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Abstract: In this paper major machine learning (ML) tools and the most important applications 
developed elsewhere for numerical weather and climate modeling systems (NWCMS) are reviewed. 
NWCMSs are briefly introduced. The most important papers published in this field in recent years 
are reviewed. The advantages and limitations of the ML approach in applications to NWCMS are 
briefly discussed. Currently, this field is experiencing explosive growth. Several important papers 
are published every week. Thus, this paper should be considered a simple introduction to the 
problem. 
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Everything we think we know about the world is a model 
Our models do have a strong congruence with the world 

Our models fall far short of representing the real world fully. 

Donella H. Meadows [1] 

1. Introduction 

At the end of the Second World War, the field of numerical weather and climate modeling 
developed as a collection of simple linear or weakly nonlinear single-disciplinary models like 
simplified atmospheric and oceanic models that include a limited description of the physical 
processes. However, a well-pronounced trend emerged in numerical weather and climate modeling 
during the last several decades. It marks a transition to complex nonlinear multidisciplinary systems 
or Numerical Weather/Climate Modeling Systems (NWCMS) like European Centre for Medium-
Range Weather Forecasts (ECMWF) models (e.g., Integrated Forecasting System (IFS)), National 
Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction 
(NCEP) Global Forecast System (GFS) and Climate Forecast System (CFS), NCEP Seasonal Forecast 
System (SFS), and NOAA Unified Forecast System (UFS) with fully coupled atmosphere, land, ocean, 
ice and wave components [2,3], etc. 

Any NWCMS usually has as three major subsystems three important components: (1) data 
assimilation system (DAS) – a subsystem that ingests/assimilates data, and prepares initial 
conditions, necessary to run the model; (2) the statistical or deterministic (based on first principles 
equations) model that includes model dynamics (dycor) and model physics (here terms “physics” 
includes all physical, chemical, and biological processes that are incorporated into the model) ; (3) a 
post-processing (PP) subsystem that corrects model outputs, using data. 

Currently, NWCMSs face four major challenges:  
1. The vast amounts of observational data available from satellites, in-situ scientific measurements, 

and in the future, from internet-of-things devices, increase with tremendous speed. Even now 
only a small percentage of the available data is used in modern DASs. The problems with the 
assimilation of new data in DASs range from growing time-consuming (with increasing 
amounts of data) vs. limited computational resources to the necessity of new approaches to 
assimilating new types of data [4,5]. 
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2. The increasing requirements to improve the accuracy and the forecast horizon of numerical 
weather/climate modeling systems cause their growing complexity due to increasing horizontal 
and vertical resolutions and related increasing the complexity of model physics. Thus, global 
and regional modeling activities consume a tremendous amount of computing resources, which 
presents a significant challenge despite growing computing capabilities. Model ensemble 
systems have already faced the computational resources problem that limits the resolution 
and/or the number of ensemble members in these systems [5]. 

3. Model physics is the most computationally demanding part of numerical weather/climate 
modeling systems. With the increase in model resolutions, many subgrid physical processes that 
are currently parameterized become resolved processes and should be treated correspondingly. 
However, the nature of these processes is not always sufficiently understood to develop a 
description of the processes based on the first principles. Also, with the increase in model 
resolution, the scales of the subgrid processes that should be parameterized become smaller and 
smaller. Parameterizations of such processes often become more and more time-consuming and 
sometimes less accurate because underlying physical principles may not be fully understood 
[4,5]. 

4. Current NWCMSs produce improved forecasts with better accuracy. A major part of these 
improvements is due to the increase in supercomputing power that has enabled higher model 
resolution, better physics/chemistry/biology description, and more comprehensive data 
assimilation [5]. Yet, the “demise of the ‘laws’ of Dennard and Moore” [6,7] indicates that this 
progress is unlikely to continue due to an increase in the required computer power. Moore’s law 
drove the economics of computing by stating that every 18 months, the number of transistors on 
a chip would double at approximately equal cost. However, the cost per transistor starts to grow 
with the latest chip generations, indicating an end to this law. Thus, due to the aforementioned 
limitations, results produced by NWCMSs still contain errors of various natures. Thus, the PP 
correction of model output errors becomes even more important [8]. Currently used in NWP 
operational practice post-processing systems like Model Output Statistics (MOS) [9] are based 
on linear techniques (linear regressions). However, because optimal corrections of model 
outputs are nonlinear, for correcting biases of even regional fields, many millions of linear 
regressions are introduced in MOS [10,11], making such systems cumbersome and resource-
consuming. 
Flexible and powerful numerical techniques are required to reduce growing demands for 

computer resources that outrun the actual growth of computer power, enable new data types to be 
used, meet the challenges of model physics, and develop flexible PP techniques to correct errors in 
model outputs. Developments in the various fields of artificial intelligence (AI), in particular, in 
machine learning (ML), computer science, and statistics indicated the possibilities of using ML as one 
of such techniques. For example, ML is increasingly being applied to solve and/or alleviate problems 
in NWCMSs [12–16]. 

2. ML for NWCMSs Background 

Machine learning is a subfield of AI that uses statistical techniques to give computers the ability 
to "learn" (i.e., progressively improve performance on a specific task) from data, without being 
explicitly programmed [17]. This definition explains why ML is sometimes also called statistical 
learning or learning from data [18]. 

2.1. ML Tools 

ML algorithms build a model based on sample data, known as training data, to make predictions 
or decisions without being explicitly programmed to do so [14]. Then these ML models can be used 
for representing, interpolating, and limited extrapolating the data. The set of ML tools includes a 
large variety of different algorithms such as various neural networks (NN), different kinds of decision 
trees (e.g., random forest algorithms), kernel methods (e.g., support vector machines and principal 
component analysis), Bayesian algorithms, etc. (see Figure 1). Some of these algorithms are more 
universal (e.g., generic multilayer perceptron or NNs), and some of them are more focused on a 
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specific class of problems (e.g., convolutional NNs that show an impressive performance as 
image/pattern recognition algorithms). 

 

Figure 1. ML and various types of ML tools. There are many different types of NNs: shallow, deep, 
convolutional, recurrent, etc., as well as many types of tree algorithms. New ML tools emerge very 
often. 

There are many different types of NNs: shallow, deep, convolutional, recurrent, etc., as well as 
many types of tree algorithms (see Figure 1). Here we briefly discuss two major types of ML tools 
that have been applied to develop applications for numerical weather and climate prediction systems: 
(1) NNs that have been applied in most studies (e.g., [19–23]) and (2) tree algorithms that have been 
applied in a few works [24,25]. 

Most applications proposed in the aforementioned works are based on two assumptions:  
1. many NWCMS applications, from a mathematical point of view, may be considered as mapping, 

M, that is a relationship between two vectors or two sets of parameters X and Y: 𝒀 = 𝑴(𝑿), 𝑿 ∈ 𝑹𝒏, 𝒀 ∈ 𝑹𝒎  (1)

where n and m are the dimensionalities of vectors X and Y correspondingly.  
2. ML provides an all-purpose non-linear fitting capability. NN, the major ML tool that is used in 

applications, are “universal approximators” [26] for complex multidimensional nonlinear 
mappings [27–31]. Such tools can be used and have already been used to develop a large variety 
of applications for NWCMSs.  
A generic NN that is used for modeling/approximating complex nonlinear multidimensional 

mappings is called the multilayer perceptron. It is comprised of “neurons” that are arranged in 
“layers”. A generic neuron can be expressed as,  𝒙𝒋𝒏ା𝟏 = 𝝓൫𝒃𝒋𝒏 + ∑ 𝒂𝒋𝒊𝒏 ∙  𝒙𝒊𝒏𝒌𝒏𝒊ୀ𝟏 ൯  (2)

Eq. (2) represents a neuron number j in the layer number n. 𝒙𝒋𝒏ା𝟏 is the output of the neuron 
that, at the same time, is an input to neurons of the layer number n+1. Here 𝒙𝒋𝒏 are inputs to neurons 
of the layer number n (outputs of neurons of the layer number n-1, the input layer corresponds to 
n=0), a and b are fitting parameters or NN weights and biases, 𝝓 is the so-called activation function, 
and kn is the number of neurons in the layer number n. The entire layer number n can be represented 
by a matrix equation: 𝑿𝒏ା𝟏 = 𝝓(𝑩𝒏 + 𝑨𝒏 ∙ 𝑿𝒏) (3)

where for n = 0,  𝑿𝒏 = 𝑿, a vector of the NN inputs. If the layer number n+1 is the output layer, linear 
neurons are often used for the output layer, 𝒀 =  𝑿𝒏ା𝟏 = 𝑩𝒏 + 𝑨𝒏 ∙ 𝑿𝒏 (4)
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here 𝒀 is a vector of outputs.  
The activation function 𝝓  is a nonlinear function (see Figure 2.), often specified as the 

hyperbolic tangent; however, rectangular linear unit, SoftMax, leaky rectangular linear unit, 
Gaussian, trigonometric functions, etc. are also used in applications [14]. All layers of the multilayer 
perceptron NN between input and output layers are called “hidden layers”. NNs with multiple 
hidden layers are called “deep neural networks” (DNN). The simplest multilayer perceptron NN 
with one hidden layer is called a “shallow” NN (SNN). SNN is a generic analytical nonlinear 
approximation or model for mapping (1) and a mathematical solution of the ML problem [27–29]. 
Multiple authors have shown in a variety of contexts that the SNN can approximate any continuous 
or almost continuous (with a finite number of finite discontinuities) mapping (1) [22,30–32]. The 
accuracy of the SNN approximation or the ability of the SNN to resolve details of the mapping (1) is 
proportional to the number of neurons k in the hidden layer [33]. 

 

Figure 2. Some popular activation functions that are used in applications. 

Additional hidden layers and/or nonlinear neurons in the output layer can be introduced and 
the resulting DNN can be applied to either mapping approximation problems or problems of 
different nature. DNNs have been extremely successful in many areas including in applications for 
numerical weather/climate modeling systems. However, as pointed out by Vapnik [29], from the 
standpoint of statistical learning theory, only SNN has been formally shown to be a solution to the 
mapping approximation problem (see also Figure 3). Successful approximation of the mapping (1) 
by a DNN cannot be guaranteed theoretically, and this specific application of DNNs should be 
considered a heuristic approach. Both SNNs and DNNs have been successfully applied to numerical 
weather/climate modeling system mappings by different authors (see discussion in the following 
Sections).  

NNs are very successful in solving complex nonlinear mapping problems. After they are trained, 
their application is fast, they are easily parallelizable. They use the training data set only during 
training. Trained NNs contain all necessary information about the mapping in a set of NN weights 
and biases that is usually much smaller than the training set and does not require a lot of memory. 
However, NNs are difficult to interpret because information about the mapping is distributed over 
multiple weights and biases, which is typical for any nonlinear statistical model. Also, as with any 
nonlinear statistical model, NN has limited ability for prediction/extrapolation/generalization; 
however, well trained NN is capable of a limited accurate generalization.  
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Figure 3. Relationships between ML, Statistics, and Mathematical theory. 

A decision tree is a tree-like model of decisions and their consequences. They are widely used in 
statistics and ML for solving non-linear classification and regression problems. Decision trees are 
easily interpretable; however, they are not stable to noise in the data. To avoid instabilities and 
improve the accuracy and robustness of the approach, an ensemble of decision trees called a ‘forest’ 
approach, has been developed. Introducing elements of randomness to the trees turned out to be 
beneficial, hence the approach is named “random forest” [34]. This algorithm has many advantages: 
it does not require complex pre-processing and normalization of data; it easily handles missing data; 
the random forest is a robust algorithm that can handle noisy data and outliers. However, random 
forests require more memory than other algorithms because this algorithm stores multiple trees. This 
can be a problem if the dataset is large. To apply a trained random forest algorithm, the entire training 
set must be kept in memory. Also, it will not be able to predict any value outside the available training 
set values since averaging various trees, each of which is built upon the training set, is a big part of 
random forest models. Thus, we cannot expect reliable predictions/extrapolations/generalizations 
when using the random trees algorithm. For more detailed discussions of NN, trees, and other ML 
tools see [14].  

2.2. ML for NWCMS Specifics 

It is critical to understand that the development of many ML applications for numerical weather 
and climate modeling systems is essentially different from the standard ML approach. First, a 
standard ML approach consists of two major steps: (1) training an ML tool (e.g., an NN) using training 
and test sets; and (2) validating a trained tool on an independent validation set. If the validation is 
successful, the tool is ready for use. In this sense “Genrative AI” (like ChatGPT) – deep-learning 
models that can generate high-quality text, images, and other content based on the data they were 
trained on – can be considered a traditional ML application.  

When an ML application is being developed for a numerical weather modeling system to work 
within the model or in the model environment (e.g., data assimilation system), in close connection 
with the model, the third and the most important validation step must be included in the approach: 
(3) the trained application should be introduced in the model to check its coherence with the model 
and the model environment, to check that it does not introduce any disruption in the stable 
functioning of the modeling system and that the system keeps producing meaningful results.  
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Second, such applications usually do not use unstructured datasets (sets that consist of a mixture 
of numerical, text, images, etc.) for training and validation. Usually, structured datasets that consist 
of matrixes or tables of numerical observations or simulated data are used. 

Third, generally, there are not enough observations for the training and validation of ML 
applications for NWCMSs. The observations in weather and climate systems are usually sparse and 
located close to the land and ocean surface. Thus, observations are very often augmented by data 
simulated by numerical models. Also, analysis and reanalysis, which are thoroughly fused 
observations and data simulated by numerical models, are often used. 

It is noteworthy that the use of a relatively large number of mostly uninterpretable parameters 
led to the perception of ML as a “black box” approach, which created problems with its acceptance 
by weather and climate modelers. In essence, the trade-off between simple statistics and ML is mostly 
between interpretability and accuracy. With relatively few parameters and few predictors (often by 
using predictor selection methods to reduce the number of predictors), simple statistical models are 
generally much more interpretable than ML models.  

Most ML tools are closely related to nonlinear nonparametric statistics. A limitation of the 
parametric approach is that the functional form for the statistical model is specified, which may not 
work well for some datasets. For example, a linear regression model may not work for data 
representing essentially nonlinear behavior. The alternative non-parametric modeling approach still 
has parameters, but the parameters are not used to control the specified functional form of the model; 
instead, the parameters are used to control the model complexity. Thus, in principle, a nonparametric 
approach (and ML approach as well) is more flexible, and a nonparametric/ML model can 
automatically adjust to/learn any nonlinear behavior exhibited by data. On the other hand, 
parametric models (if they work well) may be easier to interpret. With nonparametric/ML models 
such a straightforward interpretation is not possible.  

For example, coefficients of linear regression models may be interpreted as contributions of the 
corresponding input variables into the output variable. In contrast, ML methods such as neural 
networks and random forests are run as an ensemble of models initialized with different random 
numbers, leading to a vast number of parameters that are largely uninterpretable. In this case, 
contributions of an input parameter are distributed through multiple coefficients of the nonlinear 
nonparametric/ML model. Also, over time datasets become increasingly larger and more complex 
making good interpretability harder to achieve even with parametric statistical models. At the same 
time, the advantage in prediction accuracy attained by ML models makes them more and more 
attractive. Currently, a lot of works are published that are devoted to the problem of the 
interpretability of ML models [35]. 

3. Climate and Weather Systems 

3.1. Systems and Subsystems 

Formally, a system can be defined as a set of elements or parts that is coherently organized and 
interconnected in a pattern or structure that produces a characteristic set of behaviors, often classified 
as its “function” or “purpose” [1]. Thus, any system is composed of components or parts. In 
aggregations parts are added; in systems components or parts are arranged or organized; hence, each 
system has a well-defined structure. Systems are significant because of organization-positional 
values, because of their structure. If a system is properly structured or organized, then it is more than 
the total sum of its parts and the whole system may demonstrate behavior (quality) that cannot be 
predicted by the behavior of its parts. In such cases, we are talking about a synergy of the parts in the 
system.  

In a complex climate and weather system (see Figure 4) the atmospheric constituent (as well as 
other ones) of the system is itself a complex system of interacting dynamical, physical (radiation, 
convection, etc.), and chemical processes (see Figure 4). Such constituent parts of the whole system 
that themselves have structure (organization) are called subsystems. Systems arranged in such a way 
(nested systems in the system) are called hierarchical systems [36,37]. A hierarchical system is an 
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arrangement of subsystems, in which the subsystems are represented as being "above," "below," or 
"at the same level as" with respect to one another. In such a hierarchy, subsystems can interact either 
directly or indirectly, and either vertically (between different levels of hierarchy) or horizontally (at 
the same level). The number of vertical levels determines the depth or the vertical (hierarchical) 
complexity of the hierarchical system [37]. 

 

Figure 4. Interdisciplinary Complex Climate & Weather Systems [15]. Only several major interactions 
(feedback) between major subsystems are shown with two-had arrows. 

Interactions and relationships at a higher level of hierarchical complexity organize and 
transform the lower-order interactions, producing organizations of lower-order relationships that are 
new and not arbitrary and cannot be accomplished by those lower-order interactions alone (outside 
of the system). The higher-order relationship governs or coordinates the relationships of the next 
lower order; it embraces and transcends the lower orders. It is noteworthy that interactions in 
complex systems are better described by feedback loops than by one directional cause and effect type 
actions, which makes analysis of such systems even more difficult.  

3.2. ML for NWCMS and Its Subsystems  

Figure 5 portrays a NWCMS with subsystems. All subsystems shown in the figure and the entire 
system, from the mathematical point of view, are mappings – relationships between vector of output 
parameters and vector of input parameters like (1). This is why ML methods apply to NWCMS and 
subsystems. 

NOAA and ECMWF scientists were among the pioneers in the field of ML applications to 
NWCMS. They first developed many key approaches that are currently used in this field. NOAA 
developments in this field during the period 1995 to 2012 are reviewed in [15]. The later developments 
are presented in [38,39]. 

Currently, ML is considered a powerful and prospective tool for further development and 
improvement of NWCMSs at ECMWF [40] (see also Figure 5), UKMO and other world weather 
centers. By NOAA AI Strategy, it is expected that the ML applications briefly described below will 
be developed at NWS in close collaboration with the Academy, NOAA Cooperative Institutes, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 March 2024                   doi:10.20944/preprints202403.1566.v1



 8 

 

NOAA Cooperative Science Centers, other NOAA divisions, private companies, and international 
communities. 

 
Figure 5. ML applications at ECMWF that are already being explored or planned. The color-coding 
of the boxes corresponds to the respective component of the workflow for NWP (from [40]). 

Two major types of ML tools have been applied to develop applications for NWCMS: (1) NNs 
[21,23,41,42] and (2) tree algorithms [24,25]. There are many different types of NNs: shallow, deep, 
convolutional, recurrent, etc., as well as many types of tree algorithms (see Figure 1). The advantages 
and limitations of different types of ML are discussed in detail in [38] and in Section 2 of this paper. 

4. Hybridization of ML with Traditional Numerical Modeling  

Initially, ML methods were introduced into weather and climate science as nonlinear statistical 
models to improve upon linear statistical tools. In the beginning, ML weather and climate 
applications had no direct relation to numerical models based on first principle dynamic equations 
and physics (here we use the term “physics” in the broadest sense that includes physics, chemistry, 
and biology). Only at the beginning of 2000th the convergence and hybridization of the two entirely 
different approaches, ML and numerical modeling, started [19,20] and pointed to a new future for 
weather and climate science. 

4.1. ML for Data Assimilation  

Both DAS and ML, from a mathematical point of view, belong to the same class of optimization 
problems. Both methods apply a nonlinear optimization of an error function to determine the optimal 
parameters of the system. Because DAS can be considered as a mapping between observations, first 
guess, and the final analysis, in principle, it may be possible to substitute the entire variational DAS 
with an ML DAS [30,43]. However, while and if this approach is reaching maturity, it makes sense to 
focus on using ML for improvements of the existing variational DASs. The following elements of the 
variational DAS are good candidates for applying ML. 
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4.1.1. Fast ML forward Models for Direct Assimilation of Satellite Measurements 

Forward models (FM) are used for direct assimilation of satellite radiances in DAS [44]. FMs are 
usually complex due to the complexity of the physical processes that they describe and the 
complexity of the first principle formalism on which they are based (e.g., radiative transfer theory). 
Thus, the dependence of satellite radiances on the geophysical parameters, which FMs describe, is a 
complex and nonlinear mapping. These mappings may exhibit different types of nonlinear behavior. 
Direct assimilation is an iterative process where FMs and their Jacobians are calculated many times 
for each satellite measurement. As a result, this process becomes very time-consuming and 
sometimes even prohibitively expensive for operational (real-time) applications. 

For such applications, it is essential to have fast and accurate versions of FMs. Usually despite 
the functional complexity of FM mappings, ML techniques like NNs can provide fast and accurate 
emulations of FMs [15, Chapter 3.2]. Moreover, an NN can also provide an entire Jacobian matrix 
with only a small additional computational effort [51]. 

4.1.2. Fast ML Observation Operators 

When 2-D observations like surface winds, surface currents, SST, or sea surface elevation are 
assimilated into an atmospheric or oceanic DAS, the impact of these data in the DAS is mostly 
localized at the vertical level where they are assimilated. There is usually no explicit mechanism in 
the DAS to propagate the impact of these data to other vertical levels and other variables except for 
error covariances and cross-correlations in the variational solver that can to some extent spread the 
influence of 2-D observations to other vertical layers and other fields. Usually, this propagation 
occurs later, with a delay, during the integration of the model, following dependencies determined 
by the model physics and dynamics. 

Several attempts have been made to extract these dependencies from model simulations [45] or 
observed data [46] in a simplified linear form for use in an ocean DAS to allow for 3-D assimilation 
of the 2-D surface data. However, these simplified and generalized linear dependencies that are often 
derived from local data sets do not properly represent the complicated nonlinear relationships 
(mappings) between the model variables. If we were able to extract or emulate these mappings in a 
simple, but not overly simplified and yet adequately nonlinear analytical form, they could be used in 
the DAS to facilitate a more effective 3-D assimilation of the 2-D surface data. ML observation 
operators have been developed for some surface observations (e.g., an ML observation operator for 
ocean surface elevation is described in [15, Chapter 5.1.1]). Also, assimilating chemical and biological 
observations in physical models that do not have corresponding prognostic variables requires fast 
chemical and biological models to describe complex relationships between chemical/biological and 
physical prognostic variables. ML chemical and biological models can be built to play this role in 
DAS. For example, an ocean color NN empirical model has been developed [47]. 

4.1.3. Fast ML Models and Adjoints 

Fast hybrid and ML models for fast calculation of the first guess in DAS can be developed [48] 
(see also Sections 4.2.4 and 4.2.5 of this paper). Also, because some ML tools (e.g., NNs) are 
analytically differentiable, using such hybrid and ML models alleviates the problem of calculating 
adjoints, simplifying and speeding up calculations in 4Dvar DAS [23,49,50]. Although the 
differentiation of statistical models is an ill-posed problem, an NN ensemble technique has been 
developed to regularize the problem [51]. 

4.1.4. Data Pre-Processing and Quality Control  

ML promises to enhance the assimilation of satellite measurements, including radiances affected 
by clouds, precipitation, and surface properties (requiring more complete radiative transfer models 
accounting for these effects), and using improved or more efficient thinning, quality control (QC), 
observation bias correction, and cloud clearing procedures [52]. There is the potential for ML 
techniques to help with QC decisions, either of the categorical (accept or reject) kind, or the more 
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flexible "nonlinear" or "variational" kind where possibly dubious measurements are down-weighted. 
For example, can be developed an automated DNN-based QC of precipitation for a sparse station 
observation network within a complex terrain area. 

4.2. ML for Model Physics 

Any parameterization of model physics, even the entire model physics, and the entire model is 
a mapping (1) between a vector of input parameters (e.g., profiles of atmospheric state variables) and 
a vector of output parameters (e.g., a profile of heating rates in radiation parameterization). In terms 
of Y vs. X dependencies, parameterization mappings may be continuous or almost continuous, that 
is, they contain only а finite number of step-function-like discontinuities. Usually, parameterizations 
of physics do not contain singularities. ML can be used; (1) to develop emulating ML 
parameterizations (EMLP) that accurately emulate the original physically based parameterization 
schemes, speeding up the calculation by orders of magnitude; (2) when the underlying physics of 
processes is not well understood, ML can be used to develop new ML parameterizations (MLP) by 
learning from data (reanalysis, data simulated by high-resolution models, or/and observations); (3) 
ML as statistical tools can be used to develop stochastic ML parameterizations (SMLP). 

4.2.1. Fast ML Radiation 

Radiation parameterizations are among the most time-consuming components of model 
physics. Because of the high computational cost, they are never calculated at each time step and in 
each grid point of NWP models. At NCEP and UKMO radiation is calculated every model hour and 
prorated in between. At ECMWF and the Canadian Meteorological Center, it is calculated at reduced 
horizontal or vertical resolution and then interpolated. Both these approaches are detrimental to the 
accuracy of the model forecast. Multiple NN emulators have been developed for radiation 
parameterizations [19,20,53–59]; however, to our knowledge, most of them have not yet been tested 
in an online setting to demonstrate their accuracy and stability in interactive coupling to an 
atmospheric model. NCEP scientists demonstrated that accurate and fast radiation EMLPs can be 
developed for the CFS and GFS [53,54,59] that do not deteriorate the accuracy and stability of the 
model predictions and provide a speedup that allows calculating radiation at each time step in each 
grid point. They demonstrate the high robustness and stability of EMLPs in the model [60].  

4.2.2. Fast and Better ML Microphysics 

State-of-the-art microphysical cloud modeling [61] is tremendously time-consuming and cannot 
be introduced in atmospheric models without parameterization. Parameterizations significantly 
simplify the original microphysics (MP) and limit the number of atmospheric scenarios represented. 
However, even in a parameterized form microphysics calculations are computer resources and time-
consuming. Also, introducing parameterizations limits the number of atmospheric scenarios 
represented by each particular parameterization of MP. Often it is found that MP schemes perform 
well in certain atmospheric situations and perform not so well in others. When and why one scheme 
outperforms others is often not well understood. It appears that none of the existing MP 
parameterizations may offer comprehensive treatment of the natural processes involved.  

In this case, ML tools can perform two different but related tasks when applied to MP 
parameterizations. First, ML can be used to create fast EMLPs by emulating various MP 
parameterizations; for example, the Thompson MP scheme [62] was emulated with an ensemble of 
SNNs [63], Zhao-Carr microphysics was emulated by a two-layer vanilla recurrent NN [22], or by a 
random forest ML model [64], which is then used to predict supercooled large drops from several 
variables derived from High-Resolution Rapid Refresh model output. Second, ML tools can be 
applied to integrate existing MP parameterizations in a more comprehensive scheme that can offer 
better treatment of the sub-grid processes involved, cover a greater variety of sub-grid scenarios, and 
stochastically represent uncertainty in MP schemes. 
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4.2.3. New ML Parameterizations 

The ML techniques can also be used to improve model physics. Because of the simplified 
parameterized physics that General Circulation Models (GCM) use, they cannot accurately simulate 
many important fine-scale processes like cloudiness and convective precipitations [21,42]. Cloud 
Resolving Models (CRM) resolve many of the phenomena that lower resolution global and regional 
models do not resolve (e.g., higher resolution fluid dynamic motions supporting updrafts and 
downdrafts, convective organization, mesoscale circulations, and stratiform and convective 
components that interact with each other, etc). 

An ML approach has been developed [64] that uses ML/NN to develop an ML moisture 
parameterization trained using CRM simulated data. This MLP can be used as a moisture 
parameterization in GCMs and can effectively account for major sub-grid scale effects taken into 
account by other approaches (e.g., Multi-scale Modeling Framework (MMF) approach). MLP 
emulates the behavior of a CRM or Large eddy simulation and can be run at larger scales (closer to 
GCM scales) in a variety of regimes and initial conditions. It can be used as a novel and 
computationally viable parameterization of moisture processes in a GCM. Currently, this approach 
is extensively applied and developed in many places for building MLPs for moisture physics 
[25,42,65–67], planetary boundary layer processes [68,69], and other processes. This approach 
produces ML parameterizations of similar or better quality compared to the super parameterization, 
effectively taking into account subgrid scale effects at a fraction of the computational cost. Also, a 
combination of simulated and observed data can be used for the development of MLP when observed 
data are available. 

4.2.4. ML Full Physics 

Developing ML emulation of the entire model physics (or diabatic forcing) is a very attractive 
task. If successful, it could speed up model calculation significantly (especially for high-resolution 
models). On one hand, a lot of challenges are faced when approaching this problem, on the other 
hand, the full model physics may be better balanced than each particular parameterization 
separately. It means that the full physics mapping may be smoother and easier for approximation 
than separate parameterization mappings. Krasnopolsky et al. [70] discussed problems arising when 
emulating full physics using NNs. A NN emulation of the entire model physics is analytically 
differentiable, which will greatly simplify the calculation of an adjoint. Another approach is to 
emulating columnar physics by emulating MMF or super-parameterization or columnar CRM 
embedded into the GCM. This approach was successfully applied in [71]. 

4.2.5. ML Weather and Climate Models 

It was shown that it is possible to emulate the dynamics of a simple GCM with a DNN [72]. After 
being trained on the model, the network could predict the complete model state several time steps 
ahead. Scher and Messori [73] assessed how the complexity of the climate model affects the emulating 
NN’s forecast skill, and how dependent the skill was on the length of the provided training period. 
They showed that using the NNs to reproduce the climate of general circulation models including a 
seasonal cycle remained challenging - in contrast to earlier promising results on a model without a 
seasonal cycle. However, further attempts (e.g., [74]) to develop cheap ML models for the task of 
climate model emulation show some progress. Dueben and Bauer [16] used a toy model for global 
weather predictions to identify challenges and fundamental design choices for a forecast system 
based on NNs. Also, simplified atmospheric and ocean ML models can be developed for use in data 
assimilation systems for fast first-guess calculations [48] and to speed up the integration of coupled 
models [75]. 

Schultz et al. [76] considered some evidence that better weather forecasts can be produced by 
introducing big data mining and deep NNs into the weather prediction workflow. They discuss the 
question of whether it is possible to completely replace the current numerical weather models and 
data assimilation systems with deep learning approaches using state-of-the-art ML concepts and their 
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applicability to weather data with its pertinent statistical properties. They conclude that it is not 
inconceivable that numerical weather models may one day become obsolete, but many fundamental 
breakthroughs are needed before this goal comes into reach. 

Recently several very promising results have been obtained. A three-dimensional Earth-specific 
transformer DNN architecture [77] was developed that can capture the relationship between 
atmospheric states in different pressure levels. Experiments on the fifth generation of ECMWF 
reanalysis data showed that this ML model is as good as deterministic forecast and extreme weather 
forecast while being more than 10,000 times faster than the operational IFS. Neural general circulation 
model (NeurlGCM), a hybrid model that combines a differentiable solver for atmospheric dynamics 
with ML components [78] can generate forecasts of deterministic weather, ensemble weather, and 
climate comparable with the best ML and physics-based methods. NeuralGCM is competitive with 
ML models for 1-10 day forecasts and the ECMWF ensemble prediction for 1-15 day forecasts. With 
prescribed sea surface temperature, NeuralGCM can accurately track climate metrics such as global 
mean temperature for multiple decades, and climate forecasts with 140 km resolution exhibit 
emergent phenomena such as realistic frequency and trajectories of tropical cyclones. 

In some sense, the approaches discussed in this Section is a reviving, at the new more 
sophisticated level, of the statistical weather prediction that existed before the NWP era. It remains 
to be seen if it can completely replace complete NWCPMSs in the future; however, it looks like it will 
be able to complement them. 

4.2.6. ML Stochastic Physics 

In some cases, the parameterization mapping contains an internal source of stochasticity. It may 
be due to several reasons: a stochastic process that the mapping describes, a stochastic method (e.g., 
Monte Carlo methods) implemented in the mathematical formulation of the mapping, contribution 
of subgrid processes, or uncertainties in the data that are used to define the mapping. Such stochastic 
parameterizations can be emulated using an ensemble of ML/NNs [64]. 

ML can be used to create fast stochastic physics. Usually perturbed physics (or parameterization) 
P is created by adding a small random value to deterministic physics. Using ML, the jth perturbed 
version of the deterministic model physics, P, can be written as, 𝑷𝒋 = 𝑷𝒋𝑴𝑳 =  𝑷 + 𝜺𝒋  (5)

where 𝑷𝒋𝑴𝑳 is an ML emulation number j of the original model physics, P, and 𝜺𝒋 is an emulation 
error for the ML emulation number j. As discussed in previous investigations [79], 𝜺𝒋  can be 
controlled and changed significantly by varying the number of hidden neurons in NN so that not 
only the value but also the statistical properties of 𝜺𝒋 can be controlled. For example, the systematic 
components of the emulation errors (biases) can be made negligible (therefore, 𝜺𝒋 are purely random 
in this case). Thus, 𝜺𝒋 can be made the same order of magnitude as the natural uncertainty of the 
model physics (or of a particular parameterization) due to the unaccounted variability of sub-grid 
processes. A single ML emulation (each member of the aforementioned ensemble) can be considered 
a stochastic version of the original deterministic parameterization and can be used for creating 
different ensembles with stochastic physics [79]. 

4.2.7. ML Model Chemistry 

Traditionally, model chemistry forecasting has primarily relied on physiochemical models, like 
the chemical transport model. These numerical models, however, encounter challenges stemming 
from structural constraints, variations in meteorological data, emission inventories, and intrinsic 
model limitations. Model chemistry is one of the most time-consuming parts of model “physics”. 
During the last several years attempts have been made to emulate various parts of atmospheric 
chemistry using ML. In [80] the potential for ML to reproduce the behavior of a chemical mechanism, 
yet with reduced computational expense was investigated. The authors created a 17-layer residual 
multi-target regression NN to emulate a gas-phase chemical mechanism. They trained the NN to 
match a chemical model prediction of changes in concentrations of 77 chemical species after one hour, 
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given a range of chemical and meteorological input conditions. The NN provided a satisfactory 
emulation accuracy while achieving a 250 times computational speedup. An additional 17-time 
speedup (total 4250-time speedup) is achieved by running the neural network on a GPU.  

In a recent work [81] the authors demonstrated that ML can accurately emulate secondary 
organic aerosol formation from an explicit chemistry model with an approximate error of 2%–8%, up 
to five days for several precursors and for potentially up to one month for recurrent NN models, and 
with 100 to 100,000 times speedup over the explicit chemistry model, making it computationally 
useable in a chemistry-climate model. Also, a physics-informed DNN was trained [82] that 
demonstrated ML applicability for emulating the chemical formation processes of isoprene epoxydiol 
secondary organic aerosols over the Amazon rainforest. A randomly generated deep NN capable of 
replacing the current aerosol optics parameterization used in the Energy Exascale Earth System 
Model was developed [83]. 

4.3. ML for Post-Processing 

Currently, numerical models produce improved weather forecasts and climate projections with 
better accuracy. However, results produced by the NWP and climate projecting systems still contain 
errors of different nature. Errors from multiple sources have a detrimental effect on the skill of 
weather forecasts. One of the sources of errors is associated with the construction of an initial 
condition for numerical weather forecasting systems. The sensitivity to initial conditions makes 
errors grow rapidly during the forecasts until they reach a level beyond which the forecasts do not 
display any useful skill. The boundary-condition errors and the model structural errors are two other 
important categories of errors that reduce forecast skill. Model structural errors include a missing or 
poor representation of subgrid dynamical and physical processes and inaccuracies associated with 
the numerical scheme.  

All these NWP model deficiencies induce errors that are rapidly amplified in time due to the 
chaotic nature of the model dynamics, and in turn, affect the forecasts by inducing errors (systematic 
and random). Thus, the post-processing (PP), correction of errors in model outputs/forecasts, 
becomes even more important [8,84]. Statistical PP approaches correct errors in model output by 
comparing hindcasts to observations. Since the beginning of the era of the NWP forecast, attempts 
have been made to statistically correct model outputs, given observational data [85]. Most current 
weather forecasting centers rely on statistical methods that have been proven successful. The first 
approach that was used for statistical PP known as MOS [85,86] was based on multiple multilinear 
regressions. The U.S. National Weather Service has used these statistical methods to improve 
systematic model error since 1968 [9,11]. This approach has also been applied to correct errors in 
ensembles becoming Ensemble Model Output Statistics (EMOS) [10]. These methods demonstrate a 
significant reduction of errors in numerical forecasts [87]. However, these approaches have several 
significant limitations: (1) they are essentially linear techniques; to account for the nonlinear character 
of errors (e.g., due to different atmospheric regimes, terrain types, etc.), multiple multilinear 
regressions are introduced to correct errors in different variables, at different locations, and under 
different weather conditions, thus, increasing tremendously the number of linear regressions used 
by the system; (2) they require significant amount of additional information about statistical 
properties of parameters [86]. 

At the same time, these linear statistical approaches can be viewed as a supervised ML task, that 
is as a direct linear predecessor of nonlinear ML approaches. ML/AI methods, like NNs and DNNs, 
which usually are nonlinear and nonparametric, have capabilities to describe the complex, multiscale, 
and nonlinear character of model errors significantly better and more compact and provide more 
effective corrections.  

Initial efforts using ML in the context of PP NWP model output have shown promising results 
(see [8] and references there) in both probabilistic and deterministic settings. At ECMWF, work [88] 
is mainly focused on post-processing ensemble predictions, using DNNs, on precipitation 
downscaling, and tropical cyclone detection and tracking. Also, Bouallègue et al. [89] used the ML 
technique to correct global 2m temperature and 10m wind speed forecast errors. Rojas-Campos et al. 
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[90] analyzed the potential of deep learning using probabilistic NN for post-processing ensemble 
precipitation forecasts at four observation locations. NNs show a higher performance at three of the 
four stations for estimating the probability of precipitation and at all stations for predicting the hourly 
precipitation. Benáček et al. [91] used tree-based ML techniques, namely, natural gradient boosting, 
quantile random forests, and distributional regression forests to adjust hourly 2-m temperature 
ensemble prediction at lead times of 1–10 days. They showed that key components to improving 
short-term forecasting are additional atmospheric/surface state predictors and the 4-year training 
sample size. 

At NCEP, SNNs were used to calculate nonlinear multi-model (eight global and regional 
models) ensembles and to correct 24-hour precipitation forecasts over the ConUS [92]. It was shown 
that, compared with the conservative ensemble (arithmetic mean of ensemble members) and linear 
regression approach, the ML approach provides slight improvements in gross statistical scores; 
however, it significantly reduces the number of false alarms and improves the forecast of maxima, 
fronts shape and position. Recently, papers on using ML for multi-model ensemble forecasts of 
surface air temperatures [93] and for probabilistic multi-model ensemble predictions of Indian 
summer monsoon rainfall have been published [94]. 

A nonlinear ensemble averaging technique using NNs was applied to NCEP Global Ocean Wave 
Ensemble Forecast System (GWES) data [39]. Post-processing algorithms are developed based on 
SNNs trained with altimeter data to improve the global forecast skill from nowcast to forecast ranges 
up to 10 days, including significant wave height and wind speed. It is shown that a simple NN model 
with few neurons can reduce the systematic errors for short-range GWES forecasts, while a NN with 
more neurons is required to minimize the scatter error at longer forecast ranges. The RMSE of day-
10 forecasts from the NN simulations indicated a gain of two days in predictability when compared 
to the conservative ensemble, using a reasonably simple post-processing model with low 
computational cost. 

Running high-resolution NWP models is costly in terms of computing resources. Convection-
permitting NWP models at the global scale are currently at the limit of what is feasible using 
conventional NWP techniques. A possible solution is the use of ML techniques as described in [95]. 
Examples of the use of DL for the downscaling of wind fields were given in [96,97]. An example of 
the use of DL for the downscaling of temperature was given in [98]. In a recent publication [99] several 
ML techniques have been compared and used for spatial downscaling of hourly model air 
temperature over mountainous regions. A collaborative Google-NOAA study [100] is focused on 
investigating the benefits and challenges of using non-linear NN-based methods to post-process 
multiple weather features – temperature, moisture, wind, geopotential height, and precipitable water 
– at 30 vertical levels of the NOAA GFS.  

5. Conclusions 

We have briefly touched on some advantages and limitations of the ML technique and the NN 
technique in particular. More details can be found in Chapters 2 and 4 of [15]. Here we will discuss 
only major advantages and limitations that are relevant for the development of ML applications for 
NWCMSs and their components like DAS, model physics, and PP.  

For DAS, ML can provide fast forward models for direct assimilation of satellite radiances, fast 
observation operators for instantaneous 3D assimilation of surface observations, fast environmental 
models for assimilating chemical and biological observations, fast adjoints for 4Dvar DAS, and fast 
hybrid and ML models for calculating first guess. For model physics ML can provide fast emulating 
ML parameterizations, fast and improved ML parameterization of physics, fast ML emulations of 
entire atmospheric physics, and fast ML stochastic physics, for PP ML can enable developments of 
nonlinear bias corrections, nonlinear ensemble averaging, etc.  

Some limitations of ML techniques should be mentioned. ML tools are not very good at far 
extrapolation. Nonlinear extrapolation is an ill-posed problem that requires regularization to provide 
meaningful results. The development of ML applications depends significantly on our ability to 
generate/collect a representative training set to avoid using ML tools for extrapolation far beyond the 
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domain covered by the training set. Because of the high dimensionality, n, of the input domain, which 
is often several hundred or more, it is rather difficult to cover the entire domain. At least 𝟐𝒏 points 
are required to cover the entire domain. Especially difficult is to cover the “far corners” associated 
with rare events, even when we use simulated data for ML training. A significant help here can be 
the ML ensemble approach. Using an ensemble of ML tools can help to regularize the extrapolation 
and deliver ML applications that are more stable when the inputs approach “far corners” or cross the 
boundary of the training domain.  

Another related problem arises when ML emulations are developed for a non-stationary 
environment or climate system that changes with time. This means that, for example, the domain 
configuration for a climate simulation may evolve due to climate changes. In such situations, the ML 
emulation may be forced to extrapolate beyond its generalization ability leading to errors in ML 
component outputs and resulting in simulation errors in the corresponding model. Here compound 
parameterization [101] and dynamical adjustment as well as using the ML ensemble approach could 
be helpful. 

The fields of ML, as well as ML applications to NWCMSs, are currently experiencing explosive 
development. New ML tools emerge very often. Several important papers are published every week. 
Most applications have been developed using different versions of DNNs. Considering the great 
popularity of different variations of DNNs, it is important to be aware of the theoretical [29] and 
practical [102,103] limitations of these techniques. 

It is noteworthy that ML still requires human expertise to succeed. The development of ML 
applications for NWCMSs is not a standard ML problem. While ML applications can, in principle, be 
used as a black box, the development, for example, of ML physics for Earth system models will 
require domain knowledge about Earth system physics. Close collaborations between computer 
scientists, Earth system physicists, and modelers will be essential even if petabytes of training data 
and GPU supercomputers are available. A deep understanding of how to use physical knowledge of 
the Earth system to improve the development of ML architectures and ML training and how to 
preserve conservation properties and consider other physical constraints will be required. There are 
a lot of decisions that must be made in the process of developing ML applications that cannot be 
made automatically. Like any other statistical model (e.g., MOS), ML applications must be 
maintained and periodically updated. 
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