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Abstract 

Offshore geological exploration increasingly confronts operational and environmental challenges, 

including ecological constraints, elevated costs, and limited availability of high-resolution geospatial 

data. This study proposes a quantum-enhanced simulation framework that integrates Quadratic 

Unconstrained Binary Optimization (QUBO) with the Quantum Approximate Optimization 

Algorithm (QAOA) to optimize route planning for early-stage geological reconnaissance in the 

Guajira Offshore basin, Colombia. The study domain—a 1 km2 marine area—is discretized into a 

10×10 grid of 100 m × 100 m cells, each assigned a geostructural priority score. The resulting QUBO 

formulation encodes spatial connectivity, movement rules, and geological relevance into a binary 

decision structure, which is then solved through hybrid quantum–classical optimization routines. 

Results indicate that QAOA-based solutions produce coherent and efficient exploration routes that 

prioritize high-value geological targets while respecting spatial continuity and energy limitations. 

The proposed framework offers a promising pathway toward low-impact, cost-effective offshore 

exploration strategies and is scalable to broader maritime contexts. Additionally, it is compatible with 

future extensions involving AI-driven geological classification and real-time, adaptive route planning 

using multi-agent systems. 

Keywords: quantum approximate optimization algorithm (QAOA); quadratic unconstrained binary 

optimization (QUBO); offshore geological exploration; route planning; guajira offshore basin; 

quantum-classical hybrid models; UAV mission simulation; geo-optimization; energy-constrained 

pathfinding 

 

1. Introduction 

The Guajira Offshore Basin, located in the Caribbean Sea north of Colombia, represents a 

promising but underexplored frontier in offshore hydrocarbon exploration [1]. Despite significant 

interest from national and international energy agencies, the basin’s complex geology, deep-water 

conditions, and high logistical costs have limited detailed geomorphological mapping and early-

stage prospectivity analysis [2]. Traditional marine campaigns relying on seismic, gravimetric, and 

multibeam data collection are both time-consuming and expensive, often requiring specialized 

vessels and extensive post-processing. As a result, new approaches are needed to enable early 

characterization of potential structural features with minimal physical intervention [3]. 

In parallel, recent advances in artificial intelligence (AI) and quantum computing have opened 

new pathways for geoscientific data acquisition, processing, and interpretation [4]. AI techniques, 
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such as convolutional neural networks [5] (CNNs) and generative algorithms [6], have demonstrated 

effectiveness in extracting geomorphological features from synthetic and real-world geospatial 

datasets, including bathymetric grids and radar altimetry. Simultaneously, quantum-inspired 

algorithms—particularly the Quantum Approximate Optimization Algorithm (QAOA) and 

Quadratic Unconstrained Binary Optimization (QUBO) formulations—are gaining traction for their 

ability to solve complex combinatorial problems with limited computational resources and under 

high uncertainty [7]. 

This paper introduces a lightweight, simulation-based framework that integrates QAOA-driven 

route planning with geospatial grid-based models for offshore terrain exploration. We focus on a 1 

km × 1 km segment of the Guajira Offshore region, selected from publicly available oceanic datasets, 

to simulate an autonomous mapping mission analogous to those performed by unmanned surface 

vehicles (USVs) or autonomous underwater vehicles (AUVs). The grid-based domain is encoded into 

a QUBO formulation that represents feasible navigation paths constrained by battery life, current 

directions, and seabed topography. 

Given the high cost and difficulty of deploying real missions in offshore Colombia, this study 

adopts a proof-by-simulation strategy using real topographic analogs and computational 

simulations. This approach allows testing of a quantum-classical hybrid optimization pipeline under 

conditions similar to those faced in actual offshore missions. By combining QUBO encoding, QAOA 

solvers, and AI-supported prioritization of exploration targets, the model demonstrates how route 

planning can be adapted to prioritize geological significance while respecting resource limitations. 

The remainder of this paper is structured as follows. Section 2 presents the theoretical 

background on QUBO and QAOA in geospatial optimization. Section 3 details the simulation 

domain, grid encoding, and objective functions. Section 4 presents illustrative results from route 

optimization experiments. Section 5 discusses implications for marine geoscience, and Section 6 

concludes with recommendations for real-world deployment and further integration of quantum 

approaches in offshore exploration workflows. 

2. Theoretical Foundations: QUBO and QAOA for Quantum-Assisted Geospatial 

Exploration 

Recent advances in quantum algorithms for combinatorial optimization have enabled the 

development of novel methodologies to address tasks such as route planning, resource allocation, 

and autonomous navigation in geospatial domains [8]. Among these, Quadratic Unconstrained 

Binary Optimization (QUBO) models and their implementation through algorithms such as the 

Quantum Approximate Optimization Algorithm (QAOA) have emerged as leading approaches 

compatible with near-term quantum and hybrid classical-quantum hardware architectures [9,10]. In 

these models, Q is a symmetric matrix encoding both linear and quadratic interactions between 

decision variables [11]. This representation is sufficiently flexible to model optimal paths, mapping 

coverage constraints, energy limitations, and geological prioritization within a unified binary 

decision space. Classical georeferencing problems, sampling point selection, or mission planning 

under resource limitations can be effectively encoded in a QUBO framework [12]. 

In marine contexts such as the Guajira Offshore Basin, discretization of the seafloor into a 

navigable grid enables the representation of each cell or transition as a binary variable. Viable paths 

are modeled as chains of activated variables within the grid, subject to constraints related to vehicle 

endurance, subsea obstacles, or prioritized exploration targets [1]. These conditions are integrated as 

quadratic penalties within the Q matrix, allowing for the resolution of both minimal coverage and 

multi-objective routing problems [13]. 

QAOA, in turn, provides a variational quantum approach to optimization, based on a sequence 

of parameterized unitary operators that approximate the ground state of a quantum system encoding 

the QUBO objective [14]. QAOA has demonstrated promising results under noisy conditions and in 

scenarios where near-optimal solutions are desirable [15]. In navigation contexts, QAOA enables the 
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design of adaptive trajectories that respond to uncertainties such as ocean currents, sensor anomalies, 

or shifting coverage priorities. 

Unlike classical routing algorithms (e.g., Dijkstra, A*) that require full recomputation under 

changing conditions [14], QAOA allows for partial reconfiguration and incorporates probabilistic 

insights about solution quality [16]. This makes it particularly well suited for maritime mission 

planning in environments with incomplete or noisy bathymetric or spectral data. 

The benefits of using QUBO/QAOA in geospatial exploration include [17,18]: 

• Compact encoding of diverse constraints and objectives in a unified matrix formulation. 

• Adaptability to dynamic scenarios through parametric updates. 

• Reduced computational complexity in large-scale, multi-constraint optimization problems. 

• Scalability toward real-world deployment on dedicated quantum annealers or hybrid cloud-

based quantum platforms. 

This theoretical foundation supports the design of our simulated experiment in the Guajira 

Offshore Basin, presented in the following section. There, we detail both the QUBO formulation and 

its solution using QAOA-based techniques over a discretized mission domain. 

3. Geospatial Domain and Model Formulation 

This study focuses on a simulated geospatial domain within the Guajira Offshore region (Figure 

1 ), specifically selected due to its strategic importance for future exploration and its accessibility via 

satellite imagery and digital elevation models. A representative area of 1 km2 (1 km × 1 km) has been 

defined as the operational simulation grid. This region exhibits a relatively homogeneous bathymetry 

pattern and is suitable for modeling airborne or remote vehicle coverage missions. 

The simulation grid is discretized into 10 × 10 square cells, each representing an area of 100 m × 

100 m. This structure allows for detailed modeling of routing problems by associating each grid node 

with quantifiable geospatial parameters, such as seabed slope, estimated navigation cost, or 

hydrographic risk zones. The navigation surface is therefore treated as a weighted graph, where 

edges correspond to feasible movements between adjacent cells and the weights encode risk or 

energy metrics. 

 

Figure 1. Image of the Guajira Offshore zone (Source: ANH). 

This discretization enables the problem to be expressed as a graph-based traversal optimization, 

where the goal is to maximize coverage under constraints such as battery consumption, obstacle 

avoidance, or dynamic risk exposure. The formulation uses the QUBO (Quadratic Unconstrained 

Binary Optimization) model as a mathematical abstraction, allowing the integration of multiobjective 

criteria into a single optimization framework compatible with quantum or hybrid solvers. 
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To formalize the autonomous routing of an unmanned aerial vehicle (UAV) over the discretized 

offshore exploration domain, we formulate the trajectory optimization as a Quadratic Unconstrained 

Binary Optimization (QUBO) problem. This modeling approach allows for direct implementation 

within quantum-classical hybrid solvers, specifically under the Quantum Approximate Optimization 

Algorithm (QAOA) paradigm. 

Let the 100 m2 simulation domain be discretized into an 𝑁 X 𝑁 square grid, where each cell 

(𝑖, 𝑗) represents a potential location for UAV traversal. Define the binary decision variable 𝑥𝑖𝑗 ∈

{0, 1}, such that 𝑥𝑖𝑗 = 1 if the cell (𝑖, 𝑗) is included in the route, and 𝑥𝑖𝑗 = 0 otherwise. 

The objective is to determine a path that (i) maximizes coverage over high-priority geospatial 

cells, (ii) adheres to energy and distance constraints, and (iii) minimizes trajectory discontinuities. 

These requirements are encoded into the following QUBO structure: 

min
𝑥

(

 
 
∑ 𝑤𝑖𝑗𝑥𝑖𝑗  +  𝜆1 ∑ 𝑥𝑖,𝑗𝑥𝑘𝑙

(𝑖,𝑗),(𝑘,𝑙)∈Ω
𝑛𝑜𝑛−𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 

+ 𝜆2 ( ∑ 𝑑𝑖,𝑗𝑥𝑖𝑗 − 𝐷𝑚𝑎𝑥
(𝑖,𝑗)∈Ω

)

2

(𝑖,𝑗)∈Ω

)

 
 

 

where: 

• Ω is the set of all cells in the grid 

• 𝑤𝑖𝑗  denotes the geological priority score for cell (𝑖, 𝑗) , based on simulated or real satellite-

derived attributes. 

• 𝜆1  and 𝜆2  are penalty coefficients controlling path continuity and route length constraint 

enforcement, respectively. 

• 𝑑𝑖,𝑗 represents the traversal cost or distance associated with visiting cell (𝑖, 𝑗). 

• 𝐷𝑚𝑎𝑥 is the maximum allowed UAV flight range, determined by battery and mission-specific 

limitations. 

The first term rewards exploration of geologically relevant regions. The second term penalizes 

disconnected paths by discouraging simultaneous activation of distant cells. The third term imposes 

a soft constraint to ensure that the total route cost remains within the UAV’s operational threshold. 

This formulation is directly translated into a QUBO matrix QQQ, where the optimization 

problem takes the canonical form: 

min
𝑥 ∈{0,1}𝑛

𝑥𝑇 𝑄𝑥 

Figure 2 illustrates a representative QUBO matrix instance, where each entry 𝑄𝑎𝑏 encodes the 

interaction weight between binary variables 𝑥𝑎  and 𝑥𝑏 , derived from the combination of priority 

weights, adjacency constraints, and distance penalties. Each element 𝑄𝑎𝑏 represents either a unary 

bias or a binary interaction between variables (cells), representing coverage reward, path continuity, 

or energy constraints. 

This QUBO instance is subsequently embedded into a QAOA routine. The algorithm operates 

in alternating layers of quantum evolution and classical optimization to find an approximate solution 

that minimizes the energy landscape encoded by Q. The QAOA implementation enables adaptive 

tuning over noisy quantum backends or simulators and is particularly well-suited to constrained 

routing problems in dynamic or partially known environments. The route planning task is 

formulated as a combinatorial problem aiming to maximize the coverage of priority zones under 

constraints related to energy, visibility, and connectivity. A directed graph G = (N, E) is constructed, 

where the nodes 𝑁 represent georeferenced points of interest and the edges E encode transition costs 

(distance, slope, forest density). 
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Figure 2. QUBO matrix representation for route planning optimization. Each cell (a,b) indicates the interaction 

weight between grid variables 𝑥𝑎 and 𝑥𝑏. 

3.4. QAOA-Based Solving and Interpretation 

The QUBO model is solved using a QAOA implementation within a quantum simulation 

environment (e.g., Qiskit or PennyLane). This hybrid approach combines parameterized quantum 

unitary operators with classical optimization loops to approximate near-optimal solutions. Multiple 

parameters—such as ansatz depth, objective function performance, and fidelity metrics—are 

evaluated to assess solution quality. 

The optimized routes are compared with classical pathfinding algorithms (e.g., Dijkstra, A*) to 

quantify the relative improvement in geographic coverage, energy efficiency, and the number of 

detected geological structures. The resulting routes are visualized in a GIS environment, integrating 

geological information and UAV-simulated imagery to ensure spatial coherence and scientific 

relevance. 

This section lays the groundwork for the implementation of the optimization algorithm 

described in Section 4, where mission planning strategies for UAV or AUV exploration in offshore 

regions are validated under the QUBO/QAOA framework. 

4. Case Study and Preliminary Simulation Results 

This section outlines the implementation of the quantum-inspired routing algorithm described 

in Section 3, using a realistic offshore scenario to evaluate UAV route planning performance. The 

selected testbed corresponds to the Guajira Offshore Basin in northern Colombia, a region of high 

strategic interest due to its complex seafloor morphology and the presence of structural traps and 

fault-controlled accumulations. 

4.1. Study Area and Input Data 

To simulate an offshore reconnaissance mission with UAVs, a 1 km2 corridor was selected within 

the Guajira Offshore Basin. This zone contains legacy seismic wells (e.g., Chuchupa, Ballena, Tiburón) 

and known geological targets of interest for early-stage hydrocarbon exploration. The area is 

characterized by steep bathymetric gradients and diverse sedimentary structures, making it suitable 

for evaluating both coverage and routing feasibility. 
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The spatial domain was discretized into a 10×10 grid, with each cell representing a 100 m × 100 

m surface unit. A composite geospatial score was assigned to each cell based on the following three 

primary attributes: 

• Bathymetric Complexity Layer: Simulates the gradient of seafloor irregularities using noise-

perturbed elevation functions. 

• Geological Priority Layer: Assigns higher weights to cells adjacent to known or suspected 

structural highs. 

• Environmental Risk Layer: Marks operationally hazardous areas due to sediment instability, 

marine currents, seabed faults, or ecological constraints. 

Each attribute was simulated using analog values derived from regional geological maps, 

seismic records, and marine environmental studies. Figure 3 shows the discretized grid projected 

over the defined simulation zone. Table 1 summarizes the geospatial attributes encoded per cell. 

 

Figure 3. Grid generated over the simulation area. 

Table 1. Geospatial attributes of simulation area. 

Attribute Type Scale Description 

Bathymetric gradient Continuous [0.0 – 1.0] Higher values indicate steep slopes and 

operational navigation challenges. 

Geological priority score Discrete [0 – 3] Assigned based on proximity to structural 

highs or fault indicators. 

Environmental exclusion 

zones 

Binary (0/1) 0 or 1 Indicates restricted areas due to ecological or 

regulatory constraints. 

Energy cost map Continuous [0 – 2.0] Synthetic energy cost for 

reaching/transitioning between cells. 

Risk level (hazard index) Continuous [0.0 – 2.0] Composite metric from bathymetry, currents, 

and uncertainty about the terrain. 

4.2. Case Definition and Simulation Parameters 

To validate the proposed QUBO-based routing model in a geologically realistic context, we 

selected a 1 km2 offshore exploration area near the Chuchupa-1 gas well, located in the Guajira 

Offshore basin (11°48′02″N, 72°50′21″W). This site is part of a region of strategic interest for 
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Colombia’s energy transition and is characterized by both complex bathymetry and high seismic 

activity. The zone has previously been explored by Ecopetrol and Chevron, known for the presence 

of structural traps and fault-controlled accumulations (Figure 3). 

The attributes of the zone was simulated based on analog values derived from regional 

geological reports, marine environmental studies, and prior offshore seismic campaigns. The QUBO 

model includes penalty terms to discourage redundant paths and traversals through restricted or 

high-risk zones. The key simulation parameters are summarized in the following table (Table 2). 

This case setup provides a controlled yet realistic basis to test the performance of the quantum-

enhanced routing framework under operational constraints and terrain-based risks. The upcoming 

subsection presents the simulation results and visual comparison between the QAOA-based routes 

and classical benchmarks. A geological priority map was created using a Gaussian decay function 

centered on the Chuchupa-1 structure, assigning higher scores to adjacent cells. Figure 4 displays the 

resulting priority heatmap, with darker tones indicating higher exploration relevance. This area holds 

strategic interest due to the presence of deep features such as anticlines, structural highs, salt domes, 

and faulted zones previously inferred from seismic data and regional geophysical maps [19]. 

Table 2. Simulation parameters. 

Parameter Symbol Value Unit Description 

Grid size N×N 10 × 

10 

cells Discretization of the region into a 2D lattice 

Cell resolution – 500 meters Length of each side of the square cells 

UAV energy limit Dmax 3,500 meters Maximum flight length (total Euclidean distance) 

Penalty for discontinuity λ1 1.0 – Weight to discourage activation of non-adjacent 

cells 

Penalty for energy 

constraint 

λ2 0.5 – Weight applied to enforce total route cost below 

UAV endurance 

Max iterations (QAOA) – 150 – Maximum rounds of quantum-classical circuit 

optimization 

QAOA layer depth p 2 – Depth of the quantum circuit layers (alternating 

mixer/phase operators) 

To complement this layer and incorporate environmental feasibility, a synthetic environmental 

risk map was generated using a probabilistic hazard model. Risk levels were categorized as follows: 

• Level 3 (High risk): Simulated zones exposed to intense marine currents, strong seafloor 

irregularities, or ecological exclusion zones (e.g., coral habitats). 

• Level 2 (Moderate risk): Zones near structural transitions or mild slope instability. 

• Level 1 (Low risk): Areas with minor operational concerns. 

• Level 0 (No risk): Zones considered safe for autonomous transit. 

Figure 5 presents the environmental risk heatmap synthesized over the simulation grid. This 

layer plays a critical role in penalizing unsafe routes during the QUBO optimization process. 
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Figure 4. Geological priority heatmap. 

In offshore missions involving UAVs or autonomous marine vehicles, navigation must consider 

not only geological value but also environmental risks that may compromise safety, operational 

efficiency, or mission continuity. To simulate such real-world constraints in the Guajira Offshore 

testbed, a synthetic environmental risk map was constructed, using a 10×10 grid aligned with the 

previously defined simulation domain. 

Risk levels were assigned to each cell on a four-point ordinal scale from 0 to 3, based on the 

presence or absence of simulated constraints including: 

• Level 3 (High risk): Simulated areas affected by intense marine currents, potential underwater 

landslides, ecological exclusion zones (e.g., coral habitats), or regions with high bathymetric 

irregularity. 

• Level 2 (Moderate risk): Transition zones near structural discontinuities or shallower zones with 

known sediment instability. 

• Level 1 (Low risk): Peripheral areas with mild environmental irregularities, possibly affected by 

secondary marine dynamics. 

• Level 0 (No risk): Navigationally safe zones based on the analog topography and literature-

informed assumptions. 

Figure 5 displays the resulting environmental risk heatmap. Higher-risk zones are shown in 

darker shades, serving as exclusion or penalty zones during QUBO formulation. 
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Figure 5. Environmental risk heatmap synthesized over the Guajira Offshore simulation grid. 

This synthetic constraint layer was used to introduce penalties in the QUBO cost function when 

routes passed through medium- or high-risk areas. As a result, the quantum-inspired model was 

forced to generate safer and more energy-efficient paths, improving mission feasibility under 

operational uncertainty. This layer also allowed testing the sensitivity and adaptability of QAOA-

based solvers to real-time risk reconfiguration scenarios, which are common in marine exploration 

contexts. 

To complement the geological priority analysis and enable adaptive routing under operational 

constraints, a simulated environmental risk map was developed over the defined Guajira Offshore 

grid. This layer integrates synthetic estimations of environmental hazards that may affect the 

feasibility and safety of autonomous navigation in marine settings. The simulated risk profile 

includes factors such as strong marine currents, sediment instability, ecological exclusion zones (e.g., 

coral reefs or protected habitats), and anthropogenic obstructions (e.g., maritime infrastructure). 

Each grid cell was assigned a normalized risk score ranging from 0 (minimal environmental 

threat) to 1 (severe operational hazard). The spatial distribution of these scores followed a Gaussian 

decay from manually defined high-risk epicenters, mimicking real-world patterns observed in 

analogous offshore environments. Figure 6 illustrates the resulting heatmap, where darker shades 

denote elevated environmental risk. The spatial heterogeneity captured by the risk layer is 

instrumental in shaping viable navigation corridors and constraint-aware optimization strategies. 

In the context of the QUBO/QAOA formulation, the environmental risk layer is incorporated as 

a penalty term within the objective function, discouraging path solutions that traverse high-risk 

zones. This dual-layer integration (geological priority and environmental risk) enables the routing 

model to balance exploration objectives with mission safety and energy constraints. The resulting 

behavior emulates expert human planning, dynamically adapting to hostile or uncertain regions 

during offshore reconnaissance. 
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Figure 6. Composite Risk Heatmap (Geological Priority + Environmental Risk). 

Figure 6 illustrates the combined simulation map used for route generation, with darker regions 

indicating high risk or restricted priority. The next section evaluates how this configuration affects 

optimized UAV trajectories compared to classical benchmarks. 

4.3. Results 

This section presents the outcomes obtained from the simulation of geological exploration routes 

on a 10x10 grid representing the Guajira Offshore Basin. Each cell in the grid corresponds to a 

geospatial zone characterized by a geological priority and an environmental risk level. The problem 

was formulated as a Quadratic Unconstrained Binary Optimization (QUBO) model and solved using 

the Quantum Approximate Optimization Algorithm (QAOA), in combination with heuristics 

adapted to king-like movement rules (i.e., 8-neighbor adjacency). Two strategic criteria were 

considered for defining exploration paths: geological priority (only levels 2 and 3), and a composite 

risk index. 

Computational Implementation and Quantum Simulation Platform 

This work implemented the route planning problem for geological exploration as a Quadratic 

Unconstrained Binary Optimization (QUBO) model. Its binary structure allows efficient resolution 

via approximate quantum algorithms. The model was designed to maximize the coverage of critical 

zones according to two strategic criteria: (1) the coverage of high-priority geological cells (levels 2 

and 3), and (2) the maximization of a composite risk index, defined as the sum of geological priority 

and environmental risk. 

To solve the model, the Quantum Approximate Optimization Algorithm (QAOA) was used—a 

hybrid technique that integrates parameterized quantum circuits with classical optimization. This 

approach enables solving binary decision problems through quantum state simulation, preserving 

the structure of the objective function encoded in the QUBO matrix. The implementation was carried 

out using the Qiskit library developed by IBM, which offers a robust framework for building quantum 

circuits, simulating executions, and accessing real quantum processors remotely. 

The initial development was performed locally in a computing environment equipped with an 

Intel Core i7-11800H processor (8 cores at 2.30 GHz), 32 GB DDR4 RAM, running Ubuntu 22.04 LTS. 

Python 3.11 was used as the programming language, supported by Jupyter Notebook as the 
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development environment and specialized libraries such as qiskit, numpy, matplotlib, networkx, and 

dwave-ocean-sdk for graph formulation and spatially constrained routing simulations. 

Subsequently, the most critical sub instances of the model—specifically, subsets of sub routes 

with high strategic value and structurally connected under the 8-neighbor movement rule—were 

executed on the IBM Quantum Experience platform. Tests were performed both on quantum 

simulators (ibmq_qasm_simulator) and real quantum backends with a small number of qubits, such as 

ibmq_belem, which operates with a 5-qubit architecture. This allowed for the validation of the QAOA 

approach under realistic low-scale conditions, with potential scalability toward more advanced 

architectures. 

Due to the current limitations of quantum hardware in terms of qubit count and fidelity, a smart 

decomposition strategy was adopted. The grid was segmented into prioritized critical regions, and 

each sub instance was solved independently. This approach enabled strict adherence to spatial 

connectivity constraints and facilitated strategic visualization of the proposed paths through 

enriched heatmaps, as shown in Figures 7 and 8. 

 

Figure 7. Results for geological priority heatmap. 

 

Figure 8. Results for composite risk heatmap. 
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Routing Results 

Figure 7 illustrates the route generated over the geological priority map, where only cells with 

priority levels 2 or 3 are visited. The movement follows an adjacency logic without jumps. The QUBO 

model minimized the total route length under the constraint of full coverage of high-priority zones. 

A total of 46 critical cells were visited, comprising 28 level-2 and 18 level-3 priority cells, thus 

achieving 100% coverage of the highest geological priority areas. The final trajectory spans 62 cells in 

total, with 100% of level-3 and 86% of level-2 priority cells visited, maintaining spatial connectivity 

and complying with navigational constraints. The route starts from a level-3 cell and applies a 

prioritized recursive search for local optimization. This approach is particularly effective in contexts 

where subsurface quality is the primary criterion for drilling or seismic data acquisition, regardless 

of environmental or logistical risk. 

In a second phase, a more integrated approach was applied using a composite index calculated 

as the sum of geological priority and environmental risk for each cell, resulting in values ranging 

from 0 to 6. Figure 8 presents the composite risk heatmap and the optimized route generated 

accordingly. This path reflects a purely technical strategy centered on geological potential, aiming to 

maximize information extraction. However, it does not account for environmental or operational 

risks, which may conflict with sustainability policies or field deployment constraints. 

The QAOA model, applied to the adapted QUBO formulation, included an objective to 

maximize the coverage of high composite-risk cells (index ≥ 3), while enforcing connectivity and 

excluding jumps. The resulting route spans 64 cells, favoring those with a composite index above 4—

zones of both interest and environmental vulnerability. This exploration strategy integrates 

geological viability with sustainability and environmental impact considerations, which are critical 

for responsible planning in offshore environments. It was observed that 91% of the cells with index ≥ 

5 were covered, and the 8-neighbor movement rule was fully respected, validating the applicability 

of the approach to multi-criteria exploration scenarios. This solution offers broader spatial coverage 

and concurrently accounts for both exploration priority and environmental feasibility. Although 

some high-priority geological areas remain unvisited, the route exhibits a continuous and 

operationally feasible pattern that maximizes the collection of information in high-risk regions. 

5. Discussion 

The simulation results presented in the previous section highlight the potential of quantum-

inspired optimization techniques for supporting early-stage geological exploration planning in 

offshore environments. By formulating the exploration routing problem as a QUBO model and 

solving it with the QAOA algorithm, it was possible to generate spatially coherent routes that respect 

physical movement constraints while maximizing coverage over high-priority zones. This discussion 

focuses on three main aspects: (1) the strategic implications of route selection, (2) the computational 

performance and scalability of the quantum approach, and (3) the integration of multi-criteria 

decision-making under uncertainty. 

First, the contrast between the two routing strategies—based on geological priority alone (Figure 

7) and the composite risk index (Figure 8)—demonstrates the flexibility of the QUBO framework to 

incorporate diverse objectives and constraints. The geologically focused route offers full coverage of 

the most promising subsurface zones, which is highly relevant for technical teams aiming to 

maximize information gain per unit of navigation cost. However, it overlooks environmental 

constraints that may limit the operational feasibility of the proposed trajectory. In contrast, the 

composite risk-based route integrates risk-awareness by balancing geological richness with 

environmental vulnerability, resulting in a broader but strategically filtered route. The trade-off 

between strict geological targeting and environmentally informed exploration is clearly visible in the 

spatial structure and cell coverage statistics of the two solutions. 

Second, the use of QAOA on both simulated and real quantum backends provides insight into 

the current capabilities and limitations of quantum computing for logistical planning tasks. The 
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solution strategy involved decomposing the full exploration grid into sub instances of manageable 

size (6–10 critical cells) and solving them independently while preserving movement constraints. This 

modular approach aligns well with the capabilities of near-term quantum hardware, which remains 

constrained in qubit count and gate fidelity. Despite these hardware limitations, the QAOA 

framework proved effective in producing optimized sub routes that can be stitched into global 

strategies, particularly when applied through hybrid classical-quantum workflows. Moreover, the 

use of king-like adjacency rules (8-neighbor movement) ensures realistic trajectory generation, which 

is critical in applications such as marine exploration, where continuous and safe vessel navigation 

must be preserved. 

Third, this study illustrates how QUBO-based formulations allow for seamless integration of 

complex decision criteria—such as geological potential, environmental risk, and spatial adjacency—

into a unified optimization framework. While classical heuristics (e.g., DFS, greedy MST) can also 

yield viable routes, they often lack the expressive power and adaptability required to encode 

weighted interactions and dynamic constraints. The quantum approach, in contrast, supports richer 

problem representations and may offer computational advantages as quantum processors evolve. 

Furthermore, simulation results underscore the importance of strategic trade-offs in exploration 

planning: routes that maximize geological information may conflict with environmental policies, 

while those that prioritize environmental safety may sacrifice subsurface data collection. These 

findings provide a foundation for developing multi-objective formulations in future studies, 

potentially integrating economic cost, vessel availability, and regulatory constraints. 

In conclusion, the application of QAOA to solve QUBO-based formulations in the context of 

offshore geological exploration provides a valuable contribution to early-stage decision-making in 

complex and uncertain environments. From an operations management perspective, this approach 

offers a structured and replicable methodology for route planning that balances competing 

priorities—such as geological potential, spatial continuity, and environmental constraints. Rather 

than replacing classical methods, quantum-inspired strategies complement existing planning tools 

by enabling more nuanced optimization under spatial and regulatory limitations. The results 

obtained demonstrate that it is possible to generate coherent, feasible, and strategically aligned 

exploration routes even with the current limitations of quantum hardware. As quantum computing 

capabilities continue to evolve, future work should aim to incorporate dynamic information updates, 

integrate cost and operational capacity constraints, and support more robust planning frameworks 

for marine and offshore operations. This research serves as a first step in translating abstract quantum 

models into practical tools that support exploratory planning with real-world relevance. 

Conclusions and Future Directions 

This study presents a novel methodological framework that integrates QUBO (Quadratic 

Unconstrained Binary Optimization) formulations with QAOA (Quantum Approximate 

Optimization Algorithm) to address the problem of strategic route planning in offshore geological 

exploration. Using a geospatial grid from the Guajira Offshore basin, we demonstrated how heuristic 

search techniques and quantum-inspired algorithms can be combined to generate optimized routes 

that comply with strict spatial constraints while covering areas of high geological priority and/or 

environmental sensitivity. 

Two routing strategies were evaluated: one based purely on geological priority and the other 

incorporating a composite risk index that combines geological potential with environmental 

vulnerability. Both approaches produced operationally feasible paths that respect the “8-neighbor” 

spatial rule, avoiding discontinuities and ensuring logical connectivity across the exploration area. 

The implementation of the QAOA algorithm on both local simulators and IBM Quantum Experience 

hardware validated the applicability of hybrid quantum-classical methods in early-stage planning 

scenarios, particularly when the problem is decomposed into strategically relevant subregions. 

The results indicate that QAOA–QUBO models can serve as powerful tools for supporting 

offshore planning decisions where multiple and sometimes conflicting criteria must be balanced. 
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From a broader operational perspective, these models offer structured decision-making capabilities 

in the presence of spatial, environmental, and logistical constraints, often difficult to capture 

simultaneously with classical techniques alone. 

Future work in this domain should focus on several critical directions to enhance both the 

methodological robustness and practical applicability of the proposed framework. First, scalability 

remains a central challenge, as real-world offshore exploration often involves much larger geospatial 

grids and highly complex terrain configurations. To address this, future models should incorporate 

techniques such as graph clustering and dynamic re-optimization to manage computational load 

while preserving solution quality. Second, it is essential to extend the model to include realistic 

operational constraints. These may involve limits on fuel availability, vessel speed, environmental 

conditions such as weather windows, and the presence of restricted or regulated maritime zones. 

Incorporating these variables will allow for more accurate and deployable planning outcomes. Third, 

economic considerations must be embedded in the optimization logic. Cost analysis will enable 

decision-makers to better understand trade-offs between geological potential, environmental risk, 

and the financial expenditure required for data acquisition and offshore operations. Fourth, future 

iterations of the model should transition toward multi-criteria optimization. This will allow for 

simultaneous consideration of geological, environmental, economic, and even social dimensions of 

offshore exploration, aligning better with the complex, multi-stakeholder nature of energy 

development projects. 

Finally, as quantum computing hardware continues to evolve—with increases in the number of 

qubits and improvements in error correction—it will be increasingly valuable to test deeper 

implementations of QAOA circuits. Comparing their performance against classical heuristics could 

provide valuable insights into when and how quantum advantage can be realized in planning and 

logistics under uncertainty. 
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