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Abstract 

Indoor Air Quality (IAQ) in educational environments is a critical determinant of students’ health, 

well-being, and learning performance, with inadequate ventilation and pollutant accumulation 

consistently associated with respiratory symptoms, fatigue, and impaired cognitive outcomes. 

Conventional monitoring approaches—based on periodic inspections or subjective perception—

provide only fragmented insights and often underestimate exposure risks. Artificial intelligence (AI) 

offers a transformative framework to overcome these limitations through sensor calibration, anomaly 

detection, pollutant forecasting, and the adaptive control of ventilation systems. This review critically 

synthesizes the state of AI applications for IAQ management in educational environments, drawing 

on twenty real-world case studies from North America, Europe, Asia, and Oceania. The evidence 

highlights methodological innovations ranging from decision tree models integrated into large-scale 

sensor networks in Boston, to hybrid deep learning architectures in New Zealand, and regression-

based calibration techniques applied in Greece. Collectively, these studies demonstrate that AI can 

substantially improve predictive accuracy, reduce pollutant exposure, and enable proactive, data-

driven ventilation management. At the same time, cross-case comparisons reveal systemic 

challenges—including sensor reliability and calibration drift, high installation and maintenance costs, 

limited interoperability with legacy building management systems, and enduring concerns over 

privacy and trust. Addressing these barriers will be essential for moving beyond localized pilots. The 

review concludes that AI holds transformative potential to shift school IAQ management from 

reactive practices toward continuous, adaptive, and health-oriented strategies. Realizing this 

potential will require transparent, equitable, and cost-effective deployment, positioning AI not only 

as a technological solution but also as a public health and educational priority. 

Keywords: indoor air quality; machine learning; deep learning; educational buildings;  

sustainable buildings; healthy buildings 

 

1. Introduction 

The building sector is responsible for approximately 30–40% of global final energy consumption 

and nearly 30% of energy-related CO₂ emissions [1–4]. Consequently, research and policy have 

largely emphasized energy efficiency measures, renewable integration, and the deployment of smart 

building technologies [5–9]. To this end, sustainable buildings have become a cornerstone of global 

strategies to mitigate climate change, reduce energy demand, and enhance human well-being [10,11]. 

Yet, sustainability also encompasses the health and comfort of occupants, making indoor 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2025 doi:10.20944/preprints202510.0583.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0583.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 35 

 

environmental quality a critical dimension of building performance. Among its components, indoor 

air quality (IAQ) is of particular concern because it directly influences human health, productivity, 

and cognitive function [12,13].  

Educational environments require special attention. Children spend up to 90% of their time 

indoors, and schools are among the most densely occupied building types [14]. Poor IAQ in 

classrooms has been consistently linked to respiratory illnesses, asthma, allergies, fatigue, and 

impaired cognitive outcomes [15–17]. Empirical evidence from European and North American 

schools shows that carbon dioxide (CO₂) concentrations frequently exceed the recommended 1000 

ppm threshold, with many classrooms reporting values above 2000 ppm due to inadequate 

ventilation [18,19]. High levels of particulate matter [20,21] volatile organic compounds (VOCs) [19], 

ozone [22], and nitrogen dioxide [23] are also common in urban schools, further compromising 

children’s health. These findings underline that IAQ is not only a comfort issue, but also a public 

health priority and a key determinant of sustainable school design. 

Traditional IAQ monitoring methods face significant shortcomings. Periodic inspections offer 

only episodic snapshots of classroom conditions, while reliance on subjective perception often leads 

to underestimation of pollutant levels [24]. Even with the deployment of continuous sensor networks, 

technical challenges such as calibration drift, measurement noise, and heterogeneity across devices 

undermine reliability. This complexity calls for analytical approaches capable of managing high-

frequency, multivariate, and dynamic datasets that characterize real-world classroom environments. 

Artificial intelligence (AI) has emerged as a promising framework to address these challenges. 

Classical machine learning (ML) techniques—such as decision trees, support vector machines 

(SVMs), and random forests—have demonstrated strong predictive capability in pollutant trend 

estimation and classification of IAQ states [5]. More advanced deep learning (DL) architectures, 

including convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-

term memory (LSTM) models, and autoencoders, extend these capabilities by automatically learning 

spatiotemporal dependencies, filtering noise, and enhancing anomaly detection. These methods 

enable a range of tasks critical for IAQ management: (i) sensor calibration using regression and 

feature engineering to correct biases in low-cost devices; (ii) pollutant forecasting (e.g., CO₂, 

particulate matter with an aerodynamic diameter of 2.5 micrometers or less, PM₂.₅) to support 

preemptive ventilation control; (iii) anomaly detection in time-series to flag system malfunctions or 

atypical occupancy; and (iv) multi-objective optimization of heating, ventilation, and air conditioning 

(HVAC) systems, balancing IAQ improvements with energy efficiency. 

Recent reviews have proposed a systematic framework that classifies AI applications for air 

quality monitoring into five domains: sensor calibration, anomaly detection, air quality index 

estimation, short-term forecasting, and integrated control [25,26]. This framework underscores both 

the opportunities and the challenges of deploying AI, particularly with respect to data reliability, 

scalability, and system integration. By organizing diverse applications into coherent categories and 

evaluating their strengths and limitations, this body of work demonstrates how AI can move IAQ 

assessment from episodic and reactive approaches toward continuous, predictive, and adaptive 

management. 

Despite these advances, the application of AI to IAQ in educational environments remains 

fragmented and underdeveloped. First, most reported studies are localized pilot projects confined to 

individual schools or small samples under specific climatic and infrastructural conditions [27,28]. 

Such narrow scopes restrict generalizability and make it difficult to evaluate the scalability of AI-

based solutions across diverse educational contexts. Second, while many models achieve high 

predictive accuracy in controlled settings such as [27,29], few address issues of long-term 

sustainability [30]. Performance often deteriorates without frequent retraining, and persistent 

problems of sensor calibration and data drift remain unresolved. These limitations undermine the 

robustness and reliability of AI systems in real-world deployments. Third, the integration of AI with 

legacy HVAC and Building Management Systems (BMS) has received limited attention [31,32], even 

though automated ventilation control depends on such interoperability in most schools. Without 
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seamless integration, AI tools risk functioning as isolated analytics rather than as actionable decision-

support systems. Fourth, the social and ethical dimensions of AI adoption—including privacy 

protection, data security, transparency, and trust among teachers, parents, and administrators—are 

seldom addressed in technical studies [33,34]. Yet, these considerations are critical for acceptance in 

sensitive environments such as schools. Finally, to date there has been no systematic review 

consolidating international evidence on AI for IAQ in schools. Existing reviews tend to emphasize 

energy efficiency [35,36], or general air quality [25,37] leaving a gap in understanding how 

methodological advances, practical challenges, and contextual constraints intersect in educational 

settings. 

The objective of this review is to critically examine the applications of AI for IAQ management 

in educational environments, with a focus on both methodological innovation and practical 

deployment. Specifically, the review seeks to: 
(a) Synthesize methodological advances in AI-based IAQ monitoring, prediction, and control, including the 

use of (ML), (DL), and hybrid models; 

(b) Assess outcomes across diverse geographical and socio-technical contexts, drawing on twenty 

representative international case studies that span North America, Europe, Asia, and Oceania; 

(c) Identify systemic barriers—technical (e.g. data scarcity, model generalizability), economic (e.g. cost of 

deployment and maintenance), and ethical (e.g. privacy and trust)—that constrain the broader adoption of 

AI in schools; 

(d) Highlight pathways for future research and implementation, emphasizing scalability, sustainability, and 

equity in educational settings. 

The selection of literature followed a selective but comprehensive review strategy rather than a 

systematic database search. The main criteria guiding inclusion were: (i) relevance to AI applications 

for IAQ in schools; (ii) methodological rigor and empirical validation; (iii) diversity of approaches, 

ranging from classical ML to advanced DL and hybrid models; and (iv) practical applicability, 

including real-world case studies and integration with HVAC or smart campus systems. In doing so, 

the review provides not only a state-of-the-art synthesis of current practice, but also a forward-

looking framework for advancing AI-enabled IAQ management in educational environments. 

The innovation of this review lies in its integrative and critical perspective. While most prior 

studies have examined AI in buildings primarily for energy efficiency or in general indoor 

environments [32,35], few have addressed the specific challenges of schools, where children’s 

heightened vulnerability, high occupancy rates, and limited resources necessitate tailored 

approaches [27,28]. This review advances the field by offering a comparative synthesis of real-world 

AI applications in educational settings, explicitly linking technical performance metrics—such as 

forecasting accuracy, anomaly detection, and adaptive control—with broader systemic issues of 

scalability, equity, and privacy. Beyond framing AI as a technological solution, the review positions 

its adoption as both a public health imperative and an educational priority. By examining AI within 

the interconnected domains of sustainability, health, and education, this review extends beyond 

conventional technical surveys to systematically evaluate the potential of an integrated approach to 

IAQ management. The novelty of this work therefore lies not only in synthesizing algorithmic 

advances, but also in demonstrating that AI’s impact should be evaluated based on its capacity to 

deliver equitable, transparent, and sustainable improvements to learning environments. In doing so, 

this review charts clear directions for future research and practice, identifying pathways to advance 

from fragmented pilot studies toward globally scalable and impactful solutions. 

The remainder of this paper is structured as follows: section 2 provides an overview of IAQ 

challenges in educational environments; section 3 reviews the main categories of AI methods (ML, 

DL, and hybrid models) applied to IAQ; section 4 synthesizes findings from twenty representative 

case studies worldwide; and finally, section 5 offers a critical discussion of implications, limitations, 

and future directions. 
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2. Indoor Air Quality in School Environments: Key Considerations and 

Determinants 

Indoor air quality (IAQ) refers to the condition of indoor air in relation to occupants’ health, 

comfort, and performance, encompassing pollutant concentrations, odors, and the adequacy of 

ventilation [38]. In school environments, this concept acquires heightened importance because 

children spend extended hours indoors, exhibit higher inhalation rates per body weight compared to 

adults, and are physiologically more vulnerable to environmental stressors. A substantial body of 

evidence links inadequate IAQ in classrooms to respiratory illnesses, allergy symptoms, absenteeism, 

and impaired cognitive functions, thereby influencing both health and learning outcomes [14,37,39–

41]. 

These challenges are compounded by structural and operational characteristics of schools, such 

as high occupant density, limited ventilation rates, and aging infrastructures with outdated heating, 

ventilation, and air-conditioning (HVAC) systems [42]. Furthermore, many educational buildings 

were constructed with limited consideration of modern energy and IAQ standards, leading to 

situations where efforts to improve ventilation and pollutant removal directly conflict with energy 

conservation goals [16]. As a result, ensuring satisfactory IAQ in schools requires not only identifying 

the predominant pollutants and their sources but also evaluating the building’s ability to balance air 

exchange, filtration efficiency, and energy performance [43].This dual perspective places IAQ 

management in schools at the intersection of public health and smart building design, underlining 

the need for innovative approaches, such as sensor-based monitoring and AI-driven optimization, to 

deliver safe, healthy, and sustainable learning environments [44–46]. 

2.1. Classification and Sources of Indoor Air Pollutants 

Indoor air pollutants in schools originate from both indoor emission sources and outdoor 

infiltration, with their impacts often amplified by high occupant density, inadequate ventilation rates, 

and outdated building infrastructures [22,23,47–50]. Among the most widely studied indicators of 

indoor air quality, carbon dioxide (CO₂) serves as both a contaminant of concern and a widely used 

proxy for ventilation adequacy [51]. CO₂ is primarily generated by human respiration, with 

additional contributions from combustion-based heating systems. In classrooms with insufficient 

ventilation, concentrations frequently surpass recommended thresholds of 1000 ppm established by 

international standards such as ASHRAE 62.1 and EN 16798 [38,52]. Prolonged exposure to elevated 

CO₂ levels has been associated with symptoms including headaches, fatigue, and drowsiness, as well 

as with measurable decrements in students’ concentration, decision-making, and overall cognitive 

performance [28,42,53]. Importantly, strategies to reduce CO₂ concentrations through increased 

ventilation often impose significant energy penalties, particularly in climates requiring substantial 

heating or cooling, thereby illustrating the persistent trade-off between IAQ management and energy 

efficiency in educational buildings [45]. 

Particulate Matter (PM₂.₅ and PM₁₀) constitutes a critical pollutant group in school environments, 

comprising airborne particles with aerodynamic diameters below 2.5 μm and 10 μm, respectively. 

These particles remain suspended for extended periods and can penetrate deeply into the respiratory 

tract, where they are associated with adverse cardiovascular and respiratory outcomes [15]. In 

addition to fine and coarse fractions, ultrafine particles (UFPs, <0.1 μm) are increasingly recognized 

as a concern due to their ability to translocate into the bloodstream and exert systemic health effects 

[46,54]. 

In schools, PM originates from a combination of outdoor sources—notably traffic-related 

emissions and resuspension of playground dust—and indoor sources such as cleaning activities, 

combustion appliances, chalk use, and resuspension from floors and furniture. Elevated 

concentrations of PM₂.₅ and PM₁₀ have been consistently linked to increased incidence of asthma 

symptoms, reduced lung function, and higher absenteeism among children, who are physiologically 

more vulnerable to inhaled pollutants [46,53]. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 October 2025 doi:10.20944/preprints202510.0583.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0583.v1
http://creativecommons.org/licenses/by/4.0/


 5 of 35 

 

The mitigation of PM exposure in classrooms typically relies on increased ventilation or filtration 

efficiency, but both approaches carry significant energy implications. Enhanced ventilation dilutes 

indoor concentrations but increases heating and cooling demand, while advanced filtration 

technologies improve IAQ at the expense of higher fan energy use. This duality underscores the 

necessity of optimizing PM control strategies within an integrated IAQ–energy management 

framework [55]. 

Volatile Organic Compounds (VOCs) represent a diverse group of carbon-based chemicals that 

readily evaporate at room temperature and are frequently detected in school environments [56]. 

Common sources include cleaning products, paints, adhesives, flooring materials, and furnishings, 

with formaldehyde—a major constituent of pressed wood products such as desks and cabinets—

being one of the most prevalent and well-documented indoor VOCs [57]. Acute exposure to VOCs 

can cause mucosal irritation, headaches, dizziness, and fatigue, whereas chronic exposure has been 

associated with more severe health outcomes, including asthma development, nasopharyngeal 

cancer, and myeloid leukemia [28,53]. Children are especially vulnerable because of their higher 

inhalation rates relative to body weight and their physiologically immature detoxification systems 

[58]. The continuous low-level release of VOCs from construction materials and consumer products 

results in cumulative exposures that pose risks to both health and learning performance. Strategies 

to mitigate VOC levels typically involve source control (selecting low-emission building materials 

and furnishings) and ventilation enhancement, yet these measures often entail an energy penalty. 

Increased ventilation raises heating and cooling demand, while advanced filtration or sorption 

technologies elevate operational energy use [59]. This duality underscores the importance of 

integrating material selection, ventilation design, and IAQ monitoring within a broader framework 

of energy-efficient building operation. 

Biological contaminants constitute a major determinant of indoor air quality in schools, where 

high occupancy density and variable maintenance practices create favorable conditions for microbial 

growth and transmission. Fungal contamination is particularly common in damp environments, 

arising when relative humidity exceeds 60% or when water damage compromises walls, ceilings, 

carpets, or books [60]. Exposure to mold spores has been consistently associated with asthma 

exacerbation, allergic responses, and respiratory symptoms, with children and individuals with pre-

existing conditions being the most vulnerable populations [15,61].  

Beyond fungi, bacteria and viruses readily circulate in crowded classrooms through both 

airborne droplets and contact with contaminated surfaces [62]. Pathogens of concern include 

Streptococcus pneumoniae, Rhinovirus, influenza viruses, and more recently SARS-CoV-2, whose 

airborne transmission highlighted the central role of ventilation and filtration effectiveness in 

infection control [63,64]. Inadequate ventilation, poor humidity regulation, and insufficient HVAC 

maintenance exacerbate microbial accumulation and persistence, whereas interventions such as 

mechanical ventilation upgrades, high-efficiency filtration, and humidity control have been shown 

to mitigate transmission risks. 

The presence of biological pollutants not only undermines student health but also results in 

increased absenteeism among pupils and staff, thereby reducing overall learning outcomes and 

institutional productivity. Importantly, effective mitigation strategies often require higher ventilation 

and filtration rates, which can substantially increase energy demand. This reinforces the need for 

integrated IAQ–energy management frameworks that leverage advanced monitoring, predictive 

modeling, and smart building operation to maintain healthy indoor environments in schools without 

compromising energy efficiency [42,55]. 

In addition to CO₂, PM, and VOCs, gaseous pollutants such as nitrogen dioxide (NO₂) and 

tropospheric ozone (O₃) represent significant concerns in school environments [22,23]. NO₂ originates 

predominantly from outdoor traffic-related emissions, with additional contributions from unvented 

gas appliances and combustion-based heating systems indoors. Elevated NO₂ levels have been 

consistently associated with airway inflammation, asthma exacerbation, and reduced lung function 

in children [22]. By contrast, O₃ is largely introduced from outdoor air, although it can also be 
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generated indoors by certain electronic devices and cleaning technologies. Exposure to tropospheric 

ozone has been linked to eye and throat irritation, impaired pulmonary function, and worsening of 

asthma symptoms [23]. Both pollutants highlight the strong dependence of indoor air quality on 

ambient outdoor conditions and building ventilation dynamics. Schools situated near major roads or 

in urban pollution hotspots are especially vulnerable, as pollutant infiltration often coincides with 

inadequate building envelope performance and insufficient filtration. Moreover, ozone readily reacts 

with indoor VOCs, forming secondary pollutants such as formaldehyde and ultrafine particles, 

further compounding health risks [56,65]. Mitigation strategies—including enhanced filtration, 

demand-controlled ventilation, and selective air intake scheduling—can effectively reduce exposures 

but frequently increase energy demand, underlining the need for integrated IAQ–energy 

management solutions [66]. 

A synthesis of the principal pollutant groups relevant to school environments, along with their 

dominant sources and associated health and performance outcomes, is presented in Table 1. The table 

highlights the broad spectrum of contaminants typically encountered in classrooms and shows how 

school-specific conditions—such as high occupant density, intensive use of materials, and insufficient 

ventilation—can substantially exacerbate exposures. By systematically linking pollutant categories 

with their health and cognitive effects, Table 1 offers a structured framework for understanding the 

mechanisms through which indoor contaminants contribute to both acute symptoms and long-term 

risks in students and staff. Moreover, this synthesis emphasizes that pollutant management in schools 

cannot be decoupled from building operation: strategies to reduce exposure often influence energy 

performance, reinforcing the need for integrated approaches that jointly address IAQ, health, and 

sustainability objectives.  

Table 1. Major pollutant categories relevant to school environments, their typical indoor and outdoor sources, 

and associated health and performance impacts on students and staff. 

Reference Pollutant Primary sources in schools 
Main health and 

performance impacts 

[18,19] Carbon dioxide (CO₂) 

Occupant respiration, inadequate 

ventilation, combustion from 

heating 

Fatigue, drowsiness, 

impaired concentration, 

reduced cognitive 

performance 

[48] PM (PM₂.₅ / PM₁₀) 

Chalk dust, resuspension of 

settled particles, outdoor traffic 

and exhaust fumes, indoor 

cleaning activities 

Respiratory tract irritation, 

asthma exacerbation, 

increased absenteeism 

[19,56,67,68] VOCs 

Cleaning products, paints, 

adhesives, furniture, carpets, 

wooden materials 

Headaches, allergic 

reactions, mucosal 

irritation, long-term 

carcinogenic potential 

[69,70] Fungi (mould) 

Elevated humidity, water 

damage, poor maintenance and 

cleanliness 

Allergies, asthma onset and 

attacks, respiratory 

symptoms 

[62,64] Bacteria and viruses 
Occupants, contaminated 

surfaces, airborne droplets 

Respiratory infections, 

influenza, COVID-19, 

school absenteeism 

[22,65] 
Tropospheric Ozone 

(O3) 

Outdoor infiltration from 

ambient air (particularly in 

urban areas with high 

photochemical smog),  Indoor 

generation from certain devices,  

Secondary chemical reactions 

indoors 

Eye and airway irritation, 

asthma aggravation, 

reduced attention, 

absenteeism 
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[23] Nitrogen Dioxide (NO2) 

Outdoor traffic emissions, Indoor 

combustion sources, Proximity to 

parking areas or bus drop-off 

zones. 

Respiratory irritation, 

asthma exacerbation, 

reduced lung function, 

absenteeism 

While the presence of indoor pollutants is a central concern, the overall quality of classroom air 

is equally governed by environmental, operational, and structural determinants that mediate 

exposure dynamics. Ventilation strategy, thermal and moisture conditions, building envelope 

performance, emission characteristics of construction materials, occupancy density, and HVAC 

operation and maintenance interact in complex ways to shape pollutant concentrations and their 

associated health outcomes [71,72]. Importantly, these same parameters also influence energy 

demand, underscoring the need to evaluate IAQ within the broader context of sustainable building 

performance [73]. Systematically addressing these determinants is therefore critical for the design of 

resilient, energy-efficient, and health-promoting learning environments. Table 2 synthesizes the 

principal factors affecting IAQ in schools and outlines targeted interventions aimed at mitigating 

risks while supporting both student well-being and institutional sustainability. 

The determinants outlined in Table 2 demonstrate that indoor air quality in schools is shaped 

not only by the presence of pollutants but also by the operational, environmental, and structural 

characteristics of the building. Inadequate ventilation remains one of the most critical drivers of 

elevated CO₂ and particulate concentrations, particularly in densely occupied, naturally ventilated 

classrooms [15,17,38,46]. Thermal and humidity regulation is equally essential, as deviations from 

recommended ranges not only compromise thermal comfort but also promote microbial growth and 

survival, thereby amplifying respiratory health risks [16,74]. Building materials and cleaning 

practices act as additional emission sources, with furnishings, paints, adhesives, and detergents 

identified as major contributors of VOCs and allergens [15,16]. Moreover, poor maintenance of 

HVAC systems diminishes filtration efficiency, encourages microbial proliferation, and facilitates the 

accumulation of chemical and biological contaminants [38,53]. Taken together, these findings 

highlight the need for integrated IAQ management strategies that couple technological 

interventions—such as advanced filtration, humidity control, and demand-controlled ventilation—

with behavioral and policy measures, including low-emission material selection, pollutant source 

reduction, and systematic maintenance protocols. Importantly, because many of these interventions 

directly affect building energy demand, IAQ management must be embedded within a broader 

sustainability framework that balances health protection, energy efficiency, and climate objectives. 

Table 2. Key environmental and structural determinants of indoor air quality in school buildings, together with 

their descriptions and recommended intervention measures to sustain healthy learning environments. 

Reference Key determinant Description Recommended Measures 

 

[19,40,41,47,75] 
Pollutant load 

Particulate matter, volatile 

organic compounds, 

allergens (e.g., mould, dust 

mites), and chemical residues. 

Use air purifiers; limit the use 

of high-emission cleaning 

products and chemical agents. 

[16,76] 
Thermal and moisture 

conditions 

Elevated temperature and 

humidity favour microbial 

growth, while excessively 

low temperatures can cause 

respiratory discomfort 

Maintain indoor temperature 

within comfort ranges; 

regulate relative humidity 

between 30–60% using 

humidifiers/dehumidifiers. 

[15,17,77] Ventilation efficiency 

Adequate aeration removes 

pollutants and contaminants 

while supplying oxygenated 

air. 

Implement sufficient natural 

or mechanical ventilation; 

install and maintain high-

efficiency particulate filters. 
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[15,16] Pollution sources 

Emissions from smoking, 

cleaning products, building 

materials, furniture, and 

appliances degrade IAQ. 

Prohibit indoor smoking; 

select low-emission, eco-

certified materials; store 

cleaning agents safely. 

[38,53] 
Building operation 

and maintenance 

Proper HVAC design, 

operation, and cleanliness 

directly influence IAQ levels. 

Conduct regular HVAC 

inspection and maintenance; 

clean or replace filters 

periodically. 

2.2. Impacts of IAQ on Health and Educational Performance 

Poor IAQ in schools has been consistently associated with adverse health outcomes and 

impaired academic performance, with children representing a particularly vulnerable population 

due to their immature respiratory and immune systems, higher ventilation rates per body weight, 

and longer daily occupancy indoors [78]. Exposure to pollutants such as PM₂.₅, PM₁₀, CO₂, and VOCs 

increases both the prevalence and severity of asthma, allergies, and other respiratory conditions, 

often manifested as sneezing, nasal congestion, eye irritation, coughing, and dermatological 

symptoms [28,79]. Acute exposures, especially elevated CO₂ concentrations in inadequately 

ventilated classrooms, are frequently associated with fatigue, headaches, dizziness, and discomfort, 

which undermine students’ physical well-being and directly reduce attention, concentration, and 

decision-making capacity [15]. 

Beyond short-term symptoms, poor IAQ has been shown to contribute to increased absenteeism, 

reduced standardized test scores, and diminished classroom engagement, thereby exerting 

measurable effects on educational outcomes [55,80]. These findings underline that the consequences 

of inadequate IAQ extend well beyond health risks, shaping both the learning efficiency of students 

and the overall productivity of school systems. These health burdens translate directly into 

educational performance. Students experiencing respiratory or pollutant-related symptoms are more 

likely to miss school, disrupting learning continuity and long-term academic progress. Even in the 

absence of absenteeism, poor IAQ exerts measurable effects on cognitive function: high CO₂ levels 

reduce alertness, concentration, and decision-making accuracy [61], while exposure to particulate 

matter and VOCs further impairs attention span and task completion [15,28]. The cumulative 

evidence demonstrates that inadequate IAQ simultaneously compromises children’s health and their 

capacity to learn, underscoring air quality management as a prerequisite not only for safeguarding 

well-being but also for sustaining academic performance in educational settings [61]. Figure 1 

illustrates the pathways linking IAQ determinants to health outcomes and educational achievement. 

2.3. Regulatory Framework and Standards for IAQ in School Environments 

Ensuring adequate indoor air quality (IAQ) in schools is widely recognized as a fundamental 

prerequisite for safeguarding student health, well-being, and academic performance, and is therefore 

embedded within a range of international and national regulatory frameworks. Although these 

frameworks differ in scope, specificity, and enforcement, they share the overarching objective of 

defining acceptable pollutant thresholds and establishing protocols for monitoring and managing air 

quality in educational environments [58]. 
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Figure 1. Conceptual representation of the main sources and categories of indoor air pollutants in school 

environments. 

In the United States, ASHRAE has established performance-based standards for schools, most 

notably in ASHRAE Standard 62.1, which prescribes a minimum outdoor airflow rate of 10 L/s per 

person (equivalent to ~10 L/min per student), alongside criteria for air filtration, humidity regulation, 

and CO₂ concentration control, in order to ensure both health protection and thermal comfort [76]. 

Complementing these technical standards, the U.S. Environmental Protection Agency (EPA) 

developed the Indoor Air Quality Tools for Schools program, which provides a structured framework 

for pollutant monitoring, ventilation management, and stakeholder engagement, thereby facilitating 

the translation of regulatory guidance into operational practice within educational facilities [53]. 

At the European level, EN 16798-1 specifies ventilation requirements for non-residential 

buildings, including classrooms, with reference to both per-person airflow rates and indoor CO₂ 

thresholds relative to outdoor concentrations, while the World Health Organization (WHO, 2010) has 

issued guideline values for key pollutants such as formaldehyde, benzene, NO₂, and PM₂.₅. These 

frameworks highlight the dual challenge of achieving adequate IAQ while controlling the energy 

implications of ventilation and filtration, a balance that remains particularly difficult in aging school 

infrastructures with limited retrofitting capacity. 

At the international level, the WHO has issued air quality guidelines that are widely referenced 

in the management of IAQ in schools, with recommended thresholds of 10 μg/m³ for PM₂.₅ and 20 

μg/m³ for PM₁₀ (annual mean values) [21]. These guidelines underscore the heightened susceptibility 

of children to air pollution, linking exposure to fine particulate matter with increased respiratory 

morbidity and long-term health risks. In parallel, performance-based ventilation standards such as 

those set by ASHRAE and the European Standard EN 16798-1 specify a maximum indoor CO₂ 

concentration of 1000 ppm, which is commonly adopted as a benchmark for adequate classroom 

ventilation [76]. 

Within the European Union, regulatory attention to IAQ has expanded through both legislative 

and technical instruments. The revised Energy Performance of Buildings Directive (Directive 

2018/844/EU) explicitly incorporates IAQ as a requirement for healthy indoor environments, with 

Article 13 encouraging the monitoring of key pollutants in high-occupancy spaces such as 

classrooms. Complementing this, the European Standard EN 16798 specifies performance-based 

ventilation requirements, including a minimum outdoor airflow of 7 L/s per person and an indoor 

CO₂ concentration not exceeding 1000 ppm [52]. By coupling pollutant control with energy efficiency 

objectives, these measures reflect a growing policy emphasis on integrated approaches that safeguard 

occupant health while supporting sustainability targets [19,81]. 

Despite the establishment of regulatory frameworks, substantial challenges and limitations 

remain in practice. Compliance is often hampered by financial constraints, outdated infrastructure, 
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and inconsistent enforcement mechanisms, particularly in older or underfunded schools where 

resources for retrofitting are limited. Furthermore, most current regulations adopt a static, 

prescriptive approach that does not adequately reflect the complexity of pollutant dynamics or the 

variability of classroom occupancy and use. Crucially, existing standards rarely integrate emerging 

technologies such as AI-enabled real-time monitoring, predictive modeling, and adaptive ventilation 

control, which offer considerable potential for achieving dynamic, cost-effective, and energy-efficient 

IAQ management [13]. Addressing these gaps will require not only more rigorous implementation 

of existing requirements but also the systematic incorporation of smart, data-driven strategies into 

regulatory and operational practice, thereby aligning IAQ management with broader objectives of 

health protection, energy efficiency, and long-term sustainability in school environments. 

2.4. IAQ in educational environments: Challenges, Innovations, and Policy Prospects  

Despite decades of research, achieving adequate IAQ in educational environments remains a 

persistent and systemic challenge. Recurrent issues include non-standardized ventilation practices, 

frequent exceedances of pollutant thresholds, and limited policy prioritization, particularly in older 

or under-resourced educational facilities [46,64,78]. These challenges are compounded by the absence 

of harmonized, child-specific exposure limits and the lack of comprehensive long-term monitoring 

frameworks, which together constrain efforts to establish robust, evidence-based links between IAQ 

conditions, health outcomes, and educational performance. 

At the same time, technological and analytical innovations provide promising avenues for 

improvement. Advances in low-cost sensor networks and real-time monitoring platforms are 

increasingly being deployed to track pollutant concentrations in classrooms, with growing efforts to 

integrate IAQ metrics with student health and cognitive performance indicators [82]. In parallel, 

statistical and machine learning models have quantified the effects of CO₂, PM, and other pollutants 

on outcomes such as attention, fatigue, and academic productivity, reinforcing the central role of IAQ 

in promoting both health and educational equity [83]. However, these initiatives remain fragmented 

and largely experimental, with limited validation across diverse climatic and socioeconomic contexts 

and insufficient incorporation into binding regulatory and design frameworks. Without systematic 

integration into school building standards and operational protocols, the potential of these 

innovations to deliver sustainable, scalable, and equitable improvements in IAQ will remain 

underutilized. 

Taken together, the current body of evidence underscores the need for a coordinated, 

technology-enabled approach to IAQ management in schools. This requires not only the deployment 

of smart ventilation systems, sensor-based monitoring platforms, and predictive control strategies, 

but also the systematic alignment of IAQ objectives with broader health, education, and sustainability 

policies at both national and supranational governance levels. To support this integration, Table 3 

synthesizes recent insights from the literature, structuring them into focus areas, innovation 

highlights, critical gaps, and future prospects, thereby providing a strategic roadmap for research, 

policy development, and practical implementation in school environments. 

The synthesis presented in Table 3 shows that, although research on IAQ in educational 

environments has expanded substantially, progress remains fragmented and uneven across thematic 

domains. Natural ventilation and CO₂ monitoring are among the most frequently studied strategies; 

however, their effectiveness is limited by the lack of enforceable performance standards and the 

persistent over-reliance on CO₂ as a proxy for IAQ, despite its inability to capture chemical and 

biological exposures [37,79]. Efforts to establish links between pollutant exposure, child-specific 

health outcomes, and cognitive performance show considerable promise but are hindered by the 

absence of harmonized thresholds and the limited availability of longitudinal epidemiological 

datasets [13,58]. Similarly, while sensor-based monitoring, statistical modelling, and data-driven 

ventilation strategies offer transformative potential, their impact is curtailed by the lack of 

standardized calibration protocols, interoperability frameworks, and coordinated large-scale 

deployment, which restrict both comparability across studies and scalability in practice [53,79]. 
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A recurrent theme is the imbalance between technological innovation and policy adoption. 

Programs such as the EPA’s IAQ Tools for Schools [53]provide structured governance frameworks, 

yet their voluntary nature and lack of enforcement limit their systemic impact. Within Europe, 

uneven policy prioritization and resource allocation continue to perpetuate disparities in IAQ, with 

disadvantaged schools disproportionately affected [63]. This reinforces the need for EU-level 

mandates, harmonized child-specific exposure standards, and dedicated funding mechanisms to 

ensure equitable protection. 

Crucially, IAQ in schools cannot be considered in isolation from energy performance objectives. 

Strategies such as increased ventilation and advanced filtration improve pollutant control but often 

elevate heating, cooling, and fan energy demand. The absence of integrated frameworks to reconcile 

this trade-off highlights a major research and policy gap. The new row in Table 3 emphasizes that AI-

driven demand-controlled ventilation and predictive IAQ–energy modelling represent a promising 

pathway to address this dual challenge. Embedding such approaches into building operation 

protocols and regulatory standards will be essential to achieve healthy, energy-efficient, and 

sustainable school environments. 

Overall, Table 3 underscores the urgency of bridging the gap between scientific evidence, 

technological innovation, and regulatory enforcement. A systemic approach that combines smart 

monitoring technologies, predictive and adaptive ventilation control, child-focused exposure 

guidelines, and binding governance frameworks, while simultaneously integrating energy efficiency 

considerations, will be essential to translate current knowledge into effective, scalable, and 

sustainable practice in schools. 

Table 3. Strategic overview of IAQ research and practice in school environments, highlighting focus areas, recent 

innovations, identified gaps, and future prospects for implementation. 

Reference Focus area Innovation highlight Identified gaps Future prospects 

[37] 
Natural ventilation and 

CO₂ management 

Classroom-level CO₂ 

thresholds applied in 

naturally ventilated 

schools 

Lack of enforcement and 

standardization for natural 

ventilation practices 

Integration of smart alerts and 

continuous CO₂ feedback 

systems 

[13,40,78] 
Health impacts of 

pollutants in schools 

Evidence linking IAQ to 

pediatric respiratory and 

allergic outcomes 

Absence of child-specific 

IAQ exposure thresholds 

Development of health-

integrated IAQ criteria in 

building and education 

policies 

[79] 
Ventilation strategies 

and monitoring 

Deployment of low-cost 

sensor-based ventilation 

control 

Lack of harmonized IAQ 

monitoring protocols 

across schools 

Establishment of standardized 

sensor networks for large-

scale monitoring 

[58] 
Indoor environment and 

learning outcomes 

Integration of IAQ 

metrics with cognitive 

and academic 

performance indicators 

Limited availability of 

long-term outcome data 

Longitudinal studies linking 

IAQ to learning achievements 

and curriculum design 

[53] 
Sensor technologies for 

IAQ 

Advances in sensor 

calibration for 

deployment in schools 

Absence of unified 

protocols for sensor 

placement and validation 

Creation of open-access IAQ 

dashboards and data-sharing 

frameworks 

[63] 

Public health 

implications in EU 

schools 

Regional mapping of 

IAQ inequalities 

Low policy prioritization 

in disadvantaged regions 

EU-level mandates and 

funding schemes to reduce 

IAQ disparities 

Reference Focus area Innovation highlight Identified gaps Future prospects 

[79] 

CO₂ and cognition in 

naturally ventilated 

schools 

Statistical modelling of 

CO₂ effects on student 

performance 

Over-reliance on CO₂ as 

the sole IAQ indicator 

Hybrid ventilation strategies 

integrating multi-pollutant 

assessment 

[57,79] 
Ventilation and 

cognitive performance 

Quantified effects of 

IAQ on brain function 

and task performance 

Limited field validation 

across diverse climatic and 

socio-economic contexts 

Development of 

neurodevelopmental IAQ 

indices for schools 
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[58] Productivity and IAQ 

Meta-analyses linking 

CO₂ thresholds with 

student productivity 

Insufficient attention to 

equity-related outcomes 

Incorporation of IAQ metrics 

into indicators of educational 

access and equality 

[53] 
Governance and policy 

frameworks 

EPA’s IAQ Tools for 

Schools providing an 

operational framework 

Voluntary implementation 

with no binding legal 

effect 

Introduction of mandatory 

IAQ audits supported by 

federal or state funding 

[46,83] 
IAQ–energy trade-offs 

and smart management 

AI-driven demand-

controlled ventilation 

and predictive IAQ–

energy modelling 

Limited integration of IAQ 

and energy metrics in 

existing standards 

Systemic frameworks 

combining IAQ monitoring, 

adaptive ventilation, and 

energy efficiency for 

sustainable school operation 

3. Artificial Intelligence Approaches for IAQ Assessment in Educational 

Environments 

Artificial intelligence (AI) is increasingly regarded as a transformative framework for indoor air 

quality (IAQ) assessment in educational environments, where exposure is closely tied to health 

outcomes and learning performance. Unlike conventional statistical or rule-based methods, AI can 

integrate and analyze heterogeneous data sources—including pollutant concentrations, 

meteorological drivers, ventilation rates, and dynamic occupancy profiles—to capture the nonlinear 

interactions that govern IAQ variability [84–86]. For example, recent reviews of neural network and 

machine learning models in school settings highlight their superiority over linear approaches in 

capturing CO₂ variation under fluctuating occupancy and ventilation schedules [27]. Likewise, 

García-Pinilla et al. [87] demonstrated that ML-based models outperform simple methods for longer-

term CO₂ forecasting in school classrooms. Machine learning (ML) and Deep Learning (DL) 

approaches, in particular, have been shown to enhance the accuracy of pollutant forecasting, enable 

anomaly detection in sensor networks (e.g., LSTM-autoencoder models achieving > 99 % accuracy in 

school IAQ time series [88]), and support adaptive control strategies for HVAC systems, including 

DL-driven fault detection and diagnostics with F-measure values exceeding 0.97 [5,6,89–91]. Such 

capabilities are especially relevant in educational buildings, where ventilation demand often 

fluctuates rapidly and where traditional steady-state models fail to capture transient exposure 

conditions. Nevertheless, the application of AI to IAQ in schools remains constrained by challenges 

such as limited availability of long-term, high-resolution datasets, potential overfitting of models 

trained on small or site-specific samples, lack of model generalization across different climatic and 

building contexts [27], and difficulties in ensuring model interpretability for practical building 

management[85]. Addressing these limitations is critical if AI is to evolve from a predictive tool 

toward a reliable decision-support system for sustainable and health-oriented educational 

environments. The hierarchical structure of AI, ML, and DL, and their respective roles in IAQ 

modelling, is illustrated in Figure 2. 
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Figure 2. Integration of ML and DL models within AI frameworks. 

3.1. Machine Learning Methods 

Unlike traditional statistical approaches, which often assume linear relationships, ML can 

capture nonlinear dependencies among diverse environmental and operational variables, providing 

more reliable predictions of pollutant behaviour [92,93]. In general, ML methods can be grouped into 

four main categories according to how they learn from data [5]: (a) supervised learning, which relies 

on labelled datasets to establish explicit input–output mappings and is commonly applied to tasks 

such as pollutant classification or concentration forecasting [94], (b) unsupervised learning, which, 

by contrast, works with unlabeled data to identify latent structures or clusters—for instance, 

grouping classrooms by similar pollution profiles [95,96], (c) semi-supervised learning which bridges 

the two by leveraging a small set of labelled data together with a much larger body of unlabeled 

observations [97], and finally, (d) reinforcement learning, which uses iterative interaction between an 

agent and its environment to optimize long-term outcomes [98]. 

Among supervised approaches, Support Vector Machines (SVMs), Decision Trees (DTs), k-

nearest neighbours (k-NNs), and Artificial Neural Networks (ANNs) are the most widely applied for 

short-term pollutant forecasting, exposure classification, and anomaly detection [99–104]. 

Support Vector Machines (SVMs) have demonstrated strong performance in classifying 

classroom air quality conditions—such as “good,” “moderate,” or “poor”—using input features 

including CO₂ concentration, particulate matter levels, and occupancy-related variables [103]. The 

method constructs an optimal separating hyperplane between classes by maximizing the margin, 

formulated as [95]: 

minimize (1/2)||w||² subject to yᵢ (w·xᵢ + b) ≥ 1 ∀i  (1) 

where, xᵢ is the feature vector, yᵢ is the class label, w is weight vector defining the orientation of the 

separating hyperplane, b is bias term, and the constrain yᵢ (w·xᵢ + b) ≥ 1 ensures correct classification 

of all training samples with maximum margin 

DTs are valued for their interpretability, as they explicitly identify the dominant drivers of 

pollutant exceedances, such as occupancy density or inadequate ventilation [100–102]. DTs add value 

through interpretability, as they identify dominant drivers of exceedances (e.g., occupancy density, 
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ventilation regime), making them particularly suitable for building management applications that 

demand transparency [100,102]. 

At each node, the algorithm selects the variable and threshold that minimize an impurity 

measure, most commonly the Gini index [95,101]: 

G = 1 – Σ (pₖ²)      (2) 

Where, pₖ is the proportion of samples belonging to class k in a given node, k is the number of class, 

and G is the impurity measure (0 = perfectly pure node, higher values = more mixed node). 

k-NNs is a non-parametric algorithm that classifies or predicts outcomes by comparing a new 

observation with the k most similar instances in the training dataset. Similarity is typically quantified 

using a distance metric, most commonly the Euclidean distance[105]: 

d(xi,  xj)  =  sqrt ( summ=1
M  ( xi,m  −  xj,m )

2
 )   (3) 

Where, 𝑥𝑖 ,  𝑥𝑗 are feature vectors, M is the number of features, d(𝑥𝑖 ,  𝑥𝑗) is the Euclidean distance 

between two observations i and j and k is the number of nearest neighbours used to classify or predict. 

In classroom applications, k-NN supports real-time anomaly detection by identifying deviations 

from previously observed sensor patterns, which allows for timely corrective actions—such as 

adjusting ventilation rates—before pollutant levels exceed health-related thresholds [1,5,6,91,99,104]. 

Artificial Neural Networks (ANNs), inspired by the structure of biological neurons, have been 

increasingly employed for IAQ prediction because of their ability to approximate nonlinear 

relationships between multiple input variables (e.g., occupancy, temperature, ventilation rates, 

outdoor meteorological conditions) and output responses (e.g., pollutant concentrations, IAQ 

categories). A neuron in a feed-forward ANN computes its output as[94,95]: 

y  =  f( sumi=1
n  wi xi  +  b )     (4) 

Where, 𝑥𝑖 are the input features, 𝑤𝑖 are the connection weights, b the bias term, 𝑓 the activation 

functions, and 𝑦the predicted or estimated output. 

Feed-forward ANNs trained with backpropagation are frequently applied to tasks such as 

pollutant forecasting and short-term IAQ classification [27,87]. These models have, for instance, been 

used to predict CO₂ variation in classrooms with fluctuating occupancy schedules. 

Beyond classification tasks, regression-oriented ML techniques are increasingly employed to 

model pollutant dynamics and to examine their associations with both indoor and outdoor 

determinants. These methods are particularly relevant in naturally ventilated schools, where CO₂, 

particulate matter, and volatile organic compounds often display pronounced temporal variability 

shaped by occupancy density, building envelope characteristics, and local meteorological conditions 

[92,106]. Recent studies have further strengthened this research direction by linking ML-based 

pollutant forecasts with indicators of student health and cognitive performance, suggesting that 

accurate prediction can enable timely interventions aimed at reducing absenteeism and improving 

learning outcomes [79,93]. 

Nevertheless, several challenges continue to limit the scalability and robustness of ML 

applications in IAQ management. A primary constraint is the scarcity of large, high-quality training 

datasets, as most school-based investigations are based on short-term monitoring or restricted sample 

sizes, which undermines model generalizability [28,92,107]. Data uncertainties introduced by sensor 

calibration issues and variable measurement quality further increase the risk of systematic bias. In 

addition, models trained in specific climatic zones or building typologies often perform poorly when 

transferred to different contexts, highlighting the fragility of current approaches. Addressing these 

shortcomings will require coordinated initiatives to establish harmonized monitoring protocols, 

publicly available benchmark datasets, and rigorous validation frameworks that can guarantee 

reproducibility and transferability across diverse educational environments. 

3.2. Deep Learning Approaches 
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DL constitutes a major methodological advancement in IAQ research, particularly suited to the 

high-dimensional datasets produced by continuous sensor networks and environmental monitoring 

platforms [108,109]. In contrast to conventional machine learning, which often depends on manual 

feature engineering, DL architectures are capable of learning hierarchical feature representations 

directly from raw data, thereby uncovering hidden patterns and nonlinear dependencies that 

traditional methods frequently fail to capture [107,110]. This feature is particularly relevant in school 

environments, where pollutant concentrations are shaped by rapidly changing occupancy levels, 

intermittent ventilation, and variable outdoor infiltration. 

Among DL techniques, Convolutional Neural Networks (CNNs) have been increasingly employed 

in IAQ studies for their capacity to extract spatial and temporal features from multivariate time-series 

data. The operation of a convolutional layer can be expressed as [5,111]: 

𝐹𝑖,𝑗 = ∑ ∑ (𝐼𝑖+𝑚,𝑗+𝑛 ∙ 𝐾𝑚,𝑛) + 𝑏𝑛𝑚     (5) 

where 𝐹𝑖,𝑗 is the output at spatial location (𝑖, 𝑗), 𝐼is the input feature map, 𝐾 is the convolutional 

kernel (or filter), 𝐼𝑖+𝑚,𝑗+𝑛is the local receptive field of the input over which the kernel is applied, 𝑏 

is the bias term added after convolution, and Σ𝑚Σ𝑛is thesummation across the kernel dimensions. 

By processing IAQ sensor streams, CNN-based models have achieved high predictive accuracy 

in forecasting CO₂ and PM₂.₅–PM₁₀ levels, while also identifying pollution hotspots linked to 

overcrowding, dust resuspension, or insufficient ventilation [27,112–115]. 

Recurrent Neural Networks (RNNs) represent another family of DL models particularly 

effective for sequential data. Their recursive architecture enables the modelling of temporal 

dependencies, making them highly suitable for pollutant forecasting where daily and weekly cycles 

dominate IAQ dynamics. The hidden state update of a standard RNN is defined as [5,116]: 

ℎ𝑡 = 𝑓(𝑊ℎℎ𝑡−1 +𝑊𝑥𝑥𝑡 + 𝑏ℎ)     (6) 

Where, ℎ𝑡 is the hidden state at time t, 𝑥𝑡 is the input, 𝑊ℎ and 𝑊𝑥are weight matrices, b is the 

bias, and f(⋅) is the activation function. Long Short-Term Memory (LSTM) networks extend this 

formulation by introducing memory cells and gating mechanisms that allow the retention of long-

range dependencies, overcoming the vanishing gradient problem typical of conventional RNNs [117]. 

In school environments, LSTM-based models have been applied to forecast pollutant accumulation 

and dispersion cycles, supporting anticipatory ventilation strategies that minimize exposure during 

critical hours of the day [104,118,119]. 

LSTM networks extend conventional RNNs by introducing a dedicated cell state that preserves 

information across time steps. This state is regulated by three gates—input, forget, and output—

which selectively update, discard, or propagate information, thereby enabling the network to retain 

relevant temporal dependencies while discarding redundant patterns. Such a structure effectively 

mitigates the vanishing and exploding gradient problems commonly observed in standard RNN 

training. Gated Recurrent Units (GRUs) adopt a similar gating mechanism but use a more compact 

architecture [120]. Specifically, GRUs merge the input and forget gates into a single update gate while 

retaining a reset gate, thus reducing the number of trainable parameters and computational 

overhead. Despite their simpler structure, GRUs have demonstrated comparable performance to 

LSTMs in time-series forecasting tasks, making them particularly attractive for IAQ prediction in 

resource-constrained environments such as school monitoring systems [106,121]. 

Although DL methods consistently outperform classical ML models in terms of predictive 

accuracy, robustness to noisy inputs, and capacity to integrate heterogeneous environmental, 

meteorological, and occupancy data [107–109], their adoption in educational environments remains 

constrained. Persistent barriers include the scarcity of long-term, high-quality IAQ datasets, the 

significant computational resources required for training and operation, and the limited 

interpretability of model outputs, which restricts their utility for practical building management 

[104,107]. Addressing these challenges will require the creation of open-access benchmark datasets 
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tailored to school environments, the design of computationally efficient DL models suitable for real-

time operation in resource-limited settings, and the integration of explainable AI (XAI) approaches 

capable of translating complex outputs into actionable insights for educators, facility managers, and 

policymakers. 

3.3. Hybrid AI Models 

Hybrid AI frameworks are increasingly recognized as effective solutions for IAQ monitoring in 

educational buildings, as they combine the complementary strengths of ML and DL to enhance 

robustness, generalizability, and predictive accuracy. By integrating classical algorithms such as 

SVMs and DTs with advanced architectures including CNNs and RNNs, hybrid approaches are able 

to process heterogeneous data streams comprising CO₂, PM₂.₅, PM₁₀, VOCs, and bioaerosols 

[93,122,123]. This integration enables simultaneous tasks such as anomaly detection, pollutant 

forecasting, and adaptive control of ventilation or air purification systems [28,85,124,125], thereby 

linking predictive analytics with automated decision-making in real time. 

Several hybrid strategies have been reported in the literature. One configuration integrates 

SVMs with CNNs or RNNs, exploiting the discriminative capacity of SVMs for feature separation 

and anomaly detection while CNNs and RNNs capture spatial and temporal dependencies within 

IAQ data. This architecture has demonstrated effectiveness for pollutant classification and short-term 

forecasting in school classrooms [84,126]. A second strategy couples DTs with deep neural networks 

(DNNs), leveraging the interpretability of DTs to identify critical pollutant thresholds while 

employing DNNs to model complex nonlinear relationships between environmental drivers and 

indoor concentrations [127,128]. A third category involves CNN–RNN hybrids, where CNNs extract 

local features from sensor streams and RNNs (particularly LSTM networks) model temporal 

dynamics. This dual-stage design has been shown to improve forecasting accuracy in high-density 

classrooms where pollutant fluctuations are driven by rapid occupancy changes and variable 

ventilation [27,104,118]. 

The synthesis illustrated in Figure 3 and Table 4 confirms that hybrid AI approaches address 

several limitations of stand-alone ML or DL methods. Reliability is strengthened through ensemble 

mechanisms that reduce bias and variance across heterogeneous classroom conditions [93,124]. 

Effectiveness is further enhanced when classical ML techniques are applied for feature preprocessing 

or dimensionality reduction, thereby reducing the risk of overfitting and alleviating the intensive data 

requirements of DL [93,108]. Computational efficiency is also improved: lightweight ML algorithms 

can perform rapid preprocessing, while deeper architectures handle more complex feature extraction, 

enabling real-time responsiveness where decision latency directly affects student exposure [27,129].   

Adaptability represents another critical advantage. Online and incremental learning 

mechanisms allow hybrid systems to maintain predictive accuracy under shifting environmental or 

occupancy regimes [118,130]. Hybrid models also exhibit resilience to noisy or incomplete sensor 

data by incorporating statistical preprocessing and denoising techniques [99,107]. Moreover, the 

integration of unsupervised components such as autoencoders facilitates early anomaly detection 

[84,104], while reinforcement learning modules enable continuous refinement of predictive policies 

in response to new data [27,79]. Collectively, these attributes position hybrid AI as a promising 

pathway toward adaptive and automated IAQ management in schools. 

Nonetheless, large-scale deployment remains constrained by critical barriers. The absence of 

standardized IAQ datasets hinders model benchmarking and generalization across diverse school 

contexts. The interpretability of hybrid models also remains limited, raising concerns about trust and 

practical uptake in building operation. 
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Figure 3. Conceptual framework of hybrid AI models integrating machine learning (ML) and deep learning 

(DL). 

Finally, integration into existing school infrastructures requires not only technical advances but 

also policy incentives and resource allocation. Addressing these challenges through explainable AI 

frameworks [85], the development of open-access IAQ datasets [28], and incentive-driven 

implementation strategies [125] will be essential to transition hybrid AI methods from experimental 

validation to sustainable deployment in educational environments. 

ML, DL, and hybrid AI approaches each provide unique contributions to IAQ management in 

educational environments. ML offers interpretability and modest data requirements, DL captures 

spatiotemporal dynamics with superior accuracy, and finally hybrid systems integrate these 

strengths to achieve robustness and adaptability. Selecting the appropriate method depends on data 

availability, computational resources, and the balance between accuracy and interpretability required 

for decision support. Together, these approaches represent a pathway toward intelligent, adaptive, 

and health-oriented IAQ management in schools. 

Table 4. Advantages and implementation strategies of hybrid AI models for IAQ monitoring in schools. 

References Description Advantages Implementation Strategy 

[93,124] 

Integration of traditional 

ML with DL models 

enhances robustness 

across varying classroom 

conditions. 

Reliability 

Ensemble outputs from multiple 

algorithms to reduce bias and 

improve stability. 

[93,108] 

Classical ML methods 

reduce the data demands 

of deep models. 

Effectiveness 

Preprocessing and feature 

reduction with ML before DL 

training. 

[27,129] 

Combines lightweight 

ML with high-precision 

DL. 

Analysis Speed 

Parallel use of fast ML classifiers 

with DL networks for real-time 

operation. 

[118,130] 

Models adapt to shifts in 

occupancy and 

environment. 

Adaptability 
Online or incremental learning 

for continuous updating. 

[99,107] 

Statistical preprocessing 

mitigates unreliable 

sensor signals. 

Noise Reduction 

Data cleaning and smoothing to 

handle noisy or incomplete 

datasets. 

[84,104] 

Detects hazardous IAQ 

deviations beyond 

normal ranges. 

Anomaly Detection 

Integration of unsupervised 

learning (e.g., autoencoders) for 

early detection of outliers. 

[27,79] 

Forecasts improve 

continuously as new data 

arrives. 

Real-Time Improvement 

Implementation of 

reinforcement learning and 

incremental parameter updates. 
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4. AI Applications for Indoor Air Quality in Educational Environments 

AI is increasingly being deployed to improve IAQ in educational environments, where 

children’s health, comfort, and cognitive performance are especially vulnerable to pollutant 

exposure. Unlike traditional approaches that rely on periodic inspections, subjective perception, or 

static ventilation schedules, AI-based systems provide continuous monitoring, predictive forecasting, 

and adaptive control of indoor environments. To capture the current state of research and 

implementation, twenty representative case studies were reviewed, covering applications in North 

America, Europe, Asia, and Oceania. These are summarized in Table 5, which consolidates 

information on methodological approaches, monitored parameters, deployment scale, and key 

outcomes. Figure 4 provides a world map overview of the twenty case study locations, highlighting 

their geographic distribution across North America, Europe, Asia, and Oceania. The case studies span 

a wide range of applications, from large-scale sensor networks to small pilot projects and privacy-

preserving smart classroom frameworks. Collectively, these cases illustrate both the potential of AI 

to strengthen IAQ management in educational environments and the persistent barriers—such as 

data scarcity, model transferability, and long-term operational sustainability—that constrain 

widespread adoption. 

The case studies reviewed in Table 5 collectively demonstrate both the opportunities and 

limitations of applying AI to IAQ management in schools. A first insight concerns scalability. Large 

deployments such as Boston, with more than 3,600 sensors across 4,400 classrooms, [131,132], and the 

German network spanning 329 classrooms [133], confirm the technical feasibility of AI-driven 

monitoring at scale. These systems achieved measurable reductions in CO₂ concentrations and 

enabled real-time fault detection, yet they also revealed structural barriers: high installation and 

maintenance costs, dependence on robust digital infrastructure, and unequal adoption capacity in 

lower-resource schools. While scalability is therefore achievable, its equitable application remains 

uncertain. 

Methodological innovation has been another defining feature across studies. Hybrid deep 

learning frameworks, such as the LSTM–autoencoder in Dunedin [88], achieved anomaly detection 

accuracy above 99%, outperforming classical models such as k-NN and fuzzy clustering. 

 

CASE STUDIES

1.Boston, USA 5.Navarra, Spain 9.Saxony, Germany 13.North China 17.Montreal, Canada

2.Dunedin, N. Zealand 6.Asia 10.Guillford, UK 14.Hong Kong 18.Pombal, Portugal

3.Athens, Greece 7.Beijing, China 11.Alicante, Spain 15.Seoul, S. Korea 19.Riga, Latvia

4.Ponte de Sor, Portugal 8.Finland 12.Codsall, UK 16.Central China 20.Florida, USA
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Figure 4. Geographic distribution of the AI-based IAQ case studies in educational environments, Spanning 

North America, Europe, Asia, and Oceania 

Other approaches, including RF–TPE–LSTM in Central China [134], SVR with feature 

engineering in Athens [53], [135], temporal convolutional networks in Navarra [87], and BO–EMD–

LSTM in North China [136], further advanced predictive performance, often achieving R² values close 

to 0.9 for CO₂ or PM₂.₅ forecasting. Comparative analyses in Codsall, UK [106] and Riga [121] 

highlighted the growing role of GRU-based architectures, which combined predictive accuracy with 

lower computational costs, reinforcing their value for energy-efficient HVAC control. Taken together, 

these methodological advances confirm the capacity of AI models to capture pollutant dynamics and 

anticipate exposure peaks, enabling proactive ventilation control. At the same time, their dependence 

on site-specific data raises concerns about generalizability and interpretability, which remain 

unresolved. 

A further dimension concerns the discrepancy between subjective perception and objective 

measurement of IAQ. Studies in Portugal [82], the UK [137], and Finland [138] revealed systematic 

underestimation of pollutant exceedances by teachers and staff, even in classrooms where CO₂ and 

particulate matter levels regularly surpassed recommended thresholds. Feedback systems based on 

IoT devices reduced average CO₂ concentrations by nearly 20% [137], but behavioral constraints, such 

as reduced ventilation during cold weather, limited their effectiveness. These findings highlight the 

inadequacy of perception-driven management and underline the value of AI-based transparency in 

guiding both behavioral adjustments and institutional decision-making. 

Beyond prediction, AI is increasingly being embedded in HVAC optimization strategies. In 

Seoul [139], integrated neural networks coupled with heuristic multi-objective optimization achieved 

up to 16% energy savings while maintaining IAQ, while in Hong Kong [140] real-time occupancy 

detection combined with CFD and fuzzy logic enabled dynamic balancing of thermal comfort and air 

quality. Similarly, Bayesian grey-box models in Montreal [141] leveraged continuous CO₂ data to 

infer ventilation rates and guide targeted interventions. These applications illustrate how AI can align 

health protection with energy performance, though their computational demands and system 

integration requirements may limit broader adoption in the near term. 

Occupancy detection and smart campus platforms provide an additional pathway for enhancing 

IAQ management. The SmartUA platform in Alicante [142] applied ANN-based ventilation quality 

certificates with almost 98% accuracy, while MLP models in Pombal [143] predicted occupancy 

patterns with R² = 0.96, enabling more effective control strategies. Work in Florida [144] demonstrated 

how PCA–ANN models could link pollutant infiltration to envelope condition and proximity to 

traffic sources, showing the potential of AI to inform broader building management decisions. 

Finally, issues of ethics, privacy, and contextual adaptation remain critical. Edge-based, privacy-

preserving frameworks such as SITA [145] confirm that accurate IAQ management is possible 

without compromising data security, while studies in Beijing [146] emphasize the need for context-

sensitive strategies, where portable filters and controlled ventilation outperformed generic 

interventions under severe outdoor pollution. These cases underscore that AI solutions cannot be 

universally standardized but must be adapted to local climatic, infrastructural, and socio-economic 

realities. 

In synthesis, AI applications in schools reveal a clear trajectory: from large-scale monitoring to 

sophisticated predictive modelling, integration with smart HVAC, and embedding within broader 

smart campus platforms. Across these contexts, AI consistently enhances predictive accuracy, 

anomaly detection, and adaptive control compared with traditional approaches. Yet systemic 

challenges persist, including data scarcity, calibration and reliability issues, weak transferability 

across settings, high implementation costs, limited interoperability with legacy systems, and 

enduring concerns over privacy and interpretability. Unless these barriers are addressed through 

standardized open datasets, explainable AI models, cost-effective integration strategies, and 
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supportive governance frameworks, AI risks remaining confined to isolated pilots rather than scaling 

into mainstream IAQ management in educational environments. 

Table 5. Real world case studies on AI applications for IAQ management in schools, summarizing methods, 

monitored parameters, scale, and main outcomes. 

Reference Location/Year AI Method 
Parameters 

Monitored 
Sample size Main results/Critical insights 

[131,132],  
Boston 

USA (2023) 

ML (Decision 

Trees) 

CO₂, PM₂.₅, 

PM₁₀, CO, T, 

RH 

4,400 

classrooms, 

3,659 

sensors 

(a) Demonstrated feasibility 

of large-scale IAQ monitoring 

(b) Reduced CO₂ by 25–30% 

(c) Enabled real-time fault 

detection and improved health 

indicators 

(d) Highlighted value of 

teacher engagement in 

decision-making 

[88] 

Dunedin 

New Zealand 

(2022) 

Hybrid DL 

(LSTM + 

Autoencoder) 

CO₂ 

74 sensors, 

247k 

readings 

(a) Achieved 99.5% anomaly 

detection accuracy 

(b) Outperformed k-NN and 

fuzzy clustering 

(c) Proved capacity of 

hybrid DL models to 

generalize patterns in IAQ 

data. 

 [53,135] 
Athens 

Greece (2024) 
SVR 

PM₂.₅, CO, 

NO₂, O₃, CO₂ 

1 classroom 

(25 

students) 

(a) Improved PM₂.₅ 

prediction (R² from 0.6 → 0.9) 

(b) Achieved CO₂ error <20 

ppm 

(c) Validated low-cost IAQ 

monitoring with strong 

calibration accuracy in small-

scale deployment 

[82] 

Ponte de Sor 

Portugal 

(2023) 

Statistical 

Analysis + 

Teacher Surveys 

CO₂, PM₁₀, T, 

RH 

9 

classrooms, 

171 sessions 

(a) Revealed frequent 

exceedances (46% T, 32% PM₁₀, 

27% CO₂) 

(b) Exposed mismatch 

between perceived vs. 

measured IAQ; 

(c) Underlined importance 

of awareness and real-time 

feedback. 

[87] 
Navarra 

Spain (2022) 

DL (TCN)&ML 

Forecasting 
CO₂ 15 schools 

(a) Proved superiority of 

TCNs for long-horizon 

forecasts (>30min, R² >0.9) 

(b) Confirmed ML’s role in 

demand-driven ventilation 

control and proactive IAQ 

management. 

[145] 

Smart 

Classrooms 

(SITA) 

Asia (2023) 

Privacy-

preserving ML 

(SITA, edge AI) 

CO₂, PM, 

VOCs, T 

IoT 

deployment 

(a) Showed viability of 

privacy-by-design AI 
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(b) Achieved accurate 

HVAC optimization with 

local, low-latency processing 

(c) Reinforced trust in AI 

adoption by safeguarding data 

security. 

Reference Location/Year AI Method 
Parameters 

Monitored 
Sample size Main results/Critical insights 

[146] 
Beijing 

China (2023) 

AHP + ML-

supported 

decision 

PM₂.₅, CO₂, 

TVOCs, T, RH 
15 schools 

(a) Identified portable filters 

+ controlled ventilation as 

optimal under severe outdoor 

pollution 

(b) Demonstrated need for 

context-specific IAQ strategies 

guided by decision 

frameworks. 

[138] 
Finland 

(2017) 

Supervised ML 

+ participatory 

feedback 

CO₂, VOCs, T, 

RH, 

bioaerosols 

6 schools + 

national 

program 

(a) Confirmed systemic IAQ 

problems (frequent 

exceedances) 

(b) Emphasized shift from 

inspection-based to predictive 

AI monitoring 

(c) Highlighted role of 

transparency and trust in 

national health programs. 

[133] 

Lower 

Saxony 

Germany 

(2021) 

Continuous 

monitoring, 

trend analysis 

CO₂, noise, T, 

RH 

329 

classrooms, 

50 schools 

(a) Documented widespread 

CO₂ exceedances 

(b) Revealed variability due 

to room design/ventilation 

(c) Made strong case for AI-

driven alerts during pandemic 

conditions. 

[137] 
Guilford 

UK (2024) 

IoT-based visual 

and visual-

acoustic CO₂ 

feedback 

systems (real-

time AI 

feedback) 

CO₂, PM₂.₅, 

PM₁₀ 
1 classroom 

(a) Visual alarms reduced 

CO₂ by 20% 

(b) All PM concentrations 

remained within WHO limits 

(c) IoT feedback systems 

improve air quality 

[142] 
Alicante 

Spain (2023) 

Artificial Neural 

Networks 

(ANN) 

CO₂, Real-time 

occupancy, 

Environmental 

variables 

University 

classrooms 

(a) Achieved 97.8% accuracy 

in classifying ventilation 

conditions 

(b) Integrates CO₂, Wi-Fi 

occupancy, and environmental 

variables 

(c) Demonstrates high 

reliability with minimal false 

positives/negatives 

[106] 
Codsall 

UK (2025) 

Machine 

Learning (ML) 

models: RNN, 

LSTM, GRU, 

CNN 

CO₂, PM, T, 

RH, 

Formaldehyde, 

environmental 

variables 

Two 

classrooms 

(35 students 

each) 

(a) All models 

achieved>92% predictive 

accuracy 
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(b) Models enabled adaptive 

HVAC control balancing 

IAQ& energy use 

(c) Provides a replicable, 

data-driven model for other 

schools and learning spaces 

Reference Location/Year AI Method 
Parameters 

Monitored 
Sample size Main results/Critical insights 

[136] 
North China 

(2018-2019) 

Hybrid model 

EMD (Empirical 

Mode 

Decomposition), 

LSTM, BO 

(Bayesian 

Optimization) 

Indoor CO₂ 

concentration 

(time-series 

data) 

Long-term 

dataset 

covering 

one full 

academic 

year 

(a) 55% reduction in MAE 

for predictions up to 30 

minutes ahead 

(b) Maintained R² > 95% 

across forecasts. 

(c) Demonstrated 

robustness in predicting 

nonlinear and fluctuating CO₂ 

patterns. 

[140] 
Hong Kong 

(2022) 

- YOLOv5 

(computer 

vision, deep 

learning) 

- CFD 

simulation  

- Fuzzy logic 

control for 

dynamic HVAC 

adjustment 

Occupant 

number & 

spatial 

distribution  

- Thermal 

comfort index 

(PMV) 

- Air 

temperature & 

air velocity 

University 

classrooms 

(a) Identified significant 

spatial variations in thermal 

comfort linked to occupancy 

patterns. 

(b) System could predict 

and stabilize PMV rapidly 

under dynamic conditions. 

(c) Improved thermal 

comfort while offering 

potential energy savings. 

[139] 

Seoul 

South Korea 

(2021) 

Integrated 

Neural Network 

(INN) 

PMV, CO₂, 

PM₁₀ 
1 school 

(a) INN-based strategy 

predicts PMV, CO₂, and PM 

levels one control cycle ahead. 

(b) Maintains CO₂ below 700 

ppm and decreases PM 

exceedances. 

(c) Achieves up to ~9% 

heating and ~16% cooling 

energy savings under closed-

window conditions. 

(d) Offers a robust, adaptive, 

energy-efficient approach 

suitable for dynamic school 

environments. 

[134] 
Central China 

(2022) 

RF (Random 

Forest)-TPE 

Tree-structured 

Parzen 

Estimator -

LSTM Hybrid 

model 

CO₂, PM, T, H, 

O2, 

Illumination, 

Indoor 

population  

 

One 

university 

classroom 

monitored 

for ~1.5 

months 

(a) RF-TPE-LSTM 

outperformed other predictive 

models (MAE, RMSE, MAPE, 

R²). 

(b) Achieved R² > 98% for 

10-minute ahead CO₂ 

forecasts. 

(c) Incorporating occupancy 

and environmental factors 

improves prediction accuracy. 
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[141] 

Montreal 

Canada 

(2020-21) 

Bayesian 

parameter 

estimation to 

infer ventilation 

rates, CO₂ 

emission, and 

noise levels 

CO₂, 

Ventilation, 

Noise 

2 

classrooms 

(a) Ventilation rates often 

below recommended 

standards. 

(b) Suggested use of 

Supplementary Air Cleaning 

Devices to improve IAQ. 

(c) Established CO₂ 

thresholds aligned with 

ASHRAE standards for aerosol 

transmission risk 

management. 

(d) Provides a robust, 

uncertainty-aware approach 

for optimizing ventilation 

strategies in schools. 

Reference Location/Year AI Method 
Parameters 

Monitored 
Sample size Main results/Critical insights 

[143] 

Pombal 

Portugal 

(2013) 

Multi-Layer 

Perceptron 

(MLP) neural 

network  

 

CO₂, T, H 
2 

classrooms 

(a) MLP model using 

humidity + CO₂ achieved:  

  • Mean Squared Error = 1.99  

  • R² = 0.96 (p < 0.001)  

  • MAE = ~1 occupant 

(b) Demonstrates accurate 

occupancy reconstruction from 

environmental data. 

(c) Supports improved IEQ 

control and energy-efficient 

building management. 

(d) Validates ML 

approaches for dynamic 

occupancy estimation in 

classrooms. 

[121] 
Riga 

Latvia (2024) 

Machine 

Learning (ML) 

models: 

Prophet, 

Transformer, 

Kolmogorov–

Arnold 

Networks 

(KAN), LSTM, 

GRU  

 

CO₂, T, H 128 sensors 

(a) KAN and GRU models 

outperformed others; GRU 

was most computationally 

efficient. 

(b) Hyperparameter 

optimization improved 

forecasting accuracy. 

(c) Sensor clusterization + 

individual modelling 

enhanced both accuracy and 

efficiency. 

(d) Demonstrates a digital 

shadow framework for 

healthier, energy-efficient 

indoor environments in public 

buildings. 

[144] 
Florida 

USA (2021) 

Hybrid PCA 

(Principal 

Component 

Analysis)– 

LMBP 

PM₂.₅, PM₁₀, 

NO₂, O₃ 

Multiple 

building 

types: 

classrooms, 

offices, 

(a) PCA-LMBP model 

outperformed conventional 

methods for predicting IAQ 

(b) Strong associations 

found between indoor 
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(Levenberg 

Marquardt Back 

propagation 

model 

laboratories; 

continuous 

monitoring 

at 10-min 

intervals 

over two-

week 

periods 

pollutant levels and:  

  • Proximity to traffic  

  • Building envelope integrity 

(cracks, peeling paint)  

  • Outdoor pollutant 

infiltration 

(c) Provides insights for 

targeted ventilation, 

maintenance, and IAQ 

improvement strategies in 

educational facilities. 

 

5. Concluding Remarks, Limitations and Future Challenges 

This review has aimed to synthesize methodological advances, assess outcomes across diverse 

locations and settings, identify system barriers, and highlight future pathways. 

To achieve these objectives, this review has examined the emerging role of AI in the assessment 

and management of IAQ in educational environments, synthesizing evidence from twenty case 

studies spanning different geographical regions and socio-technical contexts. The examination of 

outcomes has shown that AI has progressed from conceptual exploration to practical application, 

delivering measurable benefits in pollutant forecasting, anomaly detection, real-time fault diagnosis, 

and exposure mitigation. Large-scale deployments, such as the Boston initiative with more than 3,600 

sensors across 4,400 classrooms [131,132] and the Lower Saxony network covering 329 classrooms 

[133], confirm the technical feasibility of AI-driven monitoring at scale. In parallel, smaller but 

methodologically innovative studies, including hybrid deep learning frameworks in Dunedin 

[88]and support vector regression with feature engineering in Athens [135], have shown that 

advanced models can outperform conventional methods, offering more reliable pollutant predictions 

and enabling proactive ventilation strategies. Collectively, these initiatives highlight the capacity of 

AI to serve as a practical instrument for safeguarding student health and enhancing educational 

outcomes. 

Despite these advances, the transition from promising pilots to sustainable, system-wide 

adoption remains constrained by several barriers. Sensor reliability and calibration drift continue to 

undermine predictive accuracy, particularly in low-cost monitoring networks [82,135,147–152]. AI 

models often require periodic retraining to accommodate dynamic occupancy, HVAC variability, 

and evolving environmental standards [27,149,153,154], increasing both technical complexity and 

operational costs. Lack of interoperability with legacy HVAC and Building Management Systems 

(BMS) further impedes seamless integration, forcing reliance on parallel platforms [155–157]. 

Financial constraints—including installation, infrastructure, and long-term maintenance—pose 

additional barriers, especially for underfunded schools [82,152]. Finally, unresolved concerns 

regarding privacy, trust, and ethical acceptability [158] remain critical, even as edge-based 

frameworks such as SITA [145]. Edge-computing frameworks such as SITA offer potential pathways 

forward. 

These challenges are not purely technical; they also carry significant social and equity 

implications. Schools with greater financial and technical capacity are better positioned to adopt 

advanced AI-driven IAQ solutions, while under-resourced institutions risk exclusion, thereby 

deepening existing inequalities in health and educational outcomes. Addressing these disparities 

requires reframing AI not only as a tool for technical optimization but also as a mechanism for 

promoting fairness, accessibility, and social responsibility. 

Looking at future pathways, several priorities define the future research and policy agenda. 

First, standardized and open-access datasets are essential to support benchmarking, model 

validation, and cross-context generalizability. Second, advances in explainable AI (XAI) are needed 
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to enhance transparency and foster trust among educators, parents, and policymakers. Third, 

innovation in low-cost yet reliable sensing technologies and cost-effective retrofitting strategies is 

vital for enabling equitable deployment in both new and existing school buildings. Finally, stronger 

integration with policy frameworks—including data governance, privacy protection, and 

accountability structures—will be crucial for sustainable implementation. 

Ultimately, the adoption of AI for IAQ management in educational settings must be recognized 

as more than a technological intervention: it is a transformative public health and educational 

priority. Poor classroom air quality directly impacts student well-being, cognitive development, and 

long-term health. By embedding AI systems within broader strategies for school health, 

sustainability, and equity, their role can expand from fragmented pilots to globally scalable solutions. 

Its long-term success, however, will depend not only on achieving algorithmic accuracy but also 

on overcoming systemic challenges of reliability, interoperability, cost, privacy, and trust. 

Addressing these interlinked issues will allow AI to deliver sustainable, transparent, and equitable 

improvements to learning environments, ensuring healthier conditions for future generations. 
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