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Abstract: Ensemble learning (EL) models are designed to enhance the accuracy and efficiency in 
predicting the flexural ultimate capacity of reinforced ultra-high-performance concrete (UHPC) 
beams with aim to provide more reliable and efficient design experience for structural applications 
in this study. For model training and testing, a comprehensive database is initially established for 
flexural ultimate capacity of reinforced UHPC beams, composed of 339 UHPC-based specimens with 
varying design parameters compiled from 56 published experimental investigations. Furthermore, 
multiple machine learning (ML) algorithms, including both traditional and EL models, are employed 
to develop optimized predictive models for the flexural ultimate capacity of reinforced UHPC 
specimens derived from the established database. Four statistical indicators of model performance 
are utilized to assess the accuracies of the prediction results with ML models used. Subsequently, a 
highly efficient evaluation of ML models is taken by analyzing the sensitivity of ML models to 
varying data subsets. Finally, a Shapley Additive Explanations (SHAP) method is employed to 
interpret several EL models, thereby substantiating their reliability and determining the extent of 
influence exerted by each feature on the prediction results. The present ML models predict accurately 
the flexural ultimate capacity Mu of reinforced UHPC beams after optimization, with EL models 
providing a higher level of accuracy than the traditional ML models. The present study also 
underscores the significant impact of the database division ratios of training-to-testing set on the 
effectiveness of performance prediction for the ML models. The optimal model functionality may be 
accomplished by properly considering the effects of database subset distribution on the performance 
prediction and model stability. The CatBoost model demonstrates superior performance in terms of 
predictive accuracy, as evidenced by its highest R² value, the lowest RMSE value, lowest MAE value, 
and lowest MAPE value. This substantial improvement in performance prediction of flexural 
capacity for reinforced UHPC beams is notable when compared to existing empirical methods. The 
CatBoost model displays a more uniform distribution of SHAP values for all parameters, suggesting 
a balanced decision-making process and contributing to its superior and stable model performance. 
The current study identifies a significant positive relationship between the increases in height, and 
reinforcement ratio of steel rebars and the growth in normalized SHAP values. These findings 
contribute to a deeper understanding of the role played by each feature in the prediction of flexural 
ultimate capacity of reinforced UHPC beams, thereby providing a foundation for more accurate 
model optimization and for a more refined feature section strategy. 

Keywords: performance prediction; flexural ultimate capacity; reinforced UHPC beam; machine 
learning (ML); ensemble learning (EL); SHAP 
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1. Introduction 

Ultra-High-Performance Concrete (UHPC) has emerged as a significant and innovative 
construction material in mid-1990s [1]. Richard and Cheyrezy made a substantial contribution to the 
development of UHPC through their creation of Reactive Powder Concrete (RPC), an exceptionally 
enhanced material that represents a major advance in the evolution of construction material [2]. With 
an ever-increasing research, UHPC has led to its widespread application globally, particularly in the 
construction of bridges, infrastructure, and other critical structures [3–5]. Compared with 
conventional concrete, UHPC exhibits ultra-high compressive strength (commonly > 120 MPa), post-
cracking strength (typically > 5 MPa), and remarkable durability. These outstanding properties are 
primarily attributed to a low water-to-binder ratio (usually < 0.2), a high fineness of supplementary 
materials, a discontinuous pore structure, and a high-volume fraction of high-strength steel fibers [6–
8]. Numerous studies have shown that it is crucial to understand the mechanical responses of UHPC 
under different loading conditions for further investigation into its structural performance [9], 
especially for the UHPC with superior bending and tensile properties [10]. Graybeal et al. [11] 
developed a direct tension testing method, which facilitates a more comprehensive understanding of 
the tensile response of UHPC and its implications for structural design. A comprehensive literature 
review reveals that extensive research has been conducted on the flexural behaviors of reinforced 
UHPC beams. This research has investigated a multitude of variables, including specimen size 
[12,13], compressive strength of UHPC [14–16], reinforcement ratios of steel rebars [6,12,17–19], and 
the types/shapes and volume fractions of steel fibers [6,15,16,20]. The findings of these studies have 
considerably advanced both the design optimization and structural application of UHPC beams 
[6,12,15–21]. 

However, existing research regarding the flexural performance of reinforced UHPC elements is 
frequently based on a limited number of specimens considering a narrow range of parameter 
variables. Consequently, it is time-consuming and labor-intensive, and the conclusions obtained may 
be overestimated or insufficient to comprehensively describe the exact influence of these parameters. 
Furthermore, design codes and structural standards for UHPC beams remain relatively limited 
[22,23], despite some analytical methods and finite element models having been presented on the 
basis of some simplification assumptions with certain limitations. Therefore, additional experimental 
and analytical investigations are required to develop an efficient and energy-saving method to 
predict the flexural properties of UHPC-based structural elements [13,24–26]. 

In recent years, machine learning (ML) has emerged as a powerful and versatile tool with a wide 
range of applications within the field of civil engineering, particularly in the context of predicting the 
performance of advanced building materials such as UHPC. The application of ML provides an 
effective and robust platform for predicting structural response of UHPC-based elements, thereby 
significantly reducing the time and effort required for experimentation and modeling [27]. Numerous 
studies have demonstrated that ML methods have been employed to predict basic properties of 
UHPC such as compressive strength, flexural strength, workability, and shrinkage performance, as 
well as to forecast the interface bonding strength and thus develop interpretable models that optimize 
UHPC mix designs [28–31]. Particularly, ML techniques offer significant advantages in predicting 
diverse properties of UHPC under various loading conditions, which include compressive strength, 
flexural strength, ultimate capacity, and fracture characteristics. Moreover, ML techniques have been 
utilized to determine the structural performance of reinforced concrete or UHPC beams [30–33]. A 
gradient boosting regression tree (GBRT) was used by Fu and Feng [29] to forecast the residual shear 
strength of corroded reinforced concrete beams at different service periods. Feng et al. [32] applied 
an ensemble learning method to predict the shear strength of reinforced concrete deep beams, 
demonstrating that the ensemble ML models outperformed traditional mechanics-based models in 
terms of improved prediction accuracy and reduced bias. Similarly, a variety of ML algorithms, 
including support vector machines (SVM), artificial neural networks (ANN) and ensemble learning 
(EL) methods, have also been used to identify failure modes and predict shear capacity of UHPC 
beams under combined bending and shear forces, achieving a high prediction accuracy [31–33].  
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Despite the presence of application of ML methods to predict the shear performance of UHPC 
beams, there is a growing interest in employing ML technologies to accurately and efficiently predict 
the flexural behavior of reinforced UHPC beams. However, this remains an emerging area of 
research, with few published studies exploring its application. Solhmirzaei et al. [33] used support 
vector regression (SVR) and genetic programming to predict the flexural capacity of UHPC beams 
with varying cross-sectional dimensions and material properties. Ergen and Katlav [34] explored the 
potential of deep learning (DL) models for predicting the flexural capacity of UHPC beams with and 
without steel fibers. Nevertheless, the effectiveness of ML models is largely contingent upon the 
quality of database acquisition, frequently challenged by the selection of input variables. It is 
therefore important to expand and optimize the database of reinforced UHPC beam specimens. 
Specifically, the selection of input parameters for the optimized database should be both 
comprehensive and concise to achieve more reliable and convenient predictions of the bending 
performance of reinforced UHPC beams. The employment of excessive input parameters is 
impractical for real-world design applications, while the inclusion of interrelated input parameters 
unnecessarily inflates the input features without adding a unique or distinct value to the ML model. 
Further, the versatility of ML algorithms has been shown to result in notable discrepancies in both 
the accuracy and efficiency of the performance predictions of reinforced UHPC specimens. A 
comprehensive assessment and comparison of the accuracy and efficiency of various ML models for 
predicting the flexural ultimate capacity of reinforced UHPC beams is a crucial gap in the current 
research. Moreover, in the context of machine learning, the division of the original database into 
training and testing sets represents a fundamental stage in the data processing. The extent to which 
the training set is divided affects the performance of the ML model in terms of both the accuracy of 
training and its capacity to generalize to new data. The optimal division ratio of training set to testing 
set depends on the subset size and characteristics of the database. It is necessary to analyze the model 
performance on varying subsets of data to ensure an efficient evaluation of both the model and the 
data quality. Besides statistical evaluations of ML techniques, an adequate discussion is required 
regarding the physical and structural principles governing reinforced UHPC beams. For practical 
engineering applications, the comparison of EL models with physical principles alongside statistical 
model evaluations is essential. Previous research has shown that the Categorical Gradient Boosting 
(CatBoost) model has excellent predictive stability and generalization ability [35]. To evaluate the 
accuracy and reliability of EL methods, the CatBoost method is exemplified and compared with 
existing empirical methods and design standards [36–40]. Additionally, it could be reasonably argued 
that the differences between various ML algorithms can significantly affect the reliability of 
parameter analysis in model interpretation. Therefore, it would appear prudent to undertake further 
research into a comparison of different ML models. SHAP (Shapley Additive Explanations) offers a 
promising method to clarify the contributions of features to predictions and has been widely used for 
model interpretation [22,30,35,41]. An in-depth analysis using SHAP method should be carried out 
by taking account into the impact of key design parameters on performance prediction to provide 
valuable insights for structural design purposes. Therefore, the prediction of flexural ultimate 
capacity for reinforced UHPC beams using ensemble learning and SHAP methods is promising. 

The objective of this study is to address aforementioned limitations by expanding the database 
and optimizing ML algorithms, thereby achieving greater accuracy and efficiency in predicting the 
flexural performance of reinforced UHPC beams and providing more reliable and efficient design 
recommendations for future applications. To be more specific, a comprehensive database containing 
339 testing data of reinforced UHPC beams with various design parameters is initially established. 
To balance model accuracy and practical implementation, a reliable and efficient approach involving 
9 input parameters is considered in this study. Furthermore, several ML algorithms are presented to 
develop optimized models for precisely predicting the flexural ultimate capacity (Mu) of reinforced 
UHPC specimens derived from the established database. Traditional models, including ANN, SVR, 
and K-Nearest Neighbors (K-NN), are first applied to make predictions. Additionally, ensemble 
learning models, such as Classification and Regression Trees (CART), Random Forest (RF), Adaptive 
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Boosting (AdaBoost), and Gradient Boosting Regression Trees (GBRT), are utilized for further 
optimization. To enhance prediction accuracy, advanced models like Light Gradient Boosting 
Machine (LightGBM), CatBoost, and Extreme Gradient Boosting (XGBoost) are also employed. The 
performance of ML models used is then evaluated using four statistical indicators to 
comprehensively assess and compare their prediction accuracies and capabilities for the flexural 
ultimate capacity of reinforced UHPC specimens. Subsequently, the sensitivity of ML models to 
varying data subsets is analyzed to ensure a highly efficient evaluation of ML models used and the 
established database. Moreover, the CatBoost model is exemplified to compare the predictions with 
several existing empirical formulas alongside statistical evaluations for practical engineering 
applications. Finally, the SHAP method is employed to interpret multiple EL models, thereby 
substantiating their reliability and determining the extent of influence exerted by each feature on the 
prediction results of the flexural capacity of reinforced UHPC beams. 

2. Acquisition of the Database 

The establishment of a database represents a fundamental stage in the initial process of machine 
learning, which involves the collection, organization and cleansing of data for model training. By 
conducting a comprehensive review of the published literature, an ultimate capacity database of 
reinforced UHPC specimens under bending loads is developed and summarized by integrating test 
results from diverse experimental studies in the present study (see Table 1). The database comprises 
measured results of 339 UHPC-related specimens with varying design parameters sourced from 56 
different experimental investigations [12,13,18–21,42–47]. As previously mentioned, flexural 
behaviors of reinforced UHPC beams are highly dependent on the specimen geometry, the material 
properties of UHPC, the shape and volume fraction of steel fibers, and the amount and strength of 
steel rebars. In the database of Table 1, the height (H), width (B) of a given cross-section and the 
length of shear span (La) are considered to represent the geometrical size of the specimen. 
Additionally, the cylinder compressive strength of UHPC material (ƒc) and mechanic characteristics 
of blended fibers including the shape, length (Lf), diameter (df) and volume fraction (Vf) are involved. 
Furthermore, the yielding strength (ƒy) and reinforcement ratio (ρt) of steel rebars are also presented. 
A total of nine performance-sensitive parameters are incorporated as input variables into the 
established database, while the ultimate capacity of bending moment (Mu) is selected as the output 
variable. Table 2 provides detailed information on the statistical characteristic values of the 
parameters involved. 

The presence of longitudinal tensile reinforcement in plain concrete beams has been proven to 
enhance the load-carrying capacity and stiffness of the structure. Accordingly, more than 95 percent 
of the flexural specimens in the database are equipped with longitudinal tensile reinforcement. 
Furthermore, the incorporation of steel fibers into UHPC matrix also improves its tensile strength 
and toughness. Consequently, 94.6% of the UHPC specimens selected in the database are blended 
with steel fibers, and the effects of various fiber characteristic parameters on their structural 
performance are explored. The inclusion of versatile steel fibers is particularly advantageous for 
enhancing the flexural capacity of UHPC structures. Specifically, the distribution percent of steel fiber 
shape of UHPC specimens included in the database is presented as follows: 79.5% of straight fibers, 
2.5% of hooked-end fibers, 2.8% of corrugated fibers and 9.7% of hybrid fibers. Note that T is Steel 
fibers with different shapes. T is encoded as numbers to make it easier for models to process the data. 
Using numbers instead of words helps with calculations and analysis. Each number represents a 
different shape of fiber: 1 denotes straight fibers, 2 denotes corrugated fibers, 3 denotes hooked-end 
fibers, 4 denotes hybrid fibers, and 0 denotes specimens without steel fibers. In addition, 5.4% of the 
specimens without steel fibers are included, thus providing a basis for comparison in regard to the 
sensitivity of steel fibers. Overall, the database comprises a substantial number of experimental 
parameters, which may enhance the adaptability of machine learning models for training and 
evaluation. 
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Figure 1 illustrates the frequency histograms of each parameter, as well as the dependence 
between the input variable and the target output variable of ultimate bending moment Mu. It is 
evident that the estimation of flexural capacity Mu for UHPC specimens is a highly intricate and 
challenging process. As shown in Figure 1, an increase in the value of flexural capacity Mu is observed 
with a growing parameter of H, B, La, ƒc, ƒy, and ρt. This trend is consistent with the fundamental 
principles of structural design and material properties. The regression curves for the parameters H 
and B in Figure 1 display greater values of slopes, indicating that these parameters exert a more 
pronounced influence on flexural load-carrying capacity Mu. In contrast, the linear slopes of 
regression curves for the volume fraction Vf and aspect ratio Lf /df of steel fibers are approximately 
zero, making it challenging to assess their impact on Mu. The relatively similar shapes of steel fibers 
employed in the bending tests may be responsible for the phenomenon, and additional research is 
required to confirm this hypothesis. 

The application of simple linear regression is inadequate for clarifying the inherently complex 
relationship between ultimate bending moment Mu and an individual input variable. As a result, 
finite element analysis methods and nonlinear numerical modeling have emerged as a significant 
development of prediction tools for structural evaluation, providing optimization solutions to an 
ever-increasing number of complicated structures. The purpose of this study is to estimate the 
flexural load-carrying capacity Mu of reinforced UHPC specimens in the afore-mentioned database 
using several ML-based algorithms, including both traditional ML models and EL models. These 
methods are capable of accommodating a range of complexities, which are user-friendly to employ, 
and thus facilitate highly nonlinear modeling. This methodology of ML will enable the design of 
UHPC-based structures with reduced environmental impact and enhanced sustainability, as well as 
an improved accuracy and efficiency of performance prediction. 

Table 1. Summary of literature on flexural tests of UHPC beams. 

Year Ref. 
Specimen 
number 

Design 
parameters 

Moment 
capacity  Year Ref. Specimen 

number 
Design 

parameters 
Moment 
capacity 

Mu 

2010 [18] 10 ρt / fc 83.3~131.7 2019 [48] 5 Vf / fc 118~154.5 
2011 [49] 7 H / Vf / fy /ρt 26.6~222.9 2019 [50] 1 ρt 38.5 

2011 [51] 5 ρt / fy 11.1~101 2019 [44] 6 ρt / Vf / fy / 
fc 16.7~33.9 

2012 [52] 10 ρt / fy 32.5~144 2019 [53] 9 ρt / Vf / T / 
fc / (Lf /df) 40~88.3 

2012 [54] 5 ρt / fc 27.6~100.8 2019 [55] 4 ρt / fc 233.6~323.2 
2013 [56] 4 Vf / fc 23.7~29.1 2020 [57] 9 ρt / Vf / fc 53.8~116 
2013 [58] 4 ρt / (Lf /df) 122~178 2020 [59] 6 ρt / Vf /g 11.2~21.5 
2013 [60] 1 La 320.4 2020 [61] 3 Vf / fc 126~152.5 
2014 [17] 2 ρt 8.1~9.1 2020 [62] 4 Vf / fc 102~120 

2015 [63] 4 ρt / fy 48.1~101.6 2020 [64] 15 Vf / fy /ρt / fc 
/ La 7~22.1 

2015 [47] 5 ρt / (Lf /df) / 
T 39.3~56.1 2020 [65] 4 Vf / fc 35.7~38.7 

2015 [66] 5 ρt 90.6~171.6 2021 [67] 8 ρt / Vf / fy  / 
fc 37.1~314.5 

2016 [21] 4 ρt 72.5~131 2021 [68] 2 ρt 58.1~61.9 
2016 [69] 1 ρt 322 2021 [43] 18 ρt 9.1~80.2 
2017 [70] 6 Vf / fc 15.6~19.1 2021 [71] 12 ρt 16.5~50.7 
2017 [19] 4 ρt / La 33~118.3 2021 [72] 6 Vf / fy / T/ La 114~331.7 
2017 [73] 2 ρt / fy 70.4~117.8 2021 [74] 10 ρt / fc / La 22.2~30.8 
2017 [75] 6 ρt / fc 13~30.1 2021 [76] 5 ρt 28.6~82.5 

2018 [77] 8 ρt / fy 43.3~135 2021 [78] 13 ρt / Vf / T/ fc 
/ fy 50.8~98.7 
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2018 [20] 8 ρt / Vf /T 
/(Lf /df) 37.5~134.4 2022 [6] 8 ρt / T 34.2~125.1 

2018 [13] 4 ρt / H 6.1~12.5 2022 [79] 4 ρt / fy 40.1~58.5 
2018 [46] 2 ρt 67.8~88.4 2022 [80] 4 ρt / fy 44.1~62 
2018 [81] 2 Vf 148.9~174.9 2022 [42] 4 ρt / fy 79.9~170 
2018 [45] 14 ρt / fc / fy 11.4~69.8 2023 [82] 5 fy / ρt 69~123.5 

2018 [83] 11 ρt / Vf / fy / 
fc /La 125.5~238.3 2023 [15] 5 ρt / Vf / fy / fc 104~171.5 

2018 [84] 13 ρt 29.9~122.2 2023 [16] 6 ρt / Vf / fc 52.8~143.4 
2019 [12] 5 ρt  5.6~40.9 2023 [85] 2 ρt 95.1~111.6 
2019 [86] 4 ρt 23.8~51.2 2023 [87] 5 Vf / fc / ρt 110.6~176.5 

Table 2. Statistical information of the parameters chosen. 

 

   
(a) B (mm) (b) H (mm) (c) La (mm) 

Parameter
s Description Unit Mean Minimu

m 
Maximu

m 

Standard 
deviatio

n 

Media
n 

Skewnes
s 

Kurtosi
s 

H Height of 
cross section mm 219.6

5 76 400 66.11 220 0.10 -0.70 

B Width of 
cross section mm 148.8

1 100 300 31.09 150 0.75 2.73 

ρt 

Ratio of 
longitudinal 
reinforcemen

t 

% 2.68 0 16.4 2.23 1.9 1.91 5.66 

ƒу 

Yield 
strength of 

longitudinal 
reinforcemen

t 

MPa 477.5
7 0 1395 186.09 456 1.74 9.96 

ƒc Compressive 
strength MPa 138.0

7 74.7 216 28.18 134.425 0.78 0.27 

Vƒ 
Volume 

fraction of 
steel fiber 

% 1.81 0 4 0.72 2 -0.69 1.02 

Lƒ/dƒ Aspect ratio 
of steel fiber – 64.30 0 150 17.97 65 -1.46 6.05 

La Shear span 
length mm 627.7

2 135 1900 377.48 533.3 0.71 -0.28 

Mu 
Ultimate 
bending 
moment 

kN·
m 82.90 5.6 3552 67.03 68.18 1.66 3.42 
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(d) Vƒ (%) (e) Lƒ/dƒ (f) fc (MPa) 

  

 

(g) fy (MPa) (h) ρt (%)  

Figure 1. Dependance between the ultimate flexural capacity Mu and input variables. 

3. Machine Learning Model 

3.1. General Framework 

The general framework of this study is illustrated in Figure 2. Given the time-consuming and 
labor-intensive experimental effort of UHPC beams with a great multitude of specimens designed 
with versatile influencing factors, the machine learning models can be employed to predict the 
ultimate moment capacity with efficient and accurate. The main technical procedures undertaken in 
the course of this study are presented as follows: 

• First, the experimental results from multiple reinforced UHPC beams are compiled into the 
database, which are then utilized as input values for the subsequent stage. The database is then 
divided into two distinct sets for training and testing respectively. 

• Second, 10 ML models, composed of traditional ML methods and ensemble learning models, 
are constructed for the analysis of the established database. 

• Third, the hyper-parameters of the 10 ML models are computed and self-adjusted to enhance 
their prediction accuracy. 

• Fourth, the prediction accuracy and efficiency of the 10 ML models are evaluated individually 
and comparatively. 

• Fifth, the stability of the various ML models is investigated by dividing the database into 
subsets of different sizes for training and testing. 

• Further, a comparison analysis is conducted between the calculated values from several 
existing empirical formulas and the predicted values of the CatBoost model. 

• Last, a Shapley Additive exPlanations (SHAP) analysis is employed to interpret the ML 
models. This allows for the identification of the dependency of each parameter on the ML 
model and the interactions between parameters. 
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Figure 2. Workflow of this study. 

3.2. Traditional Machine Learning Models 

The prevailing approach to machine learning is to seek an optimal classifier to achieve maximal 
data separation. This methodology has the advantage of low computational complexity and a broad 
applicability. However, there are also notable limitations. For example, it is reliant on domain-specific 
knowledge for feature extraction and is unable to autonomously learn higher-order features, which 
presents challenges with complex database structures. These limitations highlight the need for 
innovative approaches. Several traditional ML models covered in the present investigation are 
outlined below. 

3.2.1. Artificial Neural Network (ANN) 

An artificial neural network is a computational model that emulates the structure of the human 
brain through the interconnection of artificial neurons. It is composed of three principal layers: an 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 February 2025 doi:10.20944/preprints202502.1747.v1

https://doi.org/10.20944/preprints202502.1747.v1


 9 of 35 

 

input layer, which receives data and passes it to other layers; a set of hidden layers, which processes 
the data; and an output layer, which produces the output of network. This interconnected network 
allows for complex processing, facilitating learning through the adjustment of connection weights, 
thereby optimizing performance [34,35,88]. 

The input layer is responsible for processing external data, while the hidden layers are tasked 
with the extraction of features through the application of non-linear transformations. The output 
layer generates the final predictions. The behavior of a neuron is defined by the weights (w), which 
are multiplied by the input data (x) to yield the weighted sum with bias (b). This weighted sum is 
determined by an activation function, and is adjusted incrementally to yield the desired outputs for 
the hidden layer. For reference, the subscripts i and j denote the ith layer of the network, and jth unit 
in a layer, respectively. Therefore, the output for a neuron in the hidden layer is represented as 
follows: 

=

 
 = +
 
 
∑

1

n
i i

i j j
j

h f w x b  (1) 

where h, f, w, x, b, b is the output, activation function, weight, input feature, and bias, 
respectively. Note that the input features (x1, x2, x4, …, x11) in this paper are the aforementioned 11 
parameters potentially affecting the bending capacity of reinforced UHPC beams, and the target 
output is the ultimate bending moment of reinforced UHPC beams Mu. The architecture of the neural 
network is shown graphically in Figure 3. 

 

Figure 3. This is a figure. Schemes follow the same formatting. 

3.2.2. Support Vector Regression (SVR) 

The support vector machine (SVM), known for its accuracy and simplicity, is a widely used 
algorithm that was first introduced for classification tasks by Boser [89]. SVM performs data 
classification by the identification of an optimal decision boundary. Further, the support vector 
regression (SVR) is an extension of the primary principles to regression problems. As shown in Figure 
4, SVR uses a linear regression model to seek a hyperplane that best fits the data within a decision 
boundary. The optimal hyperplane maximizes the numbers of data points within a certain margin of 
tolerance (ε). A prediction h(x) within ε of actual value y incurs no penalty, which promotes 
robustness and generalizes to unseen data[33,35,88]. The objective of the final optimization is 
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where w is the weight defining the separation boundary, b is the bias, and ξ is the relaxation 
variable; the parameter C controls the balance between maximizing the margin and minimizing 
classification errors. A larger C enforces stricter avoidance of misclassification, which may lead to 
overfitting, while a smaller C allows for more errors, potentially increasing generalization. By default, 
C is set to 1.0. The slack variables ξi and ξi*represent the distances from the predicted values to the 
upper and lower margin boundaries, respectively. 

 
Figure 4. Graphical representations of the SVR used in this study. 

3.2.2. K-Nearest Neighbor (K-NN) 

K-nearest neighbor, introduced by Fix and Hodges in 1951[90], is a fundamental supervised 
learning algorithm that is used in both classification and regression tasks. K-NN is non-parametric, 
which means that it does not assume a specific distribution of the data and postpones learning until 
testing, and is therefore often referred to as a 'lazy' algorithm. K-NN predicts the class or value of a 
data point based on the proximity of its neighboring points, typically using the Euclidean distance as 
the metric[35,88]. Given two points A (x1, x2, x3, …, xn) and B (y1, y2, y3, …, yn), the Euclidean distance 
between them is determined as follows: 

( ) ( )
=

= −∑ 2

1
,

n
i ii

d A B x y  (4) 

where d (A, B) is the distance between two points; n is the number of dimensions; xi and yi are 
the coordinates of points A and B in the ith dimension, respectively. It is a description of the method 
for the computation of Euclidean distance in a multi-dimensional space. Alternative distance metrics, 
such as the Manhattan distance and Minkowski distance, are also applicable. 

In K-NN regression, it averages the values of the nearest neighbors to produce predictions. This 
involves the identification of the nearest neighbors for the given sample and then the calculation of 
the average of their labels to determine the prediction value, as shown in Figure 5. Consider a sample 
Xq that is expected to predict, where Nq represents the K-nearest neighbors of Xq: 

∈

= ∑ˆ 1

q

q i
i N

Y y
K

 (5) 

where ˆ
qY is the prediction value for the sample Xq, and yi denotes the label of the ith neighbor. 
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Figure 5. Graphical representations of the K-NN used in this study. 

3.2.4. Classification and Regression Trees (CART) 

A decision tree (DT), introduced in the 1960s, is a widely used decision-making model structured 
like a tree with nodes representing decision points and leaf nodes representing outcomes. As an 
important variant, the classification and regression Tree (CART) extends this approach of DT 
[35,88,91]. 

DTs work by recursively dividing the data into increasingly homogeneous subsets, and this 
process continues until a stopping criterion is met. In the CART algorithm, features and thresholds 
are selected at each node to maximize the purity or minimize the impurity, as shown in Figure 6. For 
regression tasks, the mean squared error (MSE) is commonly employed to measure the difference 
between predicted and actual values, which is defined by 

( )
=

= −∑ 2

1

1 ˆ
n

i i
i

MSE y y
n

 (6) 

where MSE signifies the mean squared error across all observations, yi is the true value, ˆ iy is the 

predicted value, and n is the sample size. The metric of CART algorithm is critical in evaluating the 
accuracy of the regression model to ensure that the decision tree not only captures the essence of the 
data but makes accurate predictions. 

 

Figure 6. Graphical representations of the CART used in this study. 

3.3. Ensemble Learning (EL) 

Ensemble learning is the combination of multiple weak learners to build a powerful predictor, 
and is commonly used in classification, regression, and anomaly detection tasks. The two prevalent 
technologies of ensemble learning are the bagging and boosting [92], as shown in Figure 7. Bagging 
(bootstrap aggregating) works in parallel, where each learner is trained independently on the 
bootstrap samples. The final predictions are made by aggregating all of the learners, which reduces 
the variance and prevents overfitting through voting or averaging [32,35,88]. 

Boosting, on the other hand, is sequential, where each learner is a corrector of previous errors. 
Learners are interdependent, and the final predictions are weighted on the basis of accuracy. Boosting 
reduces both bias and variance, thereby improving the performance of the EL model [93]. 
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(a) Bagging (b) Boosting 

Figure 7. Two technologies for ensemble learning models. 

3.3.1. Random Forest (RF) 

Random forest (RF) employs the bagging technique to construct multiple decision trees in 
parallel, each of which is trained on a randomly selected subset of the data and features. This 
randomization ensures the diversity among the trees, which enhances the robustness of the model 
[94]. 

When making predictions, RF aggregates the outputs from all trees, as shown in Figure 8. For 
regression tasks, this is realized by averaging the predictions, which results in more accurate and 
stable estimates. The random sampling of data and features helps prevent overfitting and increases 
generalizability. This provides a balance between variance and bias for more reliable predictions. A 
RF model can be written as: 

( ) ( )
=

= ∑
1

1ˆ
B

b
b

TR x x
B

 (7) 

where Tb(x) is a basic learner, and B is the number of basic learners. 

 

Figure 8. Flowchart of RF for parallel training. 

3.3.2. Adaptive Boosting (AdaBoost) 

Adaptive boosting (AdaBoost) is an important boosting algorithm known for its application of 
the exponential loss function. Its core idea is the sequential training of weak learners, where the data 
weights are adjusted after each iteration. Misclassified samples are given higher weights, which 
encourages the next classifier to focus on cases that are harder to predict [93]. Each iteration 
recalibrates the dataset and refines predictions by emphasizing the difficult sample, as shown in 
Figure 9. In particular, AdaBoost adjusts the weights of the dataset, thereby increasing the importance 
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of the observations that have been misclassified in the previous iteration, while decreasing the 
influence of those that have been predicted correctly. AdaBoost combines weak learners ht (x) into a 
strong ensemble H(x), and improves performance in a variety of applications by adaptively focusing 
on challenging instances. 

( ) ( )α
=

=∑
1

T

t t
t

H x h x  (8) 

α
−

=
11 log

2
t

t
t

e
e

 (9) 

( )( )ω
=

= ≠∑
1

N

t ti t i i
i

e I h x y  (10) 

where αt is the weight of a weak learner ht(x); et is the error rate, where a lower value leads to a 
higher weight and vice versa; I is the indicator function, which returns 1 if the prediction ht(xi) and 
the actual value yi do not match (i.e., a misclassification has occurred), and 0 if they are equal (i.e., the 
prediction is correct); wti is the weight of sample t in the ith iteration. T is the total number of weak 
learners, and N is the total number of training samples. 

 

Figure 9. Graphical representation of implementation of AdaBoost with two weak learners. 

3.3.3. Gradient Boosting Regression Decision Tree (GBRT) 

Gradient Boosting Regression Trees (GBRT) and AdaBoost differ mainly in their updating 
strategies. AdaBoost adapts sample weights, whereas GBRT updates the regression targets on the 
basis of the residuals from the previous rounds[95]. As illustrated in Figure 10, GBRT employs the 
gradient of these residuals (rm) to rebuild new weak learners and iteratively improve prediction 
accuracy. GBRT typically uses CARTs as weak learners, and the GBRT model can be represented as 
Equation (11). For regression tasks, it uses binary trees and loss functions such as mean squared error 
(MSE), absolute loss, and Huber's loss. Huber's loss compensates for MSE and absolute loss, applying 
absolute loss to outliers and MSE to points near the center. 
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Figure 10. Illustration of the GBRT model. 

3.3.4. Extreme Gradient Boosting (XGBoost) 

Extreme gradient boosting (XGBoost), introduced by Chen and Guestrin[96], is an advanced 
gradient-boosting algorithm. It improves upon traditional GBRT by adding a regularization term to 
the objective function, decreasing overfitting, and using a second-order Taylor expansion to optimize 
computational efficiency[96]. While XGBoost is similar to GBRT, the essential difference lies in its 
improved objective function, which is designed to provide faster and more accurate predictions. If K 
trees and n samples are given, the objective function can be expressed as 

θ
= =

= + Ω∑ ∑
1 1

ˆ( ) ( , ) ( )
n K

i i k
i k

l y y f  (13) 

γ λΩ = + ‖ ‖21( )
2kf T w  (14) 

where
=
∑

1
ˆ( , )n

i ii
l y y is a loss function that measures the difference between the predicted value ˆiy

and the true value yi of the model; Ω(fk) is the regularization term, which is used to prevent the model 
from overfitting; T is the number of leaf nodes in the tree, and w is the weight of the leaf node; γ and 
λ are the regularization parameters, and θ is the set of model parameters. 

3.3.5. Light Gradient Boosting Machine (LightGBM) 

Compared to the traditional gradient boosting algorithm, light gradient boosting machine 
(LightGBM) also introduces several improvements [97]. First, it employs the Histogram-based 
Algorithm (HBA) to discretize continuous features into buckets, thereby reducing computational 
effort. Second, it utilizes a Leaf-wise Growth (LWG) strategy, which selects only the leaf node with 
the highest loss for splitting, unlike a traditional LWG strategy. This approach results in a more rapid 
reduction in error and an increase in enhanced model performance, as illustrated in Figure 11. The 
gain formula for the determination of the optimal splitting point is 

( )
γ

λ λ λ

 + = + − − + + + + 
 

22 21
2

L RL R

L R L R

G GG G
Gain

H H H H
 (15) 

where GL and GR are the gain sums of the left and right subtrees respectively; HL and HR are the 
second order gradient sums of the left and right subtrees respectively; λ is the regularization 
parameter and γ is the penalty term for the number of leaf nodes. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 February 2025 doi:10.20944/preprints202502.1747.v1

https://doi.org/10.20944/preprints202502.1747.v1


 15 of 35 

 

 

Figure 11. Tree growth methods used in LightGBM and other BAs. 

3.3.6. Categorical Gradient Boosting (CatBoost) 

Categorical gradient boosting (CatBoost) is first proposed in 2017 by a search company named 
Yandex to better deal with categorical features. CatBoost improves traditional gradient boosting 
algorithms in several ways, most notably by integrating an innovative algorithm that automatically 
converts categorical features into numerical ones. This approach is based on the estimation of target 
statistics by means of stochastic permutations, also known as ordered target statistics (OTS). 
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where xi is the ith eigenvalue of the sample, and yj is the jth target value of the sample. CatBoost 
optimizes the efficiency of training by using an oblivious tree structure, in which each node at the 
same level is split symmetrically using the same features and points, as demonstrated in Figure 12a. 
This approach ensures uniformity and significantly reduces the amount of computation required. In 
addition, the residuals of CatBoost shown in Figure 12b are computed excluding the current sample 
to reduce the prediction bias, thereby increasing the accuracy of the model. 

  
(a) Oblivious tree (b) Orderd Boosting Principle 

Figure 12. Symmetric oblivious trees and enhanced residual calculation of CatBoost Model. 

3.4. Hyper-Parameter Tuning and Modelling Evaluation 

The addition of more data is a pervasive approach to refining a machine learning model, but the 
generation of high-quality data is often a time- and energy-consuming process. A more efficient way 
to improve performance and save time and resources consumption is to optimize hyperparameters 
[98].Unlike parameters learned during training, hyperparameters are manually set and require 
careful tuning[28,34,35,99]. Grid searching is a popular method for hyperparameter optimization, 
which involves systematically testing combinations to find the best settings. In this study, grid search 
is employed to fine-tune hyperparameters for ten ML algorithms, which are informed by previous 
models and tailored to our database, as shown in Table 3 and Table 4. 

Table 3. Hyperparameter tuning of traditional machine learning models. 

ML 
Mode

l 
Hyper-

parameter 
Optimize
d value Range 

ML 
Mode

l 
Hyper-

parameter 
Optimize
d value Range 

ANN Hidden 
_layer_sizes (80,)  (10,) ~ 

(150,) SVR C 1500 1000 ~ 
1500 
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max_iter 10000 0~15000 gamma 0.15 0.001 ~ 1 

activation relu {'relu', 
'tanh'} kernel rbf 

{'linear', 
'rbf', 

'poly'} 

learning_rate adaptive 
{'constant'

, 
'adaptive'

} 

K-NN 

leaf_size 20 10 ~ 50 

alpha 0.1 0.0001~0.0
1 

n_neighbo
rs 2 1 ~ 20 

CAR
T 

min_samples_le
af 1 1 ~ 8 weights distance 

{'uniform
', 

'distance'
} 

min_samples_sp
lit 2 1 ~ 8     

Note: 'relu' means using the Rectified Linear Unit activation function; 'tanh' means using the 
hyperbolic tangent activation function; 'constant' means keeping a fixed learning rate; 'adaptive' 
means automatically adjusting the learning rate based on the training process; 'linear' means using 
a linear kernel; 'rbf' means using the Radial Basis Function kernel; 'poly' means using a polynomial 
kernel; 'uniform' means assigning equal weights to neighbors; 'distance' means dynamically 
adjusting the weights based on the distance of neighbors. 

Table 4. Hyperparameter tuning of ensemble learning models. 

ML Model Hyper-
parameter 

Optimiz
ed value 

Ran
ge 

ML 
Model 

Hyper-
parameter 

Optimize
d value Range 

LightGB
M 

learning_rate 0.1 0.001 ~ 
0.1 

GBRT 

learning_rate 0.1 0.05~0.2 

min_child_sam
ples 5 5~ 20 min_samples_l

eaf 2 1 ~ 4 

n_estimators 400 100 ~ 
400 

min_samples_
split 10 2 ~ 10 

num_leaves 15 5~ 20 n_estimators 300 100 ~ 300 

learning_rate 0.1 0.001 
~ 0.1 

AdaBo
ost  

learning_rate 0.01 0.01~0.1 

RF 

min_samples_l
eaf 1 1 ~ 3 loss square 

{'linear', 
'square', 

'exponenti
al'} 

min_samples_s
plit 2 2 ~ 

10 n_estimators 600 100 ~ 600 

n_estimators 300 100 ~ 
500 

CatBoo
st  

depth 4 4~8 

XGBoos
t 

learning_rate 0.1 0. 1 ~ 
0.2 iterations 1000 500 ~ 1500 

min_child_wei
ght 1 1 ~ 3 l2_leaf_reg 0.1 0.1 ~ 1.0 

n_estimators 300 200 ~ 
400 learning_rate 0.1 0.01 ~ 0.1 

Note: 'linear' refers to a linear loss function; 'square' refers to a squared loss function; 
'exponential' refers to an exponential loss function. 

To evaluate model performance after hyperparameter tuning, K-fold cross-validation is 
employed. It divides the data into K subsets, running K rounds of training and testing. The average 
performance across the folds gives a reliable metric, with K=10 often providing a balance between 
computational efficiency and prediction accuracy. Cross-validation is critical for the evaluation of 
performance across different folds and for the selection of the best model [100]. 

To thoroughly evaluate the prediction results of the ML-based models selected in the present 
study, four statistical indicators of model performance are utilized hereafter. These evaluation 
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indicators include the coefficient of determination (R2), root mean square error (RMSE), mean relative 
error (MRE), and mean absolute percentage error (MAPE). The definition and calculation formula for 
each statistical indicator is detailed in Table 5 below. 

Table 5. Hyperparameter tuning of ensemble machine learning models. 

Evaluation indicator Equation Note 

R2 ( )
( )

=

=

∑

∑

−
= −

−


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, ,12
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, ,1
ˆ
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a i m ii
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The R2 value ranges from 0 to 1, 
with values closer to 1 indicating 
better model performance. 

RMSE ( )
=
∑= −

2

, ,1

1 ˆN

a i p ii
RMSE Y Y

n
 

RMSE measures the difference 
between observed and predicted 

values. Lower RMSE values, closer to 
zero, indicate higher model accuracy 

in predictions. 

MAE 
=
∑= −, ,1

1 ˆN

a i p ii
MAE Y Y

n
 

MAE, on the other hand, measures 
the average magnitude of errors 

without considering their direction, 
with lower MAE signifying higher 

model accuracy. 

MAPE 
=
∑

−
= ×, ,

1
,

1 100%
ˆ

ˆ
N a i p i

i
a i

Y Y
MAPE

n Y
 

MAPE expresses the error as a 
percentage, offering a relative 

measure of prediction accuracy. 
Lower MAPE values indicate more 

precise predictions. 

4. Results and Discussions 

4.1. Model Performance: A Comparison Across Diverse ML Algorithms 

Ten different algorithms are employed to develop machine learning models based on the 
aforementioned database to predict the ultimate bending moment Mu of reinforced UHPC beams. 
The dataset has been divided into 80% for the training and 20% for the testing. Figures 13 and 14 
compare the predicted bending ultimate moments Mup from the ML models, both traditional ML 
models and ensemble learning models respectively, with the corresponding tested results Mut from 
the established database. The relationships between the predicted ultimate moments and the 
measured values follow a linear fitted law with a slope of 1.0. Detailed results of this comprehensive 
evaluation for the bending moment capacity of reinforced UHPC specimens using various ML-based 
models are presented in Figure 15. 

  
(a) ANN (b) SVR 
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(c) CART (d) KNN 

Figure 13. Comparison of the predicted ultimate moments M up from the traditional machine learning models 
with the corresponding tested results M ut from the established database. 

   
(a) LightGBM (b) AdaBoost (c) CatBoost 

   
(d) XGBoost (e) GBRT (f) RF 

Figure 14. Comparison of the predicted ultimate moments M up from the ensemble learning models with the 
corresponding tested results M ut from the established database. 

On the training set, the coefficient of determination R2 for all ML models except the ANN is 
greater than 0.99, highlighting their excellent fitting abilities. The ANN model still shows a 
commendable performance, although it has a slightly lower R2 value of 0.98. In terms of RMSE, the 
KNN, AdaBoost, CatBoost, and XGBoost models have relatively lower values compared to other ML 
models, indicating the minimized discrepancy between their predicted values and tested results, with 
an average error margin of approximately 2.0. This underlines their exceptional model accuracy in 
predicting flexural performance of reinforced UHPC beams. In contrast, higher RMSE values of 9.7 
and 6.7are recorded for the ANN and GBRT models have been recorded, respectively. Despite these 
higher values, the model accuracy is still within an acceptable range. 

Further analysis of the MAE reveals that the KNN, AdaBoost, CatBoost, LightGBM, and 
XGBoost models all maintain values below 2, indicating a negligible average deviation between the 
predicted and measured values, and thus a high degree of prediction accuracy. Moreover, the 
evaluation of MAPE clearly shows that the KNN, CART, AdaBoost, and XGBoost models keep the 
values below 1%, confirming their accurate prediction capabilities. Although the ANN model has a 
MAPE of 16%, indicating a reduced predictive accuracy—possibly affected by its network structure 
and hyperparametric settings—it nevertheless meets the fundamental predictive benchmarks. 

Considering the testing set, the coefficients of determination R2 for the LightGBM, CatBoost, 
XGBoost, and GBRT models are all larger than 0.94, demonstrating their exceptional prediction 
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potentials. This outstanding performance is primarily due to the inherent advantages of ensemble 
learning, which includes the reduction of bias and variance in predictions by combining multiple 
models, thereby enhancing their ability to generalize to new datasets. Conversely, the KNN model 
gives the lowest R2 value of 0.85 on the testing set. Its performance limitations may be related to its 
decision mechanism, which relies on nearest-neighbor voting or averaging. This may fail in the 
presence of high-dimensional data or uneven data distributions, where the concept of "nearest 
neighbor" may be somewhat indeterminate. 

The KNN, ANN, SVR, CART and AdaBoost models present relatively high values when 
analyzing the three evaluation indicators of RMSE, MAE and MAPE, indicating a decrease in 
prediction accuracy on the testing set. The increased sensitivity of these models to the distribution of 
data features and the presence of noise may be responsible for this trend. In stark contrast, the GBRT 
and CatBoost models outperform on all three of these indicators, further underscoring the superior 
effectiveness of ensemble learning models in improving the accuracy of predictions. Specifically, 
GBRT and CatBoost develop their superiorities from the construction of multiple decision trees and 
the synthesis of the prediction insights of each tree to reduce potential errors inherent in singular 
models. 

To summarize, the excellent performance of ensemble learning models such as LightGBM, 
CatBoost, XGBoost, and GBRT on the testing set is fundamentally related to the strategy of ensemble 
learning with model aggregation. Those approaches effectively reduce the bias and variance, while 
improving the generalization ability of the models. On the other hand, while the KNN model presents 
admirable results on the training set, its modest performance on the testing set highlights the 
importance of considering data characteristics and the compatibility of the logic of model decision 
with the given problem during model selection. Overall, the ten ML-based models evaluated are 
capable of accurately predicting the ultimate bending moment values Mu of reinforced UHPC beams, 
confirming the profound potentials of machine learning models to address challenging structural 
demands. 

  

(a) R2 (b) RMSE  

  
(c)  MAE (d) MAPE  

Figure 15. Performance comparison of the ML-based models used. 
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4.2. Data Subset Analysis for Model Performance and Stability 

To systematically evaluate the qualities of ML-based models and database given, as well as to 
explore model stability, a methodical approach is taken by dividing the database previously 
established into subsets of varying sizes. This strategy makes it possible to examine model 
performance across a spectrum of dataset sizes, thereby providing insightful perspectives on how 
model performance varies with different dataset sizes. Based on findings from previous research and 
empirical evidence, five different cases of data subsets, as shown in Figure 16, have been identified for 
in-depth analysis. 

 

Figure 16. Identification of data subsets for in-depth analysis. 

Figure 17 presents a comparative analysis of model performances with various cases of data 
subsets. An examination of the coefficient of determination R2 for all models reveals that, across 
different cases of data subsets, the R2 values associated with the training set are predominantly 
greater than 0.98, while those R2-values of the testing set are generally larger than 0.9. These results 
underscore the overall robust performance of ML models. Nevertheless, the ensemble learning 
models exhibit relatively superior performance compared to the counterparts of traditional ML 
models. Specifically, the CatBoost model achieves the highest R2-value of 0.97 on the testing set at the 
case 1, and reaches a maximum R2-value of 0.96for testing set at the case 2. For the third to the fifth 
case of data subsets, the R2-value of testing sets peak at 0.94, 0.96and 0.96 with the ensemble models 
of GBRT, CatBoost and GBRT, respectively. 

This analysis highlights the superior performances of ensemble learning models over traditional 
ML models in most cases, and explains the variance in model effectiveness when dealing with data 
subsets of different divisions. The sustained high R2-values of ensemble learning models across a 
variety of data subset configurations can be attributed to their elaborate structures and algorithms, 
which are able to capture data correlations and patterns in a more effective way. As a result, the 
accuracy of predictions is improved. Furthermore, integrated models enhance the prediction 
accuracy by combining several weak learners or regressors. This strategy is especially beneficial when 
dealing with large and diverse data sets. On the contrary, due to the relatively simple algorithmic 
structure, traditional ML models may be unable to fully represent the intricacies of data relationships, 
which impacts to some extent their overall performance. 

To conduct a thorough evaluation of model performance, three statistical performance 
indicators of ML models including RMSE, MAE and MAPE are discussed here. When evaluating the 
training set, a majority of ML models show exceptional and consistent proficiency across these 
performance indicators. Nonetheless, the KNN models demonstrate suboptimal performance under 
various cases of data subsets, especially for Case 1. It could be attributed to the fact that the KNN 
models encounter a deficit in training sample size within the data subset division for the case 1. This 
leads to an overfitting of training data with details and noise thereby decreasing their generalization 
abilities. Moreover, the MAE for most of the models is around 10, suggesting a mean absolute 
deviation of approximately 10 units between model predictions and measured results. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 February 2025 doi:10.20944/preprints202502.1747.v1

https://doi.org/10.20944/preprints202502.1747.v1


 21 of 35 

 

Having analyzed the model performance with statistical indicators, it becomes evident that 
CatBoost and GBRT models significantly outperform the traditional ML models. The KNN, 
AdaBoost, SVR, and ANN models display inferior performance in various data subset arrangements. 
For instance, in the fourth case of data subsets, the ANN model registers a dramatically high MAPE 
of 41%, suggesting an insufficient prediction accuracy. This may be due to the model not being 
trained on a sufficiently diverse or large dataset, which may have resulted in inadequate 
generalization to unseen data. However, in the fifth cases of data subsets, the MAPE values decrease 
to approximately 18%, revealing a reduction in the average percentage deviation between the 
prediction values and measured results to about 18%. The significant variation in MAPE values 
highlights the pronounced differences in the adaptability of diverse models to specific data subsets. 
It therefore emphasizes the need to consider the sensitivity and adaptability of a model to varying 
data subsets during the model selection and optimization process. 

An in-depth evaluation of the ensemble learning models reveals that the second case is found to 
be the most effective and efficient database division strategy across all of data subset cases. To be 
more specific, 75% of the database is allocated to the training set, while the remaining 25% of the data 
served as the testing set. In contrast, the optimal data subset configuration for traditional ML models 
is identified in the case 3, where the data distribution percentages of the training set and testing set 
are 80% and 20%, respectively. The findings underscore the considerable influence of data division 
ratios on model effectiveness. Further investigation reveals that among ensemble learning 
algorithms, the CatBoost and GBRT models present a remarkable consistency with a varying data 
subset configuration. On the front of traditional ML models, the CART model stands out for its 
stability and robustness. Notably, the CatBoost model is distinguished by its superior division 
strategy of data subsets, considering both model efficiency and stability of data acquisition. 

  
(a)  R2 value of training sets  (b) R2 value of testing sets 

  
(c) RMSE value of training sets  (d) RMSE value of testing sets  
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(e) MAE value of training sets  (f) MAE value of testing sets  

  
(g) MAPE value of training sets  (h) MAPE value of testing sets  

Figure 17. The performance indicators of ML models are compared with measured data from experiments with 
different data subsets. 

The insights gained from this analysis not only reveal the subtle differences in how each model 
will perform under different data subset distributions, but also provide critical guidance for future 
model selection and optimization efforts. The foregoing analysis highlights the critical importance of 
proper data acquisition in improving model performance. Specifically, in the context of ensemble 
learning models, the selection of an appropriate data subset configuration is of paramount 
importance for the realization of peak performance. Furthermore, the model stability plays a crucial 
role in determining how well it performs. Therefore, the effects of data configuration and model 
stability should be properly considered during the model selection and optimization phases to ensure 
optimal model functionality in real-world applications. 

4.3. Comparison with Existing Empirical Equations 

Given the increasing utilization of UHPC-based materials in civil engineering, a multitude of 
standards and guidelines have emerged worldwide to facilitate the design of UHPC structures [36–
39]. The prevailing standards in the field, the French standard NF P 18-710 [36] and Swiss 
recommendation SIA 2052 [37], provide guidelines for the design of UHPC-based structures. 
However, these standards face limitations in terms of their practical application and accuracy 
precision. The French standard emphasizes strain-based failure criteria, requiring iterative 
calculations without explicitly defined formulas, whereas the Swiss recommendation simplifies 
compressive stress distribution and applies a reduction factor to tensile contributions. The existing 
empirical formulas are presented in Table 6, with symbol definitions available in the referenced 
literature, respectively. Similarly, the US design guides of ACI 544.4R-18 [38] and FHWA HIF-13-032 
[39], which are based on the equilibrium and strain compatibility, fail to fully capture the nonlinear 
behavior of UHPC element. The calculation model proposed by Li et al. [40] is derived from 
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experiments and incorporates UHPC’s tensile contribution with an assumption of uniform stress 
distribution, thereby reducing its applicability under varying reinforcement ratios. For reference, the 
key formulas for these empirical methods are presented in Table 6. Despite the prevalence of existing 
empirical or code-based methods, numerous studies reveal that the empirical formulas provided for 
estimating the flexural capacity of reinforced UHPC beams frequently exhibit excessive conservatism, 
resulting in significant discrepancies between predicted values and experimental observations [12,13]. 
This study aims to demonstrate the superior predictability of the CatBoost model by comparing its 
model performance with several widely recognized models based on empirical formulas. 

Table 6. Calculation formulas of flexural capacity of reinforced UHPC-based beams. 

Empirical equations Formula Expression 
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As shown in Table 7, the comparison results reveal that the CatBoost model significantly 
outperforms the five representative empirical formulas in predicting the flexural capacity of UHPC 
beams. Empirical design models such as the NF P 18–710 and SIA 2052 provide standardized 
approaches to the design of UHPC beam; however, they frequently rely on simplified assumptions 
about material behaviors, such as strain distributions or reduction factors, leading to conservative or 
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inconsistent predictions. For instance, an examination of the calculation method proposed by Li et al. 
reveals an average predicted-to-measured flexural capacity ratio of 0.916, thus indicating a tendency 
to underestimate flexural capacity in practical applications. Conversely, the CatBoost model achieves 
a mean predicted-to-measured flexural capacity ratio of 1.022, the closest to 1, thereby signifying a 
higher degree of agreement with actual values. 

Table 7. Performance of the empirical method and the CatBoost model. 

Models u/p t
uM M  Quantitative performance 

Min Max Mean R2 RMSE MAE MAPE 
NF P 18–710 0.796 1.911 1.146 0.914 15.724 12.871 18.606% 

SIA 2052 0.680 1.665 1.121 0.879 18.674 14.787 19.190% 
ACI 544.4R-18 0.565 1.781 1.156 0.863 19.929 16.574 22.557% 

FHWA HIF-13-032 0.775 1.809 1.257 0.711 28.923 24.251 29.534% 
Reference [40] 0.358 1.244 0.916 0.851 20.781 15.471 19.309% 

CatBoost 0.823 1.382 1.022 0.993 4.396 2.055 3.704% 

In terms of quantitative performance, the CatBoost model demonstrates superior performance, 
attaining an R² value of 0.993. This indicates its superior predictive accuracy and fitting capability 
compared to the existing empirical methods. For example, the recommendation SIA 2052 and the 
method presented by Li et al. exhibit R² values of 0.925 and 0.851, respectively; while the FHWA 
method a significantly lower R² value of 0.711. Furthermore, the CatBoost model demonstrates the 
lowest RMSE value of 4.396, MAE value of 2.055 and MAPE value of 3.704%, exhibiting a substantial 
improvement in performance compared to empirical methods such as the ACI 544 and FHWA 
models. These models exhibit significantly higher RMSE values of 19.929 and 28.923, respectively. 
These findings underscore the efficacy of the CatBoost model in minimizing prediction errors and 
ensuring consistent accuracy across diverse datasets. 

As illustrated in Figure 18 the predicted data points with the CatBoost model are closely 
distributed around the baseline =y x , suggesting that the model demonstrates reliable and robust 
performance. The polynomial fitting curve (green) of the CatBoost model exhibits a strong alignment 
with the observed values and provides a reliable representation of the underlying data. In contrast, 
traditional empirical models demonstrate notable deficiencies. Specifically, the ACI 544 and the 
FHWA method exhibit substantial deviations between their curves and the observed values, with a 
greater degree of scattered data points. It is important to note that the FHWA method, with a high 
RMSE of 28.923, experiences significant challenges in accurately capturing the complex mechanical 
behavior of UHPC. Similarly, while the NFP 18–710 model exhibits marginal enhancements, its 
computational process is complex and its applicability limited. The ACI 544 model, conversely, 
excessively simplifies the tensile zone contribution of steel fiber-reinforced concrete, resulting in 
significant prediction errors. These limitations further underscore the advantages of data-driven 
approaches. 

Overall, the CatBoost model demonstrates superior performance in terms of predictive accuracy 
in comparison to empirical methods. Its enhanced applicability and adaptability are particularly 
notable, as it is capable of incorporating complex feature interactions and producing highly reliable 
results, which makes it an invaluable tool for practical engineering applications. The employment of 
data-driven methodologies by the CatBoost model presents a promising alternative to existing 
empirical methods, thereby paving the way for enhanced accuracy and efficiency in the field of 
UHPC structural design. 
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Figure 18. Comparison between the empirical methods and the CatBoost model. 

5. Model Interpretation 

Advanced machine learning models, such as deep learning, are often considered "black boxes" 
because of the complexity and nonlinear nature of the models involved that makes it difficult to 
interpret their decision-making processes. The lack of transparency can have a negative impact on 
confidence in model predictions. 

While techniques such as Local Interpretable Model-Agnostic Explanations (LIME) and 
Interpretive Decision Trees provide a degree of interpretability, they are limited. A Shapley Additive 
Explanations (SHAP) has a potential to address these challenges by clarifying the contribution of 
features to model predictions. SHAP has been widely adopted for model interpretation, since it 
enhances transparency and credibility through consistency, local interpretability and model 
independence [35,41,101,102]. The explanatory model of SHAP, g(a′), is defined as 

( ) 0 z1
g a a

Z
zz

φ φ
=

′ ′= +∑  (17) 

where ф0 is the baseline value of the model, usually the average of all sample predictions; фz is 
the SHAP value of the feature z, which indicates the contribution of the feature z to the prediction; a′z 
is a binary indicator for the feature z, indicating whether feature z is in the explanatory model. 

5.1. Analysis of Feature Importance Using SHAP 

In exploratory analysis of ML models, reliance on the SHAP interpretation for a single model 
alone may not adequately capture the delicate effects of features on predictions. This limitation arises 
from the varying dependencies and interactions that different models have with the same set of 
characteristic parameters. To gain a deeper and more accurate understanding of feature significance 
and their influence on predictions, it is essential to perform a SHAP analysis with multiple models. 

Taking advantages of the global interpretability and powerful visualization capabilities offered 
by SHAP, a global feature importance analysis across six ensemble learning models is conducted. To 
illustrate the impact and importance of each feature on model output, Figure 19 presents the SHAP 
values for each ensemble learning model. In this figure, the horizontal axis displays the SHAP values, 
which indicates the extent to which each feature affects the prediction accuracy of the model. 
Meanwhile, the vertical axis enumerates the features in order of importance, with a color gradient 
from blue to red representing the progression from lower to higher feature values. It is evident to 
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note that there are marked discrepancies in how features rank in importance and the direction in 
which they affect different models. 

From Figure 19, the SHAP analysis for five models highlights the reinforcement ratio of 
longitudinal rebars ρt, the yielding strength of reinforcement fy, and the beam height H as the most 
important features, each of which contributes positively to the prediction results. In contrast, the 
GBRT model emphasizes the beam height H, reinforcement ratio ρt, and the length of shear span La 
as critical, demonstrating the inherent variability in feature prioritization between different models. 
These observations highlight the critical role of longitudinal reinforcement ratio ρt in predicting the 
ultimate bending moment Mu of reinforced UHPC beams, consistent with its recognized importance 
in the enhancement of steel rebars for reinforced concrete beams. Despite of a limited tensile strength 
of concrete-based materials, the longitudinal reinforcements in UHPC beams overcome the limitation 
by providing essential tensile strength to negative bending moments. The steel reinforcement in 
UHPC beams effectively carries the tensile load during bending, while the lower section of the beam 
is longitudinally under tension. 

Moreover, several features such as the beam height H, and the beam width B—attribute 
representatives of the cross-sectional properties of UHPC beams—are highlighted. This emphasizes 
the critical role of cross-sectional characteristics in determining the flexural performance UHPC 
beams. The feature B is highly significant in the CatBoost, XGBoost, and GBRT models, but it is of 
much less importance in the LightGBM model, where its influence is ranked remarkably lower. This 
discrepancy suggests that feature importance ratings vary due to the unique mechanisms that each 
model utilizes to process features. For the six ensemble learning models, the yielding strength of 
reinforcement fy and the length of shear span La show more consistency in both importance and 
direction of impact. The SHAP values for these features are more concentrated, which is an indication 
of a more uniform influence on the prediction results. It is noteworthy that the yielding strength of 
reinforcement fy is recognized in the classical formulations, while the influence of shear span length 
La is absent in the design specifications. This discrepancy indicates that traditional empirical formulas 
may not fully capture the complexity associated with flexural capacity prediction Mu for reinforced 
UHPC beams. 

   
(a) AdaBoost (b) CatBoost (c) GBRT 

   
(d) LightGBM (e) RF (f) XGBoost 

Figure 19. SHAP summary plots of the six ensemble learning models. 

Figure 20 presents the SHAP bar plot for the six ensemble learning models, illustrating the 
average impact magnitude of each feature on the predictions of those models. The CatBoost model 
features a relatively more uniform distribution of SHAP values across all features, suggesting a 
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balanced consideration in the decision-making process without excessive dependence on specific 
features. This equilibrium potentially contributes to the superior performance and stability of the 
model, explaining its consistent performance across various data subsets among ten ML models 
analyzed. In contrast, the SHAP bar plots for other ensemble learning models reveal that some 
features have significantly higher SHAP values, indicating a stronger reliance on particular features, 
such as in the AdaBoost, RF, and XGBoost models. This dependency might result in fluctuating model 
performance across different data subsets. 

While an interpretation of SHAP values for a single model may not fully delve into the 
importance and impact of features on predictions, the analysis of SHAP interpretations across 
multiple models provides a more comprehensive and accurate understanding of feature importance 
and interactions. This approach facilitates model selection, optimization, and interpretation analysis 
with a solid theoretical foundation and practical insights. 

The purpose of key feature interpretation is to clarify the explanation of how the importance of 
features varies across different models and how SHAP analysis can provide deeper insights into 
model behavior and feature impact, thereby supporting more informed decision making in predictive 
modelling. 

   
(a) AdaBoost (b) CatBoost (c) GBRT 

   
(d) LightGBM (e) RF (f) XGBoost 

Figure 20. Feature importance of the six ensemble learning models based on SHAP. 

5.2. Key Feature Interpretation 

The improvement of the transparency and interpretability of ML models is essential for the 
understanding of their decision processes. To assess the influence of features in the CatBoost model, 
visualization techniques are applied. A uniform distribution of SHAP values across features suggests 
a balanced influence, which leads to a focused analysis of the top five most influential features. This 
approach highlights the key features that drive the predictions of the model [101]. Feature 
normalization, achieved by subtracting the mean and dividing by the standard deviation, is used to 
ensure uniform scaling, stabilize the model and accelerate convergence. 

µ
σ

Χ −
=  (18) 

where X is the raw data, μ is the mean, σ is the standard deviation, and  is the normalized data. 
The objective of this normalization process is to neutralize the scaling differences among various 
features, thereby enhancing the stability of the model during its training phase and allowing for faster 
convergence of the algorithm. 
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The normalized SHAP values of the CatBoost model are represented in Figure 21. The analysis 
of normalized SHAP value reveals a prevailing trend that increases in the eigenvalues of H, ρt, B, and 
La are associated with increases in the normalized SHAP values. This pattern suggests that increased 
eigenvalues of these features substantially increase flexural ultimate capacity Mu, as reflected in the 
greater SHAP values. This notable positive correlation, particularly evident for parameters of H, ρt, 
B, and La, highlights their considerable influence on Mu. Nevertheless, the feature fy shows a clearly 
nonlinear relationship with flexural ultimate capacity Mu. It is attributed to the ability of the CatBoost 
model to capture the intricate interactions and nonlinear dynamics between the features. In the 
context of reinforced concrete beams, the steel reinforcement and the surrounding concrete work 
together to resist bending moments. The nonlinear influence of fy is partly due to the complex stress-
strain behavior of concrete, in particular its tendency to crack in tension and its ultimate compressive 
strength limit. An observed increase in the variability of normalized SHAP values for the yielding 
strength of reinforcement fy deviating from zero—especially towards positive values—suggests a 
pronounced influence of reinforcement strength fy on flexural ultimate capacity Mu in these regions. 
Deviating from a straightforward linear relationship, the contribution of fy in increasing flexural 
ultimate capacity Mu is further evaluated by the distribution and depth of steel reinforcements within 
the concrete cross-section. As such, the feature of yielding strength of reinforcement fy, especially in 
certain regions, deserves a more in-depth analysis. 

An interesting observation from Figure 21(d) is the prevalence of more red dots at higher values 
of ρt, which suggests a simultaneous increase in H values in these areas, potentially amplifying their 
influence on flexural ultimate capacity Mu. Thus, when evaluating the effect of ρt on flexural ultimate 
capacity Mu, it is crucial to consider the interactions with other features. The increases in the values 
of La, and H are significantly beneficial to flexural ultimate capacity Mu, while the effect of fy is 
nonlinear and more pronounced in certain regions. Furthermore, the interaction of H with high 
values of ρt deserves special attention. These findings allow for a deeper understanding of how each 
feature contributes to Mu, thus laying a foundation for more accurate model optimization and feature 
engineering strategies. 

   
(a) H (b) B (c) fy 

  

 

(d) ρt (%) (e) La  

Figure 21. SHAP dependency plots for 5 critical features in the CatBoost model. 

6. Conclusions 

A comprehensive review of existing literature is conducted to initially establish a database of 
flexural ultimate capacity for reinforced UHPC composed of measured results of 339 UHPC-based 
specimens with varying design parameters from 56 different experimental investigations. Ten ML 
algorithms including ANN, SVR, K-NN, CART, RF, AdaBoost, GBRT, LightGBM, CatBoost and 
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XGBoost are then employed to develop optimized models for predicting the flexural ultimate 
capacity Mu of reinforced UHPC specimens. Four statistical indicators of model performance are 
utilized to evaluate the prediction results of ML-based models presented. Moreover, the performance 
of ML-based models with different data subset sizes is analyzed to thoroughly assess qualities of 
model and database given. A comparison analysis is conducted between the calculated values of from 
the several existing empirical formulas and the predicted values of the CatBoost model. The SHAP 
method is finally used to interpret the ML models, validating their reliability and examining the effect 
of each feature on the prediction results. The following conclusions can be drawn: 
1. For model training, the models of CART, RF, XGBoost, CatBoost, AdaBoost, GBRT, and 

LightGBM show superior model performance, characterized by higher R² values and lower 
values of RMSE, MAE and MAPE compared to other ML-based models. The top three models 
for predicting the flexural ultimate capacity of reinforced UHPC beams are ranked in the order 
of GBRT > CatBoost > LightGBM. On the testing set, the GBRT model perform the best prediction 
results with an R² of 0.95, RMSE of 13.3, MAE of 9.3 and MAPE of 18%, respectively. On the 
contrary, the ANN model is found to perform the least effectively. Overall, the developed ML 
models accurately predict the flexural ultimate capacity Mu of reinforced UHPC beams after 
optimization, with ensemble learning models typically providing a higher level of accuracy than 
traditional individual ML models. 

2. An in-depth database subset analysis reveals that the second case is the most efficient data 
subset configuration for ensemble learning models with 75% and the remaining 25% of the data 
divided as the training set and testing set. For traditional ML-based models, the optimal data 
subset configuration is identified in the case 3, where the data distribution percentages of the 
training set and testing set are 80% and 20%, respectively. This underscores the significant 
impact of the database division ratios of training-to-testing set on the effectiveness of 
performance prediction for the ML models. Among the ensemble learning models, CatBoost and 
GBRT show a remarkable consistency with a varying data subset configuration, while CatBoost 
model presents a distinguished performance prediction using a superior division strategy of 
data subsets. These insights highlight the importance of proper data acquisition in improving 
model performance prediction, providing crucial guidance for future model selection and 
optimization. The effects of database subset distribution on the performance prediction and 
model stability should be properly considered during the model selection and optimization 
process to ensure optimal model functionality in real-world applications. 

3. The CatBoost model demonstrates superior performance in terms of predictive accuracy, as 
evidenced by its highest R² value of 0.993, the lowest RMSE value of 4.396, lowest MAE value of 
2.055, and lowest MAPE value of 3.704%. This substantial improvement in performance 
prediction of flexural capacity for reinforced UHPC beams is particularly notable when 
compared to existing empirical methods. Notably, the model's enhanced applicability and 
adaptability enable it to handle complex feature interactions, leading to highly reliable results. 
This renders the EL model a potentially invaluable tool for practical engineering applications. 
The employment of data-driven methodologies by the CatBoost model presents a promising 
alternative to existing empirical methods, thereby paving the way for enhanced accuracy and 
efficiency in the field of UHPC structural design. 

4. The SHAP-based feature importance analysis indicates that ρt, La, and H are the most critical 
features for the determination of the flexural ultimate capacity Mu of reinforced UHPC beams. 
This finding is consistent across ML models including RF, XGBoost, CatBoost, GBRT, AdaBoost, 
and LightGBM. In contrast, the ratio of fiber length-to-diameter (Lf/df) are the least important 
characteristics. The CatBoost model displays a more uniform distribution of SHAP values for all 
parameters, suggesting a balanced decision-making process and contributing to its superior and 
stable model performance. Several ensemble learning models such as AdaBoost, RF, and 
XGBoost show higher SHAP values for certain features, indicating a greater dependence on 
those features and potentially leading to more variable performance for different subsets of 
database. 

5. The analysis of normalized SHAP value reveals a prevailing trend that increases in the 
eigenvalues of B, ρt, La and H are associated with the growing of the normalized SHAP values. 
This notable positive correlation highlights their substantial influence on predicting the flexural 
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ultimate capacity Mu of reinforced UHPC beams. Nevertheless, the yield strength of longitudinal 
reinforcement fy shows a clearly nonlinear relationship with ultimate capacity Mu. Furthermore, 
the interaction of moment of inertia I with high values of reinforcement ratio ρt deserves special 
attention. These findings allow for a deeper understanding of how each feature contributes to 
the prediction of flexural ultimate capacity Mu of reinforced UHPC beams, thus laying a 
foundation for more accurate model optimization and feature engineering strategies. 
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