
Definitions/notspecified-logo-eps-converted-to.pdf

Article

A hybrid modelling technique of epidemic outbreaks with
application to COVID-19 dynamics in West Africa

Chénangnon Frédéric Tovissodé1 , Jonas Têlé Doumatè 1,2 and Romain Glèlè Kakaï 1,*

����������
�������

Citation: Tovissodé, C.F.; Doumatè,

J.T.; Glèlè Kakaï, R. A hybrid

modelling technique of epidemic

outbreaks with application to

COVID-19 dynamics in West Africa.

Journal Not Specified 2021, 1, 0.

https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratoire de Biomathématiques et d’Estimations Forestières, Université d’Abomey-Calavi, Abomey-Calavi
(Benin); chenangnon@gmail.com (C.F.T.); jonas.doumate@fast.uac.bj (J.T.D.)

2 Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi (Benin)
* Correspondence: romain.glelekakai@fsa.uac.bj (R.G.K)

Simple Summary: The intrisinc dynamics of the propagation of a disease changes along an epidemic
course, especially for long lasting epidemics such as the COVID-19. Indeed, the natural evolution of
the pathogen and countermeasures such as quarantining, lockdown, social distancing and vaccination
modify the transmission dynamics of the disease. With a view to match these theoretical changes to
potential changes in observed epidemiological data, we designed an hybrid modelling framework
where we integrated: (1) two growth curves for daily reported positive cases, differentiating the
early epidemic phase and a second phase with a potentially different dynamics; (2) two logistic
regression models for daily recoveries and deaths; and (3) a SIQR (Susceptible, Infective, Quarantined,
Recovered) mechanistic model to provide an overview of the dynamics of the disease in the target
population. This joint modelling approach allows explicit analytical expressions for the different
compartments of the SIQR model, circumventing common identifability issues in such models. The
changes in the disease transmission pattern can be confronted to countermeasures to assess their
effectiveness along time. For illustrative purposes, we applied the approach to COVID-19 data from
West Africa. It turned out that the first imported COVID-19 case(s) in West Africa likely entered the
region between January 28th and February 7th, 2020. Moreover, the first measures implemented by
West African authorities impacted the dynamics of the disease one month after the outbreak.

Abstract: The widely used logistic model for epidemic case reporting data may be either restrictive
or unrealistic in presence of containment measures when implemented after an epidemic outbreak.
For flexibility in epidemic case reporting data modelling, we combined an exponential growth curve
for the early epidemic phase with a flexible growth curve to account for the potential change in
growth pattern after implementation of containment measures. We also fitted logistic regression
models to recoveries and deaths from the confirmed positive cases. In addition, the growth curves
were integrated into a SIQR (Susceptible, Infective, Quarantined, Recovered) model framework to
provide an overview on the modelled epidemic wave. We focused on the estimation of: (1) the delay
between the appearance of the first infectious case in the population and the outbreak (“epidemic
latency period"); (2) the duration of the exponential growth phase; (3) the basic and the time-varying
reproduction numbers; and (4) the peaks (time and size) in confirmed positive cases, active cases
and new infections. The application of this approach to COVID-19 data from West Africa allowed to
discuss the effectiveness of some containment measures implemented across the region.

Keywords: Growth model; Epidemic latency period; Reproduction number; West Africa

1. Introduction

The ravages by the COVID-19 pandemic has deepened the need of mathematical and
statistical tools for understanding the dynamics of epidemics across the world. Simple
mathematical models of infectious diseases are useful for providing insight into epidemic
trajectories and disease dynamics [1–3]. However, applications should target complex but
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parsimonious models which make realistic assumptions and let the observed data drive
estimations. Indeed, although the logistic bell curve has been widely used for various
epidemic data, it lacks flexibility for epidemics whose data exibits asymmetry or varying
growth patterns [4–6]. With a view to allow flexibility, [7] have considered the generic
growth curve of [8]. This approach concedes the simple logistic curve when it is supported
by the observed data, but offers the possibility to fit various flexible growth models such as
the generalized logistic model [9,10], the hyperlogistic model [8,11], the hyper-Gompertz
[8] and the Gompertz curves [12,13].

However, to be realistic, models for epidemic data should be able to account for the
potential effect of containment measures when implemented after an epidemic outbreak.
In a target population undergoing an epidemic wave, the number of infective individuals
may be assumed to follow an exponential growth in the early epidemic phase where no
containment measures were implemented or the implemented measures were not yet
effective [14]. Then, the variation of the number of infective individuals is expected to
shift to a sub-exponential growth resulting from negative feedbacks due to a decrease
in the probability that an infectious individual meets a susceptible individual [4], or to
containment measures’s effects, if any.

In this paper, we focus on epidemic waves managed with at least an isolation measure
for all identified infectives, as for the COVID-19 pandemic in nearly all the world. The
objective of this study was to provide a quantitative framework in which epidemiologists
can identify, from a large family of models, the parsimonious model that explains patterns
in an observed dataset, and then assess hypotheses on the potential course of related but
unobservable processes of interest. Specifically, we (1) modelled confirmed positive cases
using a combination of the exponential growth curve for the initial epidemic phase and the
generic growth curve [8] after this initial phase. We considered the log-normal distribution
to model the error structure in the data and the maximum likelihood approach for the
estimation of growth parameters. This development allows the estimation of the duration
of the exponential growth phase and the theoretical time and size of the peak of new
positive cases. Secondly, we (2) modelled removal (recovery and death) from identified
positive cases as binary processes using two logistic regression models to monitor the
evolution and the peak (time and size) of the actives among detected cases. Finally, in order
to provide an overall view for a target epidemic, we (3) integrated the growth curve and
the logistic regression removal rates into a mechanistic SIQR model frame [15] in which
the population is structured in Susceptibles, Infectives, Quarantined (identified actives
cases) and Recovered individuals. The result is a mechanistic model in which the sizes of
the different states (compartments) have closed form expressions. This allows inference
on various epidemiological parameters such as the delay between the appearance of the
first infectious case in the population (“patient zero”) and the outbreak (“epidemic latency
period”), the reproduction number, the unobservable new infections per unit time as well
as the proportion of the target population immunized against the pathogen of the target
disease.

In addition to estimates (with quantified uncertainty) for common epidemiological
parameters, the proposed hybrid modelling framework extracts from the observed data
and demographic rates, the evolution along the epidemic course of the key parameter for
summarizing the dynamics of an epidemic: the reproduction number. The changes in this
parameter can thus be confronted to control measures promoted/enforced by public health
authorities and governments. For illustrative purpose, we used the developed modelling
framework to: (i) model COVID-19 case reporting data (daily PCR-confirmed positives,
recoveries and deaths) from Western Africa (February 28th to August 31st, 2020); and
(ii) evaluate the transmission pattern of the disease in the region during the considered
period. The results were used to discuss the effectivness of some containment measures
implemented by governments across the region.
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2. The Hybrid Modelling Framework

In this section, we describe the three sub-models integrated into the proposed mod-
elling framework, namely, the growth model, the logistic removal rates and the Susceptible-
Infective-Quarantined-Recovered (SIQR) mechanistic model.

2.1. Mixture of Growth Models for Detected Cases

We assume that the cumulative number Ct of reported cases, as a function of the time
t, has the form

Ct =


0 if t ≤ 0

eω0(t−τ0) if 0 < t ≤ te
ξ + ϕt if t > te

(1)

where te > 0 is the duration from outbreak to the end of the exponential growth phase,

ϕt = Ω(1 + ut)
−1/ν (2)

is the generic growth model [8] with ut = [1 + ωνρ(t− τ)]−1/ρ, Ω > 0 is a constant such
that the ultimate epidemic size (detected) is ξ + Ω, ω > 0 is the “intrinsic" growth rate
constant for the sub-exponential growth phase, ν > 0 is a growth acceleration parameter, ρ
(−1 < ρ < ν−1) is a shape parameter controling the skewness of the growth curve during
the sub-exponential epidemic phase, and τ is a constant of integration determined by
the initial conditions of the epidemic. The generic growth curve ϕt specified for t > te
encompases many special or limiting cases (Table 1) including the Bertalanffy-Richards
(ρ → 0), the hyper-Gompertz (ν → 0 while ων1+ρ → ω̃ with ω̃ constant), the Gompertz
(ν→ 0, ρ→ 0 while ων→ ω̃), the hyper-logistic (ν = 1) and the logistic (ν = 1 and ρ→ 0)
growth models [8]. The parameter ω0 > 0 in (1) is the exponential growth rate for the early
epidemic phase and τ0 ∈ R determines the growth rate at t = 0. The constants ω0 and τ0
are set such that the first derivative Ċt and the second derivative C̈t of Ct with respect to t
are smooth at t = te (i.e. at the end of the exponential growth phase). Specifically,

ω0 = ϕ̈e (3)

τ0 = te +
log ω0 − log ϕ̇e

ω0
(4)

where ϕ̇e = ϕ̇te and ϕ̈e = ϕ̈te are available from Table 1, and (4) follows from setting
ω0eω0(te−τ0) = ϕ̇e. Furthermore, the real constant ξ in (1) ensures that Ct does not jump
at t = te. In other words, ξ is given by ξ = eω0(te−τ0) − ϕe (with ϕe = ϕte ) which by (4)
simplifies to

ξ =
ϕ̇e

ω0
− ϕe. (5)

The restriction −1 < ρ < ν−1 makes the parameters ν and ρ dependent. This can be
circumvented by introducing a free working shape parameter ρ0 ∈ (0, 1) such that ρ =
(ρ0(ν + 1)/ν)− 1 [7].

In (1), the time (in e.g. day, week, month) of the first identified cases corresponds to
t = 1. In other words, to match (1) to observed data, C1 is identified to the number of cases
reported in the time interval (0, 1], C2 is the number of cases reported in the time interval
(0, 2], and so on. If Ω→ ∞ and νρ→ 0, the curve Ct converges to an exponential growth
curve with rate ω0. However, this scenario can be ruled out since the size of any target
population is finite and so does Ω. In practice, the exponential growth forever is prevented
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Table 1: Generic growth model [8] and its limiting cases: population size (ϕt), growth
rate (ϕ̇t), and growth acceleration (ϕ̈t)

Model Population size Growth rate Growth acceleration

Gen Ω(1 + ut)
−1/ν Ωωu1+ρ

t (1 + ut)
− ν+1

ν νωuρ
t

(
ν+1

ν
ut

1+ut
− ρ− 1

)
ϕ̇t

BR Ω(1 + e−vt)
−1/ν Ωωe−vt(1 + e−vt)

− ν+1
ν νω

(
ν+1

ν
e−vt

1+e−vt − 1
)

ϕ̇t

HG Ω exp
(
−w
− 1

ρ

t

)
Ωω̃w

− 1+ρ
ρ

t exp
(
−w
− 1

ρ

t

)
ω̃w−1

t

(
w
− 1

ρ

t − ρ− 1
)

ϕ̇t

Gom Ω exp(−e−xt) Ωω̃ exp(−xt − e−xt) ω̃(e−xt − 1)ϕ̇t

Table notes: Gen = Generic; BR = Bertalanffy-Richards; HG = Hyper-Gompertz; Gom =
Gompertz; ut = [1 + ωνρ(t− τ)]−1/ρ, vt = νω(t− τ), wt = ω̃ρ(t− τ), and xt = ω̃(t− τ).

by negative feedbacks which decrease the probability that an infectious individual and
a susceptible individual meet and have an adequat contact (i.e. contact sufficient for
transmission). For instance, the growth of infectives is naturally continuously lowered
by the increasing fraction of the population constituted by individuals who recovered
and become less susceptible (temporarily or permanently immune) to the infection [4]. To
prevent the exponential growth of infectives, control measures such as quarantining and
lockdown reduce the probability of contact between susceptible individuals and infectious
individuals whereas some other measures such as social distancing and wearing a face
mask reduce the likelihood of transmission whenever contacts happen.

The specification of the growth model in (1) to an epidemic thus implies that the
growth rate Ċt, i.e. the number of new cases reported per unit time given by

Ċt =

{
ω0eω0(t−τ0) if 0 ≤ t ≤ te

ϕ̇t if t > te
(6)

with ϕ̇t given in Table 1, will peak and then fall toward zero case per unit time. The peak
occurs at a time tp > te when the growth acceleration C̈t given by,

C̈t =

{
ω2

0eω0(t−τ0) if 0 ≤ t ≤ te
ϕ̈t if t > te

(7)

with ϕ̈t given in Table 2, vanishes. The expressions of the time (tp) and the size (Ċp) of the
peak are shown in Table 2 for the general situation (ν 6= 0 and ρ 6= 0), as well as for limiting
cases.

The number of detected cases Ct is the basic data reported during an epidemic.
Once this has been modelled, various epidemic related quantities can be inferred upon
introduction of disease related parameters (e.g. detection of infectives, recoveries, deaths)
and demographic parameters (e.g. natural mortality, births, immigration).

2.2. Infectives, Epidemic Latency Period and Active Cases

Since only a fraction of infectives are identified at a time t, the number It of infective
individuals in the target population is obtained using (6) as It = δ−1Ċt [7] which reads

It =

{
I0eω0t if t ≤ te
δ−1 ϕ̇t if t > te

(8)
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Table 2: Peak time (tp) and size (ϕ̇p = ϕ̇tp ) of the generic growth curve [8] and its limiting
cases

Model Peak time (tp) Peak size (ϕ̇p)

Generic τ + 1
νωρ

{[
1−νρ

ν(1+ρ)

]ρ
− 1
}

Ωω
[
ν

1+ρ
1−ρν

]1+ρ(
ν+1

1−ρν

)− ν+1
ν

BR (ρ→ 0) τ − log ν
ων Ωων(1 + ν)−

ν+1
ν

HG (ν→ 0, νω(1+ρ) → ω̃) τ + (1+ρ)−ρ

ω̃ρ Ωω̃
[
(1 + ρ)e−1]1+ρ

Gompertz (ρ→ 0 in HG) τ Ωω̃e−1

Table notes: BR = Bertalanffy-Richards; HG = Hyper-Gompertz; up = ν(1 + ρ)/(1− ρν),
tp is the root of ϕ̈t; the expressions of ϕ̇t (growth rate) and ϕ̈t (growth acceleration) are
given in Table 1.

where I0 = δ−1ω0e−ω0τ0 is the number of infectives at the outbreak (t = 0) and δ ∈ (0, 1] is
the detection rate assumed constant along the epidemic course (after the outbreak). Note
that the number of infectives before the outbreak (t < 0) is obtained by back extrapolation
as It = I0eω0t, i.e. considering an exponential growth before the outbreak [14].

We refer to the time from the appearance of the first infectious case in the population
(“patient zero") to the outbreak as the “epidemic latency period". An estimate of the
duration to of this period is obtained by setting It = 1 [14]. By (8), the duration of the
epidemic latency period is estimated by to = ω−1

0 log I0 which on using (4) simplifies to

to =
log ϕ̇e − log δ

ω0
− te. (9)

The number of detected and active cases, i.e. individuals tested positive and in isolation
at an hospital or at home at time t is denoted Qt following [15] for “Quarantined" state,
although we refer to Qt as “Actives". Given the detected cases Ct in (1), Qt satisfies

Q̇t = Ċt − (αt + εt)Qt (10)

where αt is the recovery rate and εt is the death rate (natural and disease-related mortality)
of actives. Indeed, following [7], we allow the removal rates αt and εt from Qt to be time
varying. This is appropriate when recovery and death data are available aside the reported
positive cases per unit time. The two rates are here given the logistic forms

αt =
[
1 + e−(κ0+κt)

]−1
(11)

εt =
[
1 + e−(λ0+λt)

]−1
. (12)

Accordingly, at outbreak (t = 0), the recovery rate is α0 = 1/(1 + e−κ0) and the death rate
is ε0 = 1/

(
1 + e−λ0

)
. Then, along the epidemic course, κ and λ determine the changes

in the log-odds ratio to have an outcome per unit time. Under constant removal rates
assumption (κ = λ = 0), solving the differential (10), gives the actives cases as (assuming
that Cw is differentiable for 0 < w < t)
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Qt =

[
Q0 +

∫ t

0
Ċwe(α0+ε0)wdw

]
e−(α0+ε0)t

where Q0 is available from (21) and represents the number of persistent cases from previous
epidemic waves (isolated actives) at the outbreak of the target epidemic wave (e.g. Q0 = 0
for a new disease-related epidemic). Taking the expression of Ct in (1) into account yields
for κ = λ = 0

Qt =

Q0e−(α0+ε0)t + δI0
ω0+α0+ε0

[
eω0t − e−(α0+ε0)t

]
if 0 < t ≤ te[

Qee(α0+ε0)te +
∫ t

te
ϕ̇re(α0+ε0)rdr

]
e−(α0+ε0)t if t > te

(13)

where Qe = Qte is the number of active cases at the end of the exponential growth phase.
For the general situation where the rates αt and εt may be time dependent, the number of
active cases is

Qt =


[

Q0F0 + ω0
∫ t

0 eω0(r−τ0)Frdr
]

F−1
t if 0 < t ≤ te[

QeFte +
∫ t

te
ϕ̇rFrdr

]
F−1

t if t > te
(14)

where Ft is defined as

Ft =


e(α0+ε0)t if κ = 0 and λ = 0

eα0t(1 + eλ0+λt)1/λ if κ = 0 and λ 6= 0(
1 + eκ0+κt)1/κeε0t if κ 6= 0 and λ = 0(

1 + eκ0+κt)1/κ(1 + eλ0+λt)1/λ if κ 6= 0 and λ 6= 0

. (15)

2.3. Overall Epidemic Dynamics

The dynamics of an epidemic as expressed by the variations of the infectives It, is
determined by the combination of the transmission rate (new infections) and the average
residence time, i.e. the average duration from infection to isolation, recovery or death. The
core parameter for summarizing this dynamics is at a moment t the reproduction number
denoted Rt, which is indeed crucial for quantifying the intensity of control measures
required to control an epidemic [6].

The reproduction number is defined as the average number of secondary cases gener-
ated by a primary case. With a view to deriveRt under the growth model in (1), we first
considered an overall picture of the target population in order to enlighten the sources
(transmission and removal) of the variations of It as given in (8).

2.3.1. The SIQR Model

Following [7] and [14], we considered the Susceptible - Infectious - Quarantined -
Recovered (SIQR) model of [15] to obtain a picture of the different states of individuals
in a target population. We used the “quarantine-adjusted incidence" version [15] of this
model since the underlying transmission mechanism explicitely recognizes the isolation of
detected cases. In this framework, the size Nt of the target population (assumed finite but
large) satisfies at time t

Nt = St + It + Qt + Rt (16)
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where St is the size of the class of susceptible individuals, It is the class of infectives, Qt is
the size of the class of detected active cases, and Rt is the size of the class of individuals
who recovered (both detected and not detected). We assume that the infection has zero
latent period (susceptible individuals become infectious as soon as they become infected).
The individuals in the classes R are assumed permanently immune within the period of
time considered. It is also assumed that known active cases (in the class Q) do not mix
with others classes, and do not infect susceptibles (i.e. the transmission rate from Q-class
individuals is considered negligible). The corresponding SIQR model is described by the
following set of nonlinear differential equations [15]

Ṡt = η − βt(St + Rt)It/(Nt −Qt)− µSt (17)

İt = [βt(St + Rt)/(Nt −Qt)− (γ + δt + π)]It (18)

Q̇t = δt It − (αt + εt)Qt (19)

Ṙt = γIt + αtQt − µRt (20)

where η is the recruitment rate of susceptibles (births and immigration), βt is the total
number of adequate contacts (i.e. contacts sufficient for transmission) per unit time, µ is
the per capita natural mortality rate, αt and γ are the recovery rates from actives Qt and
infectives It resepectively, εt and π are the death rates (natural and disease-related) for
actives Qt and infectives It resepectively, and δt is the detection rate which is null (δt = 0)
for t < 0 and equals δt = δ for t ≥ 0. Note that (19) is the same as (10) for t ≥ 0. Unlike
in [15], we allow the transmission rate βt to be time varying as a consequence of the form
of the number of infectives It already available in (8). The transfer diagram for this SIQR
model is shown in Figure 1.

Figure 1. Transfer diagram for a SIQR model with quarantine-adjusted incidence. S is the class
of susceptibles, I is the class of infectives, Q is the class of detected active cases, i.e. individuals tested
positive and in isolation at an hospital or at home, R is the class of individuals who who contracted
the disease, were detected or not, and have recovered. The individuals in the clases R are considered
permanently immune.

The system (17–20) always has the disease–free equilibrium P0 = (S = η/µ, I =
0, Q = 0, R = 0), i.e. in the absence of the disease, the population size Nt approaches the
carrying capacity N∗ = η/µ. Hethcote et al. [15] showed in the case of a constant transmis-
sion rate (βt = β) that the system can have an endemic equilibrium point. Furthermore,
such endemic points may be either locally asymptotically stable or subject to Hopf bifurca-
tion depending on model parameters, giving rise to unstable spiral and periodic solutions
[15]. In the modelling framework considered in this work, the long term dynamics of a
target disease is solely determined by the ultimate epidemic size Ω (detected). Indeed,
lim
t→∞

ϕt = Ω so that lim
t→∞

ϕ̇t = 0 since Ω is finite and therefore, lim
t→∞

It = 0 by (8). Conse-

quently, the disease always dies out in the long run and the system tends to the disease–free
equilibrium P0. This happens because the fraction of infectives in the population decreases
to very near zero and the fraction of quarantined (Q) decreases to zero (through recovery
and death). Eventually, over 100 or more years, the recovered people (R) slowly die off
and the birth process slowly increases the susceptibles (S), until everyone is susceptible
at the disease–free equilibrium P0 [16]. Note, however, that the SIQR model described by
(17–20) together with (8) is meant for a single epidemic wave, whereas it is possible to
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have successive epidemic waves, or even overlapping epidemic waves [1] which would be
described by a mixture of many SIQR models.

From (19), the number Qt of known active cases before the outbreak, is given by

Qt = Qoe−(α0+ε0)(t+to) for − to ≤ t ≤ 0 (21)

on assuming constant recovery (α0) and death (ε0) rates before the outbreak, and on
denoting Qo the number of persistent cases from previous epidemic waves (e.g. Qo = 0 for
a new disease-related epidemic).

2.3.2. Susceptibles and Recovered

In addition to infectives (It) and actives (Qt) already available from the growth curve
Ct, the computation of the population size in (16) requires the expressions of the sizes
of the compartments of susceptibles (St) and immunes (Rt). From (18), we deduce the
transmission rate, i.e. the number of adequate contacts per unit time (for It > 0)

βt =

(
γ + δt + π +

İt

It

)(
1 +

It

St + Rt

)
. (22)

Inserting this in (17) and replacing in light of (8) İt/It = ω0 for t ≤ 0 and İt/It = C̈t/Ċt for
t > 0 yields

Ṡt =

{
η − (γ + π + ω0)I0eω0t − µSt if t ≤ 0

η − δ−1[(γ + δ + π)Ċt + C̈t
]
− µSt if t > 0

. (23)

Therefore, the number of susceptible individuals is given for −to ≤ t ≤ 0 by

St =
η

µ
+

(
So −

η

µ

)
e−µ(to+t) − ω0 + γ + π

ω0 + µ
I0

(
eω0t − e−(ω0+µ)to−µt

)
(24)

where So is the number of susceptibles at the begining of the epidemic, obtained from (16)
with t = −to (Io = 1) as

So = No −Qo − Ro − 1 (25)

where No is the initial population size (i.e. at t = −to) and Ko is the number of known
immune individuals at the begining of the target epidemic (recovered from past outbreaks
if any). The number of susceptibles after the outbreak (t > 0) is

St =


η
µ +

(
S0 − η

µ

)
e−µt − ω0+γ+δ+π

ω0+µ I0
(
eω0t − e−µt) if 0 < t ≤ te

η
µ +

(
Se − η

µ

)
eµ(te−t) −

{∫ t
te

[
1 + δ−1(γ + π + zr)

]
ϕ̇reµrdr

}
e−µt if t > te

(26)

where S0 is the number of susceptibles at the outbreak (t = 0) and is available from (24),
Se = Ste is the number of susceptibles at the end of the exponential growth phase and
zt = ϕ̈t/ϕ̇t is the ratio of the growth acceleration ϕ̈t to the growth rate ϕ̇t (Table 2).

From the transfert diagram in Figure 1, the total number of individuals who were
infected and then recovered, and are alive can be decomposed as

Rt = Kt + Ut (27)
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where Kt is the number of individuals who were tested positive, were isolated and then
recovered (known), and Ut is the number of individuals who contracted the infection, but
were not detected and have recovered (unknown). Equation (20) is then equivalent to the
system

K̇t = αtQt − µKt (28)

U̇t = γIt − µUt. (29)

From (28), the number of known recovered individuals Kt is given for −to ≤ t ≤ 0 by

Kt =

{
[Ko + α0Qo(to + t)]e−µ(to+t) if µ = α0 + ε0

Koe−µ(to+t) + α0Qo
µ−(α0+ε0)

[
e−(α0+ε0)(to+t) − e−µ(to+t)

]
if µ 6= α0 + ε0

. (30)

After the outbreak, Kt is given by

Kt =


[
K0 +

∫ t
0 αrQreµrdr

]
e−µt if 0 < t ≤ te[

Keeµte +
∫ t

te
αrQreµrdr

]
e−µt if t > te

(31)

where K0 (available from (30)) is the number of known recovered individuals before the
considered outbreak (recovered from past outbreaks if any), and Ke = Kte is the number of
known recovered individuals at the end of the exponential growth phase. From (29), the
number of unknown recovered individuals is

Ut =


γ

ω0+µ I0

[
eω0t − e−(ω0+µ)to−µt

]
if − to ≤ t ≤ te[

Ueeµte + γδ−1
∫ t

te
ϕ̇reµrdr

]
e−µt if t > te

(32)

where Ue = Ute is the number of undetected and recovered cases at the end of the expo-
nential growth phase.

2.3.3. The Effective Reproduction Number

From the definition of the effective reproduction number as the average number of
secondary cases generated by a primary case, the thresholdRt corresponds to the product
of the transmission rate βt given in (22) and the average residence time 1/(γ + δt + π) in
the class of infectives, i.e.

Rt = βt/(γ + δt + π).

This effective reproduction number is sometimes referred to as a “quarantine" reproduction
number [15] or simply a “control" reproduction number to acknowledge the influence
of isolation of identified infectives, and other control measures if any [17]. The basic
reproduction number defined as the average number of secondary infections produced
when one primary infectious individual enters a completely susceptible population (So =

No − 1, Io = 1, Qo = 0, Ro = 0), is here given by Ro =
(

1 + ω0
γ+π

)
No/(No − 1). This

expression is simplified, assuming No/(No − 1) = 1 for the sake of beauty [18] and mostly
because No is large (recall this is a model assumption), as

Ro = 1 +
ω0

γ + π
. (33)
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During the epidemic latency period (to < t < 0) where the growth is exponential ( İt/It =
ω0) and the detection rate is δt = 0, the time-varying reproduction number is given by

Rt =

(
1 +

ω0

γ + π

)(
1 +

It

St + Rt

)
for − to ≤ t < 0. (34)

The later expression points out that the time-varying reproduction number increases as
susceptibles (St) become infectives after adequate contact with infectious individuals (It),
but decreases as more and more infectives recover and move to the immune class Rt, or
control measures become effective. The outbreak reproduction number which accounts for
the detection rate δt = δ is given by

R0 =

(
1 +

ω0

γ + δ + π

)(
1 +

I0

S0 + R0

)
. (35)

indicating how the average residence time is decreased by the quarantining of some
infectives. From the outbreak, the time-varying effective reproduction number during the
remaining of the exponential phase has the same form

Rt =

(
1 +

ω0

γ + δ + π

)(
1 +

It

St + Rt

)
for 0 ≤ t ≤ te. (36)

It appears from (34) and (36) thatRt > 1 during the whole exponential growth phase as ex-
pected. During the sub-exponential growth phase, the time-varying effective reproduction
number is given by

Rt =

(
1 +

zt

γ + δ + π

)(
1 +

It

St + Rt

)
for t > te (37)

where zt = ϕ̈t/ϕ̇t (Table 2).

2.3.4. Total and Lost Cases

The total number of persons infected during an epidemic wave is indicative of the
overall cost of the epidemic in terms of its overall impact on the society (in regard to e.g.
health, work, communication). The total number of new infections denoted Ṫt is given by

Ṫt = (γ + δt + π)It + İt. (38)

The total number of cases is thus given by

Tt =


1 + ω0+γ+π

ω0

(
I0eω0t − 1

)
if − to ≤ t ≤ 0

T0 +
ω0+γ+δ+π

ω0
I0
(
eω0t − 1

)
if 0 < t ≤ te

Te + δ−1[(γ + δ + π)(ϕt − ϕe) + ϕ̇t − ϕ̇e] if t > te

(39)

where Te = Tte , ϕe = ϕte and ϕ̇e = ϕ̇te . The increase in lost cases is Λ̇t = (γ + π)It per unit
time so that the number of lost cases Λt is given by

Λt =

{
γ+π
ω0

(
I0eω0t − 1

)
if − to ≤ t ≤ te

Λe +
γ+π

δ (ϕt − ϕe) if t > te
. (40)
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with Λe = Λte . In particular, the number of lost cases during the entire epidemic latency
period is Λ0 = (γ + π)(I0 − 1)/ω0.

2.3.5. Epidemic Peak

The peak of new infections occurs when T̈t vanishes. We have from (38)

T̈t = (γ + δt + π) İt + Ït. (41)

During the exponential growth phase, both İt and Ït are increasing functions of time so that
the peak of new infections occurs after te, i.e. the peak time tnew satisfies tnew > te. Hence
the peak time is the solution of

(γ + δ + π)ϕ̈t +
...
ϕt = 0 (42)

which can be solved for t using a numerical root finding routine such as the R [19] function
uniroot or the Matlab [20] function fzero. Afterwards, the peak size Ṫnew (the maximum
number of new infections per unit time) is obtained by inserting tnew in (38).

2.4. Long Term Epidemic Dynamics

The specification of the growth model in (1) to an epidemic implicitely assumes that
the number of infectives in (8) peaks at time tp and then tends to zero. The decay of
infectives after the peak can happen at various rates, depending on the growth pattern
(determined by contacts between infectives and susceptibles or intermediate hosts), the
response of infected individuals’s organism (natural or induced with medicines or a vaccin)
to the disease (recovery and death process) and the testing efforts (detection followed by
isolation). There are actually two alternative paths from a disease related state (i.e. It > 0)
toward the unique (disease–free) equilibrium P0: transmissions either stop (Rt reaches
zero) or continue longtime at a rate which cannot sustain an epidemic (0 < Rt ≤ 1). We
discuss these two scenarii in this section. Because the behaviour ofRt for t > te depends
on zt = ϕ̈t/ϕ̇t (see (37)), we shall make use of the minimum of zt (over t > te) and the limit
lim
t→∞

zt given in Table 3 for the general and limiting expressions of zt.

Table 3: Minimum point (tzmin = arg
t>te

min{zt}), minimum value zmin = min
t>te
{zt} and limit

zlim = lim
t→∞

zt of the ratio zt = ϕ̈t/ϕ̇t of the growth acceleration ϕ̈t to the growth rate ϕ̇t

of the generic growth curve (ϕt) [8] and its limiting cases

Model tzmin zmin zlim

Generic τ + 1
νωρ

(
u−ρ

z − 1
)

νωuρ
z

(
ν+1

ν
uz

1+uz
− (1 + ρ)

)
0

BR (ρ→ 0) ∞ −νω −νω

HG (ν→ 0, νω(1+ρ) → ω̃) τ + ω̃−1ρ−(1+ρ) −ω̃ρρ 0

Gompertz (ρ→ 0 in HG) ∞ −ω̃ −ω̃

Table notes: BR = Bertalanffy-Richards; HG = Hyper-Gompertz; ϕt is as defined in (2) and
zt is available from Table 2, uz = (

√
1− ρ0 − 1)/

√
1− ρ0 with ρ0 = ν(ρ + 1)/(ν + 1).
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2.4.1. Straight End of Transmissions

The transmission of a target disease ends when the transmission rate βt and accord-
ingly the number of new infections (Ṫt) drops to zero at a finite time point which is solution
of the equation

zt + (γ + δ + π) = 0. (43)

Actually, because the transmission rate per capita per unit time βt(St + Rt)/(Nt −Qt) is a
non negative quantity, (22) implicitely assumes that İt/It ≥ −(γ + δt + π). This condition
holds for t ≤ te since İt/It = ω0 > 0. For the sub-exponential growth phase (t > te), the
assumption is equivalent to

zt + (γ + δ + π) ≥ 0. (44)

The importance of the inequality in (44) becomes more apparent when considering the
reproduction number given in (37): the restriction ensures thatRt ≥ 0. Therefore, if (43)
has a solution tz ∈ (tnew, ∞), then the transmission of the infection (from the infectives
already present in the population to the susceptibles) ends at t = tz andRt = 0 for t ≥ tz.
The existence of a solution tz of (43) can be checked by comparing the minimum value
zmin of zt (Table 3) to the total rate (γ + δ + π) of removals from It. Indeed, if we have
zmin = −(γ + δ + π), then tz = tmin. Furthermore, if zmin < −(γ + δ + π), there exists a
solution tz ∈ (tnew, tmin) which can be found using a numerical routine. In either of these
two cases, the number of susceptibles afterwards stays at Sz = Stz and the number of
infectives follows an exponential decay as

It = Iz e−(γ+δ+π)(t−tz) for t > tz (45)

where Iz = Itz is given by (8). The number of new detected cases is Ċt = δIt as before, but
the number of known active cases becomes

Qt =

[
QzFz + δIz

∫ t

tz
e−(γ+δ+π)(r−t)Frdr

]
F−1

t . (46)

where Qz = Qtz is given by (14) and Fz = Ftz is given by (15). Whereas the number Kt of
known immunes has the same expression given in (31) with Qt given by (46), the number
Ut of unknown immunes becomes

Ut = Uz e−µ(t−tz) − γIz

γ + δ + π − µ

[
e−(γ+δ+π)(t−tz) − e−µ(t−tz)

]
(47)

where Uz = Utz is given by (32). From (45), the number of infectives falls to 1 at time

t f = tz +
log Iz

γ + δ + π
. (48)

Finally, since the removal rate of infectives is γ + δ + π per unit time, the probability that
the number of infectives drops to zero at a time tend = t f + r with r a non negative integer
is (γ + δ + π)(1− γ− δ− π)r. Under this scenario, the system (17–20) will tend to the
disease free equilibrium P0 at which the size of the population stabilizes at N∗ = η/µ.
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2.4.2. Asymptotic End of Transmissions

When the shape of the curve of infectives has growth parameters such that zt =
ϕ̈t/ϕ̇t > −(γ + δ + π) for t > te, the transmission of the disease does not stop straightly,
but continues at a low rate. Indeed, under this scenario, inserting the limit lim

t→∞
It = 0 in

(37) yields

R∞ = lim
t→∞
Rt =

(
1 +

zlim
γ + δ + π

)
(49)

where zlim = lim
t→∞

zt ≤ 0 is available from Table 3 (note that zlim = −νω when ρ → 0

and zlim = 0 otherwise). Therefore, R∞ ≤ 1 and the population asymptotically tends
to the disease–free equilibrium P0 [15]. However, if zlim > −(γ + δ + π), then we also
have R∞ > 0. For instance, under the simple logistic growth model (ν = 1, ρ → 0), zt
decreases and tends to−ω as t→ ∞ (Table 3) and R∞ = 1−ω/(γ + δ + π) which satisfies
0 < R∞ < 1 (from ω < γ + δ + π). In general, when ρ 6= 0, the shape of ϕt may allow zt to
properly decrease for t > te and become negative from t > tnew so thatRt < 1. However,
whence zt reaches its limit zlim > −(γ + δ + π), it bounces and tends to 0 (Table 3) so that
R∞ = 1.

The limit (49) shows that when Rt does not sharply reach zero but ρ → 0, the
asymptotic reproduction number depends on rate parameters (γ, δ and π) that can be
controlled to hasten the disease to die out. In the situation where ρ 6= 0, R∞ is independent
of model parameters, so that the long run dynamics is less likely to respond to changes in
the rate parameters.

2.5. Statistical Model and Inference

To allow likelihood inference in the growth models in (1) using observed epidemi-
ological data, we followed [7] and assigned to new reported cases Yt (t = 1, 2, · · · , n) a
log-normal distribution with probability density function (pdf)

fY(Yt|θ) =
1

σ(Yt + 1)
√

2π
exp

(
−1

2

[
log(Yt + 1)− log(Ċt + 1)

σ
+

σ

2

]2)
(50)

where σ > 0 is a dispersion parameter (standard deviation at logarithmic scale). This
specification yields the mean E[Yt] = Ċt and the variance Var[Yt] =

(
Ċt + 1

)2
(

eσ2 − 1
)

while allowing null values of Yt. In addition, the numbers of new recoveries Gt and new
deaths Mt from known active cases Qt (t = 1, 2, · · · , n) were modelled using logistic
regression models with probability mass functions (pmf)

fG(Gt|θ, Qt−1, Yt) =

(
Qt−1 + Yt

Gt

)
αGt

t (1− αt)
Qt−1+Yt−Gt (51)

fM(Mt|θ, Qt−1, Yt) =

(
Qt−1 + Yt

Mt

)
εMt

t (1− εt)
Qt−1+Yt−Mt (52)

where αt =
[
1 + eκ0+κt]−1 and εt =

[
1 + eλ0+λt]−1. The parameter vector indexing the

pdf in (50) and the conditional pmf in (51) and (52) is θ = (Ω, ω, ν, ρ, τ, te, σ, κ0, κ, λ0, λ)>

when the generic growth curve was considered for the sub-exponential growth phase. If a
special case of the generic growth curve is desired, the corresponding restricted parameters
must be withdrawn from θ. For instance, the use of a hyper-logistic growth curve (ν = 1)
implies θ = (Ω, ω, ρ, τ, te, σ, κ0, κ, λ0, λ)>. Given Q0, the conditional log-likelihood of an
observed series {Yt, Gt, Mt} with t = 1, 2, · · · , n, as a function of the parameter θ is
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`(θ) = `Y(θ) + `G(θ) + `M(θ) (53)

where `Y(θ) =
n

∑
t=1

log fY(Yt|θ) (54)

`G(θ) =
n

∑
t=1

log fG(Gt|θ, Qt−1, Yt) (55)

`M(θ) =
n

∑
t=1

log fM(Mt|θ, Qt−1, Yt). (56)

The conditional maximum likelihood estimate θ̂ of θ can be obtained using an optimization
algorithm to maximize the log-likelihood function `. Note that the three components of
`(θ) are separable and can be maximized independently. In other words, the parameter
vector θ has the partition θ = (θ>Y , θ>G , θ>M)> and the maximum likelihood estimates of the
components θY = (Ω, ω, ν, ρ, τ0, te, σ)>, θG = (κ0, κ)> and θM = (λ0, λ)> can be obtained
by maximizing `Y, `G and `M respectively.

Since both the binomial and the log-normal distributions belong to the exponential
family, we have considered the common deviance statistic used in Generalized Linear
Models [21] for checking the goodness-of-fit of the log-normal model associated to Yt
and the binomial models associated to Gt and Mt. We define the likelihood `s of the
saturated model by replacing Ċt in (50) by the observed values Yt, αt in (51) by the observed
daily recovery probabilities Gt/(Qt−1 + Yt) and εt in (52) by the observed daily death
probabilities Mt/(Qt−1 + Yt). Similarly, we define the likelihood `n of the null model
by replacing each Ċt by the daily mean count Y = n−1 ∑n

t=1 Yt, each αt by the overall
daily recovery probability ᾱ (obtained assuming κ = 0) and each εt by the overall daily
death probability ε̄ (obtained assuming λ = 0). The residual deviance of the maximum
likelihood fit is then given by DEVres = 2

(
`s − `(θ̂)

)
and the null deviance of the null

model fit is given by DEVnull = 2(`s − `n). The quantity DEVres is a statistic to test the
null hypothesis H0: the assumed model is not significantly different from the unknown
model that generated the data. If H0 is true, then the large sample distribution (i.e. as
n→ ∞) of DEVres is the χ2

k distribution with k = n−m degrees of freedom where m = 12
is the number of individual model parameters in θ [22]. If the overall goodness of fit
test based on DEVres rejects H0, then the corresponding statistics (residual deviances) can
be computed for the three sub-models (i.e. considering the log-likelihoods in (53-56)) to
identify the sub-models lacking goodness-of-fit. The percentage of information explained
by the maximum likelihood fit for the cumulative data can be evaluated using the common
adjusted-coefficient of determination

r2
a = 1−

(
1− r2

) n− 1
n−mY

(57)

where r = cor(Ct, Y.t) is the Pearson’s correlation coefficient between Ct and Y.t = ∑t
j=1Yj,

and mY is the number of individual model parameters in θY. The explanative power of the
overall fit can be assessed via the adjusted-deviance reduction ratio [23]

r2
dev = 1− DEVres

DEVnull

n− 1
n−m

. (58)

Let H(θ) be the hessian matrix of ` and define the asymptotic covariance matrix Σ(θ) =

−[H(θ)]−1. In a large sample, the covariance matrix of the maximum likelihood estimate
θ̂ is estimated by Σ̂ = Σ

(
θ̂
)

and square roots of the diagonal elements of Σ̂ provide
standard errors for individual parameters in θ. For the selection of the parsimonious
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model aggreeing with the observed data, the likelihood ratio statistic can be used. To test
a null hypothesis H0 against an alternative H1 with q > 0 restrictions fewer than H0, the
likelihood ratio (LR) statistic is given by [24]

LR = 2
[
`(θ̂(1))− `(θ̂(0))

]
(59)

where θ̂(0) is the estimate under H0 and θ̂(1) is the estimate under H1. If the null hypothesis
H0 is true, the test statistic LR converges in distribution to the χ2

(q) distribution with q
degrees of freedom as n → ∞ [25]. There are however distinct special cases of model (2)
leading to the same number of parameters (m). For example, we have the Bertalanffy-
Richards (m = 7), the hyper-logistic (m = 7) and the hyper-Gompertz (m = 7). We also
have the Gompertz (m = 6) and the logistic (m = 6). In these situations, q = 0 and the
likelihood ratio test cannot be used. Thereafter, we suggest to consider information criteria
such as the Akaike’s Information Criterion (AIC) (the lower the better): AIC = −2`(θ̂)+ 2m
[26].

3. Application to COVID-19 Data of Western Africa
3.1. Context and Objectives

The region of West Africa has sixteen countries (Benin, Burkina-Faso, Cape Verde,
Ghana, Guinea, Côte d’Ivoire, Mali, Mauritania, Niger, Nigeria, Senegal, Togo, Sierra
Leone, Liberia, Guinea-Bissau and Gambia), covering 407,816,097 km2 for a population
of about 407,816,097 inhabitant [27]. The first COVID-19 patient was formaly identified
in Western Africa in late February (27th) 2020. We considered COVID-19 daily infection
(PCR-confirmed cases on the day of reporting), recovery and death data, from February
28th to August 31st, 2020, obtained from the Global Rise of Education plateforme [28].
Although the region is heterogeneous, we treated it as if it were homogeneous. Indeed,
it must be keept in mind that the reported COVID-19 cases occurred in small clusters
concentrated in the main cities of each country. Hence, the sparsity of the data for the
whole region actually reflects data sparcity at national and city levels.

The purpose of this analysis was to demonstrate, by example, the use of the proposed
modelling framework. The specific aims were to: (i) model COVID-19 case reporting data
(daily PCR-confirmed positives, recoveries and deaths) from Western Africa (February
28th to August 31st, 2020); and (ii) evaluate the transmission pattern of the disease. Most
West African governments have planned and subsequently implemented, several control
measures, either before or overlapping with the time of diagnosis of the first national cases
[29]. The modelling results were thus used to discuss the effectivness of the containment
measures implemented by governments across the region, and the implications for the
control of the further spread of COVID-19 in West African countries.

3.2. Data Analysis

All computations and statistical analyses were performed in R [19]. The significance
level of statistical tests was set to 5%.

3.2.1. Model Fitting

We fitted the generic growth curve to the daily new infections Yt. We used the
optim routine of R to maximize the log-likelihood (54). We also fitted three of its special
cases (Bertalanffy-Richards, hyper-logistic, hyper-Gompertz), which were compared to
the generic model fit using likelihood ratio tests. Instead of directly maximizing the log-
likelihoods (55) for θ̂G and (56) for θ̂M with the optim routine, we used the glm routine of R
with the family specification “family = binomial(logit)". Since COVID-19 was a new disease
in 2020, we considered the number of known active cases Q0 = 0 at t = 0 in (51) and (52).
We plotted the daily new positives, recoveries, deaths and actives to provide graphical
insights in the fitted models.
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3.2.2. Overall Epidemic Dynamics

We analysed the overall dynamics of the COVID-19 epidemic in West Africa using
the mechanistic SIQR model described in section 2.3. The rate parameters δ (detection
rate), γ and π (recovery and death rates in infected but non detected individuals) cannot
be estimated using only the available data sequence {Yt, Gt, Mt} (daily new positives,
recoveries and deaths) without additional assumptions on their relationships with the rate
parameters for detected cases (αt and εt). We obtained from the literature δ = 0.009 [30]
and γ + π = 1/10 [14,30] and assumed that the ratio of the daily recovery probability to
the daily death probability in non detected infectives is equal to this ratio in the detected
individuals at outbreak, i.e. before the implementation of treatments, if any. From γ/π =
α0/ε0 ≈ 5.1495, we obtained γ = 1/11.9419 and π = 1/61.4953.

Two demographic parameters are required in the SIQR model: the daily recruitment
rate of susceptibles (through births and immigration) η (individuals/day) and the per capita
natural mortality rate µ (day-1). Using the birth rate ρb (total births and net immigrations
in a period of length L divided by the average population size N during this period), the
recruitment rate η is estimated by

η =
rbN

L
. (60)

Under “natural" (i.e. disease–free) conditions where Nt = St, the variation ∆N of the
population size Nt over a period of length L satisfies

∆N =

(
η

µ
− Ni

)(
1− e−µL

)
(61)

where Ni is the population at the begining of the period. The equation (61) follows by (24)
with I0 = 0. The variation ∆N of the population size is given by ∆N = rbN − rdN, where
rbN represents the total recruitment during the period and rdN represents the total number
of deaths with ρd the mortality rate (individuals/day). Consequently, µ can be obtained by
solving (61) for µ using ∆N = (rb − rd)N.

We considered L = 365.25 days, N = 401, 861, 254, Ni = 397, 429, 929 [27]. Us-
ing the annual birth (32.816/1000) and death rates (7.952/1000) [31] and the net an-
nual immigrations (-177,000 individuals) in West Africa [27], we obtained the rates rb =
(32.816/1000)− (177, 000/N) = 32.371/1000 and rd = 7.952/1000. By (60) and (61), we
then found and used for our analyses on West Africa, η = 35615.35 individuals/day and
µ = 2.1745× 10−5 day-1. We plotted the daily number of new infections, infectives and
recovered individuals, as well as the reproduction number in the West African population.

3.2.3. Standard Error and Confidence Interval

Standard errors were obtained for quantities calculated using estimated model param-
eters by the delta method [32]. For a positive definite parameter or calculated quantity φ in
general, we first found the estimate φ̂ and its logarithmic scale-standard error σ̂φ by the
delta method and computed its logarithmic scale-mean given by µ̂φ = log φ̂− 0.5σ̂2

φ. We
then obtained the bounds of its shortest confidence interval as described by [33].

4. Results
4.1. Growth Curve for New Positives and Logistic Regressions for Removals

The maximum likelihood estimates of growth and logistic regression model parame-
ters are presented in Table 4. The growth model involving the generic growth curve was
retained. Indeed, the combination of an early exponential growth and the generic growth
models was found to be the best growth model for the new positive cases in West Africa,
as compared to the combinations of the exponential growth with the Bertalanffy-Richards
(likelihood ratio LR = 60.06 on d f = 1 degrees of freedom, p-value <0.001), the hyper-
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logistic (LR = 240.33, d f = 1, p-value <0.001) and the hyper-Gompertz (LR = 512.91,
d f = 1, p-value <0.001) growth models.

Table 4: Estimate, standard error (SE), Wald test statistic (z-value), p-value (P(> |z|))
and 95% confidence interval (CI95%) for the parameters of the combination of an early
exponential growth curve with a generic growth curve (fitted to daily PCR-confirmed
positives) and logistic regression parameters (fitted to daily numbers of recoveries and
deaths) using West African COVID-19 data from February 28th to August 31st, 2020.

Parameter Estimate SE z-value* P(> |z|) CI95%

te (day) 29.4781 1.2368 80.1417 <0.001 [26.9413, 31.7865]
Ω (ind.) 191290.8 6444.5420 360.9696 <0.001 [178756.4, 204008.2]
ω (day-1) 0.0148 0.0007 -87.1715 <0.001 [0.0134, 0.0162]
ν 3.7640 0.5280 9.3782 <0.001 [2.7685, 4.8240]
ρ 0.1202 0.0169 -15.1710 <0.001 [0.0884, 0.1541]
τ (day) 171.3210 2.4252 70.6431 <0.001 [166.5678, 176.0742]
σ (log ind.) 0.3962 0.0201 -18.4774 <0.001 [0.3572, 0.4361]
κ0 -4.0609 0.0122 -333.6829 <0.001 [-4.0848, -4.0370]
κ 0.0059 0.0001 68.5372 <0.001 [0.0058, 0.0061]
λ0 -5.7136 0.0682 -83.7346 <0.001 [-5.8473, -5.5799]
λ -0.0126 0.0006 -22.4195 <0.001 [-0.0137, -0.0115]
ωo (day-1) 0.1660 0.0011 -261.8024 <0.001 [0.1659, 0.1662]
τ0 (day) -7.2208 0.0226 -319.1971 <0.001 [-7.2651, -7.1764]
ξ (ind.) 200.3128 2.7771 382.2758 <0.001 [194.8864, 205.7716]

Table notes: ind. = individuals; * z-value was computed at logarithmic scale for positive
definite parameters (te, Ω, ω, ν, ρ, σ and ω0), so that a p-value < 0.05 indicates significant
difference from 1 at 5% level.

The χ2 test for overall goodness-of-fit indicated that there is lack-of-fit (χ2
175 =

45700.68, p-value <0.001) and the overall adjusted-deviance reduction ratio is r2
dev =

11.60%. Looking for the sub-models, we noticed that the estimated growth curve is
significantly different from the corresponding null model fit (χ2

6 = 3601.57, p-value
<0.001) and does not lack fit (χ2

179 = 173.04, p-value = 0.6115). Indeed, the adjusted-
coefficient of determination is r2

a = 99.96% and the adjusted-deviance reduction ratio is
r2

dev = 95.26%. The overall lack of fit is due to the logistic regression fits for the daily recov-
eries (χ2

184 = 45028.51, p-value <0.001, r2
dev = 9.25%) and deaths (χ2

184 = 499.13, p-value
<0.001, r2

dev = 49.08%). We nevertheless kept these fits because there are significantly
different from the corresponding null model fits (for recoveries: χ2

1 = 4861.55, p-value
<0.001; for deaths: χ2

1 = 486.40, p-value <0.001).
The Wald test results in Table 4 agree with the likelihood ratio tests considered to

select the growth model for the sub-exponential growth phase. Indeed, the 95% confidence
bounds for the parameters ν (ν̂ = 3.76, CI(ν) = [2.77, 4.82]) and ρ (ρ̂ = 0.12, CI(ρ) =
[0.09, 0.15]) indicate that none of the Bertalanffy-Richards growth model (ρ → 0), the
hyper-logistic growth model (ν = 1), the logistic growth model (ρ→ 0, ν = 1), the hyper-
Gompertz growth model (ν → 0, ων1+ρ → ω̃) and the Gompertz growth model (ρ → 0,
ν→ 0, ων→ ω̃) are appropriate for this dataset.

The exponential growth phase lasted about one month (t̂e = 29.48, CI(te) = [26.94, 31.79]
days) after the outbreak (Table 4). The growth curve fitted to the cumulative positive cases
is given by

Ct =

e0.1660×(t+7.2208) if 0 < t ≤ 29.48
200.3128 + 191290.8{

1+[1+0.0067×(t−171.3210)]8.3185
}0.2656 if t > 29.48 (62)
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where t is the time (day) from the outbreak. Figure 2 (A) shows the daily confirmed positives
cases and the fitted growth curve based on a log-normal error structure. The observed peak
of new positives happened 148 days after the outbreak (July 24th, 2020) and amounted 2626
positive cases. However, the number of positive cases showed a high variability arround
this date (16–29/07/2020), with most daily records roughly ranging between 1600 and 2000
new positive cases (Figure 2 (A)) around an average of 1803 cases (with standard error
SE = 86.48). The estimated peak time for the new positives cases is around July 15th, 2020,
i.e. about 139 days after the outbreak (t̂p = 138.87, SE = 2.26, and CI(tp) = [134.45, 143.31]

days), and the estimate of the peak size is about 1805 new positive cases (̂̇Cp = 1804.90,
SE = 83.40 and CI(Ċp) = [1643.19, 1969.86] new positive cases). Assuming a log-normal
distribution, the 95% prediction interval for the peak size is PI(Ċp) = [1368.93, 2669.55]
new positive cases, which includes the observed value (2626 new positive cases). The 95%
prediction interval for the peak time is PI(tp) = [126.59, 151.65] days, which also includes
the observed peak time (143 days).

Figure 2. Records of new positive cases Ċt (A), daily recoveries αtQt, (B), daily deaths εtQt (C)
and known actives cases (quarantined at home/hospital) Qt (D) in COVID-19 daily case reporting
data from West Africa (February 28th to August 31st, 2020). The fitted curves are based on a
combination of an early exponential growth model and a generic growth model with log-normal
error structure for the daily new positive cases Ċt, two logistic regression models for the probabilities
of recovery (αt) and death (εt), and the combination of Ċt, αt and εt (using (14)) for actives Qt. Two
outlying data points (6006 recoveries on 20/06/2020 and 11468 recoveries on 04/08 2020) were
removed from the graph (B) for a better visualization.

Based on the logistic regression parameters shown in Table 4, the probabilities of
removals from the actives (quanrantined) are at time t given by α̂t = e−4.0609+0.0059t/(1 +
e−4.0609+0.0059t) for recovery and ε̂t = e−5.7136+−0.0126t/(1 + e−5.7136+−0.0126t) for death.
The probabilities of recovery and death were thus α̂0 = 0.0169 and ε̂0 = 0.0033 respec-
tively at outbreak (t = 0). The recovery probability then improved, with an odd ratio
(recover/not recover) increasing by κ̂ = 0.59% (CI(κ) = [0.58, 0.61]%) each day. The
death probability on contrary decreased, with an odd ratio (die/not die) decreasing by
λ̂ = −1.26% (CI(λ) = [−1.37,−1.15]%) each day. Figure 2 (B-C) show the removals
(daily recovery and death) and the fitted values based on the logistic regression mod-
els for removal probabilities. We noticed that the lack-of-fit (indicated by the residual
deviance test) is due to the very large variability of the observed daily proportions of
recoveries and deaths. However, despite the lack-of-fit in the logistic regression fits, the
use of the related recovery and death probabilities (αt and εt) along with the fitted growth
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curve (Ċt), resulted in fitted active cases (Qt) agreeing to a large extent with the observed
daily actives (Figure 2 (D)), with an adjusted-coefficent of determination of 97.08%. The
peak of known active cases (Qt) was observed 143 days after the outbreak (July 19th,
2020) and amounted 41435 actives. The fitted peak is Q̂max = 42507.01 (SE = 1449.81,
CI(Qmax) = [39687.48, 45368.24] actives) about 150 days after the outbreak, i.e. around
July 26th, 2020 (tQmax = 149.67, SE = 1.78, CI(tQmax ) = [146.18, 153.17] days). The 95%
prediction interval is PI(Qmax) = [34807.25, 50893.54] actives for the maximum of active
cases and PI(tQmax ) = [139.92, 159.71] days for the peak time tQmax (July 16th to August 5th,
2020).

4.2. Overall Epidemic Dynamics

The estimate of the duration of the epidemic latency period (delay between the arrival
of the first infectious individual and outbreak) is about 25 days (t̂o = 24.78, SE = 2.55,
CI(to) = [19.91, 29.87] days). Accordingly, the first imported COVID-19 case(s) in West
Africa likely entered the region during the last week of January and the first week of
February (January 28th–February 7th), 2020. The estimate of the basic reproduction number
is R̂o = 2.66 (SE = 0.11, CI(Ro) = [2.60, 2.69]). At outbreak, the number of infectives in
the region is estimated at about 61 ( Î0 = 61.17, SE = 6.94, CI(I0) = [47.98, 75.05]) infectives.
The estimate of the control reproduction number during the exponential growth phase
after the outbreak is R̂0 = 2.52 (SE = 0.12, CI(R0) = [2.29, 2.76]).

Figure 3 shows the curves of the daily number of new infections (Ṫt), the daily number
of infectives (It) and the immune fraction of the population (Rt = Kt +Ut). As expected, the
peak in new infections occurred before the peak in detected infected individuals (observed
143 days after the outbreak). Indeed, the number of new infections peaked about 131
days after the outbreak (t̂new = 131.12, SE = 2.53, CI(tnew) = [126.18, 136.11] days), i.e.
around July 7th (July 2nd-12th, 2020) to about 22353 (̂̇Tmax = 22352.97, SE = 1067.46,
CI(Ṫmax) = [20284.04, 24464.98]) new infections. As of August 31st 2020, the number of
known recoveries in the West African region was 140,249. The number of both known
and unknown recovered people at this date is estimated at about 1,754,699 individuals
(R̂186 = 1754698.50, SE = 40665.66, CI(R186) = [1675407.60, 1834783.00]), i.e. about 0.44%
of the population the region.

Figure 3. Estimates of the daily number of new infections, infectives and recovered individuals
using the COVID-19 daily case reporting data from West Africa (February 28th to August 31st,
2020). The estimates are based on a SIQR model (see (17–20)) with rate parameters δ = 0.009 day-1

(detection rate), γ = 1/11.9419 day-1 (recovery rate for non detected), π = 1/61.4953 day-1 (death
rate for non detected), η = 35615.35 individuals/day (recruitment rate) and µ = 2.1745× 10−5 day-1

(natural mortality rate).
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The time-varying effective reproduction number is shown on Figure 4. It appears that
the effective reproduction number first decreased during the sub-exponential growth phase
(from 2.52 on February 27th, 2020), reaching 1 on July 15th and 0.66 on August 31st, 2020.
The effective reproduction number attained a minimum value of 0.61 on 29 September 2020
and then increased with a dynamics indicatingR∞ = 1.

Figure 4. Time varying effective reproduction number of the 2020 COVID-19 epidemic in West
Africa using daily case reporting data (February 28th to August 31st, 2020). The estimate is based
on a SIQR model (see (17–20)) with rate parameters δ = 0.009 day-1 (detection rate), γ = 1/11.9419
day-1 (recovery rate for non detected), π = 1/61.4953 day-1 (death rate for non detected), η =

35615.35 individuals/day (recruitment rate) and µ = 2.1745× 10−5 day-1 (natural mortality rate).

5. Discussion

The importance of mathematical models in understanding and predicting the course
of an epidemic outbreak and in assessing the impacts of public health control measures
has been well documented in the current context of the COVID-19 pandemic [17,34–36].
Mathematical models for epidemic dynamics are usually divided into two groups. These
include phenomenological models which use an empirical approach ignoring the physical
mechanisms underlying the observed patterns in the data, and mechanistic models which
structure the population under study in different epidemiological states and incorporate
key physical processes in order to explain patterns in the observed data [5].

This study proposes a hybrid modelling framework which combines phenomenologi-
cal and mechanistic modelling approaches to assess the dynamics of epidemic outbreaks.
The proposal uses a combination of the exponential growth model for the initial dynamics
of the epidemic and a generic growth curve [8] to capture the observed patterns in the
number of detected positive individuals. The observed dynamics of these individuals (re-
covery and death) is also modelled using logistic regression models. Then, these empirical
models are integrated into a deterministic SIQR model [15], to provide an overall view of
the dynamics of the target epidemic. This mechanistic model explicitely acknownledges
the isolation of the detected positive individuals. It does not however include an exposed-
but-noninfectious (E) state as in the SEIQR model [37]. We have illustrated our description
of the different epidemiological aspects that the hybrid modelling framework deals with
using COVID-19 data from West Africa (February 28th to August 31st, 2020).

The considered generic growth model allows to recover simpler models such as the
logistic model, the generalized logistic model [9,10], the hyperlogistic model [8,11], the
hyper-Gompertz [8] and the Gompertz curves [12,13] when this is supported by the ob-
served data. Inference in the phenomenological models is conducted using the maximum
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likelihood approach. This allows to select the effective parsimonious model fitting the
observed data based on likelihood ratio tests [24,25] or information criteria such as the
Akaike’s Information Criterion [26]. The effectiveness of this approach to phenomenologi-
cal modelling has been demonstrated on COVID-19 data [7]. Our application on COVID-19
data from West Africa has nevertheless shown that the logistic regression of recoveries
and deaths in the identified positive individuals against time can lack fit, as measured
by an asymptotic χ2 test on the residual deviance statistic. Nevertheless, these fits can
be improved by adding explanatories (different from time, but related to available health
facilities) in the logistic regression models.

Among interest quantities provided by the hybryd modelling framework, we have
the epidemic latency period to (the time from the appearance of the first infectious case
in the population to the outbreak). For the West African region, we obtained t̂o = 24.78
(CI(to) = [19.91, 29.87]) days. To the best of our knowledge, this is the first estimate of this
duration in the region. The result indicates that the first imported COVID-19 case(s) in
West Africa likely entered the region during the last week of January and the first week
of February (about January 28th–February 7th), 2020. This epidemic latency period is
much lower than the 40 days estimated for Italy [14]. This is in line with the relatively late
arrival of the virus in the region, compared to the Asian and European continents, and the
prevention and detection measures anticipated by many West African governments [29].
We obtained a basic reproduction number of R̂o = 2.66 (CI(Ro) = [2.60, 2.69]), which is
higher than the estimate R̂o = 1.85 (CI(Ro) = [1.84, 1.87]) obtained by [17]. Our estimate
is, however, closer to country-specific estimates such as R̂o = 2.42 (CI(Ro) = [2.37, 2.47])
in Nigeria [38] and R̂o = 2.68 (CI(Ro) = [1.99, 3.37]) in Ghana [39].

During the early phase of the epidemic after the outbreak in West Africa, the detection
and isolation of a fraction of infected individuals reduced the reproduction number from
Ro to a control reproduction number of R̂0 = 2.52 (CI(R0) = [2.29, 2.76]), i.e. about
5.26% decrease. We estimated the duration of this phase characterized by an exponential
growth at t̂e = 29.48 (CI(te) = [26.94, 31.79]) days after the outbreak. This implies that the
control measures implemented by West African governments to limit the transmission of
the disease were not effective on average before April 2020. Indeed, apart from measures
taken to limit the importation of new positive individuals (travel bans), many actions to
limit the local propagation of the disease were first implemented in late March 2020 [29]
(e.g. curfew set up on 21 March in Burkina-Faso, on 23 March in Ivory Coast, Mauritius
and Senegal and on 26 March in Mali; city lockdown on 22 March in Ghana, and on 29
March in Nigeria, isolation of the capital from the rest of the country in Ivory Cost on 25
March 2020, and cordon sanitaire set up to isolate the South from the rest of the country on
30 March 2020 in Benin). Our results indicated that these measures started to impact the
transmission dynamics of the disease from early April 2020.

After the exponential growth phase, the sub-exponential growth pattern allowed the
epidemic to peak. The estimated peak time for the detected positive cases was t̂p = 138.87
(CI(tp) = [134.45, 143.31]) days, i.e. around 15 July 2020, and close to the observed peak
time (24 July 2020). This estimated date has a delay of about 8 days with respect to the
estimated peak time of new infections t̂new = 131.12 (CI(tnew) = [126.18, 136.11]) days. This
estimate is higher than the value t̂new = 111 (CI(tnew) = [108, 112]) days obtained by [30].
These contrasting results may be related to the more realistic SIQR model considered in
this work as compared to the simpler SIR model used by [30] who ignored the quarantine-
adjustment of the disease incidence [15]. On the contrary, the estimated maximum number
of new infections ̂̇Tmax = 22352.97 (CI(Ṫmax) = [20284.04, 24464.98]) agrees with the valuê̇Tmax = 25267 (CI(Ṫmax) = [24239, 26294]) new infections obtained by [30].

Our results showed that the time-varying effective reproduction number has decayed
over April–August 2020, reaching 1 on about 15 July 2020, and 0.66 at the end of the
considered period (31 August 2020). Based on the modelled dynamics, the effective
reproduction number likely reached its minimum value 0.61 around 29 September 2020.
However, the reproduction number likely increased again to approach R∞ = 1 in the
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long run. Overall, the various measures decided and enforced by different West African
governments, against the first COVID-19 epidemic wave in the region, were able to contain
the propagation of the disease (importation of new cases and local transmission) in five
months.

However, the COVID-19 pandemic will remain an important issue for a long time, and
local region’s endemic to the pathogen will likely appear in the long run. This is so because
of the following factors: the re-opening of borders and airports in the region to limit the
related economic feedback [40,41]; the relaxation of measures such as the ban of sport,
political, cultural and religious gatherings [29,42]; and the natural evolution of the SARS-
Cov-2 virus [43–46]. The limited resources and capacity of Sub-Sahara Africa countries
in general [47–49] to immunize their population through vaccination will compound this
threat in the region.

6. Conclusion

There are two common approaches to epidemiological modelling: phenomenological
models and mechanistic models. This study proposes a hybrid framework which combines
the two approaches, starting from fitting curves to observed data (confirmed positive cases,
recoveries and deaths) and then providing an overall view of the epidemic dynamics by
integrating the fitted curves into a compartmental model. The proposal allows to estimate
the delay between the appearance of the first infectious case in the population and the
outbreak (“epidemic latency period"), the duration of period during which the epidemic
growths exponentially, the basic and control reproduction numbers, the peaks (time and
size) in positive cases, active cases and new infections. An application to COVID-19 data
from West Africa indicated that the hybrid modelling framework can be used to match
effective control measures dictated by health policies with changes in the transmission
dynamics of the studied disease.
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SIQR Susceptible, Infective, Quarantined, Recovered model
Gen Generic growth model
BR Bertalanffy-Richards growth model
HG Hyper-Gompertz growth model
Gom Gompertz growth model
pdf probability density function
pmf probability mass function
LR Likelihood Ratio
AIC Akaike’s Information Criterion
ind. Individuals
SE Standard Error
CI Confidence Interval
PI Prediction Interval
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