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Article

EIF-SlideWindow: Enhancing SLAM Efficiency and
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Information Matrix
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Centro Algoritmi/LASI, University of Évora, Portugal
* Correspondence: jlamarleon@gmail.com

Abstract: This paper introduces EIF-SlideWindow, a novel enhancement of the Extended Information Filter (EIF)

algorithm for Simultaneous Localization and Mapping (SLAM). Traditional EIF-SLAM, while effective in many

scenarios, struggles with inaccuracies in highly non-linear systems or environments characterized by significant

non-Gaussian noise. Moreover, the computational complexity of EIF/EKF-SLAM scales with the size of the

environment, often resulting in performance bottlenecks. Our proposed EIF-SlideWindow approach addresses

these limitations by maintaining a fixed-size information matrix and vector, ensuring constant-time processing

per robot step, regardless of trajectory length. This is achieved through a sliding window mechanism centered on

the robot’s pose, where older landmarks are systematically replaced by newer ones. We assess the effectiveness of

EIF-SlideWindow using simulated data and demonstrate that it outperforms standard EIF/EKF-SLAM in both

accuracy and efficiency. Additionally, our implementation leverages PyTorch for matrix operations, enabling

efficient execution on both CPU and GPU. Additionally, the code for this approach is made available for further

exploration and development.

Keywords: SLAM; Kalman filter; Extended Kalman Filter (EKF); Gaussian noise

1. Introduction

Simultaneous Localization and Mapping (SLAM) is a core problem in robotics and autonomous
systems, involving the estimation of a robot’s pose (its position and orientation) and the creation of a
map of an unknown environment using sensor data. SLAM is inherently complex and typically requires
the integration of multiple sensor types, including cameras, LIDAR, and inertial measurement units
(IMUs), to yield accurate and reliable estimates of the robot’s pose and the surrounding environment
map.

SLAM is commonly framed as a probabilistic inference problem, where the objective is to estimate
an optimal robot pose and map by maximizing the posterior probability, based on sensor measurements.
Various algorithms exist to solve SLAM, notably the Extended Kalman Filter (EKF) [1], Particle Filters
(PF) [2], and Graph-based SLAM [3].

The EKF (and its variants) and GraphSlam are among the most widely used SLAM algorithms (see
examples of applications listed1 using [4,5]). However, GraphSlam heavily depends on detecting loop
closures, which are crucial for correcting accumulated errors but can be challenging to identify. This
requires robust and efficient methods to determine when a robot revisits a previously seen location.
Additionally, GraphSlam’s complexity can increase quadratically with the number of landmarks and
poses in the environment.

Other proposals focus on optimizing the efficiency of the algorithm, as demonstrated in ap-
proaches that employ sub-maps [6–8]. However, dividing a map into sub-maps can lead to inaccuracies
when integrating these sub-maps, as error accumulation across boundaries can disrupt global consis-
tency. Additionally, sub-map management often requires assumptions about independence or minimal

1 https://www.cvlibs.net/datasets/kitti/eval_odometry.php
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correlation between regions, which may not hold in complex or densely featured environments, poten-
tially degrading accuracy. Moreover, while sub-mapping reduces immediate computational load, it
can introduce overhead in tracking and updating sub-map boundaries, which becomes particularly
challenging in dynamic or large-scale environments. Lastly, the memory required to store and update
multiple sub-maps in real-time scales linearly with the number of sub-maps, potentially constraining
performance in resource-limited system.

Recent advancements in the field include approaches that incorporate deep learning, as out-
lined in [9]. However, the quasi-analytic solutions derived from EKF and its SLAM variants remain
among the most effective methods currently available [4,10]. Deep learning solutions are increasingly
applied in Visual SLAM (camera-based data), benefiting from advancements in image and video
processing [11].

The EKF is arguably the most widely used estimation algorithm for nonlinear systems [12,13].
A notable variant of the EKF is the Extended Information Filter (EIF); mathematically, EKF and EIF
are equivalent, but EIF matrices link poses and landmarks, which is critical to our proposed method,
EIF-SlideWindow.

EIF-SLAM is a recursive algorithm that estimates the robot’s pose and environment map by
iteratively updating the state estimate using sensor data. EIF operates under the assumptions of
Gaussian noise and linearity, which may lead to inaccuracies in highly nonlinear systems or in
environments with significant non-Gaussian noise. Additionally, the computational complexity of
EIF/EKF can grow substantially with larger environments, resulting in performance issues.

In this paper, we present a novel approach to EIF-SLAM, the EIF-SlideWindow, designed to
address these limitations by maintaining accuracy and improving efficiency. Our approach processes
each step in constant time, regardless of the trajectory length, making it suitable for real-time scenarios.

Our EIF-SlideWindow approach modifies the EIF algorithm to keep the information matrix and
vector at a fixed size. This sliding window is designed to act as a queue, where outdated landmarks
are removed, and new ones are inserted as the robot moves, preserving a consistent matrix size along
the trajectory. The sliding window is centered on the robot’s current pose, allowing for efficient
computation without sacrificing recent information.

It is important to note that our approach does not use the sub-map technique; instead, the
environment is treated as a whole, maintaining correlation throughout the entire trajectory. However,
we leverage the sliding window concept due to the limited influence of more distant or disconnected
points relative to the current points [14], allowing us to use only a data window that achieves an
optimal balance of efficacy and efficiency in the calculations.

We evaluate our proposed method using simulated data and compare its performance to the
standard EIF/EKF-SLAM algorithm. Results indicate that our approach improves both accuracy and
efficiency. We further demonstrate the real-time capabilities of our approach, highlighting its potential
for practical applications.

For experimentation, we developed our code in Python, leveraging PyTorch for efficient matrix
operations and compatibility with both CPU and GPU processing. This setup also facilitates future
integration with the Python Rosbag package for real-data evaluation.

The rest of this paper is organized as follows: Section 2 provides a detailed overview of the
EIF-SLAM algorithm and its limitations. Section 3 describes our proposed EIF-SlideWindow approach.
Section 4 presents our experimental results, comparing the performance of our approach with that of
the standard EKF and EIF SLAM algorithms. Finally, in Section 5, we conclude the paper and discuss
future research directions.

2. Extended Information Filters (EIF)

The Extended Information Filter (EIF) builds on the same mathematical foundation as the Ex-
tended Kalman Filter (EKF) to solve the Simultaneous Localization and Mapping (SLAM) problem,
but it represents the information in a different form. The EKF extends the standard Kalman Filter
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to handle nonlinear systems, which makes it suitable for SLAM applications. Both the EKF and EIF
estimate a posterior distribution over the robot state, denoted by E, which is modeled as a multivariate
Gaussian distribution. The posterior distribution is conditioned on previous measurements (e.g., from
LIDAR) and past robot motion commands.

The mathematical formulation of the EKF/EIF assumes that measurement errors follow a Gaussian
distribution N(µ, σ2), whose probability density function, evaluated at x = E, is given by:

f (x | µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (1)

When applying EKF/EIF to the SLAM problem, the likelihood function seeks to estimate the
most probable configuration of the state E given the robot motion commands and measurements (e.g.,
LIDAR-based landmark detections). Since we are interested in the maximum likelihood estimate,
rather than the absolute probability values, we can disregard constant factors in Equation 1. Thus,
Equation 1 simplifies to:

f (x | µ, σ2) ∝ e−
(x−µ)2

2σ2 . (2)

Given the large number of measurements typically available in real-world scenarios (e.g., multiple
landmark detections per robot step), a matrix representation is more computationally efficient.

Let pt represent the robot’s pose at time t, where we define pt = (xt, yt, θt). Here, xt and yt are
the Cartesian coordinates at time t, and θt is the robot’s orientation (heading angle) from time t− 1 to t.
Let N denote the total number of landmarks in the environment, with each landmark ln defined by its
Cartesian coordinates (xn, yn), where 1 ≤ n ≤ N.

The complete state E of the environment at time t can then be defined as:

Et = (pt, l1, . . . , lN), (3)

which can be expanded to:

Et = (xt, yt, θt, x1, y1, x2, y2, . . . , xN , yN).

Equation 3 represents a vector that includes the robot’s pose at time t as well as the coordinates of
all landmarks in the environment (see Figure 1).

Then, the posterior distribution of the robot state is defined as:

p(Et | zt, ut) ∝ e−
1
2 (Et−µ)TS−1

t (Et−µ), (4)

where:

• zt = {z1, . . . , zN} denotes the set of observations up to time t, with each observation zn =

(distn, θn) representing the distance and bearing from the robot’s pose pt to a landmark ln, for
1 ≤ n ≤ N.

• ut = {u1, . . . , ut} represents the sequence of motion commands up to time t, with each motion
command ut = (distt, θt) specifying the distance and bearing over the interval [t− 1 : t], i.e., from
pose pt−1 to pt.

• µ is the mean of the distribution.
• St is the covariance matrix.
• T denotes the transpose operation.
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Figure 1. Example of trajectory and landmarks.

Starting from Equation 4, we expand the exponent term, yielding:

p(Et | zt, ut) ∝ e−
1
2 ET

t S−1
t Et+µTS−1

t Et− 1
2 µTS−1

t µ. (5)

Following the simplification used in Equation 1, the constant term (last term in Equation 5) can be
removed without affecting the outcome of this development. Thus, we have:

p(Et | zt, ut) ∝ e−
1
2 ET

t S−1
t Et+µTS−1

t Et . (6)

The term S−1
t in Equation 6 is known as the information matrix, denoted by Ht, and µTS−1

t is called
the information vector, denoted by bt. Therefore, we define:

Ht = S−1
t , bt = µTS−1

t = µT Ht.

Using this alternative representation, we obtain the Extended Information Filter (EIF) formulation:

p(Et | zt, ut) ∝ e−
1
2 ET

t HtEt+bT
t Et . (7)

Finally, the estimate of the state Et can be computed as:

Et = H−1
t bt. (8)

From a mathematical perspective, the EKF and EIF formulations are equivalent. However, the
information matrix Ht is symmetric, and its entries directly correspond to the elements (i.e., poses and
landmarks) in the environment. Figure 2 illustrates the matrix Ht and its relationships with the robot’s
poses and landmarks in the environment.
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This property will be crucial in our proposed approach, as the information matrix H and vector b
will serve as the basis for the sliding-window EIF.

Figure 2. Information matrix Ht=3 at time step t = 3, illustrating the connections between the robot
pose Pt=3 and the environmental landmarks.

According to the SLAM process, with each LIDAR measurement, the information matrix H and
vector b must be updated as follows:

1. Prediction of the robot pose and covariance S from (t− 1) to t:
2. Update (or correction) of the robot pose and covariance: Adjust the state estimate with the new

LIDAR measurements and refine the covariance.

It is worth noting that the entries in Ht in Figure 2b do not directly represent coordinates in the
environment as shown in Figure 2a.

In a real-world scenario, the robot operates in a nonlinear environment (such as 2D space with
x and y coordinates), which complicates the analytical computation of the Gaussian distribution. To
address this, a linearization process is commonly used, making it possible to apply either the Extended
Kalman Filter (EKF) or the Extended Information Filter (EIF).

To incorporate both the motion command ut = (dist, θ) (between consecutive poses) and LIDAR
measurements (between pose and landmark), both quantities must be linearized before updating the
information matrix H and vector b.

Following traditional Kalman filter methodology, we approximate nonlinear functions with a
first-order Taylor series expansion, replacing the first derivative with the Jacobian matrix of partial
derivatives.

We avoid further mathematical details here, which are available in [15]. However, a critical
component of the Kalman filter algorithm is this linearization process, applied in each of the two steps
outlined above.
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In the first step (motion prediction), the next robot pose is modeled by a deterministic nonlinear
function g plus an independent Gaussian noise:

Et = Et−1 + ∆t where ∆t = g(Et−1, ut) + Pδt, (9)

where ∆t is the change from state Et−1 to state Et, δt is a Gaussian random variable with zero mean
and covariance determined by the sensor properties (LIDAR or IMU) or manually set for simulated
scenarios, P is a projection matrix that scales δt, and g is the nonlinear function of the robot’s motion.

The function g can be approximated using a first-degree Taylor series expansion as follows:

g(Et−1, ut) ≈ g(µt−1, ut) +
∂g(µt−1, ut)

∂E
(Et−1 − µt−1), (10)

where the Jacobian matrix ∂g (also written as ∂g(µt−1,ut)
∂E ) captures the partial derivatives of g with

respect to the state E.
In the second step (update or correction), a second deterministic nonlinear function h plus an

independent Gaussian noise ϵt is used to model the robot’s measurements, e.g., LIDAR observations:

lt = h(Et) + ϵt, (11)

where h is similarly approximated by a Taylor series expansion:

h(Et) ≈ h(µt) +
∂h(µt)

∂E
(Et − µt). (12)

Here, ∂g and ∂h are the Jacobians of g and h, respectively.
Choosing the values of µt−1 and µt is crucial for accurate linearization of these nonlinear functions.

A typical choice is to use the following approximation:

µt = bt−1H−1
t−1 + ∆̂xyθ ,

µt−1 = bt−1H−1
t−1,

where ∆̂xyθ represents the displacement in x, y, and θ from time (t− 1) to t, calculated using ut =

(dist, θ). This estimate may lead to drift over time, as errors accumulate with each movement. One
solution is to repeat the linearization several times, each time using progressively better estimates to
linearize g and h, achieving convergence after sufficient iterations [16].

However, this iterative approach can be computationally expensive, especially during the update
step, as each landmark measurement requires a separate linearization and update. The prediction step,
on the other hand, involves a single linearization of g.

Finally, we can express H and b for the two steps as follows:

1. Prediction of the robot pose:

Ĥt =
[
(I + ∂g)H−1

t−1(I + ∂g)T + PδtPT
]−1

, (13)

b̂t = µT
t Ht. (14)

2. Update or correction of Ĥt and b̂t:

Ht = Ĥt + ∂hϵ−1∂hT , (15)

bt = b̂t +
(

Z + ∂hTµ
)

ϵ−1∂hT , (16)
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where:
Z = h(ξt)− h(µt),

and ξt is an initial estimate of the robot state, computed as ξt = g(ξt−1, ut), with ξt=0 = Et=0.

Here, I is the identity matrix with dimensions [dim(E), dim(E)].

3. Our proposal: EIF-SlideWindow

As is well-known, nonlinear Kalman filter (KF) variants share a common limitation: computational
cost and memory requirements grow with the trajectory length, even in environments with limited
spatial extent.

Specifically, the update step in the Extended Kalman Filter (EKF) where measurements for N
active landmarks are processed at each robot timestep represents a computational bottleneck.

For the EKF, the dimensions of the observation matrix H and the measurement vector b are
determined primarily by the total number of timesteps T and the number of landmarks.

In practical scenarios, two distinct cases may arise:

1. Online Estimation: Data from sensors (e.g., LIDAR) is processed in real-time at each timestep.
Here, the final values of T and N are unknown, so H and b grow incrementally as new observations
are incorporated.

2. Offline Estimation: All data is collected before processing, so T and N are fixed in advance.

In both cases, significant data volumes must be handled. For instance, a typical LIDAR sensor
may capture thousands of points per second, posing challenges in both processing time and memory
usage.

This results in a key trade-off for the EKF algorithm and its variants between accuracy, compu-
tational load, and memory usage. Reducing the number of landmarks or robot poses over a fixed
trajectory length reduces both memory and processing time but at the cost of reduced estimation
accuracy, and vice versa.

In this paper, we propose a modification to the Extended Information Filter (EIF) algorithm to
maintain fixed dimensions for H and b. At each timestep, newly observed landmarks are incorporated
and the robot’s current state is updated. To keep the dimensions of H and b constant, we employ
a sliding-window approach where older landmarks are removed from consideration as new ones
are added. This window centers on the current robot pose, effectively maintaining a fixed-size state
representation over the entire trajectory.

Figure 3 illustrates the sliding window (highlighted in blue) associated with a robot pose (indicated
by a circle) at time t. As shown in Figure 3, the state Et consists of the current robot pose and the
landmarks within the window (see Equation 3).
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Figure 3. Slide window (square) associated with a robot pose (highlighted with a circle),
RectangleSize = size(H).

This strategy aims to achieve constant processing time as the robot continues its measurements
along its path.

To mitigate the potential loss of accuracy due to reduced constraints (i.e., fewer landmarks), the
time saved can be allocated to improving the linearization process specifically during the prediction
step, thereby enhancing estimation accuracy.

3.1. Size of Sliding Window

At each robot pose, a large set of landmarks in the environment is detected. However, only a fixed
subset is associated with each pose for use in the EIF algorithm. The number of landmarks associated
with each pose depends on factors such as computational power, available memory, and the desired
accuracy or error in the trajectory estimation.

By adjusting the sliding window size, these variables (computing load, accuracy, and memory
usage) can be balanced. In real-time applications, the sliding window size is often constrained by
available memory and computational resources.

We define the sliding window size SW as:

SW =
(
dim(p) + k · Nlp · dim(l)

)
k, Nlp ≥ 1 (17)

where Nlp is the number of landmarks selected per pose step, k is the number of previous robot steps,
dim(p) is the dimension of the robot state vector, and dim(l) is the dimension of the measurement
vector. For example, in a planar setting, dim(p) = 3 and dim(l) = 2, where the robot features vector p
is (distx, disty, θ) and the measurement features vector l is (dist, θ).

Using SW, we can now define the dimensions of H, b, and the state vector as follows:

size(H) = [SW, SW]

size(b), size(state) = [SW, 1]

Thus, SW determines the dimensions of H, b, and the state vector for the EIF-SlideWindow
algorithm.
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3.2. Updating H, b, and E According to the Sliding Window Size

In our approach, Updating refers to the process of remove, move, or insert operations on a matrix
or vector. Specifically, we define these operations as follows:

Eupdating = UpdE(E, Lt)⇒ Chain Process(remove→ move→ insert) (18)

[Hupdating, bupdating] = UpdHb(H, b)⇒ Chain Process(remove→ move) (19)

where Lt is the set of landmarks associated with the current robot pose. This Updating task incurs
minimal computational cost.

Note that until the number of robot steps reaches k (as defined in Equation 17), no updating
is performed. Once updating begins on H, b, and the state vector, the oldest block of landmarks of
size Nlp is removed, and the remaining blocks are shifted to make room for the new landmark block.
Figures 4–6 illustrate the updating process for the state vector, vector b, and matrix H, respectively.

Figure 4. Simple example of Updating state vector where Nlm = 1 and k = 3.

Figure 5. Simple example of Updating matrix b where Nlm = 1 and k = 3.
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Figure 6. Updating matrix H where Nlm = 1 and k = 3, note that ones was added on diagonal
(shadowed cell).

Algorithm 1 presents a detailed pseudocode of our proposed algorithm, EIF-SlideWindow, closely
following the structure of the corresponding Python implementation. We incorporate both mathe-
matical notation and Python-style pseudocode to enhance clarity and facilitate understanding of the
algorithm’s logic and flow. Line 19 performs the Updating process, while lines 24 to 31 carry out the
prediction step, during which the linearization process can also be refined.
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Algorithm 1 EIF-SlideWindow Algorithm
Require:

1: Commands→ ut(dist, θrumbo).
2: Nl p, landmarks number by pose.
3: k, number of robot previous steps
4: Lt{l1, l2, ..ln=Nlm} Landmarks from a robot step

Initialize:
5: ListStates = [], t = 1, maxItr > 0
6: SW = (dim(p) + k ∗ Nlm ∗ dim(l)) dim(p) = 3, dim(l) = 2
7: State Et=0 = zeros(SW, 1), insert pt=0 and Lt=0
8: Simple estimate State ξt=0 = Et=0
9: Information matrix Ht=0 = diagOnes

(
SW, SW

)
10: Information vector bt=0 = ET

t=0Ht=0
11: Covariance Motion δ→ size

(
dim(p), dim(p)

)
12: noisemot = RanMulN

(
mean=0, δ

)
→ size

(
dim(p), 1

)
13: Covariance measurements ε→ size

(
dim(l), dim(l)

)
14: noisemes = RanMulN(mean=0, ε)→ size

(
dim(l), 1

)
15: while Lt ̸= NULL do
16: ξt = ξt−1 + ∆xyθ + noisemot
17: ∆xyθ = [distut ∗ cos(θξt−1 ), distut ∗ sin(θξt−1 ), θ]
18: Et = Et−1 + ∆xyθ
19: if t > k then
20: ξ = UpdE(ξ, Lt) E = UpdE(E, Lt)
21: H = UpdHb(H) b = UpdHb(b)
22: else
23: ξ ←

[
ξ

Lt

]
and E←

[
E

Lt

]
24: end if
25: while itr ≤ maxItr do ▷ Prediction and linearization
26: µt−1 = bH−1

27: µ = µt−1 + ∆xyθ ∆xyθ = [distut ∗ cos(θµt−1 ), distut ∗ sin(θµt−1 ), θ]

28: Gmot = diagOnes(ZW, ZW)

29: Gmot[2,0:2]=[distut ∗ (−sin(θµ)), distut ∗ (cos(θµ))]

30: H = Gmot H−1GT
mot + PδPT

31: b = µT H
32: itr+ = 1
33: end while
34: for each l ∈ Et do l is x,y ▷ measure Update
35: if l is considered from this robot pose then
36: µt = bH−1

37: z = [dist, di f Ang] + noisemes dist=L2dis(ξt, l); di f Ang = atan2(ξ, l)− θξ

38: ẑ = [dist, di f Ang] dist=L2dis(µt, l); di f Ang = atan2(µ, l)− θµ

39: C=zeros(ZW, dim(l))
40: C[0:dim(p)-1,0] = diff/d diff=µt − l; d=L2dis(µt, l)
41: C[indl , 0] = -(diff/d) indl is the index of l in C
42: C[0 : dim(p)-1,1] = [-diff[1]/d2, diff[0]/d2]
43: C[indl , 1] = [diff[1]/d2, -diff[0]/d2]
44: C[dim(p)-1,1] = -1
45: H = H + Cε−1CT

46: b = b +
(
(z− ẑ) + CTµt

)
ε−1CT

47: end if
48: end for
49: ListStates.Add(bH−1)
50: t+ = 1
51: end while

4. Experimental Design

To validate our proposal, we present results that demonstrate its accuracy and efficiency through
the use of simulated data, offering a controlled environment for rigorous evaluation. This methodology
enables benchmarking across a range of predefined scenarios, ensuring that the algorithm adheres
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to established performance standards. By leveraging simulations, we can conduct a comprehensive
assessment, allowing for refinement and optimization prior to real-world implementation.

The experiments were conducted on a computer with the following specifications:

• RAM: 15 GiB
• Processor: Intel Core i5− 8300H CPU @ 2.30 GHz ×8 cores
• GPU: GeForce GTX 1050 Ti with 4 GiB of VRAM

Using the pseudocode in Algorithm 1, we developed an implementation of the EIF-SlideWindow
algorithm in Python. To optimize performance, particularly for matrix operations, we leveraged the
PyTorch library, allowing us to utilize both CPU and GPU processing for comparative analysis.

To evaluate trajectory estimation accuracy and computational efficiency, we employed the Ex-
tended Kalman Filter (EKF) and the standard Extended Information Filter (EIF) as reference bench-
marks. The code for EKF and EIF, along with parameter initialization, was obtained from [15,17]2. This
setup enables direct comparison with validated implementations, and all algorithms were executed
under identical hardware conditions to ensure a fair comparison.

In accordance with [15], the following parameters were defined:

• The noise associated with robot motion and sensor measurements is modeled by zero-mean
Gaussian noise:

δ =

0.0001 0 0
0 0.0001 0
0 0 0.001


ε =

(
0.002 0

0 0.003

)
• Dimension of robot state: dim(p) = 3; dimension of measurement features: dim(l) = 2.
• Number of active landmarks per robot step: Nactive

lm = 10, as specified in line 33 of Algorithm 1.
• Length of the trajectory (number of robot steps): T = 100.
• Command for robot motion: u(dist, θ), where 0 ≤ dist ≤ 5 and −π

4 ≤ θ ≤ π
4 .

• Number of iterations for linearization: maxItr = 1, as we do not consider iterations to improve
linearization in these experiments.

It is important to distinguish between Nactive
lm and Nlm. In this context, Nactive

lm refers to the number
of landmarks accepted (true) in line 33, while Nlm denotes the number of landmarks selected by each
robot step, typically derived from LIDAR measurements.

During each robot pose update, landmarks are measured from the surrounding environment. In
this implementation, Nlm landmarks are distributed around each pose within an area of approximately
100 meters, consistent with standard LIDAR configurations.

To assess the accuracy of the estimated trajectory, we utilize the Root Mean Square Error (RMSE),
specifically the RMSE between the estimated trajectory and the actual motion. We employ the Python
package evo [18] for this purpose3.

Initially, it is crucial to understand the accuracy behavior for varying slide window (SW) sizes.
Figure 7 illustrates the results of accuracy (RMSE) as the size of SW is incrementally increased.

2 https://github.com/theevann/SLAM
3 https://github.com/MichaelGrupp/evo
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Figure 7. EIF-SlideWindow accuracy (RMSE) behavior in the trajectory estimation for different SW
size.

Note that with each iteration, where the slide window (SW) size is fixed, a trajectory consisting of
100 steps is generated. Each trajectory is distinct because the robot’s motion is determined by a random
command u (see Figure 8). Furthermore, the minor variations in RMSE observed for SW > 400 can be
attributed to the random Gaussian noise added to both motion and measurement processes. Notably,
the RMSE for the EIF-SlideWindow algorithm stabilizes when SW > 400.

Figure 8. According to Figure 7, estimated trajectory with SW=103 and RMSE=53.5 at right and
estimated trajectory with SW = 1003 and RMSE=0.1 at left.

On the other hand, we need to compare our approach with the results obtained from the EKF
and EIF algorithms. Given our approach, it is reasonable to anticipate a decrease in accuracy due
to the utilization of fewer landmarks. As in the previous experiment, we adhere to the parameters
established in [15], as defined above. Table 1 presents the results obtained.

Table 1. Results using a total of 400 landmarks, with 10 active landmarks (Nactive
lm ) per pose over 100

robot steps.

Methods Nactive
lm SW RMSE Time (sec) per step

EKF4 10 803 0.57 0.31
EIF4 10 803 0.55 1.36

EIF-SlideWindow 10 803 0.1 0.13
EIF-SlideWindow 10 403 0.08 0.06

From Table 1, we observe that our proposal yields superior results in trajectory estimation. This
improvement may stem from the fact that the number of active landmarks per robot pose (as indicated

4 https://github.com/theevann/SLAM
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in line 32 of Algorithm 1) is fixed to manage computational costs across all algorithms in the state of
the art. This constraint on accuracy arises from not utilizing all available landmarks. However, it is
important to note that an abundance of non-active landmarks may adversely affect accuracy.

Our experimental results indicate a relationship among the number of active landmarks, the slide
window size SW (which corresponds to the size of the information matrix H), and the RMSE (see
Figure 9). It is evident that achieving a stable minimum RMSE while increasing the number of active
landmarks necessitates a corresponding increase in SW.

Additionally, from Figure 7 and Table 1, we can conclude that our approach demonstrates
improved accuracy compared to EKF for values of SW > 400.

Figure 9. The result shows that we need to increase SW when more number of active landmarks are
used.

The next aim is to evaluate the efficiency of the EIF-SlideWindow algorithm. In this case, we
observe that the algorithm maintains a constant processing time regardless of trajectory length, given
that both the slide window (SW) and the number of landmarks (Nlm) are fixed. Figure 10 illustrates
the results for robot trajectories ranging from 100 to 1000 steps, with SW = 1203 and Nactive

lm = 10.

Figure 10. Average time per robot step for varying trajectory lengths with a fixed slide window size of
SW = 1203.
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Finally, we highlight the advantages of utilizing a GPU. When using the CPU, the processing time
increases exponentially after SW > 1800 (see Figure 11, top). In contrast, the GPU exhibits a linear
increase in processing time (see Figure 11, bottom). Specifically, we compute the average processing
time (in seconds) for each robot pose in a trajectory, with SW fixed. According to Algorithm 1, this
average time accounts for all iterations between lines 15 and 48, which correspond to a single trajectory.

Figure 11. Processing time when the GPU is used at the top, and CPU processing time at the bottom.

5. Conclusion

This paper has delved into the workings of the EIF-SlideWindow algorithm, an approach within
the field of Simultaneous Localization and Mapping (SLAM). EIF-SlideWindow represents a signif-
icant advance in addressing challenges typically encountered in SLAM algorithms. By leveraging
the Extended Information Filter, the EIF-SlideWindow algorithm achieves improved efficiency and
accuracy, demonstrating a capacity for constant-time performance across varying trajectory lengths.

The EIF-SlideWindow algorithm provides robust solutions to critical issues such as computational
complexity and real-time operation constraints, enhancing the viability of SLAM for autonomous
systems. The experimental results illustrate the method’s effectiveness in maintaining accuracy while
controlling computational overhead, especially when compared to traditional EKF and EIF approaches.

Future work will focus on validating this approach with real-world datasets and exploring the
effects of increased iterations on the linearization process to further refine accuracy. These efforts will
aim to expand the robustness and application of EIF-SlideWindow in diverse, real-time autonomous
systems environments.

Author Contributions: Conceptualization, methodology, and code Lamar-Leon. J, review and editing Salgueiro.
P, Gonçalves. T, and Rato. L All authors have read and agreed to the published version of the manuscript.

Abbreviations

The following abbreviations are used in this manuscript:

SLAM Simultaneous Localization and Mapping
LIDAR Light Detection and Ranging
IMU inertial measurement units
EKF Extended Kalman Filter
EIF Extended Information Filter
PF Particle Filters
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