand shape recognition is rather scarce and mostly not the subject of studies. However, in this work,

we have adapted a Data Augmentation approach presented by Liu and Ostadabbas [23] so that it is

applicable to the available data and can be used in our setting as a means with the goal to reduce

overfitting and improve the generalizability of the models by introducing more variety to the way

hand shapes are performed. Below, we present the Data Augmentation approach we use to generate

artificial data samples, i.e. hand shapes.

3.2.1. Methodology

We have adopted and slightly adapted a Data Augmentation approach presented by Liu and

Ostadabbas [23], where joint angle constraints are used to define range boundaries for each joint. Using

these range boundaries, new poses can be generated by randomly sampling within the defined limits

for each joint. This ensures that the newly generated data samples are valid, since the boundaries can

be set appropriately.

We modified this approach to generate new data samples for each specific hand shape (i.e. label).

Therefore, these range boundaries must be chosen differently for each hand shape and define the

amount of maximum and minimum joint bending that is still considered to be the respective hand

shape. This would be required for each hand shape of our data set. In this work, we define the limits

by first calculating the respective minimum and maximum joint values for each hand shape from the

available data. As an example, Figure 5a and Figure 5c show the minimum and maximum hand shape

for the Horns label, which is illustrated in Table A1 in the appendix5. Compared to the mean hand

shape in Figure 5b, it becomes apparent that there may be slight variations in the way a hand shape

is performed by individuals due to anatomical differences, which may lead to larger disparities in

5 We used the 3D hand model provided by the Manus Core Plugins and visualized it using Blender [24].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

8 of 31

some feature values depending on the hand shape. In addition, inaccuracies of the data glove sensors

also seem to play a role, because although the hand shapes were recorded under supervision and

performed again in case of errors, there are still sometimes large differences in the data. These two

factors can lead to large differences in some joint values, especially in the joints of the thumb.

(a) Minimum values (b) Mean values (c) Maximum values

Figure 5. Minimum, mean and maximum values of hand shape Horns.

In order to improve generalizability to yet unseen data samples, we further add (subtract) half

the standard deviation of each feature fi to (from) the calculated maximum (minimum) values for

each hand shape (i.e. label l). Since we have a normal distribution with unit variance (σ = 1) due to

standardization, the calculation simplifies as follows:

f̃ min
i = f min

i −
σ

2
= f min

i −
1

2

f̃ max
i = f max

i +
σ

2
= f max

i +
1

2

Concretely, this results in minimum values with feature vector

Fmin
l = (f̃ min

0 , f̃ min
1 , f̃ min

2 , ..., f̃ min
n−1)

T

and maximum values with feature vector

Fmax
l = (f̃ max

0 , f̃ max
1 , f̃ max

2 , ..., f̃ max
n−1)

T

for each label l. Here, n = 20 is the number of features, as shown in Table 1. Using these limits, a new

data sample

F̂l = (f̂0, f̂1, f̂2, ..., f̂n−1)
T

can then be generated for a specific label l by sampling new feature values f̂i from a uniform

distribution U(f min
i , f max

i) where i ∈ [0, n − 1].

Even after applying Data Augmentation, the entire data set, including the augmented data, is

scaled again as described at the beginning of the chapter.

3.3. Feature Selection

Each feature of a data sample holds a certain amount of information about the performed gesture.

Some features may be more important than others. For example, the DIP and PIP joints, shown in

Figure 6, are interdependent in most of the gestures that were investigated here [9]. Consequently, only

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

9 of 31

one of these features holds significant information about the performed gesture. This is in contrast

to any of the thumbs’ features, as the exact position of the thumb plays an important role in many of

gestures that were examined in this work. So in general, many of the DIP or PIP features hold very

little information about the performed gesture, while other features, such as that of the thumb, are

more important for the classification.

Figure 6. Joints and bones of the human hand [25].

Feature Selection takes advantage of that and tries to keep the most important features, while also

removing features that hold very little information. That way fewer features are used to represent

a single gesture, meaning the data takes up less space and the ML models can focus on the most

important data [26].

In this work, we used the Genetic Algorithm (GA) for Feature Selection. The algorithm is loosely

based on the theory of evolution and consists of an initialization phase and four repeating phases after

that:6 i) At first, multiple bitstrings are randomly created (initialization). Each bit corresponds to a

single feature that is either kept (1) or discarded (0). For each of these bitstrings one ML model is

created and trained with the corresponding features. ii) Afterwards, some of these models are selected

for the next phase of the algorithm. Models with high accuracy often have a higher chance to be

selected by the algorithm. iii) The remaining bitstrings are combined to form new combinations of

features. iv) These may randomly flip single bits (= mutation). The resulting bitstrings are used to train

new models. The whole process is repeated until either a predefined number of iterations is reached or

there has not been a significant accuracy improvement for multiple iterations [27].

The algorithm has also been used in related work, such as Li et al. [28], to reduce the training error

alongside the number of epochs of a neural network, when classifying ten gestures. Without GA, a

training error of about 0.00566 was reached after 5000 epochs. Using GA, the error was reduced to

about 0.00042. Using a handcrafted modification of the GA reduced the error to about 0.00010 after

just 608 epochs.

4. Machine Learning Classification

Building on the results of Achenbach et al. [11], we chose the classifiers Support Vector Machine

(SVM), Random Forest (RF), and Logistic Regression (LR) for our investigations, as they were able to

achieve the highest accuracy values in a similar experiment. We added a Voting Meta-Classifier (VL2)

6 A step by step instruction can be found at https://neuraldesigner.com/blog/genetic_algorithms_for_feature_selection#
GeneticAlgorithms (Last visited 21. October 2023)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://neuraldesigner.com/blog/genetic_algorithms_for_feature_selection#GeneticAlgorithms
https://neuraldesigner.com/blog/genetic_algorithms_for_feature_selection#GeneticAlgorithms
https://doi.org/10.20944/preprints202311.1385.v1

10 of 31

to combine the advantages of all these classifiers. In comparison, we are now using different hardware

and a larger number of gestures: Achenbach et al. [11] examine five gestures with 15 features of hand

shape and 25 gestures with the same 15 features of hand shape plus four additional features for hand

orientation. In this work, we examine 27 and 56 gestures with 20 features of hand shape.

In the following, we briefly present the rough working of each classifier and explain the conditions

under which we used them.

4.1. Support Vector Machine (SVM)

SVMs are used to split data into two classes. This is achieved by mapping the data into a

vector space and looking for a linear hyperplane that separates the data according to the max-margin

paradigm. This generally results in less overfitting and more robustness when classifying unseen

data. Projecting the data into a higher dimensional vector space, finding a linear hyperplane there and

projecting the data and hyperplane back into the original vector space can transform the hyperplane

from a linear function to one of a higher complexity. This procedure is used to classify data that is not

linearly separable. In practice the so called kernel trick is often used instead of transforming the entire

vector space to safe computing time [29].

Following this procedure, a single SVM can differentiate between two classes. However, most

classification problems contain more than just two output classes. In multi-class classification problems,

more than one SVM has to be used to separate the data. There are two commonly used methods to

train these SVMs. In the One-versus-One (OvO) approach, one SVM is created for every pair of classes.

The final decision is often found by performing a majority vote over all SVMs. In the other method,

One-versus-All (OvA), a single SVM is trained for each class and is used to distinguish between that

class and all the other classes. The final output is usually provided by the SVM with the highest

confidence score [30]. In this work, we used the OvO approach to classify all of our data.

4.2. Random Forest (RF)

A RF uses the results of multiple Decision Trees (DTs) to calculate its own prediction. A single DT

within a RF often performs worse than a full-fledged DT. This is because a single tree inside a RF is

usually trained on a small subset of the data and its features. The subset is generated by sub-sampling

the original training data with replacement [29]. It is important to have different subsets for most of

the trees. The idea is to train a large number of diverse DTs. Each one may heavily focus on one part

of the training data, while neglecting other parts. Thus being worse than a DT trained with all the

available data [31]. However, their results are then combined, often by a majority vote. Together they

usually perform better than a single DT, while overfitting less and thus generalizing better.

It has been shown that RFs do not overfit by increasing the number of trees [31]. Hundreds or

thousands of trees are often trained, when using RFs. One advantage of training so many classifiers

is that they can also be used to analyse the data. For example, adding noise to a single feature and

observing the change in accuracy of all DTs can be an indication of the importance of that specific

feature [29]. The large number of classifiers ensures that a higher error rate is actually caused by the

random noise added to the feature and not by a specific characteristic of a single classifier.

4.3. Logistic Regression (LR)

In the most basic case of LR, the model has to distinguish between two output classes. In this case,

LR calculates the probability of a sample belonging to one of the two output classes. If the calculated

value exceeds 50%, the sample is assigned to that class. Otherwise the other output class is chosen.

Probabilities close to either 0% or 100% are often desirable because the model is sure about assigning

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

11 of 31

the corresponding sample to one of the two classes in these cases. Probabilities close to 50% are very

susceptible to small amounts of noise. The probability is often calculated using the logit function [32],

logit(p) = ln

(

p

1 − p

)

= β0 + ∑ βi ∗ Xi,

where Xi represent the features of the data. The βi are weights that must be calculated when fitting the

model. The resulting function usually follows the shape of a sigmoid. In general, a steeper slope leads

to better predictions as there are fewer inputs with probabilities close to 50% this way.

When classifying more than two classes, LR uses a similar strategy than what was presented in

Section 4.1. Because of higher training times when using large amounts of data, most of the time the

OvA approach is used for LR instead of OvO.

4.4. Voting Meta-Classifier (VL2)

A meta-classifier is a model that does not operate on the input data alone. It uses other models

to improve its own predictions. That way the entire system becomes more resistant to failures of

individual models or sensors, as well as noise in the data [33]. Such models are often organized in

layers. The voting classifier used in this work consists of two layers. The three classifiers presented

in this chapter form the first layer. These models use the input data to predict the output class. The

second layer is the voting classifier itself. It combines the predicted probabilities of the models in the

previous layer to produce its own output based on the argmax of their sums. A weighted average,

where the weights are based on the grid search results of the classifiers in the first layer, produced the

best results.

5. Experiment

In an experiment [15], different hand shapes used in ASL-Lex lexical database7 and ASL manual

alphabet (including digits) were recorded with a Manus Prime X data glove. We examine two different

data sets in this paper:

ASL manual alphabet consists of 26 different hand gestures with 21 different hand shapes. To

represent the digits 0-9 as well, six more hand shapes were added. This leads us to 27 hand

shapes with which fingerspelling is possible, i.e. the possibility to spell names and numbers.
ASL-Lex uses 58 different hand shapes for the dominant hand. For reasons we cannot explain, the

hand shapes Flat H and Flat N are displayed identically8 by ASL-Lex and cannot be distinguished.

We therefore combine them and refer to them as Flat N. As already mentioned, the letters of the

finger alphabet P and K also share the same hand shape9 and differ only in their orientation. We

therefore have only considered K. So we have a total of 56 unique hand shapes, which (together

with other details such as movement or orientation of the hand) allow a vocabulary of more than

2,700 characters.

All hand shapes from the ASL manual alphabet are found in the set of hand shapes of ASL-Lex, with

the exception of the hand shape M and N. Therefore, we have a total set of 58 hand shapes, which are

shown in Table A1.

Since the focus of this work is on hand shape recognition, all recorded hand gestures are static,

differ only by hand shape, and are independent of hand orientation. Therefore, all stretch and spread

7 https://asl-lex.org (Last visited 27. September 2023)
8 Comparison of https://aslcdi.website/images/handshape_images/flat_h.png and https://aslcdi.website/images/

handshape_images/flat_n.png (Last visited 16. November 2023) [5]
9 Comparison of https://aslcdi.website/images/handshape_images/k.png and https://aslcdi.website/images/handshape_

images/p.png (Last visited 16. November 2023) [5]

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://asl-lex.org
https://aslcdi.website/images/handshape_images/flat_h.png
https://aslcdi.website/images/handshape_images/flat_n.png
https://aslcdi.website/images/handshape_images/flat_n.png
https://aslcdi.website/images/handshape_images/k.png
https://aslcdi.website/images/handshape_images/p.png
https://aslcdi.website/images/handshape_images/p.png
https://doi.org/10.20944/preprints202311.1385.v1

12 of 31

values from Table 1 are used as features. The quaternions of the individual fingers are not considered

due to their dependence on orientation.

5.1. Data Acquisition

For data acquisition a total of 20 participants took part in the experiment [15]. The experiment

was conducted as follows:

To allow for better hand mobility, the vibration motors on the gloves were removed. Prior to each

experiment, the gloves were recalibrated using the associated software of Manus Core SDK to clean up

any possible drift in the IMU sensors and to ensure that different hand sizes of the participants did not

affect the results.

After calibration, each participant sat at a table and was shown a picture of the hand movement

to be performed. Pressing the Enter key started the recording. The participant now had three seconds

to perform the hand gesture and then held it for an additional two seconds. In a later segmentation,

the static hand shape was then extracted as one keyframe from the middle of this second section.

After recording, participants were asked to return their hands to the starting position and place

them on the table. This process was repeated three times for each hand gesture. Throughout the

experiment, participants were under observation to ensure that the hand gestures were performed

correctly. Incorrect recordings were repeated at the end of the experiment.

Thus, for each of the 58 hand gestures we used, three repetitions were recorded by 20 participants,

yielding a total of 3,480 samples.

5.2. Hyperparameters

To find suitable hyperparameters for our hand shape recognition system, we first performed a

pre-grid search with ten-fold cross-validation over all recorded samples for both data sets and each

combination of our data preprocessing methods. The hyperparameters were searched in the same areas

as Achenbach et al. [11] already used. In this way, we were able to determine 16 different configurations

of hyperparameters. From these, we have now defined a smaller, but more precise range, which can be

viewed in Table 2. This range will be used in each run of our following experiments with a five-fold

cross-validation grid search.

Table 2. Hyperparameter optimization ranges for our experiments.

Classifier Parameter Pre-Grid Search Range Grid Search Range

SVM
C 2−5, 2−3, . . . , 215 20, 21, . . . , 24

γ 2−15, 2−14, . . . , 25 2−8, 2−7, . . . , 2−2

RF
criterion gini, entropy gini, entropy

max_features 1, 2, . . . , 10 1, 2, . . . , 6

n_estimators 20, 21, . . . , 210 26, 27, . . . , 210

LR

penalty elasticnet elasticnet
solver newton-cg, lbfgs, sag, saga saga

C 2−5, 2−3, . . . , 215 2−5, 2−4, . . . , 24

l1_ratio 0.1, 0.2, . . . , 1 0.2, 0.3, . . . , 0.5
penalty none, l1, l2 l2

solver newton-cg, lbfgs, sag, saga newton-cg, lbfgs, sag, saga

C 2−5, 2−3, . . . , 215 2−5, 2−4, . . . , 24

To save computational resources, we performed the grid search based on the successive halving

algorithm and used sklearn’s HalvingGridSearchCV10. This algorithm allocates resources dynamically

10 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.HalvingGridSearchCV.html (Last visited 07.
November 2023)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.HalvingGridSearchCV.html
https://doi.org/10.20944/preprints202311.1385.v1

13 of 31

and favors the most promising hyperparameter configuration. Starting with an equal distribution

of resources, the grid search therefore iteratively excludes hyperparameter combinations that are

considered to be the least effective. Overall, this leads to considerable time savings in the search for

the best hyperparameter configuration.

5.3. Hardware

An Apple MacBook Pro11 (16", 2021) with Apple M1 Max processor (10-core CPU with 8 performance

cores and 2 efficiency cores, 32-core GPU, 16-core neural engine, and 400 GB/s memory bandwidth)

and 32 GB Ram was used to compute the results presented here. The Python library scikit-learn12

(version 1.2.1) and Python (version 3.9.6) were used.

6. Results

The four classifiers were evaluated using a Leave-One-Out cross-validation, i.e., training and test

data were separated such that one participant’s data was used as test data and all other data were used

as training data. In this way, all possible combinations were iterated, i.e., 20 repetitions for n = 20

participants. To compare the performance of the classifiers, the accuracy and time for classification

were stored and evaluated. Mean and standard deviation were calculated from the data thus obtained.

Since we have an equal class distribution and prioritize each class equally, we omitted other measures

such as the F-score.

Table 3 and Table 4 show the accuracy values of all classifiers with respect to the data preprocessing

methods used. The best results for each classifier and data preprocessing configuration are marked in

green, the worst results are marked in red.

Figure A1 to Figure A4 show the plotted metrics of the classifiers with different data preprocessing

steps. The black lines mark the range where the metrics of each run can be found (maximum, mean,

and minimum). The colored boxes represent the values of the first through third quartiles. So, inside a

box there are 50% of the determined values from each of the 20 runs.

Independent of the used data preprocessing methods, 27 hand shapes can be classified with an

accuracy of 89.14% to 91.91% and 56 hand shapes score 82.86% to 87.50%. In both cases, LR performs

worst on average. For 27 hand shapes VL2 can achieve the highest average accuracy values, for 56

hand shapes RF performs best. Regardless of the number of hand shapes, there are only 0.51 to 2.53

percentage points between the best and worst feature combinations for each classifier, with the range

varying significantly more for 56 hand shapes.

The classification time is the time difference immediately before and after calling the classifiers’

predict13 function. It includes the classification of an entire user data set, i.e. up to 168 samples (up to 56

hand shapes with three repetitions) before Outlier Detection. In case of VL2 classifier, the classification

time of the first layer classifiers are included.

11 https://support.apple.com/kb/SP858 (Last visited 15. November 2023)
12 https://scikit-learn.org/stable/ (Last visited 28. September 2023)
13 https://scikit-learn.org/stable/developers/develop.html (Last visited 28. September 2023)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://support.apple.com/kb/SP858
https://scikit-learn.org/stable/
https://doi.org/10.20944/preprints202311.1385.v1

14 of 31

Table 3. Mean accuracy values of Leave-One-Out cross-validation in dependence of different data

preprocessing methods for 27 hand shapes (Outlier Detection, Data Augmentation, Feature Selection).

Data Preprocessing Machine Learning Classifier Results
Out Aug Feat SVM RF LR VL2 Mean Min Max

✗ ✗ ✗ 0.9080 0.9123 0.8963 0.9160 0.9082 0.8963 0.9160
✗ ✗ ✓ 0.9037 0.9105 0.8951 0.9185 0.9069 0.8951 0.9185
✗ ✓ ✗ 0.9037 0.9037 0.8914 0.9123 0.9028 0.8914 0.9123
✗ ✓ ✓ 0.9031 0.9049 0.9000 0.9154 0.9059 0.9000 0.9154
✓ ✗ ✗ 0.9080 0.9043 0.8981 0.9191 0.9074 0.8981 0.9191
✓ ✗ ✓ 0.9043 0.9037 0.8981 0.9111 0.9043 0.8981 0.9111
✓ ✓ ✗ 0.9031 0.9025 0.8951 0.9142 0.9037 0.8951 0.9142
✓ ✓ ✓ 0.9025 0.9000 0.8920 0.9130 0.9019 0.8920 0.9130

Mean 0.9046 0.9052 0.8958 0.9150
Min 0.9025 0.9000 0.8914 0.9111
Max 0.9080 0.9052 0.9000 0.9191

Table 4. Mean accuracy values of Leave-One-Out cross-validation in dependence of different data

preprocessing methods for 56 hand shapes (Outlier Detection, Data Augmentation, Feature Selection).

Preprocessing Machine Learning Classifier Results
Out Aug Feat SVM RF LR VL2 Mean Min Max

✗ ✗ ✗ 0.8610 0.8714 0.8542 0.8744 0.8653 0.8542 0.8744
✗ ✗ ✓ 0.8571 0.8661 0.8563 0.8711 0.8626 0.8563 0.8711
✗ ✓ ✗ 0.8515 0.8664 0.8298 0.8598 0.8519 0.8298 0.8598
✗ ✓ ✓ 0.8515 0.8664 0.8298 0.8598 0.8519 0.8298 0.8598
✓ ✗ ✗ 0.8568 0.8696 0.8539 0.8750 0.8638 0.8539 0.8750
✓ ✗ ✓ 0.8554 0.8646 0.8539 0.8711 0.8612 0.8539 0.8711
✓ ✓ ✗ 0.8518 0.8693 0.8286 0.8580 0.8519 0.8286 0.8580
✓ ✓ ✓ 0.8518 0.8693 0.8286 0.8580 0.8519 0.8286 0.8580

Mean 0.8546 0.8679 0.8419 0.8659
Min 0.8515 0.8646 0.8286 0.8580
Max 0.8568 0.8696 0.8539 0.8750

Table 5 and Table 6 show the classification times of all classifiers with respect to the data

preprocessing methods used. Again, the best results are marked in green, the worst results are

marked in red.

In contrast to the accuracy values, the classification times vary considerably: LR is by far the fastest

classifier with times below 0.3ms, whereas VL2 understandably takes the longest with 18.20 − 40.03ms

for 27 hand shapes and 62.97 − 179.15ms for 56 hand shapes, as it contains its own classification in

addition to the three other classifiers. It is obvious that the classification times also increase sharply

with the number of hand shapes. This affects LR the least (mean 2-fold increase in classification time)

and SVM the most (mean 8-fold increase in classification time) for the difference from 27 to 56 hand

shapes. When doubling the data using Data Augmentation, the times also roughly double.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

15 of 31

Table 5. Mean classification times of Leave-One-Out cross-validation in dependence of different data

preprocessing methods for 27 hand shapes (Outlier Detection. Feature Selection. Data Augmentation).

Data Preprocessing Machine Learning Classifier Results
Out Aug Feat SVM RF LR VL2 Mean Min Max

✗ ✗ ✗ 2.780 16.579 0.112 21.099 10.143 0.112 21.099
✗ ✗ ✓ 2.635 14.444 0.126 18.198 8.851 0.126 18.198
✗ ✓ ✗ 7.026 30.926 0.124 40.029 19.526 0.124 40.029
✗ ✓ ✓ 7.059 26.052 0.117 35.778 17.252 0.117 35.778
✓ ✗ ✗ 2.677 16.323 0.127 20.256 9.846 0.127 20.256
✓ ✗ ✓ 2.506 20.138 0.120 23.664 11.607 0.120 23.664
✓ ✓ ✗ 6.931 28.818 0.117 38.409 18.569 0.117 38.409
✓ ✓ ✓ 6.991 29.491 0.224 39.082 18.947 0.224 39.082

Mean 4.826 22.846 0.133 29.564
Min 2.506 14.444 0.117 18.198
Max 7.059 30.926 0.224 40.029

Table 6. Mean classification times of Leave-One-Out cross-validation in dependence of different data

preprocessing methods for 56 hand shapes (Outlier Detection. Feature Selection. Data Augmentation).

Data Preprocessing Machine Learning Classifier Results
Out Aug Feat SVM RF LR VL2 Mean Min Max

✗ ✗ ✗ 18.245 44.271 0.365 72.972 33.963 0.365 72.972
✗ ✗ ✓ 17.594 38.516 0.441 62.973 29.881 0.441 62.973
✗ ✓ ✗ 47.519 62.163 0.186 173.830 70.924 0.186 173.830
✗ ✓ ✓ 47.601 62.045 0.149 174.654 71.112 0.149 174.654
✓ ✗ ✗ 18.254 40.345 0.335 67.490 31.606 0.335 67.490
✓ ✗ ✓ 17.486 42.682 0.338 70.423 32.732 0.338 70.423
✓ ✓ ✗ 47.473 63.251 0.170 177.552 72.111 0.170 177.552
✓ ✓ ✓ 47.760 63.055 0.164 179.149 72.532 0.164 179.149

Mean 32.741 52.041 0.268 122.380
Min 17.486 38.516 0.149 62.973
Max 47.760 63.251 0.338 179.149

6.1. Machine Learning Classifier

We will now briefly look at the results of the individual ML classifiers before taking a closer look

at the data preprocessing methods.

Support Vector Machine (SVM) showed a robust performance in classifying both data sets. For 27

hand shapes, SVM achieved an average accuracy of 90.46%, while for the more extensive data set

with 56 hand shapes, the accuracy dropped slightly to 85.46%. These results suggest a marginal

decline in SVM’s efficacy with increasing data complexity.

In terms of classification time, SVM took between 2.51ms and 7.06ms to classify the smaller data

set and 17.45 − 47.76ms to classify the larger one, indicating good scalability.
Random Forest (RF) offers comparable accuracy to SVM, with an average of 90.52% for 27 hand

shapes and 86.79% for 56 hand shapes. However, the longer classification times (14.44 − 30.93ms

for 27 hand shapes and 38.52 − 62.16ms for 56 hand shapes) could be a disadvantage in practical

applications.
Logistic Regression (LR) showed slightly lower accuracy, especially for the larger data set (average

89.58% for 27 hand shapes vs. 84.19% for 56 hand shapes). It can be seen that LR suffers a

significant loss of accuracy (2.5 − 3%) when Data Augmentation is applied to a larger data set.

When looking at the learning curves in Figure 10c, it can also be seen how the accuracy decreases

as the number of samples increases. It therefore appears that LR has problems with scalability.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

16 of 31

(a) Support Vector Machine (SVM) (b) Random Forest (RF)

(c) Logistic Regression (LR) (d) Voting Meta-Classifier (VL2)

Figure 7. Learning curves with (dashed line) and without (solid line) Data Augmentation for 27 hand

shapes.

Classification times were the shortest among all classifiers tested, which could make LR an

attractive choice for very time-constrained applications, as long as the amount of data is not too

high. Regardless of the number of classes, the classification times are below 0.35ms, but are also

the most dependent on processor runtime fluctuations due to these short runtimes. This can also

be well recognized in Figure A3c and Figure A4c. Therefore, comparisons of the classification

time for LR should be treated with caution.
Voting Meta-Classifier (VL2) consistently achieved the highest average accuracy in both data sets

(91.50% for 27 hand shapes and 86.59% for 56 hand shapes), if the results for procedures with

Data Augmentation in the larger data set were omitted. It seems that the poor scalability of LR

affects the accuracy of VL2.

Classification times were also the longest (18.20 − 40.03ms for 27 hand shapes and 62.97 −

179.15ms for 56 hand shapes), which may limit its practical applicability in time-critical

environments, because it contains all other classifiers on the first layer and additionally its

own meta-classification takes place on the second layer.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

17 of 31

6.2. Data preprocessing methods

Considering the results with respect to the selected data preprocessing methods, it can be said

that, with few exceptions, the highest accuracy values are achieved without data preprocessing (except

scaling). Occasionally, some combinations of data preprocessing steps and classifiers (e.g. LR with

Feature Selection and Data Augmentation for 56 hand shapes) can achieve higher accuracy values, but

since the differences are minimal and no real pattern can be recognized, these exceptions are probably

due to the choice of hyperparameters. Only VL2 with Outlier Detection shows better accuracy for both

27 and 56 hand shapes compared to VL2 without data preprocessing.

According to Figure A2, the data preprocessing methods for 56 hand shapes and SVM almost all

have the same mean, whereas the greatest fluctuations occur for LR. There, the approaches with Data

Augmentation are significantly worse than without. For 27 hand shapes (see Figure A1), the fluctuations

are lower for all classifiers.

We tested 64 different configurations of data preprocessing (see Table 3 and Table 4). Eight

configurations used no data preprocessing, while 56 used a combination of the methods described so

far. Our tests have shown that only seven of these combinations perform better in terms of accuracy

than the runs without data preprocessing.

Feature Selection, Outlier Detection and the combination of both lead to improvements in

classification times in most cases. The times for LR are difficult to evaluate here, as they are very low

and are therefore strongly influenced by runtime fluctuations. Data Augmentation roughly doubles the

classification time when doubling the data.

6.2.1. Outlier Detection

Regarding the Outlier Detection, we found that detecting only very few outliers yielded the best

results. Consequently, we set the the maximal distance one point is allowed to have to the closest point

within the cluster to one standard deviation per feature on average. With 20 features, this resulted

in an eps value of 4.4. The minPoints parameter was set to 51, as there were a total of 57 samples for

each gesture in the training set and we figured that at least 90% of the data should be inliers. These

parameters resulted in an average of 3.25 out 1539 samples being considered outliers in the 27 gestures

data set. For 56 gestures, an average of 5.8 outliers were found in 3192 samples.

One example of an outlier alongside an inlier and the visualization of the gesture Open F can be

seen in Figure 8. The outlier was created by bending the thumb and middle finger too much.

(a) Visualization (b) Outlier (c) Inlier

Figure 8. Outlier (bent thumb and middle finger) found for hand shape Open F alongside Inlier of the

same hand shape and visualization.

About 0.78% of all samples were identified as outliers, which slightly improved performance in

three of eight cases, as shown in Table 3 and Table 4. More importantly, classification time improved in

six out of eight cases, as seen in Table 5 and Table 6. This leads to a recommendation to use Outlier

Detection in time-critical applications.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

18 of 31

6.2.2. Data Augmentation

The effect of the applied Data Augmentation method can best be seen in Figure 9, where the result

is visualized. Here, two synthetically generated hand shapes for the Horns label are shown as an

example, along with an original sample for comparison. As can be seen, new data samples can be

successfully generated and show some variations in the way the hand shape is performed. Overall, we

have doubled our training data set using this technique.

(a) Original User Recording (b) Augmented Data (c) Another augmented Data

Figure 9. Visualized effect of Data Augmentation for hand shape Horns.

As can seen in Table 3 and Table 4, the experimental application of Data Augmentation failed to

improve the accuracy further, especially with the larger data set. The reason could be that the collected

data is sufficient for the chosen classifiers and does therefore not further improve classification accuracy.

As the number of data samples increases, the classification time also increases. To evaluate whether

better generalizability can be achieved with Data Augmentation, we created and compared learning

curves: We plotted the accuracy obtained without Data Augmentation as a function of the number of

participants, i.e., the number and variety of available training data, and compared it with the results

when Data Augmentation is applied. Figures 7 and Figures 10 show these learning curves. When the

data is not augmented, the curves already show a good fit, with accuracy on the test set increasing

steadily with the number of participants. The generalization gap, i.e. the gap between the two curves, is

also clearly visible. Just LR shows a significant decrease in training accuracy as the number of data

increases (whether due to a larger data set or the use of Data Augmention).

The generalizability can therefore not be increased by augmenting the data, as they already have

a high generalizability with the exception of LR.

Overall, we were able to successfully generate valid synthetic data samples to enrich our training

set. For the reasons stated above, the application of the Data Augmentation method is altogether not

worth applying in this context and for this type of data. As mentioned in Section 3.2, research on

Data Augmentation for wearable sensors has mainly been studied in a dynamic context, where models

trained with this more complex type of data benefit more from artificial augmentation of the data

set. The application of Data Augmentation would therefore be more effective for dynamic gestures

and would probably achieve a better effect on accuracy in the area of Deep Learning, as these methods

perform significantly better with a large amount of data than the traditional ML methods [34].

6.2.3. Feature Selection

Feature Selection was used for data preprocessing in a total of four configurations. When applied

to both data sets with 20 runs per experiment, we obtain 160 executions. The amount of times each

feature was discarded by the algorithm can be seen in Table 7. There were no features discarded in

50 out of 160 runs. The maximum number of discarded features was six (five times in 160 runs). On

average 2.069 features were discarded per run.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

19 of 31

(a) Support Vector Machine (SVM) (b) Random Forest (RF)

(c) Logistic Regression (LR) (d) Voting Meta-Classifier (VL2)

Figure 10. Learning curves with (dashed line) and without (solid line) Data Augmentation for 56 hand

shapes.

According to the Table 7, the thumb, index finger and middle finger seem to be the most important

for classification. As, for example, no thumb stretch features were discarded at all, but the thumb

spread feature was discarded more than every fourth time. Features of the index finger were discarded

the least, and if so, then only the values of the upper extremities (DIP and PIP stretch features). For

the middle finger, each of the four features was discarded at least three times, but the total number of

discarded features is lower than for the thumb. The ring- and little finger seem to contribute the least

amount of information needed to classify gestures, as their features were discarded most often.

It is important to note that the stretch MCP value was always preserved for almost all fingers,

while the PIP and DIP values were frequently discarded. In most cases, only one of the latter two

joints was discarded, while the other was kept for classification. After investigation this phenomenon

further, we noticed that these two joints are rarely moved individually. For most gestures, both joints

are a flexed to about the same degree. Looking at our data, we also noticed that the value of these two

joints is often exactly the same, explaining why one of these two joints for each finger was discarded

by our feature selection so often. Anatomically, it is not possible to move the upper phalanx (= DIP)

independently of the middle phalanx (= PIP) without external influence [9]. This dependence explains

why so many values are filtered out here.

Another noteworthy observation is that the ring finger spread value was the most frequently

discarded feature and was discarded in more than 40% of all runs. This is likely due to the Ring finger

barely moving along this axis in most gestures. For example, when spreading your fingers, the ring

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

20 of 31

finger barely moves, while the spread value of all other fingers changes significantly. As the ring finger

mainly has a supporting function, its mobility is limited compared to the other fingers. In most cases,

the ring finger is used together with its neighboring fingers and therefore exhibits a strong dependence

on them. This dependency was obviously recognized by our Feature Selection.

Table 7. Features and number of times they were discarded by GA.

Feature Finger Joint Value Discarded Discarded Discarded
Absolute Relative Total

0 Thumb Spread CMC 47 29.38%

47
5 Thumb Stretch CMC 0 -
6 Thumb Stretch MCP 0 -
7 Thumb Stretch IP 0 -

1 Index Spread MCP 0 -

19
8 Index Stretch MCP 0 -
9 Index Stretch PIP 10 6.25%
10 Index Stretch DIP 9 5.62%

2 Middle Spread MCP 3 1.88%

37
11 Middle Stretch MCP 3 1.88%
12 Middle Stretch PIP 15 9.38%
13 Middle Stretch DIP 16 10.00%

3 Ring Spread MCP 66 41.25%

129
14 Ring Stretch MCP 5 3.12%
15 Ring Stretch PIP 36 22.50%
16 Ring Stretch DIP 22 13.75%

4 Pinky Spread MCP 24 15.00%

99
17 Pinky Stretch MCP 9 5.62%
18 Pinky Stretch PIP 30 18.75%
19 Pinky Stretch DIP 36 22.50%

Overall, it can be said that Feature Selection was able to achieve an improvement in classification

time with a slight decrease in accuracy. On the other hand, we were able to prove that Feature Selection

comprehensibly identified and filtered dependent values. The approach would probably bring even

more time advantages if more than 20 features were used for classification.

7. Discussion

In this study, we evaluated the efficacy of various ML classifiers and data preprocessing techniques

in recognizing hand shapes of ASL. Our focus was not only on achieving high accuracy but also on

ensuring real-time applicability. The choice of the most suitable classifier and preprocessing method

requires a careful consideration of both accuracy and classification time. The training time is not

relevant for our purposes, since the training is performed offline and is not time-critical.

7.1. Key Findings

Accuracy vs. Classification Time Trade-off: VL2 achieved the highest accuracy, but was also the

slowest, making its use in real-time applications a careful consideration. In contrast, LR offered

the best speed but lowest accuracy (2 − 2.5 percentage points less than VL2). RF and SVM are

somewhere in between.
Impact of Data Preprocessing: Data preprocessing techniques such as Feature Selection and Outlier

Detection improved the efficiency of classifiers in terms of classification time, but often at the cost

of a slight decrease in accuracy. The particular benefit of Data Augmentation could not be proven,

instead it has provided poorer accuracy values and higher classification times.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

21 of 31

7.2. Optimal Classifier for Real-Time Application

In general, the accuracy values achieved are at a comparable level for all classifiers. Since VL2

can almost exclusively achieve the highest accuracy values by combining the advantages of the other

classifiers, it is very suitable for our purpose. The high classification time is slightly relativized when

considering that in a real-time scenario usually only one hand shape has to be recognized at a time. In

our case, the classification time was given for the classification of 82 and 168 hand shapes, respectively,

before applying Outlier Detection.

VL2 achieves an average classification time of 20.80ms for 27 hand shapes and 68.46ms for 56 hand

shapes for data preprocessing without Data Augmentation. If we assume an approximately proportional

ratio of classification time to the number of data to be classified, this results in a classification time of

approximately 0.25ms or 0.41ms for a single hand shape to be classified. Theoretically, classification

rates of over 2.45kHz would be possible, i.e. far more than the 90Hz sampling rate supported by the

data glove used in this work. It can therefore be assumed that a high classification rate for single hand

shapes can be achieved even when using hardware that is not as performant as we had available.

Regarding data preprocessing, the use of Outlier Detection is recommended, as this leads to

improvements especially in classification times and, when used with VL2, also to improvements in

accuracy. Feature Selection has brought slight improvements in classification time, but these advantages

do not add up to those of Outlier Detection, which is why it does not necessarily make sense to use both

methods at the same time. The experimental Data Augmentation approach showed no improvements.

Overall, we therefore consider the use of VL2 in conjunction with Outlier Detection to be the most

useful for our purpose.

7.3. Limitations of Classification

Looking at the confusions within the classification, see Table 8 and Table 9, it can be seen for

which types of hand shapes there are difficulties in classification. The data acquisition was supervised,

i.e. it was monitored whether the hand shapes were correctly executed during the recording. The

listed errors are therefore mainly due to the data gloves or the classification methods.

The corresponding confusion matrices can be viewed in appendix, Figure A5 and Figure A6.

Thumb Position: There are particular difficulties with the hand shapes M, N, and T, where a fist is

formed and the thumb crosses a certain number of fingers below. Looking beyond the top 10, it

can be seen that S is also often interchanged with the hand shapes just mentioned, because here

the hand also forms a fist, but the thumb crosses the fingers at the top (and not at the bottom).

Also, S is confused with Closed E, where the thumb does not rest on the fingers but directly below

them.

Upon closer inspection of the visualized data, it is noticeable that the position of the thumb is

not recorded accurately enough by the data glove (examples can be seen in Figure 11). This is

generally a weakness with this glove and seems to be the case with other IMU controlled gloves

[11]. Similarly, it is difficult for the glove to tell whether the thumb is on top or underneath the

crossed fingers.

The hand shapes Flat Spread 5 and 4 are also confused and differ only in the position of the

thumb.
Spread Values: Another example where the classifiers had difficulties with recognition are the hand

shapes R, H and V already shown in Figure 3, which differ only by the spread of the index finger

and ring finger. The same applies to 4 and Closed B.
Stretch Values: The classifiers also often had problems with stretch values, for example to distinguish

between curved and bent hand shapes. Even though the recording of the hand shapes was

monitored, it cannot be completely ruled out that the hand shapes were all recorded uniformly,

as the difference between bent and curved is sometimes marginal. Examples are Curved L ⇔ Bent

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

22 of 31

L and Curved 1 ⇔ Bent 1. The differences between the hand shapes Curved 4 ⇔ Spread E and C ⇔

O are more significant, but there have also been cases of confusion.

(a) M, Participant 5 (b) N, Participant 5 (c) T, Participant 2

Figure 11. Faulty recordings of hand shapes M, N and T of participant 2 and 5.

Table 8. Top ten most common classification confusions for 27 hand shapes

True label Predicted Label Confusion Rate

N M 0.2333
M N 0.2333
T N 0.2000
N T 0.1333
4 Closed B 0.1000
R V 0.0833
H R 0.0833
C O 0.0667
V 7 0.0500
W Closed B 0.0500

Table 9. Top ten most common classification confusions for 56 hand shapes

True label Predicted Label Confusion Rate

Closed E S 0.2667
Curved 1 Bent 1 0.2667

Bent 1 Curved 1 0.2167
Curved L Bent L 0.2167
Curved 4 Spread E 0.2000

Flat Spread 5 4 0.2000
4 Flat Spread 5 0.2000

Bent L Curved L 0.1833
S Closed E 0.1667

Spread E Curved 4 0.1500

7.4. Comparison to Related Work

Pan et al. [9] have published a state of the art paper on data gloves in 2023. They examined over

100 English-language papers from reputable publishers and created a comprehensive review that we

use for comparison:

Number of gestures: One of their results shows that the papers validate at least three to a maximum

of 31 hand gestures. The average for static gestures is 20 gestures. So in comparison, our paper is

in the upper range or well above with 27 and 56 static hand gestures respectively.
Number of participants: For the number of participants and data recorded (samples), our work is

right on the average of 20 participants and 1,000 to 10,000 samples (it has 1,620 and 3,360 samples,

respectively, and double that if the data are augmented).
Number of classifiers: Most papers have examined between three and five classifiers; again, we

are in the mean range with four classifiers examined. However, we examine eight different

combinations of data preprocessing methods for each classifier.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

23 of 31

Table 10 shows us an overview of related work [9,11,13,14]. Since most papers ([10–12,14]) report their

results in a user-dependent manner, we conducted an additional experiment for this purpose. This

means that a user’s data can appear in both the training and the test data. For better comparability, we

therefore conducted another experiment for both data sets.

Table 10. Comparison of user dependend recognition accuracy with related work, ordered by Number

of Gestures (NoG) and NoP

Author(s) Classifier Type HS Mo Or NoG NoP Accuracy

Achenbach et al. [11] SVM Hand shapes of Rock Paper Scissors ✓ 5 30 99.20%
Shukor et al. [13] Distance Hand gestures of Malaysian Sign Language ✓ ✓ 9 4 88.88%
Saggio et al. [14] CNN Signs of Italian Sign Language ✓ ✓ 10 7 98.00%
Plawiak et al. [10] SVM Hand-body language gestures, e.g. Okay sign ✓ ✓ ✓ 22 10 98.32%
Achenbach et al. [11] SVM Hand gestures of Rock Paper Scissors ✓ ✓ 25 9 99.50%
Pezzuoli et al. [12] SVM Simple hand gestures, e.g. clockwise rotation ✓ ✓ ✓ 27 5 99.70%
This work VL2 Hand shapes of ASL fingeralphabet ✓ 27 20 95.55%
This work RF Hand shapes of ASL-Lex [5] ✓ 56 20 93.28%

The following abbreviations were used: Hand Shape (HS), Movement (Mo), Orientation (Or), Number of Gestures

(NoG), Number of Participants (NoP).

This time, randomly combined training and test data were examined in a ratio of 80 to 20. For

this we used the VL2 with the already used hyperparameter ranges and with Outlier Detection, as this

was the most promising approach, and trained and tested them 100 times. The training and testing

data were randomized again before each run.

An accuracy of 95.55% was achieved for the data set with 27 hand shapes, and 93.19% for 56

hand shapes. Looking at the other classifiers, we see that they are at a similarly high level between

94.17% (LR) and 95.34% (RF) for 27 hand shapes and between 90.16% (LR) and 93.28% (RF) for 56 hand

shapes. It should be noted here that RF can even achieve a slightly higher result than VL2 and that LR

obviously scales poorly.

Comparable works, such as Pezzuoli et al.’s [12], achieve an accuracy of up to 99.70% for 27

dynamic gestures, but also use five times as many features. These 96 features include information

about hand orientation and movement.

Plawiak et al. [10] use ten sensor values per frame to detect dynamic hand gestures, two of which

are rejected using Principal Component Analysis (PCA). They interpolate the average of 60 frames of

data to 20 frames, resulting in 160 data points, which they use to classify the 22 different hand gestures.

While this gives them a higher accuracy of 98.32% than us (95.92% for 27 hand shapes), they also use

eight times the amount of features for classification.

Achenbach et al. [11] achieve a higher accuracy than we do with a comparable number of gestures

(25 compared to 27) and features (19 compared to 20) with 99.50%, but they can also rely on information

about the orientation of the hands, which we lack.

In direct comparison with the related work shown in Table 10, we perform slightly worse with

27 hand shapes in terms of accuracy, but we can also rely on significantly less information, which

generally has a positive effect on the classification times. With 56 hand shapes we can distinguish more

than twice as many hand shapes as the related work and this with a still high accuracy.

8. Conclusions

In this work, the effects of different data preprocessing steps on the classification of 27 and 56 static

hand shapes were investigated. The metrics considered were accuracy and the classification time.

According to our research, we can recommend the VL2 classifier with Outlier Detection, as it has

a high accuracy with acceptable classification time. With this setting, 91.91% (27 hand shapes) and

87.50% (56 hand shapes) accuracy could be achieved for user-independent tests, with a classification

time of less than 15ms and less than 60ms, respectively. In user-dependent tests, as much as 95.55%

and 93.28% accuracy could be achieved. Comparable work with better accuracy values either had

more information available to classify the data or was only able to distinguish significantly fewer

classes. For very time-critical applications, LR with Outlier Detection can also be used, whose accuracy

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

24 of 31

is slightly lower, but classification time is significantly higher. This recommendation is independent of

the number of hand shapes to be classified.

The use of Feature Selection has brought a slight improvement in classification times, but this is

not necessarily additive to the advantages of Outlier Detecion. With more features, the advantages of

Feature Selection would certainly be greater. Our approach to Data Augmentation was able to double the

number of training data with valid data, however, no improvement in accuracy or generalizability was

observed. This is certainly due to the fact that we classified static gestures, whereas related work has

pointed to noticeable improvements for dynamic gestures.

Future work will evaluate how the data preprocessing methods would behave with dynamic data

with significantly more features. Especially improvements in Data Augmentation and Feature Selection

could then be expected. Data Augmentation should lead to higher accuracy and better generalizability,

whereas Feature Selection should lead to faster classification times.

The focus on real-time applicability limits the exploration of more computationally intensive, yet

potentially more accurate, models like deep learning. These models may offer improved performance

but require greater computational resources. This could also be taken into account in future work.

Author Contributions: Conceptualization, Philipp Achenbach, Sebastian Laux, Dennis Purdack, Philipp Müller
and Stefan Göbel; Data curation, Philipp Achenbach, Sebastian Laux and Dennis Purdack; Formal analysis, Philipp
Achenbach, Sebastian Laux, Dennis Purdack and Philipp Müller; Funding acquisition, Stefan Göbel; Investigation,
Philipp Achenbach; Methodology, Philipp Achenbach, Sebastian Laux and Dennis Purdack; Project administration,
Philipp Achenbach and Stefan Göbel; Resources, Philipp Achenbach; Software, Philipp Achenbach, Sebastian
Laux and Dennis Purdack; Supervision, Philipp Achenbach and Stefan Göbel; Validation, Philipp Achenbach,
Sebastian Laux, Dennis Purdack and Philipp Müller; Visualization, Philipp Achenbach, Sebastian Laux and
Dennis Purdack; Writing – original draft, Philipp Achenbach, Sebastian Laux and Dennis Purdack; Writing –
review & editing, Philipp Müller and Stefan Göbel.

Funding: This research received no external funding

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data we used and the results of this work can be found at https://github.com/
serious-games-darmstadt/dataglove_manus-prime-x_handshapes. The hand shapes we used and where these
are applied can be found at https://sign-parametrization.netlify.app/handshapes.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ACM Association for Computing Machinery

ASL American Sign Language

CMC Carpometacarpal

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DIP Distal Interphalangea

DoF Degrees of Freedom

DT Decision Tree

GA Genetic Algorithm

IEEE Institute of Electrical and Electronics Engineers

IP Interphalangeal

IMU Inertial Measurement Unit

LR Logistic Regression

MCP Metacarpophalangeal

ML Machine Learning

OvA One-versus-Al

OvO One-versus-One

PCA Principal Component Analysis

PIP Proximal Interphalangeal

RF Random Forest

SVM Support Vector Machine

VL2 Voting Meta-Classifier

VR Virtual Reality

WoS Web of Science

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://github.com/serious-games-darmstadt/dataglove_manus-prime-x_handshapes
https://github.com/serious-games-darmstadt/dataglove_manus-prime-x_handshapes
https://sign-parametrization.netlify.app/handshapes
https://doi.org/10.20944/preprints202311.1385.v1

25 of 31

Appendix A

Table A1. Used hand shapes of ASL fingeralphabet (1 to Y) and ASL-Lex (all hand shapes except M

and N).

1 3 4 5 7 8 A

Closed B C D E F G H

I K L M N O R

S T V W Bent 1 Y Baby O

Bent L Bent V Closed E Curved 1 Curved 4 Curved 5 Curved H

Curved L Curved V Flat 1 Flat 4 Flat B Flat Horns Flat ILY

Flat M Flat N Flat O Flat V Flat Spread 5 Goody Goody Horns

ILY Open 8 Open B Open E Open F Open H Spread E

Spread Open E Stacked 5

Hand shapes can be viewed in detail at https://sign-parametrization.netlify.app/handshapes

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://sign-parametrization.netlify.app/handshapes
https://doi.org/10.20944/preprints202311.1385.v1

26 of 31

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

0.7

0.8

0.9

1

A
cc

u
ra

cy

(a) Support Vector Machine

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

0.7

0.8

0.9

1

A
cc

u
ra

cy

(b) Random Forest

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

0.7

0.8

0.9

1

A
cc

u
ra

cy

(c) Logistic Regression

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

0.7

0.8

0.9

1

A
cc

u
ra

cy

(d) Voting Classifier

Figure A1. Accuracy values in Leave-One-Out cross-validation for Classifiers with 27 Gestures (Outlier

Detection, Feature Selection, Data Augmentation).

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

0.7

0.8

0.9

1

A
cc

u
ra

cy

(a) Support Vector Machine

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

0.7

0.8

0.9

1

A
cc

u
ra

cy

(b) Random Forest

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

0.7

0.8

0.9

A
cc

u
ra

cy

(c) Logistic Regression

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

0.7

0.8

0.9

1

A
cc

u
ra

cy

(d) Voting Classifier

Figure A2. Accuracy values in Leave-One-Out cross-validation for Classifiers with 56 Gestures (Outlier Detection, Feature Selection,
Figure A2. Accuracy values in Leave-One-Out cross-validation for Classifiers with 56 Gestures (Outlier

Detection, Feature Selection, Data Augmentation).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

27 of 31

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

2

4

6

·10−3
P

re
d

ic
ti

o
n

T
im

e
[m

s]

(a) Support Vector Machine

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

0

1

2

3

·10−2

P
re

d
ic

ti
o

n
T

im
e

[m
s]

(b) Random Forest

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

0

1

2

·10−3

P
re

d
ic

ti
o

n
T

im
e

[m
s]

(c) Logistic Regression

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

2

4

·10−2

P
re

d
ic

ti
o

n
T

im
e

[m
s]

(d) Voting Classifier

Figure A3. Classification Times in Leave-One-Out cross-validation for Classifiers with 27 Gestures (Outlier Detection, Feature Selection,
Figure A3. Classification Times in Leave-One-Out cross-validation for Classifiers with 27 Gestures

(Outlier Detection, Feature Selection, Data Augmentation).

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

2

3

4

5

·10−2

P
re

d
ic

ti
o

n
T

im
e

[m
s]

(a) Support Vector Machine

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

2

4

6

·10−2

P
re

d
ic

ti
o

n
T

im
e

[m
s]

(b) Random Forest

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

0

0.5

1

1.5

·10−3

P
re

d
ic

ti
o

n
T

im
e

[m
s]

(c) Logistic Regression

None Out Aug Feat Out/Aug Out/Feat Aug/Feat All

5 · 10−2

0.1

0.15

0.2

P
re

d
ic

ti
o

n
T

im
e

[m
s]

(d) Voting Classifier

Figure A4. Classification Times in Leave-One-Out cross-validation for Classifiers with 56 Gestures (Outlier Detection, Feature Selection,
Figure A4. Classification Times in Leave-One-Out cross-validation for Classifiers with 56 Gestures

(Outlier Detection, Feature Selection, Data Augmentation).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

28 of 31

Figure A5. Leave-One-Out cross-validation confusion matrix for 27 hand shapes and VL2 classifier

with Outlier Detection.

Figure A6. Leave-One-Out cross-validation confusion matrix for 56 hand shapes and VL2 classifier

with Outlier Detection.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

29 of 31

References

1. World Health Organization. Deafness and hearing loss. Technical report, World Health Organization,

2021.

2. Stokoe, W.C.; Casterline, D.C.; Croneberg, C.G. A dictionary of American Sign Language on linguistic principles;

Linstok Press, 1976.

3. Stokoe, W. Sign language structure. 1978; Linstok Press, Silver Spring, MD, 1960.

4. Achenbach, P.; Göksu, Y.; Kullmann, T.; Tregel, T.; Göbel, S. Towards handshape identification for automatic

gesture recognition using sign notation systems. 8th European Conference on Social Media (ECSM ’21) 2021.

5. Sehyr, Z.S.; Caselli, N.; Cohen-Goldberg, A.M.; Emmorey, K. The ASL-LEX 2.0 Project: A Database of

Lexical and Phonological Properties for 2,723 Signs in American Sign Language. The Journal of Deaf Studies

and Deaf Education 2021, 26, 263–277. doi:10.1093/deafed/enaa038.

6. Caselli, N.K.; Sehyr, Z.S.; Cohen-Goldberg, A.M.; Emmorey, K. ASL-LEX: A lexical database of American

Sign Language. Behavior Research Methods 2017, 49, 784–801. doi:10.3758/s13428-016-0742-0.

7. Brentari, D. A prosodic model of sign language phonology; Language, speech, and communication, MIT Press:

Cambridge, Mass, 1998.

8. Fricke, E.; Bressem, J. Gesten - gestern, heute, übermorgen. Vom Forschungsprojekt zur Ausstellung;

Universitätsverlag Chemnitz: Chemnitz, 2020.

9. Pan, M.; Tang, Y.; Li, H. State-of-the-Art in Data Gloves: A Review of Hardware, Algorithms,

and Applications. IEEE Transactions on Instrumentation and Measurement 2023, pp. 1–1.

doi:10.1109/TIM.2023.3243614.

10. Plawiak, P.; Sosnicki, T.; Niedzwiecki, M.; Tabor, Z.; Rzecki, K. Hand Body Language Gesture Recognition

Based on Signals From Specialized Glove and Machine Learning Algorithms. IEEE Transactions on Industrial

Informatics 2016, 12, 1104–1113. doi:10.1109/TII.2016.2550528.

11. Achenbach, P.; Purdack, D.; Wolf, S.; Müller, P.N.; Tregel, T.; Göbel, S. Paper Beats Rock: Elaborating the Best

Machine Learning Classifier for Hand Gesture Recognition. In Serious Games; Söbke, H.; Spangenberger, P.;

Müller, P.; Göbel, S., Eds.; Springer International Publishing: Cham, 2022; Vol. 13476, pp. 229–245. Series

Title: Lecture Notes in Computer Science, doi:10.1007/978-3-031-15325-9_17.

12. Pezzuoli, F.; Corona, D.; Corradini, M.L. Recognition and Classification of Dynamic Hand Gestures by a

Wearable Data-Glove. SN Computer Science 2021, 2, 5. doi:10.1007/s42979-020-00396-5.

13. Shukor, A.Z.; Miskon, M.F.; Jamaluddin, M.H.; Ali@Ibrahim, F.b.; Asyraf, M.F.; Bahar, M.B.b. A New

Data Glove Approach for Malaysian Sign Language Detection. Procedia Computer Science 2015, 76, 60–67.

doi:10.1016/j.procs.2015.12.276.

14. Saggio, G.; Cavallo, P.; Ricci, M.; Errico, V.; Zea, J.; Benalcázar, M.E. Sign Language Recognition Using

Wearable Electronics: Implementing k-Nearest Neighbors with Dynamic Time Warping and Convolutional

Neural Network Algorithms. Sensors 2020, 20, 3879. doi:10.3390/s20143879.

15. Kunz, N. Recognition and Classification of Handshapes of American Finger Alphabet. Bachelor’s Thesis,

Technical University of Darmstadt, Darmstadt, 2022.

16. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer,

P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D. Scikit-learn: Machine Learning in

Python. MACHINE LEARNING IN PYTHON.

17. Ali, S.; Smith-Miles, K.A. Improved Support Vector Machine Generalization Using Normalized Input

Space. In AI 2006: Advances in Artificial Intelligence; Springer, 2006; pp. 362–371.

18. Ghojogh, B.; Crowley, M. The Theory Behind Overfitting, Cross Validation, Regularization, Bagging, and

Boosting: Tutorial, 2019. arXiv:1905.12787 [cs, stat].

19. Zhang, Y.; Zheng, Y.; Qian, K.; Zhang, G.; Liu, Y.; Wu, C.; Yang, Z. Widar3.0: Zero-Effort Cross-Domain

Gesture Recognition With Wi-Fi. IEEE Transactions on Pattern Analysis and Machine Intelligence 2021,

44, 8671–8688.

20. Palipana, S.; Salami, D.; Leiva, L.A.; Sigg, S. Pantomime: Mid-air gesture recognition with sparse

millimeter-wave radar point clouds. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies 2021, 5, 1–27.

21. Ohashi, H.; Al-Naser, M.; Ahmed, S.; Akiyama, T.; Sato, T.; Nguyen, P.; Nakamura, K.; Dengel, A.

Augmenting Wearable Sensor Data with Physical Constraint for DNN-Based Human-Action Recognition.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.1093/deafed/enaa038
https://doi.org/10.3758/s13428-016-0742-0
https://doi.org/10.1109/TIM.2023.3243614
https://doi.org/10.1109/TII.2016.2550528
https://doi.org/10.1007/978-3-031-15325-9_17
https://doi.org/10.1007/s42979-020-00396-5
https://doi.org/10.1016/j.procs.2015.12.276
https://doi.org/10.3390/s20143879
https://doi.org/10.20944/preprints202311.1385.v1

30 of 31

Time Series Workshop. Time Series Workshop @ ICML, befindet sich ICML 2017, August 11-11, Sydney,

Australia, 2017, p. 5.

22. Um, T.T.; Pfister, F.M.J.; Pichler, D.; Endo, S.; Lang, M.; Hirche, S.; Fietzek, U.; Kulić, D. Data

augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural

networks. Proceedings of the 19th ACM International Conference on Multimodal Interaction; ACM:

Glasgow UK, 2017; pp. 216–220. doi:10.1145/3136755.3136817.

23. Liu, S.; Ostadabbas, S. A Semi-supervised Data Augmentation Approach Using 3D Graphical Engines.

In Computer Vision – ECCV 2018 Workshops; Leal-Taixé, L.; Roth, S., Eds.; Springer International

Publishing: Cham, 2019; Vol. 11130, pp. 395–408. Series Title: Lecture Notes in Computer Science,

doi:10.1007/978-3-030-11012-3_31.

24. Blender Online Community. Blender - a 3D modelling and rendering package, 2018. Stichting Blender

Foundation, Amsterdam.

25. Feix, T. Anthropomorphic hand optimization based on a latent space analysis; na, 2011.

26. Baraniuk, R.G.; Cevher, V.; Wakin, M.B. Low-dimensional models for dimensionality reduction and signal

recovery: A geometric perspective. Proceedings of the IEEE 2010, 98, 959–971. Publisher: IEEE.

27. Whitley, D. A genetic algorithm tutorial. Statistics and Computing 1994, pp. 65–85.

28. Li, D.J.; Li, Y.Y.; Li, J.X.; Fu, Y. Gesture Recognition Based on BP Neural Network Improved by Chaotic

Genetic Algorithm. International Journal of Automation and Computing 2018, 15, 267–276.

29. Cunningham, P.; Cord, M.; Delany, S.J. Supervised Learning. In Machine Learning Techniques for Multimedia;

Springer, 2008; pp. 21–49.

30. Galar, M.; Fernández, A.; Barrenechea, E.; Bustince, H.; Herrera, F. An overview of ensemble methods

for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes.

Pattern Recognition 2011, 44, 1761–1776.

31. Breiman, L. Random Forests. Machine Learning 2001, 45, 5–32.

32. Srimaneekarn, N.; Hayter, A.; Liu, W.; Tantipoj, C. Binary response analysis using logistic regression in

dentistry. International Journal of Dentistry 2022, 2022.

33. Zappi, P.; Lombriser, C.; Stiefmeier, T.; Farella, E.; Roggen, D.; Benini, L.; Tröster, G. Activity recognition

from on-body sensors: accuracy-power trade-off by dynamic sensor selection. In Wireless Sensor Networks:

5th European Conference, EWSN 2008, Bologna, Italy, January 30-February 1, 2008. Proceedings; Springer: Italy„

2008; pp. 17–33.

34. Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN

Computer Science 2021, 2, 160. doi:10.1007/s42979-021-00592-x.

Short Biography of Author

Philipp Achenbach completed his master’s degree in mechatronics at the

Technical University of Darmstadt in 2018. His thesis was about full-body

reconstruction using Inverse Kinematics in the context of Virtual Reality. He

joined the Multimedia Communications Lab of the Technical University of

Darmstadt as a research assistant in March 2019 and moved with his group to

the Department of Electrical Engineering in early 2022. He researches in the area

of hand gesture recognition using wearables in the context of sign language.

For this he is also intensively working on the application of different machine

learning classifiers. In addition, he is active in teaching (Serious Games and

previously Communication Networks II).

Dennis Purdack wrote both his computer science bachelor’s and master’s

theses on sign language recognition using various Machine Learning methods

and different hardware such as data gloves and camera-based systems. He

completed his bachelor’s degree in 2021 and his master’s degree in 2022. Both

were completed at the Technical University of Darmstadt. He is currently

working at the Hessian University for Public Management and Security to

develop a virtual reality training program for police officers using full-body

tracking.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.1145/3136755.3136817
https://doi.org/10.1007/978-3-030-11012-3_31
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.20944/preprints202311.1385.v1

31 of 31

Sebastian Laux is currently studying for a master’s degree in computer science

at the Technical University of Darmstadt. In 2022, he wrote his bachelor thesis on

sign language recognition using data gloves with a focus on data augmentation.

He also works as a student assistant in the Serious Games research group at the

Technical University of Darmstadt, where he assists research on hand gesture

recognition with wearable sensors.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 November 2023 doi:10.20944/preprints202311.1385.v1

https://doi.org/10.20944/preprints202311.1385.v1

	Introduction
	Goal and Methodology

	Data Acquisition
	Data Preprocessing
	Outlier Detection
	Data Augmentation
	Methodology

	Feature Selection

	Machine Learning Classification
	
	
	
	

	Experiment
	Data Acquisition
	Hyperparameters
	Hardware

	Results
	Machine Learning Classifier
	Data preprocessing methods
	Outlier Detection
	Data Augmentation
	Feature Selection

	Discussion
	Key Findings
	Optimal Classifier for Real-Time Application
	Limitations of Classification
	Comparison to Related Work

	Conclusions
	Appendix A
	References

