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Abstract

Indoor Air Quality (IAQ) in educational environments is a critical determinant of students’ health,
well-being, and learning performance, with inadequate ventilation and pollutant accumulation
consistently associated with respiratory symptoms, fatigue, and impaired cognitive outcomes.
Conventional monitoring approaches—based on periodic inspections or subjective perception—
provide only fragmented insights and often underestimate exposure risks. Artificial intelligence (AI)
offers a transformative framework to overcome these limitations through sensor calibration, anomaly
detection, pollutant forecasting, and the adaptive control of ventilation systems. This review critically
synthesizes the state of Al applications for JAQ management in educational environments, drawing
on twenty real-world case studies from North America, Europe, Asia, and Oceania. The evidence
highlights methodological innovations ranging from decision tree models integrated into large-scale
sensor networks in Boston, to hybrid deep learning architectures in New Zealand, and regression-
based calibration techniques applied in Greece. Collectively, these studies demonstrate that Al can
substantially improve predictive accuracy, reduce pollutant exposure, and enable proactive, data-
driven ventilation management. At the same time, cross-case comparisons reveal systemic
challenges—including sensor reliability and calibration drift, high installation and maintenance costs,
limited interoperability with legacy building management systems, and enduring concerns over
privacy and trust. Addressing these barriers will be essential for moving beyond localized pilots. The
review concludes that Al holds transformative potential to shift school IAQ management from
reactive practices toward continuous, adaptive, and health-oriented strategies. Realizing this
potential will require transparent, equitable, and cost-effective deployment, positioning Al not only
as a technological solution but also as a public health and educational priority.

Keywords: indoor air quality; machine learning; deep learning; educational buildings;
sustainable buildings; healthy buildings

1. Introduction

The building sector is responsible for approximately 30-40% of global final energy consumption
and nearly 30% of energy-related CO, emissions [1-4]. Consequently, research and policy have
largely emphasized energy efficiency measures, renewable integration, and the deployment of smart
building technologies [5-9]. To this end, sustainable buildings have become a cornerstone of global
strategies to mitigate climate change, reduce energy demand, and enhance human well-being [10,11].
Yet, sustainability also encompasses the health and comfort of occupants, making indoor
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environmental quality a critical dimension of building performance. Among its components, indoor
air quality (IAQ) is of particular concern because it directly influences human health, productivity,
and cognitive function [12,13].

Educational environments require special attention. Children spend up to 90% of their time
indoors, and schools are among the most densely occupied building types [14]. Poor IAQ in
classrooms has been consistently linked to respiratory illnesses, asthma, allergies, fatigue, and
impaired cognitive outcomes [15-17]. Empirical evidence from European and North American
schools shows that carbon dioxide (CO;) concentrations frequently exceed the recommended 1000
ppm threshold, with many classrooms reporting values above 2000 ppm due to inadequate
ventilation [18,19]. High levels of particulate matter [20,21] volatile organic compounds (VOCs) [19],
ozone [22], and nitrogen dioxide [23] are also common in urban schools, further compromising
children’s health. These findings underline that IAQ is not only a comfort issue, but also a public
health priority and a key determinant of sustainable school design.

Traditional IAQ monitoring methods face significant shortcomings. Periodic inspections offer
only episodic snapshots of classroom conditions, while reliance on subjective perception often leads
to underestimation of pollutant levels [24]. Even with the deployment of continuous sensor networks,
technical challenges such as calibration drift, measurement noise, and heterogeneity across devices
undermine reliability. This complexity calls for analytical approaches capable of managing high-
frequency, multivariate, and dynamic datasets that characterize real-world classroom environments.

Artificial intelligence (AI) has emerged as a promising framework to address these challenges.
Classical machine learning (ML) techniques—such as decision trees, support vector machines
(SVMs), and random forests—have demonstrated strong predictive capability in pollutant trend
estimation and classification of IAQ states [5]. More advanced deep learning (DL) architectures,
including convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-
term memory (LSTM) models, and autoencoders, extend these capabilities by automatically learning
spatiotemporal dependencies, filtering noise, and enhancing anomaly detection. These methods
enable a range of tasks critical for IAQ management: (i) sensor calibration using regression and
feature engineering to correct biases in low-cost devices; (ii) pollutant forecasting (e.g., CO,,
particulate matter with an aerodynamic diameter of 2.5 micrometers or less, PM,.5) to support
preemptive ventilation control; (iii) anomaly detection in time-series to flag system malfunctions or
atypical occupancy; and (iv) multi-objective optimization of heating, ventilation, and air conditioning
(HVAC) systems, balancing IAQ improvements with energy efficiency.

Recent reviews have proposed a systematic framework that classifies Al applications for air
quality monitoring into five domains: sensor calibration, anomaly detection, air quality index
estimation, short-term forecasting, and integrated control [25,26]. This framework underscores both
the opportunities and the challenges of deploying Al, particularly with respect to data reliability,
scalability, and system integration. By organizing diverse applications into coherent categories and
evaluating their strengths and limitations, this body of work demonstrates how Al can move IAQ
assessment from episodic and reactive approaches toward continuous, predictive, and adaptive
management.

Despite these advances, the application of Al to IAQ in educational environments remains
fragmented and underdeveloped. First, most reported studies are localized pilot projects confined to
individual schools or small samples under specific climatic and infrastructural conditions [27,28].
Such narrow scopes restrict generalizability and make it difficult to evaluate the scalability of Al-
based solutions across diverse educational contexts. Second, while many models achieve high
predictive accuracy in controlled settings such as [27,29], few address issues of long-term
sustainability [30]. Performance often deteriorates without frequent retraining, and persistent
problems of sensor calibration and data drift remain unresolved. These limitations undermine the
robustness and reliability of Al systems in real-world deployments. Third, the integration of Al with
legacy HVAC and Building Management Systems (BMS) has received limited attention [31,32], even
though automated ventilation control depends on such interoperability in most schools. Without
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seamless integration, Al tools risk functioning as isolated analytics rather than as actionable decision-
support systems. Fourth, the social and ethical dimensions of Al adoption—including privacy
protection, data security, transparency, and trust among teachers, parents, and administrators —are
seldom addressed in technical studies [33,34]. Yet, these considerations are critical for acceptance in
sensitive environments such as schools. Finally, to date there has been no systematic review
consolidating international evidence on Al for IAQ in schools. Existing reviews tend to emphasize
energy efficiency [35,36], or general air quality [25,37] leaving a gap in understanding how
methodological advances, practical challenges, and contextual constraints intersect in educational
settings.

The objective of this review is to critically examine the applications of AI for IAQ management
in educational environments, with a focus on both methodological innovation and practical
deployment. Specifically, the review seeks to:

(a) Synthesize methodological advances in Al-based IAQ monitoring, prediction, and control, including the
use of (ML), (DL), and hybrid models;

(b) Assess outcomes across diverse geographical and socio-technical contexts, drawing on twenty
representative international case studies that span North America, Europe, Asia, and Oceania;

(c) Identify systemic barriers—technical (e.g. data scarcity, model generalizability), economic (e.g. cost of
deployment and maintenance), and ethical (e.g. privacy and trust) —that constrain the broader adoption of
Al in schools;

(d) Highlight pathways for future research and implementation, emphasizing scalability, sustainability, and
equity in educational settings.

The selection of literature followed a selective but comprehensive review strategy rather than a
systematic database search. The main criteria guiding inclusion were: (i) relevance to Al applications
for IAQ in schools; (ii) methodological rigor and empirical validation; (iii) diversity of approaches,
ranging from classical ML to advanced DL and hybrid models; and (iv) practical applicability,
including real-world case studies and integration with HVAC or smart campus systems. In doing so,
the review provides not only a state-of-the-art synthesis of current practice, but also a forward-
looking framework for advancing Al-enabled IAQ management in educational environments.

The innovation of this review lies in its integrative and critical perspective. While most prior
studies have examined Al in buildings primarily for energy efficiency or in general indoor
environments [32,35], few have addressed the specific challenges of schools, where children’s
heightened vulnerability, high occupancy rates, and limited resources necessitate tailored
approaches [27,28]. This review advances the field by offering a comparative synthesis of real-world
Al applications in educational settings, explicitly linking technical performance metrics —such as
forecasting accuracy, anomaly detection, and adaptive control —with broader systemic issues of
scalability, equity, and privacy. Beyond framing Al as a technological solution, the review positions
its adoption as both a public health imperative and an educational priority. By examining Al within
the interconnected domains of sustainability, health, and education, this review extends beyond
conventional technical surveys to systematically evaluate the potential of an integrated approach to
IAQ management. The novelty of this work therefore lies not only in synthesizing algorithmic
advances, but also in demonstrating that Al's impact should be evaluated based on its capacity to
deliver equitable, transparent, and sustainable improvements to learning environments. In doing so,
this review charts clear directions for future research and practice, identifying pathways to advance
from fragmented pilot studies toward globally scalable and impactful solutions.

The remainder of this paper is structured as follows: section 2 provides an overview of IAQ
challenges in educational environments; section 3 reviews the main categories of Al methods (ML,
DL, and hybrid models) applied to IAQ; section 4 synthesizes findings from twenty representative
case studies worldwide; and finally, section 5 offers a critical discussion of implications, limitations,
and future directions.
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2. Indoor Air Quality in School Environments: Key Considerations and
Determinants

Indoor air quality (IAQ) refers to the condition of indoor air in relation to occupants’ health,
comfort, and performance, encompassing pollutant concentrations, odors, and the adequacy of
ventilation [38]. In school environments, this concept acquires heightened importance because
children spend extended hours indoors, exhibit higher inhalation rates per body weight compared to
adults, and are physiologically more vulnerable to environmental stressors. A substantial body of
evidence links inadequate IAQ in classrooms to respiratory illnesses, allergy symptoms, absenteeism,
and impaired cognitive functions, thereby influencing both health and learning outcomes [14,37,39-
41].

These challenges are compounded by structural and operational characteristics of schools, such
as high occupant density, limited ventilation rates, and aging infrastructures with outdated heating,
ventilation, and air-conditioning (HVAC) systems [42]. Furthermore, many educational buildings
were constructed with limited consideration of modern energy and IAQ standards, leading to
situations where efforts to improve ventilation and pollutant removal directly conflict with energy
conservation goals [16]. As a result, ensuring satisfactory IAQ in schools requires not only identifying
the predominant pollutants and their sources but also evaluating the building’s ability to balance air
exchange, filtration efficiency, and energy performance [43].This dual perspective places IAQ
management in schools at the intersection of public health and smart building design, underlining
the need for innovative approaches, such as sensor-based monitoring and Al-driven optimization, to
deliver safe, healthy, and sustainable learning environments [44-46].

2.1. Classification and Sources of Indoor Air Pollutants

Indoor air pollutants in schools originate from both indoor emission sources and outdoor
infiltration, with their impacts often amplified by high occupant density, inadequate ventilation rates,
and outdated building infrastructures [22,23,47-50]. Among the most widely studied indicators of
indoor air quality, carbon dioxide (CO.) serves as both a contaminant of concern and a widely used
proxy for ventilation adequacy [51]. CO, is primarily generated by human respiration, with
additional contributions from combustion-based heating systems. In classrooms with insufficient
ventilation, concentrations frequently surpass recommended thresholds of 1000 ppm established by
international standards such as ASHRAE 62.1 and EN 16798 [38,52]. Prolonged exposure to elevated
CO; levels has been associated with symptoms including headaches, fatigue, and drowsiness, as well
as with measurable decrements in students’ concentration, decision-making, and overall cognitive
performance [28,42,53]. Importantly, strategies to reduce CO. concentrations through increased
ventilation often impose significant energy penalties, particularly in climates requiring substantial
heating or cooling, thereby illustrating the persistent trade-off between IAQ management and energy
efficiency in educational buildings [45].

Particulate Matter (PM,.5 and PMy) constitutes a critical pollutant group in school environments,
comprising airborne particles with aerodynamic diameters below 2.5 pm and 10 pum, respectively.
These particles remain suspended for extended periods and can penetrate deeply into the respiratory
tract, where they are associated with adverse cardiovascular and respiratory outcomes [15]. In
addition to fine and coarse fractions, ultrafine particles (UFPs, <0.1 um) are increasingly recognized
as a concern due to their ability to translocate into the bloodstream and exert systemic health effects
[46,54].

In schools, PM originates from a combination of outdoor sources—notably traffic-related
emissions and resuspension of playground dust—and indoor sources such as cleaning activities,
combustion appliances, chalk use, and resuspension from floors and furniture. Elevated
concentrations of PM,.s and PMj, have been consistently linked to increased incidence of asthma
symptoms, reduced lung function, and higher absenteeism among children, who are physiologically
more vulnerable to inhaled pollutants [46,53].
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The mitigation of PM exposure in classrooms typically relies on increased ventilation or filtration
efficiency, but both approaches carry significant energy implications. Enhanced ventilation dilutes
indoor concentrations but increases heating and cooling demand, while advanced filtration
technologies improve IAQ at the expense of higher fan energy use. This duality underscores the
necessity of optimizing PM control strategies within an integrated IAQ-energy management
framework [55].

Volatile Organic Compounds (VOCs) represent a diverse group of carbon-based chemicals that
readily evaporate at room temperature and are frequently detected in school environments [56].
Common sources include cleaning products, paints, adhesives, flooring materials, and furnishings,
with formaldehyde—a major constituent of pressed wood products such as desks and cabinets —
being one of the most prevalent and well-documented indoor VOCs [57]. Acute exposure to VOCs
can cause mucosal irritation, headaches, dizziness, and fatigue, whereas chronic exposure has been
associated with more severe health outcomes, including asthma development, nasopharyngeal
cancer, and myeloid leukemia [28,53]. Children are especially vulnerable because of their higher
inhalation rates relative to body weight and their physiologically immature detoxification systems
[58]. The continuous low-level release of VOCs from construction materials and consumer products
results in cumulative exposures that pose risks to both health and learning performance. Strategies
to mitigate VOC levels typically involve source control (selecting low-emission building materials
and furnishings) and ventilation enhancement, yet these measures often entail an energy penalty.
Increased ventilation raises heating and cooling demand, while advanced filtration or sorption
technologies elevate operational energy use [59]. This duality underscores the importance of
integrating material selection, ventilation design, and IAQ monitoring within a broader framework
of energy-efficient building operation.

Biological contaminants constitute a major determinant of indoor air quality in schools, where
high occupancy density and variable maintenance practices create favorable conditions for microbial
growth and transmission. Fungal contamination is particularly common in damp environments,
arising when relative humidity exceeds 60% or when water damage compromises walls, ceilings,
carpets, or books [60]. Exposure to mold spores has been consistently associated with asthma
exacerbation, allergic responses, and respiratory symptoms, with children and individuals with pre-
existing conditions being the most vulnerable populations [15,61].

Beyond fungi, bacteria and viruses readily circulate in crowded classrooms through both
airborne droplets and contact with contaminated surfaces [62]. Pathogens of concern include
Streptococcus pneumoniae, Rhinovirus, influenza viruses, and more recently SARS-CoV-2, whose
airborne transmission highlighted the central role of ventilation and filtration effectiveness in
infection control [63,64]. Inadequate ventilation, poor humidity regulation, and insufficient HVAC
maintenance exacerbate microbial accumulation and persistence, whereas interventions such as
mechanical ventilation upgrades, high-efficiency filtration, and humidity control have been shown
to mitigate transmission risks.

The presence of biological pollutants not only undermines student health but also results in
increased absenteeism among pupils and staff, thereby reducing overall learning outcomes and
institutional productivity. Importantly, effective mitigation strategies often require higher ventilation
and filtration rates, which can substantially increase energy demand. This reinforces the need for
integrated IAQ-energy management frameworks that leverage advanced monitoring, predictive
modeling, and smart building operation to maintain healthy indoor environments in schools without
compromising energy efficiency [42,55].

In addition to CO,, PM, and VOCs, gaseous pollutants such as nitrogen dioxide (NO;) and
tropospheric ozone (Os) represent significant concerns in school environments [22,23]. NO, originates
predominantly from outdoor traffic-related emissions, with additional contributions from unvented
gas appliances and combustion-based heating systems indoors. Elevated NO, levels have been
consistently associated with airway inflammation, asthma exacerbation, and reduced lung function
in children [22]. By contrast, O; is largely introduced from outdoor air, although it can also be

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2025 d0i:10.20944/preprints202510.0583.v1

6 of 35

generated indoors by certain electronic devices and cleaning technologies. Exposure to tropospheric
ozone has been linked to eye and throat irritation, impaired pulmonary function, and worsening of
asthma symptoms [23]. Both pollutants highlight the strong dependence of indoor air quality on
ambient outdoor conditions and building ventilation dynamics. Schools situated near major roads or
in urban pollution hotspots are especially vulnerable, as pollutant infiltration often coincides with
inadequate building envelope performance and insufficient filtration. Moreover, ozone readily reacts
with indoor VOCs, forming secondary pollutants such as formaldehyde and ultrafine particles,
further compounding health risks [56,65]. Mitigation strategies—including enhanced filtration,
demand-controlled ventilation, and selective air intake scheduling — can effectively reduce exposures
but frequently increase energy demand, underlining the need for integrated IAQ-energy
management solutions [66].

A synthesis of the principal pollutant groups relevant to school environments, along with their
dominant sources and associated health and performance outcomes, is presented in Table 1. The table
highlights the broad spectrum of contaminants typically encountered in classrooms and shows how
school-specific conditions —such as high occupant density, intensive use of materials, and insufficient
ventilation—can substantially exacerbate exposures. By systematically linking pollutant categories
with their health and cognitive effects, Table 1 offers a structured framework for understanding the
mechanisms through which indoor contaminants contribute to both acute symptoms and long-term
risks in students and staff. Moreover, this synthesis emphasizes that pollutant management in schools
cannot be decoupled from building operation: strategies to reduce exposure often influence energy
performance, reinforcing the need for integrated approaches that jointly address IAQ, health, and
sustainability objectives.

Table 1. Major pollutant categories relevant to school environments, their typical indoor and outdoor sources,

and associated health and performance impacts on students and staff.

Main health and

Reference Pollutant Primary sources in schools .
performance impacts

Fatigue, drowsiness,
impaired concentration,
reduced cognitive
performance

Occupant respiration, inadequate
[18,19] Carbon dioxide (CO,)  ventilation, combustion from
heating

Chalk dust, resuspension of
settled particles, outdoor traffic
and exhaust fumes, indoor

Respiratory tract irritation,
[48] PM (PMz.5 / PMy) asthma exacerbation,

. o increased absenteeism
cleaning activities

Headaches, allergic
reactions, mucosal
irritation, long-term
carcinogenic potential

Cleaning products, paints,
[19,56,67,68] VOCs adhesives, furniture, carpets,
wooden materials

Elevated humidity, water ~ Allergies, asthma onset and
[69,70] Fungi (mould) damage, poor maintenance and attacks, respiratory
cleanliness symptoms

Respiratory infections,
influenza, COVID-19,
school absenteeism

Occupants, contaminated

2,64 Bacteri d vi
[62.64] acteria and viruses surfaces, airborne droplets

Outdoor infiltration from
ambient air (particularly in
urban areas with high
photochemical smog), Indoor
generation from certain devices,
Secondary chemical reactions
indoors

Eye and airway irritation,
Tropospheric Ozone asthma aggravation,

[22,65] ©)

reduced attention,
absenteeism
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Outdoor traffic emissions, Indoor =~ Respiratory irritation,

combustion sources, Proximity to  asthma exacerbation,

[23]  Nitrogen Dioxide (NO2) ) y ,
parking areas or bus drop-off reduced lung function,

zones. absenteeism

While the presence of indoor pollutants is a central concern, the overall quality of classroom air
is equally governed by environmental, operational, and structural determinants that mediate
exposure dynamics. Ventilation strategy, thermal and moisture conditions, building envelope
performance, emission characteristics of construction materials, occupancy density, and HVAC
operation and maintenance interact in complex ways to shape pollutant concentrations and their
associated health outcomes [71,72]. Importantly, these same parameters also influence energy
demand, underscoring the need to evaluate IAQ within the broader context of sustainable building
performance [73]. Systematically addressing these determinants is therefore critical for the design of
resilient, energy-efficient, and health-promoting learning environments. Table 2 synthesizes the
principal factors affecting IAQ in schools and outlines targeted interventions aimed at mitigating
risks while supporting both student well-being and institutional sustainability.

The determinants outlined in Table 2 demonstrate that indoor air quality in schools is shaped
not only by the presence of pollutants but also by the operational, environmental, and structural
characteristics of the building. Inadequate ventilation remains one of the most critical drivers of
elevated CO; and particulate concentrations, particularly in densely occupied, naturally ventilated
classrooms [15,17,38,46]. Thermal and humidity regulation is equally essential, as deviations from
recommended ranges not only compromise thermal comfort but also promote microbial growth and
survival, thereby amplifying respiratory health risks [16,74]. Building materials and cleaning
practices act as additional emission sources, with furnishings, paints, adhesives, and detergents
identified as major contributors of VOCs and allergens [15,16]. Moreover, poor maintenance of
HVAC systems diminishes filtration efficiency, encourages microbial proliferation, and facilitates the
accumulation of chemical and biological contaminants [38,53]. Taken together, these findings
highlight the need for integrated IAQ management strategies that couple technological
interventions—such as advanced filtration, humidity control, and demand-controlled ventilation—
with behavioral and policy measures, including low-emission material selection, pollutant source
reduction, and systematic maintenance protocols. Importantly, because many of these interventions
directly affect building energy demand, IAQ management must be embedded within a broader
sustainability framework that balances health protection, energy efficiency, and climate objectives.

Table 2. Key environmental and structural determinants of indoor air quality in school buildings, together with

their descriptions and recommended intervention measures to sustain healthy learning environments.

Reference Key determinant Description Recommended Measures

Particulate matter, volatile

organic compounds,
Pollutant load
[19,40,41,47,75] oftutant foa allergens (e.g., mould, dust
mites), and chemical residues.

Use air purifiers; limit the use
of high-emission cleaning
products and chemical agents.

Elevated temperature and Maintain indoor temperature

. humidity favour microbial within comfort ranges;
Thermal and moisture . . ) .
[16,76] . growth, while excessively ~ regulate relative humidity

conditions .
low temperatures can cause between 30-60% using

respiratory discomfort humidifiers/dehumidifiers.

Adequate aeration removes Implement sufficient natural
[15,17,77] Ventilation efficiency pol?utants anfjl contaminants f)r mechanical 'Ven.tilat.ion;
while supplying oxygenated install and maintain high-

air. efficiency particulate filters.
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Emissions from smoking, Prohibit indoor smoking;
[15,16] Pollution sources cleaning products, building  select low-emission, eco-
! materials, furniture, and certified materials; store
appliances degrade IAQ. cleaning agents safely.
Conduct regular HVAC

Proper HVAC design,
operation, and cleanliness
directly influence IAQ levels.

Building operation inspection and maintenance;
clean or replace filters

periodically.

38,53
[38,53] and maintenance

2.2. Impacts of IAQ on Health and Educational Performance

Poor TAQ in schools has been consistently associated with adverse health outcomes and
impaired academic performance, with children representing a particularly vulnerable population
due to their immature respiratory and immune systems, higher ventilation rates per body weight,
and longer daily occupancy indoors [78]. Exposure to pollutants such as PM,.5, PMjo, CO,, and VOCs
increases both the prevalence and severity of asthma, allergies, and other respiratory conditions,
often manifested as sneezing, nasal congestion, eye irritation, coughing, and dermatological
symptoms [28,79]. Acute exposures, especially elevated CO, concentrations in inadequately
ventilated classrooms, are frequently associated with fatigue, headaches, dizziness, and discomfort,
which undermine students’ physical well-being and directly reduce attention, concentration, and
decision-making capacity [15].

Beyond short-term symptoms, poor IAQ has been shown to contribute to increased absenteeism,
reduced standardized test scores, and diminished classroom engagement, thereby exerting
measurable effects on educational outcomes [55,80]. These findings underline that the consequences
of inadequate IAQ extend well beyond health risks, shaping both the learning efficiency of students
and the overall productivity of school systems. These health burdens translate directly into
educational performance. Students experiencing respiratory or pollutant-related symptoms are more
likely to miss school, disrupting learning continuity and long-term academic progress. Even in the
absence of absenteeism, poor IAQ exerts measurable effects on cognitive function: high CO, levels
reduce alertness, concentration, and decision-making accuracy [61], while exposure to particulate
matter and VOCs further impairs attention span and task completion [15,28]. The cumulative
evidence demonstrates that inadequate IAQ simultaneously compromises children’s health and their
capacity to learn, underscoring air quality management as a prerequisite not only for safeguarding
well-being but also for sustaining academic performance in educational settings [61]. Figure 1
illustrates the pathways linking IAQ determinants to health outcomes and educational achievement.

2.3. Regulatory Framework and Standards for IAQ in School Environments

Ensuring adequate indoor air quality (IAQ) in schools is widely recognized as a fundamental
prerequisite for safeguarding student health, well-being, and academic performance, and is therefore
embedded within a range of international and national regulatory frameworks. Although these
frameworks differ in scope, specificity, and enforcement, they share the overarching objective of
defining acceptable pollutant thresholds and establishing protocols for monitoring and managing air
quality in educational environments [58].
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Figure 1. Conceptual representation of the main sources and categories of indoor air pollutants in school

environments.

In the United States, ASHRAE has established performance-based standards for schools, most
notably in ASHRAE Standard 62.1, which prescribes a minimum outdoor airflow rate of 10 L/s per
person (equivalent to ~10 L/min per student), alongside criteria for air filtration, humidity regulation,
and CO; concentration control, in order to ensure both health protection and thermal comfort [76].
Complementing these technical standards, the U.S. Environmental Protection Agency (EPA)
developed the Indoor Air Quality Tools for Schools program, which provides a structured framework
for pollutant monitoring, ventilation management, and stakeholder engagement, thereby facilitating
the translation of regulatory guidance into operational practice within educational facilities [53].

At the European level, EN 16798-1 specifies ventilation requirements for non-residential
buildings, including classrooms, with reference to both per-person airflow rates and indoor CO,
thresholds relative to outdoor concentrations, while the World Health Organization (WHO, 2010) has
issued guideline values for key pollutants such as formaldehyde, benzene, NO,, and PM,.s. These
frameworks highlight the dual challenge of achieving adequate IAQ while controlling the energy
implications of ventilation and filtration, a balance that remains particularly difficult in aging school
infrastructures with limited retrofitting capacity.

At the international level, the WHO has issued air quality guidelines that are widely referenced
in the management of IAQ in schools, with recommended thresholds of 10 pg/m? for PM,.s and 20
pg/m3 for PMjo (annual mean values) [21]. These guidelines underscore the heightened susceptibility
of children to air pollution, linking exposure to fine particulate matter with increased respiratory
morbidity and long-term health risks. In parallel, performance-based ventilation standards such as
those set by ASHRAE and the European Standard EN 16798-1 specify a maximum indoor CO;
concentration of 1000 ppm, which is commonly adopted as a benchmark for adequate classroom
ventilation [76].

Within the European Union, regulatory attention to IAQ has expanded through both legislative
and technical instruments. The revised Energy Performance of Buildings Directive (Directive
2018/844/EU) explicitly incorporates IAQ as a requirement for healthy indoor environments, with
Article 13 encouraging the monitoring of key pollutants in high-occupancy spaces such as
classrooms. Complementing this, the European Standard EN 16798 specifies performance-based
ventilation requirements, including a minimum outdoor airflow of 7 L/s per person and an indoor
CO; concentration not exceeding 1000 ppm [52]. By coupling pollutant control with energy efficiency
objectives, these measures reflect a growing policy emphasis on integrated approaches that safeguard
occupant health while supporting sustainability targets [19,81].

Despite the establishment of regulatory frameworks, substantial challenges and limitations
remain in practice. Compliance is often hampered by financial constraints, outdated infrastructure,
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and inconsistent enforcement mechanisms, particularly in older or underfunded schools where
resources for retrofitting are limited. Furthermore, most current regulations adopt a static,
prescriptive approach that does not adequately reflect the complexity of pollutant dynamics or the
variability of classroom occupancy and use. Crucially, existing standards rarely integrate emerging
technologies such as Al-enabled real-time monitoring, predictive modeling, and adaptive ventilation
control, which offer considerable potential for achieving dynamic, cost-effective, and energy-efficient
IAQ management [13]. Addressing these gaps will require not only more rigorous implementation
of existing requirements but also the systematic incorporation of smart, data-driven strategies into
regulatory and operational practice, thereby aligning IAQ management with broader objectives of
health protection, energy efficiency, and long-term sustainability in school environments.

2.4. IAQ in educational environments: Challenges, Innovations, and Policy Prospects

Despite decades of research, achieving adequate IAQ in educational environments remains a
persistent and systemic challenge. Recurrent issues include non-standardized ventilation practices,
frequent exceedances of pollutant thresholds, and limited policy prioritization, particularly in older
or under-resourced educational facilities [46,64,78]. These challenges are compounded by the absence
of harmonized, child-specific exposure limits and the lack of comprehensive long-term monitoring
frameworks, which together constrain efforts to establish robust, evidence-based links between IAQ
conditions, health outcomes, and educational performance.

At the same time, technological and analytical innovations provide promising avenues for
improvement. Advances in low-cost sensor networks and real-time monitoring platforms are
increasingly being deployed to track pollutant concentrations in classrooms, with growing efforts to
integrate IAQ metrics with student health and cognitive performance indicators [82]. In parallel,
statistical and machine learning models have quantified the effects of CO,, PM, and other pollutants
on outcomes such as attention, fatigue, and academic productivity, reinforcing the central role of IAQ
in promoting both health and educational equity [83]. However, these initiatives remain fragmented
and largely experimental, with limited validation across diverse climatic and socioeconomic contexts
and insufficient incorporation into binding regulatory and design frameworks. Without systematic
integration into school building standards and operational protocols, the potential of these
innovations to deliver sustainable, scalable, and equitable improvements in IAQ will remain
underutilized.

Taken together, the current body of evidence underscores the need for a coordinated,
technology-enabled approach to IAQ management in schools. This requires not only the deployment
of smart ventilation systems, sensor-based monitoring platforms, and predictive control strategies,
but also the systematic alignment of IAQ objectives with broader health, education, and sustainability
policies at both national and supranational governance levels. To support this integration, Table 3
synthesizes recent insights from the literature, structuring them into focus areas, innovation
highlights, critical gaps, and future prospects, thereby providing a strategic roadmap for research,
policy development, and practical implementation in school environments.

The synthesis presented in Table 3 shows that, although research on IAQ in educational
environments has expanded substantially, progress remains fragmented and uneven across thematic
domains. Natural ventilation and CO, monitoring are among the most frequently studied strategies;
however, their effectiveness is limited by the lack of enforceable performance standards and the
persistent over-reliance on CO; as a proxy for IAQ, despite its inability to capture chemical and
biological exposures [37,79]. Efforts to establish links between pollutant exposure, child-specific
health outcomes, and cognitive performance show considerable promise but are hindered by the
absence of harmonized thresholds and the limited availability of longitudinal epidemiological
datasets [13,58]. Similarly, while sensor-based monitoring, statistical modelling, and data-driven
ventilation strategies offer transformative potential, their impact is curtailed by the lack of
standardized calibration protocols, interoperability frameworks, and coordinated large-scale
deployment, which restrict both comparability across studies and scalability in practice [53,79].
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A recurrent theme is the imbalance between technological innovation and policy adoption.
Programs such as the EPA’s IAQ Tools for Schools [53]provide structured governance frameworks,
yet their voluntary nature and lack of enforcement limit their systemic impact. Within Europe,
uneven policy prioritization and resource allocation continue to perpetuate disparities in IAQ, with
disadvantaged schools disproportionately affected [63]. This reinforces the need for EU-level
mandates, harmonized child-specific exposure standards, and dedicated funding mechanisms to
ensure equitable protection.

Crucially, IAQ in schools cannot be considered in isolation from energy performance objectives.
Strategies such as increased ventilation and advanced filtration improve pollutant control but often
elevate heating, cooling, and fan energy demand. The absence of integrated frameworks to reconcile
this trade-off highlights a major research and policy gap. The new row in Table 3 emphasizes that Al-
driven demand-controlled ventilation and predictive IAQ-energy modelling represent a promising
pathway to address this dual challenge. Embedding such approaches into building operation
protocols and regulatory standards will be essential to achieve healthy, energy-efficient, and
sustainable school environments.

Overall, Table 3 underscores the urgency of bridging the gap between scientific evidence,
technological innovation, and regulatory enforcement. A systemic approach that combines smart
monitoring technologies, predictive and adaptive ventilation control, child-focused exposure
guidelines, and binding governance frameworks, while simultaneously integrating energy efficiency
considerations, will be essential to translate current knowledge into effective, scalable, and
sustainable practice in schools.

Table 3. Strategic overview of IAQ research and practice in school environments, highlighting focus areas, recent

innovations, identified gaps, and future prospects for implementation.

Reference Focus area Innovation highlight Identified gaps Future prospects

Classroom-level CO,
Lack of enforcement and Integration of smart alerts and
Natural ventilation and  thresholds applied in

[37] o ; turall tlated standardization for natural ~ continuous CO, feedback
managemen naturally ventilate
’ 8 }}71 ) ventilation practices systems
schools
Development of health-
Evidence linking IAQ to P
[13,40,78] Health impacts of diatri ot d Absence of child-specific  integrated IAQ criteria in
,40, ediatric respiratory an
pollutants in schools P P Y IAQ exposure thresholds building and education

allergic outcomes o
policies

. . Deployment of low-cost Lack of harmonized IAQ Establishment of standardized
Ventilation strategies o o
[79] L sensor-based ventilation =~ monitoring protocols sensor networks for large-
and monitoring o
control across schools scale monitoring

Integration of IAQ

. . . » o o Longitudinal studies linking

Indoor environment and metrics with cognitive  Limited availability of . .

[58] . ] IAQ to learning achievements
learning outcomes and academic long-term outcome data . .

o and curriculum design

performance indicators

Advances in sensor Absence of unified Creation of open-access IAQ
Sensor technologies for
[53] TAQ calibration for protocols for sensor dashboards and data-sharing
deployment in schools placement and validation frameworks
Public health ) . ) o EU-level mandates and
. Regional mapping of Low policy prioritization .
[63] implications in EU ) o o . funding schemes to reduce
IAQ inequalities in disadvantaged regions . »
schools IAQ disparities
Reference Focus area Innovation highlight Identified gaps Future prospects
CO; and cognitionin  Statistical modelling of . Hybrid ventilation strategies
. Over-reliance on CO,as . .
[79] naturally ventilated =~ CO, effects on student Lo integrating multi-pollutant
the sole IAQ indicator
schools performance assessment
Quantified effects of ~ Limited field validation Development of

Ventilation and . . . . .
[57,79] . IAQ on brain function across diverse climaticand neurodevelopmental IAQ
cognitive performance . . Lo
and task performance  socio-economic contexts indices for schools
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Meta-analyses linking - . Incorporation of IAQ metrics

o . Insufficient attentionto .~ ]

[58] Productivity and IAQ  CO, thresholds with ) into indicators of educational
equity-related outcomes

student productivity access and equality

. EPA’s IAQ Tools for  Voluntary implementation Introduction of mandatory
Governance and policy o ] o )
[53] Schools providing an with no binding legal IAQ audits supported by
frameworks
operational framework effect federal or state funding

. Systemic frameworks
Al-driven demand-
o Limited integration of IAQ combining IAQ monitoring,
IAQ-energy trade-offs  controlled ventilation L. . .
[46,83] . and energy metrics in adaptive ventilation, and
and smart management and predictive JAQ- . -
. existing standards energy efficiency for
energy modelling . .
sustainable school operation

3. Artificial Intelligence Approaches for IAQ Assessment in Educational
Environments

Artificial intelligence (Al) is increasingly regarded as a transformative framework for indoor air
quality (IAQ) assessment in educational environments, where exposure is closely tied to health
outcomes and learning performance. Unlike conventional statistical or rule-based methods, Al can
integrate and analyze heterogeneous data sources—including pollutant concentrations,
meteorological drivers, ventilation rates, and dynamic occupancy profiles —to capture the nonlinear
interactions that govern IAQ variability [84-86]. For example, recent reviews of neural network and
machine learning models in school settings highlight their superiority over linear approaches in
capturing CO, variation under fluctuating occupancy and ventilation schedules [27]. Likewise,
Garcia-Pinilla et al. [87] demonstrated that ML-based models outperform simple methods for longer-
term CO, forecasting in school classrooms. Machine learning (ML) and Deep Learning (DL)
approaches, in particular, have been shown to enhance the accuracy of pollutant forecasting, enable
anomaly detection in sensor networks (e.g., LSTM-autoencoder models achieving > 99 % accuracy in
school IAQ time series [88]), and support adaptive control strategies for HVAC systems, including
DL-driven fault detection and diagnostics with F-measure values exceeding 0.97 [5,6,89-91]. Such
capabilities are especially relevant in educational buildings, where ventilation demand often
fluctuates rapidly and where traditional steady-state models fail to capture transient exposure
conditions. Nevertheless, the application of Al to IAQ in schools remains constrained by challenges
such as limited availability of long-term, high-resolution datasets, potential overfitting of models
trained on small or site-specific samples, lack of model generalization across different climatic and
building contexts [27], and difficulties in ensuring model interpretability for practical building
management[85]. Addressing these limitations is critical if Al is to evolve from a predictive tool
toward a reliable decision-support system for sustainable and health-oriented educational
environments. The hierarchical structure of Al, ML, and DL, and their respective roles in IAQ
modelling, is illustrated in Figure 2.
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Figure 2. Integration of ML and DL models within AI frameworks.

3.1. Machine Learning Methods

Unlike traditional statistical approaches, which often assume linear relationships, ML can
capture nonlinear dependencies among diverse environmental and operational variables, providing
more reliable predictions of pollutant behaviour [92,93]. In general, ML methods can be grouped into
four main categories according to how they learn from data [5]: (a) supervised learning, which relies
on labelled datasets to establish explicit input—output mappings and is commonly applied to tasks
such as pollutant classification or concentration forecasting [94], (b) unsupervised learning, which,
by contrast, works with unlabeled data to identify latent structures or clusters—for instance,
grouping classrooms by similar pollution profiles [95,96], (c) semi-supervised learning which bridges
the two by leveraging a small set of labelled data together with a much larger body of unlabeled
observations [97], and finally, (d) reinforcement learning, which uses iterative interaction between an
agent and its environment to optimize long-term outcomes [98].

Among supervised approaches, Support Vector Machines (SVMs), Decision Trees (DTs), k-
nearest neighbours (k-NNs), and Artificial Neural Networks (ANNSs) are the most widely applied for
short-term pollutant forecasting, exposure classification, and anomaly detection [99-104].

Support Vector Machines (SVMs) have demonstrated strong performance in classifying
classroom air quality conditions—such as “good,” “moderate,” or “poor” —using input features
including CO, concentration, particulate matter levels, and occupancy-related variables [103]. The
method constructs an optimal separating hyperplane between classes by maximizing the margin,
formulated as [95]:

minimize (1/2)1 Iw| |2 subject to yi (w-x; +b) =21 Vi (1)

where, x; is the feature vector, y; is the class label, w is weight vector defining the orientation of the
separating hyperplane, b is bias term, and the constrain y; (w-x; + b) > 1 ensures correct classification
of all training samples with maximum margin

DTs are valued for their interpretability, as they explicitly identify the dominant drivers of
pollutant exceedances, such as occupancy density or inadequate ventilation [100-102]. DTs add value
through interpretability, as they identify dominant drivers of exceedances (e.g., occupancy density,
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ventilation regime), making them particularly suitable for building management applications that
demand transparency [100,102].

At each node, the algorithm selects the variable and threshold that minimize an impurity
measure, most commonly the Gini index [95,101]:

G=1-Z(p 2)

Where, px is the proportion of samples belonging to class k in a given node, k is the number of class,
and G is the impurity measure (0 = perfectly pure node, higher values = more mixed node).

k-NNs is a non-parametric algorithm that classifies or predicts outcomes by comparing a new
observation with the k most similar instances in the training dataset. Similarity is typically quantified
using a distance metric, most commonly the Euclidean distance[105]:

d(x;, Xj) = Sqrt( sump_; (Xim — Xjm )2) ®)

Where, x;, x; are feature vectors, M is the number of features, d(xl-, xj) is the Euclidean distance
between two observations i and j and k is the number of nearest neighbours used to classify or predict.

In classroom applications, k-NN supports real-time anomaly detection by identifying deviations
from previously observed sensor patterns, which allows for timely corrective actions—such as
adjusting ventilation rates —before pollutant levels exceed health-related thresholds [1,5,6,91,99,104].

Artificial Neural Networks (ANNSs), inspired by the structure of biological neurons, have been
increasingly employed for IAQ prediction because of their ability to approximate nonlinear
relationships between multiple input variables (e.g., occupancy, temperature, ventilation rates,
outdoor meteorological conditions) and output responses (e.g., pollutant concentrations, IAQ
categories). A neuron in a feed-forward ANN computes its output as[94,95]:

y = f(sumiz; wix; + b) 4)

Where, x; are the input features, w; are the connection weights, b the bias term, f the activation
functions, and ythe predicted or estimated output.

Feed-forward ANNSs trained with backpropagation are frequently applied to tasks such as
pollutant forecasting and short-term IAQ classification [27,87]. These models have, for instance, been
used to predict CO, variation in classrooms with fluctuating occupancy schedules.

Beyond classification tasks, regression-oriented ML techniques are increasingly employed to
model pollutant dynamics and to examine their associations with both indoor and outdoor
determinants. These methods are particularly relevant in naturally ventilated schools, where CO,,
particulate matter, and volatile organic compounds often display pronounced temporal variability
shaped by occupancy density, building envelope characteristics, and local meteorological conditions
[92,106]. Recent studies have further strengthened this research direction by linking ML-based
pollutant forecasts with indicators of student health and cognitive performance, suggesting that
accurate prediction can enable timely interventions aimed at reducing absenteeism and improving
learning outcomes [79,93].

Nevertheless, several challenges continue to limit the scalability and robustness of ML
applications in IAQ management. A primary constraint is the scarcity of large, high-quality training
datasets, as most school-based investigations are based on short-term monitoring or restricted sample
sizes, which undermines model generalizability [28,92,107]. Data uncertainties introduced by sensor
calibration issues and variable measurement quality further increase the risk of systematic bias. In
addition, models trained in specific climatic zones or building typologies often perform poorly when
transferred to different contexts, highlighting the fragility of current approaches. Addressing these
shortcomings will require coordinated initiatives to establish harmonized monitoring protocols,
publicly available benchmark datasets, and rigorous validation frameworks that can guarantee
reproducibility and transferability across diverse educational environments.

3.2. Deep Learning Approaches

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 October 2025 d0i:10.20944/preprints202510.0583.v1

15 of 35

DL constitutes a major methodological advancement in IAQ research, particularly suited to the
high-dimensional datasets produced by continuous sensor networks and environmental monitoring
platforms [108,109]. In contrast to conventional machine learning, which often depends on manual
feature engineering, DL architectures are capable of learning hierarchical feature representations
directly from raw data, thereby uncovering hidden patterns and nonlinear dependencies that
traditional methods frequently fail to capture [107,110]. This feature is particularly relevant in school
environments, where pollutant concentrations are shaped by rapidly changing occupancy levels,
intermittent ventilation, and variable outdoor infiltration.

Among DL techniques, Convolutional Neural Networks (CNNs) have been increasingly employed
in IAQ studies for their capacity to extract spatial and temporal features from multivariate time-series

data. The operation of a convolutional layer can be expressed as [5,111]:

Fi,j = ZmZn(Ii+m,j+n ' Km,n) +b )

where F;; is the output at spatial location (i, /), Iis the input feature map, K is the convolutional
kernel (or filter), I; 4, j4nis the local receptive field of the input over which the kernel is applied, b
is the bias term added after convolution, and X,,X,is thesummation across the kernel dimensions.

By processing IAQ sensor streams, CNN-based models have achieved high predictive accuracy
in forecasting CO, and PM,.s—-PMy, levels, while also identifying pollution hotspots linked to
overcrowding, dust resuspension, or insufficient ventilation [27,112-115].

Recurrent Neural Networks (RNNs) represent another family of DL models particularly
effective for sequential data. Their recursive architecture enables the modelling of temporal
dependencies, making them highly suitable for pollutant forecasting where daily and weekly cycles
dominate IAQ dynamics. The hidden state update of a standard RNN is defined as [5,116]:

he = f(Whhe_q + Wex, + by) (6)

Where, h, is the hidden state at time t, x; is the input, W), and W, are weight matrices, b is the
bias, and f(-) is the activation function. Long Short-Term Memory (LSTM) networks extend this
formulation by introducing memory cells and gating mechanisms that allow the retention of long-
range dependencies, overcoming the vanishing gradient problem typical of conventional RNNs [117].
In school environments, LSTM-based models have been applied to forecast pollutant accumulation
and dispersion cycles, supporting anticipatory ventilation strategies that minimize exposure during
critical hours of the day [104,118,119].

LSTM networks extend conventional RNNs by introducing a dedicated cell state that preserves
information across time steps. This state is regulated by three gates—input, forget, and output—
which selectively update, discard, or propagate information, thereby enabling the network to retain
relevant temporal dependencies while discarding redundant patterns. Such a structure effectively
mitigates the vanishing and exploding gradient problems commonly observed in standard RNN
training. Gated Recurrent Units (GRUs) adopt a similar gating mechanism but use a more compact
architecture [120]. Specifically, GRUs merge the input and forget gates into a single update gate while
retaining a reset gate, thus reducing the number of trainable parameters and computational
overhead. Despite their simpler structure, GRUs have demonstrated comparable performance to
LSTMs in time-series forecasting tasks, making them particularly attractive for IAQ prediction in
resource-constrained environments such as school monitoring systems [106,121].

Although DL methods consistently outperform classical ML models in terms of predictive
accuracy, robustness to noisy inputs, and capacity to integrate heterogeneous environmental,
meteorological, and occupancy data [107-109], their adoption in educational environments remains
constrained. Persistent barriers include the scarcity of long-term, high-quality IAQ datasets, the
significant computational resources required for training and operation, and the limited
interpretability of model outputs, which restricts their utility for practical building management
[104,107]. Addressing these challenges will require the creation of open-access benchmark datasets
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tailored to school environments, the design of computationally efficient DL models suitable for real-
time operation in resource-limited settings, and the integration of explainable AI (XAI) approaches
capable of translating complex outputs into actionable insights for educators, facility managers, and
policymakers.

3.3. Hybrid Al Models

Hybrid Al frameworks are increasingly recognized as effective solutions for IAQ monitoring in
educational buildings, as they combine the complementary strengths of ML and DL to enhance
robustness, generalizability, and predictive accuracy. By integrating classical algorithms such as
SVMs and DTs with advanced architectures including CNNs and RNNSs, hybrid approaches are able
to process heterogeneous data streams comprising CO,, PM,s, PMi, VOCs, and bioaerosols
[93,122,123]. This integration enables simultaneous tasks such as anomaly detection, pollutant
forecasting, and adaptive control of ventilation or air purification systems [28,85,124,125], thereby
linking predictive analytics with automated decision-making in real time.

Several hybrid strategies have been reported in the literature. One configuration integrates
SVMs with CNNs or RNNs, exploiting the discriminative capacity of SVMs for feature separation
and anomaly detection while CNNs and RNNs capture spatial and temporal dependencies within
IAQ data. This architecture has demonstrated effectiveness for pollutant classification and short-term
forecasting in school classrooms [84,126]. A second strategy couples DTs with deep neural networks
(DNNSs), leveraging the interpretability of DTs to identify critical pollutant thresholds while
employing DNNs to model complex nonlinear relationships between environmental drivers and
indoor concentrations [127,128]. A third category involves CNN-RNN hybrids, where CNNs extract
local features from sensor streams and RNNs (particularly LSTM networks) model temporal
dynamics. This dual-stage design has been shown to improve forecasting accuracy in high-density
classrooms where pollutant fluctuations are driven by rapid occupancy changes and variable
ventilation [27,104,118].

The synthesis illustrated in Figure 3 and Table 4 confirms that hybrid Al approaches address
several limitations of stand-alone ML or DL methods. Reliability is strengthened through ensemble
mechanisms that reduce bias and variance across heterogeneous classroom conditions [93,124].
Effectiveness is further enhanced when classical ML techniques are applied for feature preprocessing
or dimensionality reduction, thereby reducing the risk of overfitting and alleviating the intensive data
requirements of DL [93,108]. Computational efficiency is also improved: lightweight ML algorithms
can perform rapid preprocessing, while deeper architectures handle more complex feature extraction,
enabling real-time responsiveness where decision latency directly affects student exposure [27,129].

Adaptability represents another critical advantage. Online and incremental learning
mechanisms allow hybrid systems to maintain predictive accuracy under shifting environmental or
occupancy regimes [118,130]. Hybrid models also exhibit resilience to noisy or incomplete sensor
data by incorporating statistical preprocessing and denoising techniques [99,107]. Moreover, the
integration of unsupervised components such as autoencoders facilitates early anomaly detection
[84,104], while reinforcement learning modules enable continuous refinement of predictive policies
in response to new data [27,79]. Collectively, these attributes position hybrid Al as a promising
pathway toward adaptive and automated IAQ management in schools.

Nonetheless, large-scale deployment remains constrained by critical barriers. The absence of
standardized IAQ datasets hinders model benchmarking and generalization across diverse school
contexts. The interpretability of hybrid models also remains limited, raising concerns about trust and
practical uptake in building operation.
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Figure 3. Conceptual framework of hybrid Al models integrating machine learning (ML) and deep learning
(DL).

Finally, integration into existing school infrastructures requires not only technical advances but
also policy incentives and resource allocation. Addressing these challenges through explainable Al
frameworks [85], the development of open-access IAQ datasets [28], and incentive-driven
implementation strategies [125] will be essential to transition hybrid AI methods from experimental
validation to sustainable deployment in educational environments.

ML, DL, and hybrid Al approaches each provide unique contributions to IAQ management in
educational environments. ML offers interpretability and modest data requirements, DL captures
spatiotemporal dynamics with superior accuracy, and finally hybrid systems integrate these
strengths to achieve robustness and adaptability. Selecting the appropriate method depends on data
availability, computational resources, and the balance between accuracy and interpretability required
for decision support. Together, these approaches represent a pathway toward intelligent, adaptive,
and health-oriented IAQ management in schools.

Table 4. Advantages and implementation strategies of hybrid AI models for IAQ monitoring in schools.

References Description Advantages Implementation Strategy
Integration of traditional
ML with DL models Ensemble outputs from multiple
[93,124] enhances robustness Reliability algorithms to reduce bias and
across varying classroom improve stability.
conditions.
Classical ML methods Preprocessing and feature
[93,108] reduce the data demands Effectiveness reduction with ML before DL
of deep models. training.
Combines lightweight Parallel use of fast ML classifiers
[27,129] ML with high-precision Analysis Speed with DL networks for real-time
DL. operation.
Models adapt to shifts in Online or incremental learning
[118,130] occupancy and Adaptability . .
. for continuous updating.
environment.
Statistical preprocessing Data cleaning and smoothing to
[99,107] mitigates unreliable Noise Reduction handle noisy or incomplete
sensor signals. datasets.
Detects hazardous IAQ Integration of unsupervised
[84,104] deviations beyond Anomaly Detection  learning (e.g., autoencoders) for
normal ranges. early detection of outliers.
Forecasts improve Implementation of
[27,79] continuously as new data Real-Time Improvement reinforcement learning and

arrives.

incremental parameter updates.
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4. AI Applications for Indoor Air Quality in Educational Environments

Al is increasingly being deployed to improve IAQ in educational environments, where
children’s health, comfort, and cognitive performance are especially vulnerable to pollutant
exposure. Unlike traditional approaches that rely on periodic inspections, subjective perception, or
static ventilation schedules, Al-based systems provide continuous monitoring, predictive forecasting,
and adaptive control of indoor environments. To capture the current state of research and
implementation, twenty representative case studies were reviewed, covering applications in North
America, Europe, Asia, and Oceania. These are summarized in Table 5, which consolidates
information on methodological approaches, monitored parameters, deployment scale, and key
outcomes. Figure 4 provides a world map overview of the twenty case study locations, highlighting
their geographic distribution across North America, Europe, Asia, and Oceania. The case studies span
a wide range of applications, from large-scale sensor networks to small pilot projects and privacy-
preserving smart classroom frameworks. Collectively, these cases illustrate both the potential of Al
to strengthen IAQ management in educational environments and the persistent barriers—such as
data scarcity, model transferability, and long-term operational sustainability —that constrain
widespread adoption.

The case studies reviewed in Table 5 collectively demonstrate both the opportunities and
limitations of applying Al to IAQ management in schools. A first insight concerns scalability. Large
deployments such as Boston, with more than 3,600 sensors across 4,400 classrooms, [131,132], and the
German network spanning 329 classrooms [133], confirm the technical feasibility of Al-driven
monitoring at scale. These systems achieved measurable reductions in CO, concentrations and
enabled real-time fault detection, yet they also revealed structural barriers: high installation and
maintenance costs, dependence on robust digital infrastructure, and unequal adoption capacity in
lower-resource schools. While scalability is therefore achievable, its equitable application remains
uncertain.

Methodological innovation has been another defining feature across studies. Hybrid deep
learning frameworks, such as the LSTM-autoencoder in Dunedin [88], achieved anomaly detection
accuracy above 99%, outperforming classical models such as k-NN and fuzzy clustering.

CASE STUDIES

1.Boston, USA 5.Navarra, Spain 9.Saxony, Germany 13.North China 17.Montreal, Canada
2.Dunedin, N. Zealand 6.Asia 10.Guillford, UK 14.Hong Kong 18.Pombal, Portugal
3.Athens, Greece 7.Beijing, China 11.Alicante, Spain 15.Seoul, S. Korea  19.Riga, Latvia
4.Ponte de Sor, Portugal 8.Finland 12.Codsall, UK 16.Central China 20.Florida, USA
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Figure 4. Geographic distribution of the Al-based IAQ case studies in educational environments, Spanning

North America, Europe, Asia, and Oceania

Other approaches, including RF-TPE-LSTM in Central China [134], SVR with feature
engineering in Athens [53], [135], temporal convolutional networks in Navarra [87], and BO-EMD-
LSTM in North China [136], further advanced predictive performance, often achieving R? values close
to 0.9 for CO, or PM.,.s forecasting. Comparative analyses in Codsall, UK [106] and Riga [121]
highlighted the growing role of GRU-based architectures, which combined predictive accuracy with
lower computational costs, reinforcing their value for energy-efficient HVAC control. Taken together,
these methodological advances confirm the capacity of Al models to capture pollutant dynamics and
anticipate exposure peaks, enabling proactive ventilation control. At the same time, their dependence
on site-specific data raises concerns about generalizability and interpretability, which remain
unresolved.

A further dimension concerns the discrepancy between subjective perception and objective
measurement of IAQ. Studies in Portugal [82], the UK [137], and Finland [138] revealed systematic
underestimation of pollutant exceedances by teachers and staff, even in classrooms where CO, and
particulate matter levels regularly surpassed recommended thresholds. Feedback systems based on
IoT devices reduced average CO, concentrations by nearly 20% [137], but behavioral constraints, such
as reduced ventilation during cold weather, limited their effectiveness. These findings highlight the
inadequacy of perception-driven management and underline the value of Al-based transparency in
guiding both behavioral adjustments and institutional decision-making.

Beyond prediction, Al is increasingly being embedded in HVAC optimization strategies. In
Seoul [139], integrated neural networks coupled with heuristic multi-objective optimization achieved
up to 16% energy savings while maintaining IAQ, while in Hong Kong [140] real-time occupancy
detection combined with CFD and fuzzy logic enabled dynamic balancing of thermal comfort and air
quality. Similarly, Bayesian grey-box models in Montreal [141] leveraged continuous CO, data to
infer ventilation rates and guide targeted interventions. These applications illustrate how Al can align
health protection with energy performance, though their computational demands and system
integration requirements may limit broader adoption in the near term.

Occupancy detection and smart campus platforms provide an additional pathway for enhancing
IAQ management. The SmartUA platform in Alicante [142] applied ANN-based ventilation quality
certificates with almost 98% accuracy, while MLP models in Pombal [143] predicted occupancy
patterns with R?=0.96, enabling more effective control strategies. Work in Florida [144] demonstrated
how PCA-ANN models could link pollutant infiltration to envelope condition and proximity to
traffic sources, showing the potential of Al to inform broader building management decisions.

Finally, issues of ethics, privacy, and contextual adaptation remain critical. Edge-based, privacy-
preserving frameworks such as SITA [145] confirm that accurate JAQ management is possible
without compromising data security, while studies in Beijing [146] emphasize the need for context-
sensitive strategies, where portable filters and controlled ventilation outperformed generic
interventions under severe outdoor pollution. These cases underscore that Al solutions cannot be
universally standardized but must be adapted to local climatic, infrastructural, and socio-economic
realities.

In synthesis, Al applications in schools reveal a clear trajectory: from large-scale monitoring to
sophisticated predictive modelling, integration with smart HVAC, and embedding within broader
smart campus platforms. Across these contexts, Al consistently enhances predictive accuracy,
anomaly detection, and adaptive control compared with traditional approaches. Yet systemic
challenges persist, including data scarcity, calibration and reliability issues, weak transferability
across settings, high implementation costs, limited interoperability with legacy systems, and
enduring concerns over privacy and interpretability. Unless these barriers are addressed through
standardized open datasets, explainable Al models, cost-effective integration strategies, and
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supportive governance frameworks, Al risks remaining confined to isolated pilots rather than scaling
into mainstream IAQ management in educational environments.

Table 5. Real world case studies on Al applications for IAQ management in schools, summarizing methods,

monitored parameters, scale, and main outcomes.

P t
ReferenceLocation/Year Al Method arameters Sample size Main results/Critical insights
Monitored

(a) Demonstrated feasibility
of large-scale IAQ monitoring
4,400 (b) Reduced CO; by 25-30%
.. CO,, PMa.5, § (c) Enabled real-time fault
Boston ML (Decision PM;,, CO, T classrooms, detection and improved health
USA (2023) Trees) I,{H n 3,659

Sensors

[131,132],
indicators
(d) Highlighted value of
teacher engagement in
decision-making
(@) Achieved 99.5% anomaly
detection accuracy
(b) Outperformed k-NN and
fuzzy clustering
(c) Proved capacity of
hybrid DL models to
generalize patterns in JAQ
data.
(a) Improved PM,.5
prediction (R? from 0.6 — 0.9)
1 classroom (b)  Achieved CO; error <20
[53,135] Athens SVR PM,.5, CO, (25 ppm
’ Greece (2024) NO,, O3, CO; (c) Validated low-cost IAQ
students) o .
monitoring with strong
calibration accuracy in small-
scale deployment

Dunedin Hybrid DL 74 sensors,
[88] New Zealand  (LSTM+ CO, 247k
(2022) Autoencoder) readings

(@) Revealed frequent
exceedances (46% T, 32% PMjy,,
27% COy)
Ponte de Sor Statistical CO, PMyo, T 9 (b) Exposed mismatch
[82] Portugal Analysis + ,R """ classrooms, between perceived vs.
(2023) Teacher Surveys 171 sessionsmeasured TAQ;
(¢) Underlined importance
of awareness and real-time
feedback.
(a) Proved superiority of
TCNss for long-horizon
forecasts (>30min, R2 >0.9)

Navarra DL (TCN)&ML

[87] Spain (2022)  Forecasting CO, 15 schools (b) Conlemed ML.S r9le in
demand-driven ventilation
control and proactive IAQ
management.

Smart Privac
Classrooms . Y CO,, PM, IoT (a) Showed viability of
[145] preserving ML . .
(SITA) (SITA, edge Al VOCs, T  deploymentprivacy-by-design Al
Asia (2023) 108
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(b)  Achieved accurate
HVAC optimization with
local, low-latency processing
(c) Reinforced trust in Al
adoption by safeguarding data

security.
ReferenceLocation/Year Al Method Parar.neters Sample size Main results/Critical insights
Monitored
(a) Identified portable filters
+ controlled ventilation as
AFIP + M- Optlmfil under severe outdoor
[146] Beijing supported PMz.5, COs, 15 schools pollution
China (2023) pp_ . TVOCs, T, RH (b) Demonstrated need for
decision . .
context-specific IAQ strategies
guided by decision
frameworks.
(a) Confirmed systemic IAQ
problems (frequent
exceedances)
Finland Supervised ML CO,, VOCs, T, 6 schools+ (b) Emphasized shift from
[138] (2017) + participatory RH, national inspection-based to predictive
feedback bioaerosols  program Al monitoring
(c) Highlighted role of
transparency and trust in
national health programs.
(@) Documented widespread
Lower CO; exceedances
Continuous . 329 (b) Revealed variability due
Saxony o CO;, noise, T, . S
[133] monitoring, classrooms, to room design/ventilation
Germany . RH
(2021) trend analysis 50 schools (c) Made strong case for Al-
driven alerts during pandemic
conditions.
Io"g—:gs‘fgggls ual (a) Visual alarms reduced
acoustic CO €O, by 20%
[137] Guilford fecdback > CO, PMa.s, 1 classroom (b) All PM concentrations
UK (2024) PM;, remained within WHO limits
systems (real- (c) IoT feedback systems
time Al _ N
feedback) improve air quality
(@) Achieved 97.8% accuracy
in classifying ventilation
. conditions
, Artificial Neural “O7 Realtime ) erates CO,, Wi-Fi
Alicante occupancy, University .
[142] . Networks . occupancy, and environmental
Spain (2023) Environmental classrooms .
(ANN) i variables
variables .
() Demonstrates high
reliability with minimal false
positives/negatives
Machine CO,, PM, T, Two
Codsall Learning (ML) RH, classrooms (@) All models
1 Is: R F ldeh hi >92% icti
[106] UK (2025) models: RNN, Formaldehyde, (35 students achieved>92% predictive

LSTM, GRU, environmental
CNN variables

accurac
ach) Y
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(b) Models enabled adaptive
HVAC control balancing
IAQ& energy use

(c) Provides a replicable,
data-driven model for other
schools and learning spaces

P t
ReferenceLocation/Year Al Method arameters Sample size Main results/Critical insights
Monitored
(a) 55% reduction in MAE
Hybrid mc‘)éel Long-term foT‘ predictions up to 30
EMD (Empirical Indoor CO dataset minutes ahead
, Mode o > (b) Maintained R?>95%
North China L concentration covering
[136] (2018-2019) Decomposition), (time-series one full across forecasts.
LSTM, BO . (c) Demonstrated
. data) academic . -
(Bayesian ear robustness in predicting
Optimization) y nonlinear and fluctuating CO,
patterns.
- YOLOvV5 Occupant (a) Identified significant
(computer number & spatial variations in thermal
vision, deep spatial comfort linked to occupancy
learning) distribution patterns.
[140] Hong Kong -CFD - Thermal  University (b) System could predict
(2022) simulation = comfort index classrooms and stabilize PMV rapidly
- Fuzzy logic (PMV) under dynamic conditions.
control for - Air (c) Improved thermal
dynamic HVAC temperature & comfort while offering
adjustment air velocity potential energy savings.
(@) INN-based strategy
predicts PMV, CO,, and PM
levels one control cycle ahead.
(b) Maintains CO, below 700
ppm and decreases PM
exceedances.
Seoul Integrated .
PMV Ach to ~9%
[139] South Korea Neural Network » Oy 1 school (©) . chueves up to ,9/
PM;, heating and ~16% cooling
(2021) (INN) .
energy savings under closed-
window conditions.
(d) Offers a robust, adaptive,
energy-efficient approach
suitable for dynamic school
environments.
(@) RF-TPE-LSTM
RF (Random outperformed other predictive
CO,PM,T,H, One models (MAE, RMSE, MAPE,
Forest)-TPE . . )
Tree-structured Oz, university R?).
[134] Central China Parzen Mlumination, classroom (b) Achieved R?>98% for
(2022) . Indoor monitored 10-minute ahead CO,
Estimator - opulation for ~1.5 forecasts
LSTM Hybrid PP ' ' .
model months (c) Incorporating occupancy

and environmental factors
improves prediction accuracy.
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(a) Ventilation rates often
below recommended
standards.

(b)  Suggested use of

Bayesian Supplementary Air Cleaning
parameter Devices to improve IAQ.
Montreal estimation to CO,, (c)  Established CO,
[141] Canada infer ventilation Ventilation, classrooms thresholds aligned with
(2020-21) rates, CO, Noise ASHRAE standards for aerosol
emission, and transmission risk
noise levels management.
(d) Provides a robust,
uncertainty-aware approach
for optimizing ventilation
strategies in schools.
ReferenceLocation/Year AI Method I;;:;ril:z:l;is Sample size Main results/Critical insights
(@) MLP model using
humidity + CO, achieved:
* Mean Squared Error = 1.99
* R?=0.96 (p <0.001)
* MAE =~1 occupant
Multi-Layer (b) Demonstrates accurate
Pombal Perceptron 5 occupancy reconstruction from
[143] Portugal (MLP) neural CO,, T,H classrooms environmental data.

(2013) network (c)  Supports improved IEQ
control and energy-efficient
building management.

(d) Validates ML
approaches for dynamic
occupancy estimation in
classrooms.
(a) KAN and GRU models
outperformed others; GRU
Machine V\;?S most computationally
. efficient.
Lea:rrlzzil(s{wm (b) Hyperparameter
Prophet, optimization improved
. Transformer, forecasting accuracy.
[121] nga Kolmogorov—  CO,, T,H 128 sensors ?C) . .Sensor clust(?rlzatlon ’
Latvia (2024) Arnold individual modelling
Networks e?f}}a.nced both accuracy and
efficiency.

(KAI\(I;)i{I{JSTM’ (d) Demonstrates a digital
shadow framework for
healthier, energy-efficient
indoor environments in public
buildings.

Hybrid PCA Multiple (a) PCA-LMBP model
Florida (Principal PM,.o, PMyo building outperformed conventional
[144] USA (2021) Component N 0’2 0, ’ types:  methods for predicting IAQ
Analysis)- ’ classrooms, (b)  Strong associations
LMBP offices, found between indoor
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(Levenberg laboratories;pollutant levels and:
Marquardt Back continuous  Proximity to traffic
propagation monitoring e Building envelope integrity
model at 10-min (cracks, peeling paint)

intervals  ® Outdoor pollutant
over two- infiltration
week (c) Provides insights for
periods targeted ventilation,
maintenance, and IAQ
improvement strategies in
educational facilities.

5. Concluding Remarks, Limitations and Future Challenges

This review has aimed to synthesize methodological advances, assess outcomes across diverse
locations and settings, identify system barriers, and highlight future pathways.

To achieve these objectives, this review has examined the emerging role of Al in the assessment
and management of IAQ in educational environments, synthesizing evidence from twenty case
studies spanning different geographical regions and socio-technical contexts. The examination of
outcomes has shown that Al has progressed from conceptual exploration to practical application,
delivering measurable benefits in pollutant forecasting, anomaly detection, real-time fault diagnosis,
and exposure mitigation. Large-scale deployments, such as the Boston initiative with more than 3,600
sensors across 4,400 classrooms [131,132] and the Lower Saxony network covering 329 classrooms
[133], confirm the technical feasibility of Al-driven monitoring at scale. In parallel, smaller but
methodologically innovative studies, including hybrid deep learning frameworks in Dunedin
[88]and support vector regression with feature engineering in Athens [135], have shown that
advanced models can outperform conventional methods, offering more reliable pollutant predictions
and enabling proactive ventilation strategies. Collectively, these initiatives highlight the capacity of
Al to serve as a practical instrument for safeguarding student health and enhancing educational
outcomes.

Despite these advances, the transition from promising pilots to sustainable, system-wide
adoption remains constrained by several barriers. Sensor reliability and calibration drift continue to
undermine predictive accuracy, particularly in low-cost monitoring networks [82,135,147-152]. Al
models often require periodic retraining to accommodate dynamic occupancy, HVAC variability,
and evolving environmental standards [27,149,153,154], increasing both technical complexity and
operational costs. Lack of interoperability with legacy HVAC and Building Management Systems
(BMS) further impedes seamless integration, forcing reliance on parallel platforms [155-157].
Financial constraints—including installation, infrastructure, and long-term maintenance—pose
additional barriers, especially for underfunded schools [82,152]. Finally, unresolved concerns
regarding privacy, trust, and ethical acceptability [158] remain critical, even as edge-based
frameworks such as SITA [145]. Edge-computing frameworks such as SITA offer potential pathways
forward.

These challenges are not purely technical; they also carry significant social and equity
implications. Schools with greater financial and technical capacity are better positioned to adopt
advanced Al-driven IAQ solutions, while under-resourced institutions risk exclusion, thereby
deepening existing inequalities in health and educational outcomes. Addressing these disparities
requires reframing Al not only as a tool for technical optimization but also as a mechanism for
promoting fairness, accessibility, and social responsibility.

Looking at future pathways, several priorities define the future research and policy agenda.
First, standardized and open-access datasets are essential to support benchmarking, model
validation, and cross-context generalizability. Second, advances in explainable Al (XAI) are needed
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to enhance transparency and foster trust among educators, parents, and policymakers. Third,
innovation in low-cost yet reliable sensing technologies and cost-effective retrofitting strategies is
vital for enabling equitable deployment in both new and existing school buildings. Finally, stronger
integration with policy frameworks—including data governance, privacy protection, and
accountability structures—will be crucial for sustainable implementation.

Ultimately, the adoption of Al for IAQ management in educational settings must be recognized
as more than a technological intervention: it is a transformative public health and educational
priority. Poor classroom air quality directly impacts student well-being, cognitive development, and
long-term health. By embedding AI systems within broader strategies for school health,
sustainability, and equity, their role can expand from fragmented pilots to globally scalable solutions.

Its long-term success, however, will depend not only on achieving algorithmic accuracy but also
on overcoming systemic challenges of reliability, interoperability, cost, privacy, and trust.
Addressing these interlinked issues will allow Al to deliver sustainable, transparent, and equitable
improvements to learning environments, ensuring healthier conditions for future generations.

List of Abbreviations

Al Artificial Intelligence

ANN: Artificial Neural Networks
ASHRAE: American Society of Heating, Refrigerating and Air-Conditioning Engineers
BO: Bayesian Optimization

CNN: Convolutional Neural Networks
DL: Deep Learning

DT: Decision Tree

EPA: Environmental Protection Agency
EU: European Union

GRU: Gated Recurrent Units

HVAC: Heating, Ventilation, and Air Conditioning
IAQ: Indoor Air Quality

KNN: K-Nearest Neighbors

LSTM: Long Short-Term Memory

ML: Machine Learning

PM: Particulate Matter

RH: Relative Humidity

RNN: Recurrent Neural Networks

SL: Supervised Learning

SVM: Support Vector Machine

SVR: Support Vector Regression

T: Temperature

TCN: Temporal Convolutional Network
VOCs: Volatile Organic Compounds
WHO: World Health Organization
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