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Abstract: When presenting special relativity, it is customary to single out the so-called paradoxes.10

One of these paradoxes is the formal occurrence of speeds exceeding the speed of light. An11

essential part of such paradoxes arises from the incompleteness of the relativistic calculus of12

velocities. In special relativity, the additive group is used for velocities. However, the use of13

only group operations imposes artificial restrictions on possible computations. Naive expansion14

to vector space is usually done by using non-relativistic operations. We propose to consider15

arithmetic operations in the special theory of relativity in the framework of the Cayley–Klein16

model for projective spaces. We show that such paradoxes do not arise in the framework of the17

proposed relativistic extension of algebraic operations.18

Keywords: Cayley-Klein model; hypercomplex numbers; hyperbolic complex numbers; special19

relativity; superluminal motion20

1. Introduction21

Historically, special relativity arose to eliminate the inconsistencies of Maxwell’s22

electrodynamics and Galileo’s transformations. In this case, only group operations23

for speeds are traditionally considered: addition and subtraction of speeds. No other24

operations are used.25

Thus, a situation arise when relativistic operations are used to add the velocities,26

and in other cases, in our opinion, non-relativistic operations are used. This leads to the27

emergence of the so-called paradoxes.28

The authors suggest that it is necessary to extend the relativistic operations with29

velocities to algebra. It is assumed that this extension will remove some of the so-called30

paradoxes of the special theory of relativity.31

Several attempts have been made to describe relativistic operations consistently.32

Most of these systems are quite complex [1–3]. The authors propose not to create a33

new algebra, but to use in this role the systems of complex numbers based on the34

Cayley–Klein model [4–9].35

1.1. Article structure36

In the paragraph 1.2 the basic notation and conventions used in the paper are37

provided. The section 2 describes the model structure of special relativity. In the section 3,38

the authors substantiate the choice of the mathematical apparatus for the implementation39

of the model. In the section 4, several so-called paradoxes of special relativity are given,40

which are still quite common in popular science, and even in the scientific community.41

Section 9 shows that when using the formalism described in the paper, no paradoxes42

arise. Section 5 describes the projective Cayley-Klein model. Further, in the section43

6, complex numbers are introduced that realize the spaces of the Cayley–Klein model.44

The information contained in these two paragraphs is widely known, and the sections45

are more of a reference in nature. Section 7 introduces a technique for implementing46

relativistic operations based on hyperbolic complex numbers. It is necessary to draw the47
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reader’s attention that this implementation describes only collinear movements in one48

spatial dimension. This is done on purpose to simplify the perception of the proposed49

formalism. In section 8, the basic relativistic operations are written out explicitly.50

1.2. Notations and conventions51

1. Designation of types of measure definition:52

• elliptic measure is denoted by the symbol “−”;53

• parabolic measure is denoted by the symbol “0”;54

• hyperbolic measure is denoted by the symbol “+”.55

2. Designation of distances between points:56

• d− AB: elliptic distance between points A and B;57

• d0
AB: parabolic distance between points A and B;58

• d+
AB: hyperbolic distance between points A and B.59

3. Designation of measure of angles:60

• δ− ab: elliptic measure of the angle between straight lines a and b;61

• δ0
AB: parabolic measure of the angle between straight lines a and b;62

• δ+
AB: hyperbolic measure of the angle between straight lines a and b.63

4. Imaginary units:64

• i: elliptic imaginary unit;65

• ε: parabolic imaginary unit;66

• e: hyperbolic imaginary unit;67

2. Model structure of special relativity68

The general model structure of the theory consists of theoretical and operational69

parts (Fig. 1). The theoretical part consists of a model layer and an implementation layer.70

Special relativity is based on two postulates [10]:71

1. Einstein’s principle of relativity: the laws of nature are the same in all reference72

frames moving rectilinearly and uniformly relative to each other.73

2. The principle of the constancy of the speed of light: the speed of light in a vacuum74

is the same in all reference frames moving rectilinearly and uniformly relative to75

each other [11].76

In order for Maxwell’s electrodynamics to comply with the principle Einstein’s relativity,77

it was necessary to replace Galileo’s transformations with Lorentz’s transformations.78

When implementing the mathematical apparatus of special relativity, the boundary79

between the theoretical part and the operational measuring part was shifted towards the80

theoretical part. All theoretical calculations are carried out in the same form in which81

we get the results.1 On the one hand, this simplifies specific calculations, on the other82

hand, it makes it difficult to understand the structure of the theoretical part (which is83

why there are so many fighters against the special theory of relativity). In addition, it84

complicates the development of this theory. The relations derived by the classics of the85

special theory of relativity are widely used. But the derivation of new relationships is86

somewhat difficult. It seems that it is with this that a large number of so-called paradoxes87

of the theory of relativity are connected.88

We believe that it is necessary to strictly distinguish between the theoretical and op-89

erational parts. For this, it is proposed to use for theoretical calculations the mathematical90

formalism that implements the geometric structure of the space of special relativity, and91

only at the end to translate it into the required form through the measuring operational92

part.93

1 As an opposite approach, we may mention the quantum theory, where the theoretical part is extremely complex and completely different from the
results obtained as a result of measurements.
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Figure 1. Model structure of the theory

3. Justification of the choice of implementation94

The apparatus of hypercomplex numbers is chosen as the mathematical apparatus95

for implementing the model of special relativity.96

• For implementation, it is preferable to use not a general formalism (describing an97

arbitrary structure), but a formalism specific to a particular geometry [12].98

• Since we propose to use the Cayley–Klein space model, it seems quite reasonable to99

use one of the standard implementations of operations in Cayley–Klein spaces.100

• The Cayley–Klein classification defines measures separately for lengths, angles, etc.101

It is preferable to be able to set the mathematical apparatus, taking into account the102

measures of the different elements of space.2103

• The apparatus of complex numbers may be extended in a standard way to describe104

large dimensions (Cayley–Dickson procedure [13]).105

• The formalisms of complex numbers and quaternions are quite familiar to the vast106

majority of scientists.3107

• There are computer implementations for working with generalized complex num-108

bers [9].109

Based on the above considerations, we have chosen the formalism of hypercomplex110

numbers for the implementation of relativistic operations.111

4. Special relativity paradoxes112

In the literature on the special theory of relativity, relations regularly arise in which113

the calculated speed is higher than the speed of light (v > c). All of these examples114

can be spotted in several classes. In this section, we list the most famous examples of115

paradoxes arising from the use of multiplication or division by a number.116

4.1. Oblique incidence of light117

The simplest model of superluminal motion can be an oblique incidence of plane
waves on a certain flat interface between the media (also called a screen) [14–17]. Let ϕ
be the angle of incidence of the wave on the screen, that is, the angle between the wave
vector and the normal to the screen. Then the light spot on the screen moves across this
screen with the speed:

v =
c

n sin ϕ
.

Here n is the refractive index of the medium in which the light pulse propagates (the
medium above the screen). Since sin ϕ 6 1, then the speed of the light spot with a
decrease in the angle of incidence ϕ can be made greater than the speed of light c. When
considering the case of wave propagation in a vacuum, this becomes most obvious:

v =
c

sin ϕ
. (1)

2 For example, when constructing the Minkowski space, only boosts were taken into account, that is, measures of angles. The measure definitions of
lengths were simply borrowed from Euclidean space. But at the same time, it is good to be able to combine different definitions.

3 This point is probably the most important for us. It is not difficult to create a complex and cumbersome formalism. But nobody will use it.
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The velocity v can be arbitrarily large since as the light pulse tends to normal incidence118

(ϕ→ 0), then the velocity tends to infinity (v→ ∞).119

4.2. Phase velocity120

The phase velocity of a wave is the speed of propagation of the surface of a constant
phase along a given direction. The phase velocity in the direction of the wave vector is
set as follows:

vp =
ω

k
=: vp(0),

where ω is the circular frequency, k is the wavenumber. In a vacuum for an electromag-121

netic wave, the phase velocity along the vector is equal to the speed of light c.122

When deviating from the wave vector by an angle ϕ, the phase velocity will be
equal to:

vp(ϕ) =
vp(0)
cos ϕ

. (2)

From the equation (2), it is seen that the phase speed can be greater than the speed of123

light [18].124

5. Cayley–Klein model125

Spatial measurements are reduced to two main tasks: to determine the distance126

between two points and to determine the angle between two intersecting lines. These127

tasks can be characterized as a problem of measure in projective geometry. According to128

the Cayley–Klein scheme [4,19] there are three types of measurement: elliptic, parabolic,129

and hyperbolic. Consider what these measurements are for lengths and angles.130

Let us denote the elliptic measure by the symbol “−”, the parabolic measure by the131

symbol “0”, the hyperbolic measure by the symbol “+”.4132

5.1. Lengths measuring133

According to the Cayley–Klein scheme, there are three geometries on the straight134

line o that define the measure of lengths: elliptic, parabolic, and hyperbolic geometries.135

5.1.1. Elliptic measurement of lengths136

The elliptic measure of lengths is defined on the line o as follows (see Fig. 2). We
define outside o some point Q and assume that the distance between the points A and B
of the straight line o is equal to the angle ∠AQB:

d− AB = ∠AQB.

For consecutive points A, B, C (see Fig. 2) we have the following equality:

d− AC + d− CB = d− AB .

The elliptic geometry may serve as an example of an elliptic measure of lengths.137

5.1.2. Parabolic measurement of lengths138

Parabolic lengths are defined on the line o as follows (see Fig. 3). The unit of length
OE is fixed on the straight line. The distance between the points A and B of the straight
line o is defined as

d0
AB =

AB
OE

.

For consecutive points A, B, C (see Fig. 3) the following equality is true:

d0
AC + d0

CB = d0
AB . (3)

4 These designations are based on the designations for the complex numbers corresponding to each measure, see section 6.
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Figure 2. Elliptic measurement of lengths
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Figure 3. The parabolic measurement of lengths

An example of a parabolic measure of lengths is the geometry of Euclidean familiar139

to us.140

5.1.3. Hyperbolic measurement of lengths141

The hyperbolic measure is defined on the line o as follows. Between two points I
and J of the line o, two points A and B of this line are specified (see Fig. 4). Then the
hyperbolic distance will have the form:

d+
AB = κ ln

AI/AJ
BI/BJ

. (4)

The κ coefficient specifies the distance units (and the base of the logarithm). The angles142

are considered to be directed. The entire hyperbolic line is represented by the segment143

I J.144

For consecutive points A, B, C (see Fig. 4) the following equality is true:

d+
AC + d+

CB = d+
AB .

An example of a hyperbolic measure of lengths is the geometry of Lobachevsky.145

5.2. Angles measurement146

Similar to the three geometries on the straight line o, three geometries are introduced147

in the bunch of straight lines with the center O, that is, three systems of measures for148

determining the angles between the straight lines of the bunch are given.149

5.2.1. Elliptic measurement of angles150

The elliptic measure of angles in a bunch centered at O is defined as follows (see
Fig. 5):

δ− ab = ∠aOb.

For the straight lines of the bunch a, b, c (see Fig. 5) the following equality is true:

δ− ac + δ− cb = δ− ab.

An example of an elliptic measure of angles is the geometry of Euclid, which is151

familiar to us.152

I J
B C A

o

Figure 4. Hyperbolic measurement of lengths
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a bc

O

Figure 5. Elliptic measurement of angles

A C B

a bc

O
ω

q

Figure 6. Parabolic measurement of angles

5.2.2. Parabolic measurement of angles153

The parabolic measure of angles in a bunch with center O is defined as follows (see
Fig. 6). We fix the straight line q not passing through the point O and set the distance
between the angles:

δ0
ab = AB. (5)

Here the points A and B are the intersection points of the lines a and b with q. In addition,154

note that the bunch of lines contains a unique line ω||q, forming an infinitely large angle155

with any other straight line.156

Obviously, from (3) and (5) we may write:

δ0
ab = d0

ab .

For the straight lines of the bunch a, b, c (see Fig. 6) we have the following equality:

δ0
ac + δ0

cb = δ0
ab. (6)

An example of a parabolic measure of angles is Galileo’s geometry.5157

5 Velocities in our familiar world are mapped to rotations in the planes xt, yt, zt. Therefore, the equation (6) is essentially the Galilean velocity
addition law [20].
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Figure 7. Hyperbolic measurement of angles

Table 1: Cayley–Klein geometries on a plane

Lengths
Angles − 0 +

− Elliptic (Riemann) co-Euclidean co-Hyperbolic (anti
de-Sitter)

0 Euclidean Galilean Minkowski
+ Hyperbolic

(Lobachevsky)
co-Minkowski Doubly hyperbolic

(de-Sitter)

5.2.3. Hyperbolic measurement of angles158

The hyperbolic measure of angles in a bundle with center O is defined as follows
(see Fig. 7). We fix two straight lines i and j of the bundle and for any two other straight
lines a and b we set the angular distance between them:

δ+
ab = κ ln

sin∠ai
/

sin∠aj
sin∠bi

/
sin∠bj

. (7)

The κ coefficient specifies the distance units (and the base of the logarithm). The angles159

are considered to be directed.160

Since the double ratio from the equation (7) of four straight lines of the bunch is
equal to the double ratio from the equation (4) of the four points of intersection of these
lines with an arbitrary fifth straight line q not passing through the center of the bunch,
we have equality

δ+
ab = d+

AB .

Here A and B are the intersection points of an arbitrarily fixed line q with lines a and161

b (see Fig. 7). Each of the straight lines i and j forms an infinitely large angle with any162

other straight line.163

For the straight lines of the bunch a, b, c (see Fig. 7) the following equality is true:

δ+
ac + δ+

cb = δ+
ab.

The geometry of Minkowski may serve as an example of a hyperbolic measure of164

angles.165

5.3. Cayley–Klein projective geometries166

According to the Cayley–Klein scheme, nine projective geometries are defined on167

the plane (see Table 1) [5]. It is determined by fixing the measurement of lengths and168

angles.169
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6. Cayley–Klein model and complex numbers170

Points in the Euclidean plane can be identified with complex numbers by associating
a point with Cartesian rectangular coordinates (x, y) or with polar coordinates (r, ϕ) to
a complex number:

z = x + iy = r exp{iϕ},

where i2 = −1. The quantities x and y are called, respectively, the real and imaginary
parts of the number z:

x = Re{z}, y = Im{z}.

However, you can give a general definition of complex numbers. Let’s set a
quadratic equation in the form:

z2 + pz + q = 0. (8)

The determinant of the quadratic equation (8) will have the form:

∆ = p2 − 4pq.

Depending on the sign of the determinant, we can obtain the following systems of171

complex numbers6 [6]:172

• ∆ < 0, z = a + ib, i2 = −1: elliptic complex numbers (ordinary complex numbers);173

• ∆ = 0, z = a + εb, ε2 = 0: parabolic complex numbers (dual numbers) [6];174

• ∆ > 0, z = a + eb, e2 = 1: hyperbolic complex numbers (split complex number,175

hyperbolic number, perplex number [21,22], double number [6]).176

Only ordinary complex numbers have a field structure. Dual and double complex177

numbers have a ring structure because they contain nontrivial zero divisors.178

Here are the basic representations and equations for complex numbers.7 We will179

denote elliptic complex numbers by the symbol “−”, parabolic complex numbers by the180

symbol “0”, and hyperbolic complex numbers by the symbol “+”.181

6.1. Basic representations of complex numbers182

6.1.1. Algebraic representation183

Algebraic representation is the most common representation for complex numbers.
This representation is most convenient for recording additive operations (addition,
subtraction).

z = a + ib;

z = a + εb;

z = a + eb.

6.1.2. Trigonometric representation184

In trigonometric representation, the real and imaginary parts of the complex number
z are expressed in terms of the modulus r = |z| and the argument ϕ = Arg z of the

6 Note that in the literature there is also a reverse name for complex numbers:

• ∆ < 0: hyperbolic complex numbers;
• ∆ = 0: parabolic complex numbers (dual numbers);
• ∆ > 0: elliptic complex numbers.

7 These formulas are well known, but we found it possible to cite them for the convenience of the reader.
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given complex number. This representation is most convenient for writing multiplicative
operations (multiplication, division, exponentiation, root extraction).

z = r(cos ϕ + i sin ϕ);

z = r(1 + εϕ);

z =


r(cosh ϕ + e sinh ϕ), |a| > |b|,
0, |a| = |b|,
r(sinh ϕ + e cosh ϕ), |a| < |b|.

We also need to define the modulus and argument of a complex number.185

Complex number module186

The value r = |z| is called the modulus of the complex number z:

r =
√

a2 + b2;

r = a;

r =


√

a2 − b2, |a| > |b|,
0, |a| = |b|,√

b2 − a2, |a| < |b|.

Complex number argument187

The value ϕ = Arg z is called the argument of the complex number z:

ϕ = arctan
b
a

;

ϕ =
b
a

, a 6= 0;

ϕ =


artanh

b
a

, |a| > |b|,

artanh
a
b

, |a| < |b|.

6.1.3. Exponential representation188

The exponential representation is related to the trigonometric representation by
Euler’s formula. When writing arithmetic operations, these representations are inter-
changeable.

z = r exp(iϕ);

z = r exp(εϕ);

z =


r exp(eϕ), |a| > |b|,
0, |a| = |b|,
er exp(eϕ), |a| < |b|.

The modulus and argument of a complex number are specified in the same way as189

for trigonometric representation.190
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6.2. Basic operations with complex numbers in different representations191

6.2.1. Addition192

For additive operations, we will use the algebraic representation of complex num-
bers. Let’s set two complex numbers z1 and z2, then we get:

z1 + z2 = (a + ib) + (c + id) = (a + c) + i(b + d);

z1 + z2 = (a + εb) + (c + εd) = (a + c) + ε(b + d);

z1 + z2 = (a + eb) + (c + ed) = (a + c) + e(b + d).

6.2.2. Subtraction193

Similarly, we write down for the subtraction of complex numbers z1 and z2:

z1 − z2 = (a + ib)− (c + id) = (a− c) + i(b− d);

z1 − z2 = (a + εb)− (c + εd) = (a− c) + ε(b− d);

z1 − z2 = (a + eb)− (c + ed) = (a− c) + e(b− d).

6.2.3. Multiplication (algebraic representation)194

For multiplication, it is more convenient to use exponential or trigonometric repre-
sentations, however, with a small number of operands, the algebraic representation is
also quite applicable.

z1z2 = (a + ib)(c + id) = (ac− bd) + i(bc + ad);

z1z2 = (a + εb)(c + εd) = ac + ε(bc + ad);

z1z2 = (a + eb)(c + ed) = (ac + bd) + e(bc + ad).

6.2.4. Multiplication (exponential representation)195

In the exponential representation, multiplication is reduced to the product of moduli
and the sum of the arguments of complex factors.

z1z2 = r1 exp(iϕ1)r2 exp(iϕ2) = r1r2 exp(i[ϕ1 + ϕ2]);

z1z2 = r1 exp(εϕ1)r2 exp(εϕ2) = r1r2 exp(ε[ϕ1 + ϕ2]);

z1z2 = r1 exp(eϕ1)r2 exp(eϕ2) = r1r2 exp(e[ϕ1 + ϕ2]).

6.2.5. Multiplication (trigonometric representation)196

Multiplication in trigonometric representation does not differ from the multipli-
cation in exponential representation (product of modules and sum of arguments of
complex factors).

z1z2 = r1(cos ϕ1 + i sin ϕ1)r2(cos ϕ2 + i sin ϕ2) = r1r2[cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)];

z1z2 = r1(1 + εϕ1)r2(1 + εϕ2) = r1r2[1 + ε(ϕ1 + ϕ2)];
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z1z2 =



r1(cosh ϕ1 + e sinh ϕ1)r2(cosh ϕ2 + e sinh ϕ2)

= r1r2[cosh(ϕ1 + ϕ2) + e sinh(ϕ1 + ϕ2)], |a| > |b|,
r1(sinh ϕ1 + e cosh ϕ1)r2(sinh ϕ2 + e cosh ϕ2)

= r1r2[cosh(ϕ1 + ϕ2) + e sinh(ϕ1 + ϕ2)], |a| = |b|,
r1(cosh ϕ1 + e sinh ϕ1)r2(sinh ϕ2 + e cosh ϕ2)

= r1r2[sinh(ϕ1 + ϕ2) + e cosh(ϕ1 + ϕ2)], |a| < |b|.
The last expression looks somewhat cumbersome due to the form of Euler’s formula197

for hyperbolic complex numbers.198

7. Relativistic operations199

To implement the mathematical apparatus of operations in the Minkowski space,200

it is proposed to use the corresponding system of complex numbers. Once again, note201

that for simplicity of description, we consider only one-dimensional motions, so that202

they can be described using complex numbers. When describing the full Minkowski203

space, it will be necessary to move from complex numbers to more complex objects, for204

example, to the corresponding type of quaternions [23–26]. In addition, it is known that205

relativistic calculations are generally non-commutative [27,28].206

The hyperbolic complex number z = r exp{eϕ} corresponds to a point in the
Minkowski space. The argument ϕ of the complex number z is the angle between the
tangent to the particle’s world line and the time axis in the base frame. The argument is
related to speed by the following: relationship:

ϕ = artanh
v
c

.

It also has the name rapidity [29,30].207

The sequence of actions is as follows (we will consider only time-like intervals):208

• As part of the operational part of preparing the system, the usual values are con-
verted into the form of hyperbolic complex numbers C+ . Since the speeds are
converted to rotations in the time plane (boosts), the following operation must be
performed:

v
c
→ tanh ϕ,

that is, we get the corresponding complex number:

z = exp
{

e artanh
v
c

}
.

Here ϕ is the argument of the corresponding complex number, and we neglect the209

module of the complex number.210

• In the theoretical part, we perform calculations on the resulting complex numbers.211

• Within the framework of the measuring operational part, we convert expressions
in hyperbolic complex numbers C+ into expressions in real numbers describing
relativistic relations Λ:

ϕ→ artanh
v
c

.

The corresponding relativistic velocity will be:

vΛ = c tanh ϕ. (42)

For convenience, within the framework of one-dimensional motions, we can intro-
duce the symbol of Einstein operations E, which directly transforms the operation OpGal
in the Galilean space into the operation OpΛ in the Lorentz space:

OpΛ = E(OpGal).
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This operation masks the full cycle of transition from non-relativistic expressions Gal to
relativistic Λ by using hyperbolic complex numbers. We may write this transition in the
form of a commutative diagram, which will have the following form:

Gal artanh−−−−→ C+

E(Op )

y yOp

Λ tanh←−−−− C+

(43)

8. Basic algebraic operations212

Let’s write down the main operations.213

8.1. Addition of speeds214

Let’s demonstrate the addition operation using both branches of diagrams (43),215

that is, both performing a full transformation cycle and performing a short relativistic216

transformation E. For other operations, for brevity, we will only use the E operation.217

The Lorentz transformation is determined by multiplying by a hyperbolic complex
number with unit module exp{eψ}, as a result, the Minkowski plane is rotated by the
angle ψ:

z1(ϕ)z2(ψ) = exp{eϕ} exp{eψ} = exp{e(ϕ + ψ)} = z(ϕ + ψ). (44)

Replacing rapidity with speed, from (44) we get:

z
(

artanh
v1

c
+ artanh

v2

c

)
= exp

{
e
(

artanh
v1

c
+ artanh

v2

c

)}
.

Following the expression (7), let’s pass on to real relativistic velocities:

(v1 + v2)Λ = c tanh
(

artanh
v1

c
+ artanh

v2

c

)
.

Let’s demonstrate the same with the E operation. Based on the diagram (43), we
may write the addition operation:

E(v1 + v2) = c tanh
(

artanh
v1

c
+ artanh

v2

c

)
=

= c
tanh artanh

v1

c
+ tanh artanh

v2

c
1 + tanh artanh

v1

c
tanh artanh

v2

c

=
v1 + v2

1 +
v1v2

c2

. (45)

We may write this operation for an arbitrary number of operands. For example, for
three operands, we will get the following expression:

E(v1 + v2 + v3) =
v1 + v2 + v3 +

v1v2v3

c2

1 +
v1v2 + v1v3 + v2v3

c2

. (46)

It can be seen from the above relations that the addition operation in the proposed218

formalism coincides with the generally accepted one, but at the same time, it is easier to219

use.220

8.2. Multiplication of velocities221

The operation of multiplication of velocities is usually not used in relativistic
calculations.
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E(v1v2) = c tanh
(

artanh
v1

c
artanh

v2

c

)
=

= c tanh
(

1
2

ln
(

1 + v1/c
1− v1/c

)
1
2

ln
(

1 + v2/c
1− v2/c

))
=

= c
exp

[
1
2

ln
(

1 + v1/c
1− v1/c

)
ln
(

1 + v2/c
1− v2/c

)]
− 1

exp
[

1
2

ln
(

1 + v1/c
1− v1/c

)
ln
(

1 + v2/c
1− v2/c

)]
+ 1

.

8.3. Multiplication by a number222

Consider the multiplication of the velocity vector by the number k ∈ R in the
proposed representation:

E(kv) = c tanh
(

k artanh
v
c

)
c

exp
[
k ln
(

1+ v/c
1− v/c

)]
− 1

exp
[
k ln
(

1+ v/c
1− v/c

)]
+ 1

= c

(
1+ v/c
1− v/c

)k
− 1(

1+ v/c
1− v/c

)k
+ 1

c
(
1 + v

c
)k −

(
1− v

c
)k(

1 + v
c
)k

+
(
1− v

c
)k . (47)

Obviously, the expression (47) will never exceed the speed of light c:

lim
k→∞

E(kv) = c.

As an example, we may write the expression for E(2v) using (45) and (47). From (45)
we get:

E(2v) = E(v + v) =
2v

1 +
v2

c2

. (48)

From (47) we obtain:

E(2v) = c
(
1 + v

c
)2 −

(
1− v

c
)2(

1 + v
c
)2

+
(
1− v

c
)2 = c

4
v
c

2
(

1 +
v2

c2

) =
2v

1 +
v2

c2

. (49)

We may see that the results of (48) and (49) are the same. Thus, the proposed representa-223

tion does not contradict the speed addition procedure. The procedure for multiplying224

the speed by a number is consistent with the procedure for adding speeds.225

Similarly, we can write the expression for E(3v) using (46) and (47). From (46) we
obtain:

E(3v) = E(v + v + v) =
3v +

v3

c2

1 + 3
v2

c2

. (50)

From (47) we get:

E(3v) = c
(
1 + v

c
)3 −

(
1− v

c
)3(

1 + v
c
)3

+
(
1− v

c
)3 =

3v +
v3

c2

1 + 3
v2

c2

. (51)

Obviously, the results of (50) and (51) are the same.226
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9. Repeal of paradoxes arising from relativistic operations227

Section 4 describes several so-called paradoxes, which lead to the fact that the228

operations of multiplication and division or multiplication by a number formally lead to229

the fact that speeds higher than the speed of light arise. Let’s apply to these examples230

the obtained formula (47) for multiplication by a number.231

9.1. Oblique incidence of light232

Based on the equation (47), we can rewrite the paradoxical relation (1) in the
relativistic case in the proposed representation:

v = E

(
c

sin ϕ

)
= c

(
1 + c

c
) 1/sin ϕ −

(
1− c

c
) 1/sin ϕ(

1 + c
c
) 1/sin ϕ

+
(
1− c

c
) 1/sin ϕ

= c.

9.2. Phase velocity233

Based on the generally accepted definition of multiplication by a number, from
the equation (2) we concluded that the phase velocity might exceed the speed of light.
However, if we replace the usual multiplication with the relativistic one according to the
formula (47), we obtain:

vp(ϕ) = E

(
vp(0)
cos ϕ

)
= c

(
1 + vp(0)

c

) 1/cos ϕ
−
(

1− vp(0)
c

) 1/cos ϕ

(
1 + vp(0)

c

) 1/cos ϕ
+
(

1− vp(0)
c

) 1/cos ϕ
. (52)

Let’s write the limit of the equation (52):

lim
cos ϕ→0

vp(ϕ) = c.

The phase speed is not greater than the speed of light.234

Thus, with the consistent application of the proposed relativistic operations, no235

paradoxes arise.236

10. Conclusion237

The restriction of relativistic operations to only group operations seems to be238

insufficient. Insufficiency of these operations leads to paradoxes based on multiplication239

by a large number (division by a small number). The proposed algebraic extension of240

relativistic operations for velocities demonstrates that the considered class of paradoxes241

turns out to be imaginary. Instead of constructing a new relativistic algebra, the authors242

use the algebra of hyperbolic complex numbers. This approach is based on the Cayley243

- Klein classification and allows one to describe any space of a given model. As an244

advantage of this method, we can point out the fact that this approach can be extended245

from operations on collinear speeds to the full four-dimensional case with operations on246

4-speeds using well-known mathematical procedures.247
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