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Abstract 19 

Meteorological drought indicators are commonly used for agricultural drought contingency planning in 20 

Ethiopia.  Agricultural droughts arise due to soil moisture deficits.  While these deficits may be caused by 21 

meteorological droughts, the timing and duration of agricultural droughts need not coincide with the 22 

onset of meteorological droughts due to soil moisture buffering.  Similarly, agricultural droughts can 23 

persist even after the cessation of meteorological droughts due to delayed hydrologic processes.  24 

Understanding the relationship between meteorological and agricultural droughts is therefore crucial.  An 25 

evaluation framework was developed to compare meteorological and agricultural droughts using a suite 26 

of exploratory and confirmatory tools.  Receiver operator characteristics (ROC) was used to understand 27 

the covariation of meteorological and agricultural droughts.  Comparisons were carried out between SPI-28 

2, SPEI-2 and Palmer Z-index to assess intra-seasonal droughts and between SPI-6, SPEI-6 and PDSI for full-29 

season evaluations.  SPI was seen to correlate well with selected agricultural drought indicators but did 30 

not explain all the variability noted in agricultural droughts.  The relationships between meteorological 31 

and agricultural droughts exhibited spatial variability which varied across indicators.  SPI is better suited 32 

to predict non-agricultural drought states more so than agricultural drought states.  Differences between 33 

agricultural and meteorological droughts must be accounted for better drought-preparedness planning.    34 
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Introduction 1 

Ethiopia is a predominantly rural country with a high dependence on rainfed agriculture and pastoral 2 

activities.  Agriculture and animal husbandry contribute significantly to the nation’s Gross Domestic 3 

Product (42% of GDP) and 85% of the nation’s export earnings and account for over 85% employment [1].  4 

The vulnerability of the agriculture sector (broadly defined here to include pastoral activities as well) to 5 

drought risks is particularly high due to lack of irrigation infrastructure.  Droughts are known to cause 6 

death and disease due to malnutrition, unemployment, migration, social unrest and even violence in the 7 

greater horn of Africa [2].  From an economic standpoint, droughts are noted to reduce the GDP of 8 

Ethiopia by 1% - 4% [3].   9 

The government of Ethiopia has recognized that drought management is essential to the sustainable 10 

development of the nation.  In 2013, the government of Ethiopia adopted national policy and strategy for 11 

disaster risk management (DRM) which calls for decentralized stakeholder-based approaches to deal with 12 

recurring disasters such as droughts.  Woredas (districts or third level administrative units) are required 13 

to develop drought contingency plans (DCP) to build local resilience to recurring droughts and thus 14 

mitigate harmful social effects associated with drought events [4].     15 

Understanding drought characteristics is a critical first step towards its management.  However, drought 16 

is a complex phenomenon with no universally accepted definition. They can broadly be classified into 17 

meteorological, agricultural, hydrological and socio-economic droughts [5].  Fundamentally, 18 

meteorological droughts imply precipitation anomalies and the first trigger of a drought event.  Reduced 19 

precipitation, in turn, leads to low relative humidity and greater evapotranspiration which removes water 20 

from surficial soils.  The deficits in soil moisture (i.e., green water) are referred to as agricultural droughts 21 

as they reduce the amount of water available for crops including native vegetation necessary for animal 22 

husbandry.  As precipitation is the fundamental driver of hydrology, precipitation deficits further manifest 23 

as reduced recharge and runoff and lead to a reduction in surface water and groundwater reserves (i.e., 24 
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blue water) causing hydrologic droughts.  The relationships between meteorological, agricultural and 1 

hydrological droughts are not always straightforward.  The onset and cessation of agricultural and 2 

hydrological droughts do not typically coincide with meteorological droughts as the former are affected 3 

by other factors (e.g., soil and watershed characteristics) that control the rate of water movement and 4 

storage in soil, surface water, and groundwater compartments [6].   5 

Understanding the relationship between meteorological and agricultural droughts is important for proper 6 

drought contingency planning in rural areas of Ethiopia.  As most of the agriculture is rainfed, a strong 7 

correlation between meteorological and agricultural drought is to be expected.  However, meteorological 8 

and agricultural droughts need not be coincident nor the relationships between these two types of 9 

drought be perfect or even strong.  The soil moisture at any time can be affected by precipitation in 10 

previous months or seasons and is also affected by other factors including but not limited to soil type and 11 

atmospheric temperature.  In Ethiopia, while many farmers grow crops during the Meher growing season 12 

that coincides with the longer Kerimt  (June – October) rainy season, the shorter Belg (February – May) 13 

rains often provides the soil moisture necessary for tillage and planting activities and also improve 14 

pastures for livestock [7].  Therefore, lagged relationships between agricultural and meteorological 15 

drought indicators are of interest as well. 16 

Understanding the spatio-temporal characteristics of agricultural droughts and the importance of 17 

characterizing the differences between meteorological and agricultural droughts has been recognized in 18 

recent times.  Using downscaled climate projections in conjunction with calibrated models, Wang et al. 19 

[8], conclude that agricultural droughts (as measured using standardized soil water index or SSWI) are 20 

more sensitive to climate change than the Standard Precipitation Index (SPI) an indicator of 21 

meteorological drought.  Hernandez and Uddameri [9] utilized SPI and the standardized precipitation 22 

evapotranspiration index (SPEI), a measure of agricultural droughts, in conjunction with global 23 

downscaled model projections to conclude that droughts in the early part of the 21st century are likely 24 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2019                   doi:10.20944/preprints201908.0020.v1

Peer-reviewed version available at Water 2019, 11, 2218; doi:10.3390/w11112218

https://doi.org/10.20944/preprints201908.0020.v1
https://doi.org/10.3390/w11112218


4 
 

dominated by temperature increases (moisture deficits and water demands) while those in the latter part 1 

are controlled by both supply deficits (meteorological droughts) and increased water demands in South 2 

Texas. Using short-term (15 years) meteorological and remote-sensed vegetation data from Morocco, 3 

Ezzine et al. [10], concluded that the relationship between meteorological and agricultural droughts to be 4 

low to moderate.  Duan and Mei [11] used SPI, SSWI and standardized surface runoff (SSRI) indices to 5 

study meteorological, agricultural and hydrological droughts in Huai river basin in China and concluded 6 

that agricultural and meteorological droughts have a greater impact on local water resources 7 

management issues.   8 

Dhakar et al. [12], studied the relationship between SPI (meteorological drought indicator) and satellite 9 

derived vegetation condition index (VCI) (an indicator of agricultural droughts).  They concluded that the 10 

relationship between meteorological and agricultural drought indicators improves with seasonal 11 

progression indicating a time-varying relationship between the two variables.   Gunda et al. [13], 12 

compared SPI and PDSI at 13 stations across Sri Lanka.  They concluded that these indicators performed 13 

better as agricultural drought indicators under different climatic conditions.  Portela et al. [14], compare 14 

meteorological and agricultural droughts using SPI and SPEI indicators in Eastern Slovakia.  Their results 15 

indicate that SPI (meteorological) and SPEI (agricultural) droughts show similar trends but SPI is more 16 

sensitive to water shortages and surpluses in this humid region.   Tirivarombo et al. [15], compared 17 

meteorological (SPI) and agricultural drought indicator (SPEI) in Zambia and concluded that SPEI indicated 18 

droughts of greater duration and severity and cautioned the use of SPI as a sole indicator of drought.  19 

These studies from across the world indicate that there are differences between meteorological and 20 

agricultural droughts which must be recognized for proper planning and management of agricultural 21 

water resources.  The literature review also highlighted that agricultural and meteorological drought 22 

comparisons were often ad hoc and qualitative.  A statistical evaluation framework is generally missing to 23 
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perform consistent comparisons across multiple scales at which droughts manifest and across spatial 1 

regions of interest.       2 

National scale comparison of recent meteorological droughts using SPI have been undertaken in recent 3 

times in Ethiopia (e.g., Viste et al. [16]; Suryabhagavan [17]).  However, to the best of our knowledge, a 4 

detailed comparison of meteorological and agricultural droughts has not been undertaken in Ethiopia.  5 

The information generated from such a comparison is vital to understand how precipitation deficits 6 

propagate through agricultural systems and affect a nation’s food security and economic vitality.  Such a 7 

comparison can help identify whether supply-side deficits (precipitation anomalies) or demand side 8 

increases (greater evapotranspiration) control agricultural droughts.  This information is fundamental to 9 

developing future monitoring programs within a region.  Furthermore, conducting such a comparison on 10 

a national (Ethiopia-wide) scale would also identify regional differences and help policy makers and 11 

governmental agencies prioritize areas of critical need and help guide the proper allocation of scarce fiscal 12 

and logistic resources for the improvement of water resources.     13 

The primary goal of this study is to compare the evolution of meteorological and agricultural droughts at 14 

various temporal scales across Ethiopia at a high spatial resolution.  To accomplish this goal, the study 15 

proposes a comprehensive drought comparison framework using a suite of evaluation metrics covering 16 

both exploratory and confirmatory testing methods that can be consistently applied across multiple 17 

spatio-temporal scales.  While the results of the study are directly beneficial to water planners and policy 18 

makers in Ethiopia, the developed drought evaluation framework is generic and can be applied to any 19 

other region.   20 

Methodology  21 

The proposed agricultural and meteorological drought comparison framework begins with the selection 22 

of appropriate indicators to quantify agricultural and meteorological droughts.  Time-series of these 23 

indicators over a common time-period are then used to make comparisons.  Drought indicators provide 24 
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numerical values whose magnitude indicates the (moisture) state the system is in.  This continuous 1 

drought indicator time-series can also be used directly to understand cross-correlation between 2 

agricultural and meteorological droughts as well as perform confirmatory hypothesis tests to establish 3 

their relationships under various lags.  For most indicators, negative values below a pre-specified 4 

threshold indicate drought.  Therefore, indicator time-series can be transformed into a binary 5 

(drought/no-drought) time-series using appropriate thresholds.  These binary time-series can be 6 

compared to determine the agreement between them and can also be used to construct contingency 7 

tables and perform a wide array of statistical analysis to compare meteorological and agricultural 8 

droughts.  The proposed framework provides a suite of exploratory and confirmatory tests that can be 9 

used to evaluate continuous and discrete (binary) meteorological and agricultural drought time-series, 10 

which are illustrated using Ethiopia as a case-study.   11 

Selection of Meteorological and Agricultural Drought Indicators 12 

As stated earlier, the first step of the evaluation framework is to select appropriate meteorological and 13 

agricultural drought indicators.  While there are many meteorological drought indicators, the Lincoln 14 

declaration recommended the adoption of the Standardized Precipitation Index (SPI) as a universal 15 

indicator of meteorological droughts [18].   Several studies have adopted this indicator to study 16 

meteorological droughts in Ethiopia [16,17,19-23] and as such it has been adopted here for that purpose 17 

as well.   18 

While the quantification of meteorological droughts using SPI has become a standard practice worldwide, 19 

no universally acceptable indicator for characterizing agricultural droughts exist today.   It is widely 20 

recognized that agricultural droughts are best defined using soil moisture as the master variable [24].  21 

However, soil moisture has not been extensively monitored in most parts of the world (Ethiopia included) 22 

as doing so has proven to be challenging due to the high level of spatio-temporal variability of this 23 

parameter [25] and lack of reliable methods for upscaling point level measurements to larger spatial scales 24 
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[26].   While agricultural drought indices based on model derived soil moisture estimates have been 1 

proposed [27], calculating them is usually infeasible for large-scale (regional and national) studies 2 

spanning over multiple watersheds.  Crop stress and vegetative health indices (e.g., the normalized 3 

difference vegetation index or NDVI) have also been used to assess agricultural droughts [28,29].  4 

However, these methods do not yield standardized measures that can be consistently compared in space 5 

and time and are also affected by the limited length of the records as they rely on satellite derived data 6 

[16,30] and as such are not suitable for evaluating long-term droughts to capture natural climatic and 7 

hydrologic variability that manifest over multi-decadal scales due to limited data availability [31,32]. 8 

To overcome the limitations of short temporal records, drought indices that utilize temperature based 9 

potential evapotranspiration, in addition to rainfall, to indirectly capture the effects of soil moisture 10 

deficits have been proposed and are often used to characterize agricultural droughts [33].   The 11 

standardized precipitation evapotranspiration index (SPEI) which uses the standardized measure of 12 

precipitation (P) minus evapotranspiration (PET) [34] over short accumulation periods (typically 1 – 6 13 

months) has been widely used as an indicator of agricultural droughts [34-38].  In this regards, Vicente-14 

Serrano et al. [34], indicate the method used to estimate PET has little bearing on the computation of SPEI 15 

and recommend using the Thornthwaite model which allows the use of the SPEI agricultural drought index 16 

with minimal data requirements.         17 

The Palmer Drought Severity Index (PDSI) originally proposed by Palmer [39] is another widely used 18 

drought indicator that has been employed to monitor agricultural droughts and estimating soil moisture 19 

deficits [40]. It is now computed using the self-calibrating procedure (SC-PDSI) proposed by Wells et al. 20 

[41], which removes certain rigid empirical assumptions in the original formulation and allows PDSI values 21 

to be compared across spatial scales.  PDSI (implied to mean SC-PDSI here for brevity) is based on an 22 

idealized two-bucket model conceptualization of the watershed and requires monthly precipitation (P) 23 

and evapotranspiration (PET) data.  Dai [42] found that the choice of the method for estimating PET had 24 
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a small effect on PDSI and the indicator exhibits a strong correlation with soil moisture, particularly in 1 

summer and autumn months.  Its reliability is also likely to be higher in warm climates (such as Ethiopia) 2 

where the hydrology is not affected by spring snowmelt.   PDSI has also been used widely to characterize 3 

agricultural droughts [13,43,44].  Studies have shown that PDSI correlates strongly with SPI values 4 

computed using higher accumulations [45, 46].  Therefore, PDSI can be considered as a seasonal indicator 5 

of agricultural droughts.   6 

The PDSIt (at any time, t) is a weighted sum of previous month PDSIt-1 value which indicates climate spell 7 

and the moisture anomaly, Zt which measures the dryness (or wetness) over the current month, t.  8 

Mathematically,  9 

𝑃𝐷𝑆𝐼𝑡   =  𝑝𝑃̇𝐷𝑆𝐼𝑡−1 + 𝑞𝑍𝑡̇           (1) 10 

Where, p and q are duration factors obtained from the self-calibration procedure outlined by Wells et al. 11 

[41], at any given location.  The Z-index exhibits greater volatility than PDSI as it largely depends upon the 12 

monthly soil moisture without the effect of antecedent months. It is seen as a good indicator for 13 

characterizing agricultural droughts [47].  As Z-index removes the effects of previous months, it is a useful 14 

indicator of intra-season (short-term) droughts.  Again, a long calibration period (> 50 years) is 15 

recommended for calculating PDSI and Z-index [48].   16 

Given the focus on agricultural droughts, the proposed framework recommends computing SPI and SPEI 17 

indices computed at 2- and 6-month accumulations to compare droughts within (intra-season or short-18 

term) and over the entire growing seasons (full-season or long-term) in Ethiopia.  PDSI and the associated 19 

Z-index are also recommended to indicate full-season and short-term drought impacts over the growing 20 

seasons.  Thus, the framework recommends the comparison of meteorological and agricultural droughts 21 

at two temporal scales – 1) Intra-seasonal comparison of meteorological and agricultural droughts using 22 

SPI-2, SPEI-2 and Palmer Z-index and 2) full season comparison of meteorological and agricultural 23 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2019                   doi:10.20944/preprints201908.0020.v1

Peer-reviewed version available at Water 2019, 11, 2218; doi:10.3390/w11112218

https://doi.org/10.20944/preprints201908.0020.v1
https://doi.org/10.3390/w11112218


9 
 

droughts using SPI-6, SPEI-6, and PDSI.   Preliminary investigations indicated that the use of SPI-1 could 1 

pose challenges due to months with no rainfall which can be ameliorated using SPI-2 without loss of 2 

representativeness of short-term climate dynamics.  SPI and SPEI computed at 2- and 6-month scales 3 

effectively bracketed the evaluation results noted at intermediate scales (i.e., 3-,4- and 5-month 4 

accumulations).  Therefore, evaluations at 2- and 6-month scales reduces computational burden without 5 

any loss of information at least in the context of Ethiopia, which is the focus of this study.  Similar empirical 6 

evaluations will be necessary to select appropriate scales when the proposed framework is to be applied 7 

at other locations.    8 

Metrics for Comparing Meteorological and Agricultural Droughts 9 

A consistent set of metrics are essential to compare the selected meteorological and agricultural drought 10 

indicators.  The proposed framework recommends exploratory data analysis (EDA) as a first step of the 11 

evaluation process.  Visual explorations of agricultural and meteorological time-series plots, 12 

autocorrelation and cross-correlation functions are recommended to obtain preliminary insights on the 13 

behavior of agricultural and meteorological droughts.   While these EDA methods are useful to obtain 14 

station-level insights, they are limited use when comparing agricultural and meteorological droughts 15 

across large (nation-wide) spatial scales.  Exploratory comparative metrics which summarize the 16 

differences (or similarity) between meteorological and agricultural drought indicators and amenable to 17 

mapping are valuable for spatial assessments.  Two such metrics are identified as part of the proposed 18 

evaluation framework and discussed below.    19 

The Time Series Distance Measure (TSDM) calculates the Euclidian distance between two series.  If two 20 

time-series are coincident then TSDM will assume the minimum possible value.  The larger the value of 21 

TSDM the greater is the divergence between two time-series.  TSDM provides an initial picture with 22 

regards to the simultaneous occurrence of meteorological and agricultural droughts.  As the drought 23 

indicators are measured over different scales (units), they need to be normalized on a common (0 – 1) 24 
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scale to identify areas where the two indicators are more coincident and areas where they are less so.   1 

The normalization of TSDM also allows for a consistent comparison across drought indicators.     2 

Previous studies have indicated that agricultural and meteorological droughts need not be coincident [6].   3 

However, agricultural drought indicators may correlate to lagged values of a meteorological indicator or 4 

vice-versa.  This situation arises because meteorological droughts are precipitation dependent while 5 

agricultural droughts depend on both temperature and precipitation.  The cross-correlation function (CCF) 6 

evaluates the similarity between two series across various lags. CCF varies between -1 and 1 where 0 7 

implies no similarity and negative values indicate inverse relationship.  The maximum value of CCF 8 

(regardless of the sign) indicates the maximum strength of the relationship between the two indicators 9 

which could occur at a lag different than zero.  While CCF plots are useful for station-level evaluation, the 10 

absolute maximum CCF value can be mapped and used in an exploratory mode to compare the lagged 11 

behavior of agricultural and meteorological time-series across the region of interest to understand the 12 

spatial variations in the maximum possible correlation between agricultural and meteorological droughts    13 

While EDA is important to obtain critical insights related to agricultural and meteorological droughts, 14 

confirmatory analysis making use of statistical hypothesis tests is necessary to provide critical evidence 15 

with regards to the joint behavior of meteorological and agricultural droughts.  The Granger test of 16 

causality [49] evaluates whether the lagged variables of one timeseries (X or meteorological drought 17 

indicator) is useful to predict the values of the other time-series( Y or an agricultural drought indicator).  18 

The null hypothesis assumes the two time-series X and Y are completely independent and therefore 19 

lagged variables of X timeseries has no bearing on Y.  The alternative hypothesis implies adding lagged 20 

variables of X enhances the prediction of Y which in turn indicates a significant correlation between the 21 

two time-series (albeit at different lags).  Mathematically, the test compares the following two models: 22 

𝑌𝑡 = 𝑎 + 𝑏𝑌𝑡−1 +⋯+ 𝑘𝑌𝑡−𝑘 (Null Hypothesis is a k-lag endogenous model)   (2) 23 
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𝑌𝑡 = 𝑎 + 𝑏𝑌𝑡−1 +⋯+ 𝑘𝑌𝑡−𝑘+∝ 𝑋𝑡−1 +⋯+ 𝜆𝑋𝑡=𝑘 (Alternate Hypothesis -exogenous model)  (3) 1 

And assesses whether the addition of any exogenous parameters is warranted.  The Granger test is useful 2 

to evaluate the influence of X (meteorological drought indicator) on Y (agricultural drought indicator).  The 3 

test will find in favor of the null hypothesis when the addition of the independent parameter (X) leads to 4 

no improvement in the model estimates (indicating X is not a good predictor of Y).  Only when X improves 5 

the model estimate significantly will the model find in favor of the alternative hypothesis, rejecting the 6 

null.     However, as linear models are fit (see equations 2 and 3), the test will fail when the added 7 

exogenous variables (X) have a very strong relationship with Y as this causes multicollinearity in the model.  8 

The Granger test of causality confirms (or helps analyze) the exploratory CCF plots as they both work 9 

directly with time-series of drought indicator values directly.  Granger test of causality is recommended 10 

as part of the proposed framework to assess the strength of the association between meteorological 11 

drought time-series and agricultural drought timeseries.     12 

While the magnitude of the drought indicator is useful to assess the severity of the drought, a coarser 13 

indication of whether the system is in drought (regardless of the severity) or not is often enough in long-14 

term planning applications.  Furthermore, the drought indicator value does not directly indicate whether 15 

the system is under drought unless it is compared to a pre-specified drought threshold [50].  Therefore, 16 

binary (drought/no-drought) time-series developed using pre-specified cut-offs are valuable to compare 17 

agricultural and meteorological droughts.  For the recommended drought indicators here, the cut-off 18 

values can be taken as   ≤ -1 for SPI and SPEI, ≤ -2 for PDSI and ≤ -1.25 for Z-Index based on the 19 

recommendations of the US Drought Monitor [50].  The binary agricultural and meteorological timeseries 20 

can be organized as a 2 x 2 contingency tables to evaluate their drought classification characteristics.   21 

The chi-square test evaluates the null hypothesis that the classifications of meteorological and agricultural 22 

droughts are independent of each other against the alternative hypothesis that there is a correlation 23 
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between agricultural and meteorological droughts and can be used as a first-line of evidence to assess the 1 

potential correlation of agricultural and meteorological droughts.  The Cohen Kappa test [51,52] uses 2 

Cohen Kappa statistic as a measure of agreement between agricultural and meteorological time-series 3 

and evaluates the null hypothesis of no agreement between the two series against the alternative of 4 

statistically significant agreement between the two.  In addition to hypothesis testing, the magnitude of 5 

the Cohen Kappa statistic is useful to evaluate the strength of the agreement when the null hypothesis is 6 

rejected.   The proposed evaluation framework recommends that this statistic be mapped (with non-7 

significant values set to zero) to understand the spatial variability of the strength of association between 8 

agricultural and meteorological drought indicators.   9 

Receiver Operator Characteristics (ROC) provides another useful set of metrics to compare agricultural 10 

and meteorological drought classifications.  A variety of metrics measuring the degree of similarity (or lack 11 

thereof) using the 2 x 2 contingency table designed from binary drought time-series [53].  The false 12 

positive rate (FPR) and the true positive rate (TPR) are two fundamental measures for evaluating the 13 

coincidence between meteorological and agricultural droughts.  The area under the ROC curve (AUC) 14 

provides a good single measure to summarize the strength of relationship between agricultural and 15 

meteorological droughts.   In a similar vein, accuracy, specificity, and recall also evaluate the nature and 16 

extent of correlation between agricultural and meteorological droughts [53] and can be mapped to make 17 

spatial comparisons.  Table 1 further describes the various terms used in ROC analysis and explain how 18 

they pertain to the evaluation of meteorological and agricultural droughts.  ROC metrics are all amenable 19 

to spatial mapping making them valuable to compare spatial differences between agricultural and 20 

meteorological droughts.  As such, the proposed framework recommends ROC analysis as an integral 21 

component for comparing agricultural and meteorological droughts and its utility is illustrated by 22 

comparing meteorological and agricultural droughts in Ethiopia.          23 
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Table 1: Contingency Table and Receiver Operator Characteristics (ROC) as they Pertain to Agricultural 1 
and Meteorological Drought Evaluations 2 

 3 

 Ag D: Drought, ND: 
Nodrought 

  

D ND 

Met 
D 

TP FP P = TP + FN TP – True Positive Coincident Ag and Met 
droughts 

ND 
FN TN N = FP + TN FP = False Positive Met. Drought but no Ag. 

drought 

P + N = Total data points used for 
classification 

FN = False Negative Ag. Drought but no Met. 
drought 

 TN – True Negative No Met. Drought and No Ag. 
droughts 

False Positive Rate (FPR) or Recall TP/P Coincidence of Ag and Met. 
Droughts over all 
Ag.droughts 

True Positive Rate (TPR) FP/N Fraction of met droughts 
over all Ag. Non-droughts 

Accuracy (TP +TN)/(P + N) Fraction of co-occurrence of 
both met and ag droughts 
and non-droughts 

Precision TP/(TP + FP) Fraction of times Ag and Met 
droughts are coincident over 
all met droughts 

Specificity TN/(FP + TN) Fraction of coincident Ag. 
and Met No-drought states 
over all Ag. No drought 
states 

 4 

Illustrative Application – Comparison of Meteorological and Agricultural Droughts in 5 

Ethiopia 6 

Data Compilation 7 

Following Asfaw et al. [7], gridded monthly precipitation dataset extracted from GPCC Full Data Monthly 8 

Product Version 2018 produced by Global Precipitation and Climatology Center (GPCC) and available on 9 

0.5o x 0.5o grid [54] were used along with temperature data from Climate Research Unit (CRU TS 4.21) as 10 

described in Harris et al. [55]. GPCC Full Data Monthly Product is the most comprehensive gridded 11 

precipitation dataset available today and is based on measurements from over 80,000 stations worldwide. 12 

It covers a period ranging from   January 1891 – December 2016 when this study was conducted.  The 13 

GPCC Full Data Monthly Product is the most accurate in situ precipitation reanalysis data set of GPCC and 14 
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aims to support regional climate monitoring, model validation, climate variability analysis and water 1 

resources assessment studies (e.g., Becker et al. [56]; Zeise et al. [57]).  It is also noted to provide 2 

representative coverage in Ethiopia [7] and as such was deemed suitable for this study.   3 

 4 

The CRU Climate Dataset is produced by the Climate Research Unit at the University of East Anglia and is 5 

gridded at a resolution of 0.5o x 0.5o over the land mass and was available on a monthly time-step from 6 

1901-2017 at the time of this study.  The CRU dataset is also based on observations from several thousand 7 

stations worldwide.  The principal data sources come from the World Meteorological Organization (WMO) 8 

and the National Oceanic and Atmospheric Administration (NOAA through its National Climate Data 9 

Center, NCDC).  This dataset has also been used several hundred climate change assessment studies and 10 

known to provide reasonable estimates for temperature [55] and as such was used to obtain temperature 11 

data across Ethiopia and to compute potential evapotranspiration needed for SPEI and was also used as 12 

an input for PDSI and Z-index calculations.     13 

 14 

Data for the common period of both GPCC precipitation and CRU temperature datasets (January 1901 – 15 

December 2016) were extracted for 377 grid locations across Ethiopia (shown in Figure 1) and used to 16 

calculate the drought indicators – SPI, SPEI, PDSI-SC (referred to as PDSI for brevity).   17 

 18 
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 1 

Figure 1:  0.5o x 0.5o degree grid used for evaluation of meteorological and agricultural droughts across 2 
Ethiopia 3 

 4 

Short-term SPI calculations could be affected by the presence of months with no rainfall.  Therefore, SPI 5 

and SPEI indices were computed using the procedures presented in Stagge et al. [58], to correct for zero 6 

precipitation values.  The standard procedures for computing self-calibrating PDSI and Z-index were used 7 

[41].  Customized scripts were developed in R programming environment [59] using existing packages [60-8 

62] as appropriate.   9 

Results and Discussion 10 

Exploratory Data Analysis 11 

The maximum cross-correlation coefficient for various agricultural and meteorological indicators is 12 

plotted in Figure 2 and represents the maximum possible correlation between agricultural and 13 

meteorological drought indicators regardless of the lag at which they occurred.  In the short-term, the 14 

relationship between SPI-2-SPEI-2 exhibits considerable variability as compared to SPI2-Z-index values.  15 

This result highlights that SPEI-2 is controlled by different mechanisms in different parts of Ethiopia.  When 16 
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the correlation between SPI-2 and SPEI-2 is strong, precipitation has a higher role in controlling intra-1 

season droughts (as measured using SPEI-2).  Surficial soil dryness (caused by temperatures) plays a 2 

greater role in other areas where the SPI-2 and SPEI-2 relationship is weaker.  In contrast, the relationship 3 

between SPI-6 and SPEI-6 is near perfect.  Higher precipitation accumulations (6 months) in effect dampen 4 

the short-term ‘temperature’ dominant signals seen in SPI-2.  In other words, the ability to store moisture 5 

from previous months can help alleviate short-term droughts brought forth by surficial soil dryness and 6 

points to the need for irrigation systems in Ethiopia.   7 

The cross-correlation between SPI-2 and Z-index (intra-season) is good (0.6-0.8) over most of Ethiopia and 8 

does not exhibit significant spatial variability.  The Z-index is computed using a two-bucket model which 9 

accounts for soil moisture dynamics over a 1 m soil. This tends to mask the surficial drying effects noted 10 

in SPEI-2.  The correlation between SPI-6 and PDSI is also good but not as strong as SPI-6 and SPEI-6 and 11 

exhibits some variability likely due to differences in parameterizations across different locations obtained 12 

using the self-calibration process.   Overall, based on CCF, SPI serves as a better surrogate for simulating 13 

long-term (seasonal) agricultural droughts then short-term (intra-season) droughts.  In both cases, SPI 14 

does not explain all the noted variation in agricultural droughts (except perhaps those computed using 15 

SPEI-6).          16 

 17 
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 1 

Figure 2:  Maximum Cross-Correlation Coefficient between Meteorological (SPI) and Agricultural (SPEI, Z-2 
index, PDSI) Droughts in Ethiopia 3 

 4 

Time series distance measure (TSDM) evaluates the aggregated distance between agricultural and 5 

meteorological drought indicators.  As the measurement scale of different indicators is different, Figure 3 6 

plots the normalized distance (normalization was done such that smallest distance has a value of unity 7 

while largest distance has a value of zero and intermediate values are on a linear 0-1 scale).  As TSDM 8 

measures the distance at any given point in time (and not on lags), it is akin to lag-0 cross-correlation 9 

coefficient.  Therefore, the comparison of spatial patterns of CCF presented in Figure 2 and TSDM in Figure 10 

3 shows where the relationship between meteorological and agricultural indicators are strongest at lag-0 11 

or likely to covary.  It can be noted that the region where the SPI-2 and SPEI-2 correlation is strongest also 12 

exhibits a strong TDSM correlation.  Low to moderate CCF values shown in Figure 2 for SPI-2 and SPEI-2 13 
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CCF correspond to areas where the relationship between the indicators is stronger at other lags.  A 1 

comparison of TSDM (Figure 3) and CCF between SPI-2 and Z-index (Figure 2) shows that the maximum 2 

strength between these two variables occurs at non-zero lags.  This suggests that short-term soil moisture 3 

dynamics are not affected by changes in precipitation alone.   4 

 5 

 6 

Figure 3:  Normalized Timeseries Distance Measure (TSDM) between Agricultural and Meteorological 7 

Indicators 8 

 9 

A comparison of short-term (SPI-2 and SPEI-2) and long-term (SPI-6-SPEI-6) indicates that as accumulation 10 

periods increase, so does the area over which lag-0 becomes higher.  This result is to be expected because, 11 
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at longer timescales, there is a greater possibility of a parcel of land experience both meteorological and 1 

agricultural droughts.  Again, a comparison of CCF (Figure 2) and TDSM (Figure 3) for SPI-6 and SPEI-6 2 

shows regions where the relationship between meteorological droughts (SPI-6) and agricultural drought 3 

(SPEI-6) may be strong but the droughts need not be coincident.  The degree of coincidence between SPI-4 

6 and PDSI as measured using TDSM is much lower when compared to SPI-6 and SPEI-6 relationship, 5 

indicating a lagged relationship between SPI and PDSI which likely arises due to greater moisture buffering 6 

capacity in PDSI as compared to SPEI.             7 

Exploratory data analysis using CCF and TSDM metrics indicate that agricultural and meteorological 8 

droughts exhibit moderate to strong correlation over much of Ethiopia.  However, these droughts need 9 

not always be coincident.  SPEI indicates a greater degree of spatial coincidence with SPI as compared to 10 

Z-Index and PDSI, especially at higher accumulation levels (i.e., for seasonal droughts).  The coincidence 11 

or lack thereof is important to evaluate whether SPI (a meteorological drought indicator) can serve as a 12 

useful surrogate for capturing agricultural droughts and the results suggest that the suitability of SPI as a 13 

surrogate for agricultural droughts depends upon the choice of the agricultural drought indicator, the 14 

assessment scale (short- or long-term) and the location within the country.   15 

Confirmatory Hypothesis Testing 16 

The exploratory data analysis indicated that the relationship between agricultural and meteorological 17 

droughts was strong not always coincident.  Granger test of causality was performed to statistically 18 

confirm this result the results of which are presented in Figure 4.  19 

 20 
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 1 

 Figure 4:  Spatial Locations in Ethiopia where Granger Test Rejected the Null Hypothesis of No 2 
Correlation between Meteorological and Agricultural Droughts (1 - Null Hypothesis was Rejected at 0.05 3 

significance; 0 - Null hypothesis was not rejected or Multicollinearity issues were found)  4 

 5 

The Granger test of causality indicated that adding meteorological drought indicator generally improves 6 

the prediction of agricultural droughts, indicating that SPI can be a lagged indicator of SPEI (i.e., moisture 7 

deficits from previous precipitation events do impact current agricultural droughts).  However, the 8 

Granger test was inconclusive at many places, especially for SPEI-6.  The locations where SPI and SPEI 9 

were strongly correlated caused multicollinearity issues during the application of the Granger Test.  10 

Overall, it can be inferred that the Granger test generally found that lagged values of SPI can be useful to 11 

predict (or improve the prediction of) agricultural drought indicators when the strength of the relationship 12 
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is not so strong to cause multicollinearity effects.  This result generally confirms the qualitative assessment 1 

that a relationship between lagged SPI and agricultural drought indicators is noted at many locations 2 

across Ethiopia.    3 

The chi-square test was performed to evaluate the correlation between binary-encoded 4 

(drought/no=drought) agricultural and meteorological drought time-series.  The results from the chi-5 

square test were significant at all locations and for all combinations of agricultural-meteorological drought 6 

indicators.  While Chi-square test is commonly used, one of its limitations is its tendency to reject the null 7 

hypothesis of independence even when the correlations are small, especially for large sample sizes.  Some 8 

correlation between the indicators is to be expected because they all, to some degree or another, depend 9 

upon precipitation.  While the chi-square test may be capturing this result, it does not help tease out the 10 

effects of how various agricultural drought indicators modify the precipitation signal.  As such, chi-square 11 

test, while common, is of limited value for comparing agricultural and meteorological drought indicators 12 

(therefore the results of the test are not presented here for brevity).   13 
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 1 

Figure 5:  Cohen kappa Values Across Ethiopia for Agricultural and Meteorological Drought Indicator 2 
Combinations here 3 

 4 

The Cohen kappa test rejected the null hypothesis of independence between agricultural and 5 

meteorological droughts at all locations (at 5% significance level). Figure 5 presents the Cohen kappa 6 

values and comparison with Figure 2 (CCF plot) indicates considerable similarities.  The Cohen kappa is, 7 

however, more conservative (except perhaps for SPI-6 and SPEI-6 combination) in defining the degree of 8 

agreement between agricultural and meteorological indicators.  This result arises because unlike CCF, the 9 

Cohen kappa is computed using binary (drought/no-drought) time-series and therefore the comparison is 10 

simply on magnitudes but on classified drought states.    11 
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The degree of association as measured using kappa statistic is higher for SPI-SPEI combinations more so 1 

then SPI-PDSI (Z-Index) combinations.  It is important to recognize the Cohen kappa statistic was 2 

computed on classified time-series while CCF was calculated using raw indicator values.  As the thresholds 3 

for categorizing between drought and no-drought are different for each indicator, the kappa measure 4 

provides a more realistic picture of concordance between agricultural and meteorological droughts.  PDSI 5 

and Z-index exhibit a lower level of agreement with SPI when their values are encoded into drought and 6 

no-drought climate states suggesting that the duration of droughts predicted by SPI is not consistent with 7 

those predicted by PDSI and Z-index.         8 

Receiver Operator Characteristics (ROC) Analysis 9 

The true positive rate (TPR), or sensitivity, denotes the fraction of times the meteorological droughts are 10 

coincident with agricultural droughts.  Therefore, TPR provides a direct evaluation of how well SPI based 11 

meteorological drought indicators capture the agricultural droughts predicted by SPEI and PDSI (Z-Index).  12 
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 1 

Figure 6:  True Positive Rate (TPR) for Various Agricultural-Meteorological Drought Combinations in 2 
Ethiopia  3 

 4 

Figure 6 depicts the TPR computed TPR values across Ethiopia.  It is evident that coincident meteorological 5 

and agricultural droughts occur at different frequencies across the nation and depend upon the choice of 6 

the indicator for characterizing meteorological droughts.   While SPI can better predict SPEI based short-7 

term and long-term droughts over much of the country, the TPR rates for these combinations also exhibit 8 

the greatest variability.  In general, SPI and SPEI are coincident 50% - 80% of the time but their coincidence 9 

can be lower than 30% in some regions.  Short-term SPI2-SPEI2 are highly non-coincident in the Somali 10 

Region of Ethiopia (Southeastern sections) where belg (short-rainy season) rainfall is prominent and the 11 
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region has greater aridity then other parts of the country.  The covariation of SPI (meteorological) and 1 

PDSI and Z-index (agricultural) is lower with most regions of the country being in meteorological and 2 

agricultural drought states 30% – 70% of the time.  While the covariation between SPI and PDSI (Z-index) 3 

is lower compared to SPEI based agricultural drought indicators, they also exhibit much more 4 

homogeneity across the nation.  Thus, SPI may only capture a smaller fraction of the agricultural drought 5 

(as predicted by PDSI and Z-index) but it does so consistently across the nation.  On the other hand, SPI 6 

may be able to capture agricultural droughts predicted by SPEI better in some locations it does not do so 7 

consistently.  Furthermore, Figure 6 also indicates that the accumulation period plays a critical role in 8 

defining the covariation between SPEI and SPI based indicators.   9 

The false positive rate (FPR) denotes the fraction of time there is meteorological drought but not 10 

agricultural drought and is mapped across Ethiopia for various indicator combinations of interest in Figure 11 

7.  Agricultural systems may exhibit a delay in responding to the onset of meteorological droughts, 12 

especially if the soil moisture is buffered from previous rainfall events that occurred prior to the initiation 13 

of droughts.  Smaller values of FPRs indicate a greater coincidence of agricultural and meteorological 14 

droughts.   15 

Again, the SPI-SPEI combinations indicate greater coincidence in some parts of Ethiopia but also exhibit 16 

considerable variability.  The extent of precipitation accumulation is particularly significant in the 17 

southeastern (Somali) region of the county for SPI-SPEI combination.  The SPI-6 and PDSI and SPI-2 and Z-18 

-index combinations generally show a greater divergence, but the noted deviation is more uniform across 19 

the nation.  In general, meteorological droughts exist without the onset of agricultural droughts no more 20 

than 15% of the time regardless of the indicator used but can be less than 4% of the time (with 4% - 10% 21 

being a typical range).   22 

 23 
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 1 

Figure 7:  False Positive Rate (FPR) For Various Drought Indicator Combinations Across Ethiopia here 2 

 3 

The Receiver Operating Characteristics (ROC) Curve is depicted in Figure 8 and plots the FPR and TPR 4 

values for each location.   The 45o degree line on the ROC curve indicates the line of equal FPR and TPR.  5 

The coincidence of a meteorological and agricultural droughts increases (due to non-random 6 

relationships) when points fall in the upper triangular portion shown in Figure 7.  The point (0,1) indicates 7 

a perfect coincidence (i.e., 100% of the time) between meteorological and agricultural droughts.  As 8 

almost all points fall in the upper triangle, a reasonably strong, non-random relationship between 9 

agricultural and meteorological droughts can be ascertained regardless of the indicators.   10 
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 1 

Figure 8: Receiver Operator Characteristics (ROC) Curve for various Meteorological-Agricultural Drought 2 
Combinations 3 

 4 

While the covariance of Z-index and SPI-2 is not strong, there is also less variability across the nation.  The 5 

strength of the relationship between SPI-2 and SPEI-2 can vary widely and a similar behavior can be seen 6 

for SPI-6 and SPEI-6 (long-term) drought combination as well.  This result again states that if SPEI is chosen 7 

as an agricultural drought indicator, SPI may or may not serve as a useful surrogate to signify agricultural 8 

droughts depending upon the location of interest.  On the other hand, If Z-Index and PDSI are chosen as 9 
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drought indicators, SPI is likely to be a poorer but consistent surrogate across the nation for characterizing 1 

agricultural droughts.   2 

The AUC values shown in Figure 9 not only reconfirm the findings from earlier metrics but are also helpful 3 

in evaluating areas where meteorological indicators covary to a higher extent with a selected agricultural 4 

indicator.  It is evident from Figure 9 that SPI-2 can be useful as a surrogate in some portions when SPEI-5 

2 is selected as an agricultural drought indicator.  However, along the northern and western borders and 6 

southeastern portions of the country, the level of surrogacy offered by SPI-2 is the same regardless of 7 

which agricultural indicator is used.  GIS mapping of AUC allows one to ascertain the minimum level of 8 

surrogacy that SPI provides regardless of the choice of the agricultural indicator.      9 

 10 

Figure 9:  Area Under the Curve (AUC) for Intra-Season and Full-Season Agricultural and Meteorological 11 
Drought Comparisons 12 
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 1 

Precision provides an estimate of the fraction of times meteorological and agricultural droughts are 2 

coincident over all meteorological droughts.  Precision is another measure that helps evaluate the 3 

concordance of agricultural and meteorological droughts and thus help evaluate the suitability of SPI in 4 

capturing agricultural droughts being predicted by SPEI, PDSI (Z-index).  Figure 10 illustrates that the 5 

precision values exhibit extreme variability across Ethiopia.  Not all meteorological drought conditions 6 

translate to agricultural drought conditions.  Various factors such as antecedent soil moisture (water 7 

stored from previous rainfall events) and plant adaptations to water stresses help buffer agricultural 8 

systems against meteorological droughts.  However, in areas with higher values of precision, the buffering 9 

capacity is low, and the onset of a meteorological drought quickly causes agricultural droughts. Therefore, 10 

SPI can serve as an useful early-warning detector of agricultural droughts. 11 

 12 

Figure 10:  Precision Measures of Agricultural and Meteorological Droughts 13 
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While the focus so far has been on the drought climate state, it is equally important to consider both 1 

agricultural and meteorological non-drought states.  Specificity can be viewed as a complement to the 2 

False Positive Rate (FPR).  While FPR looks at coincident times of both agricultural and meteorological 3 

droughts across all agricultural droughts, Specificity is the fraction of time both meteorological and 4 

agricultural systems are in non-drought states over all times the agricultural system is in a non-drought 5 

state.  Specificity is useful to assess the fraction of time when there are no climate related water stresses 6 

on the agricultural system.   7 

 8 

Figure 11:  Specificity Measures of Agricultural and Meteorological Droughts 9 

 10 
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Figure 11 depicts specificity measures for various meteorological-agricultural drought indicator 1 

combinations.  The results suggest that the specificity across Ethiopia is reasonably high regardless of the 2 

agricultural drought indicator used.   Where there is no meteorological drought there is unlikely to be an 3 

agricultural drought.  According to these results, SPI can be a very useful indicator to highlight agricultural 4 

non-drought states.  Comparison of the False Positive Rate (Figure 7) and Specificity (Figure 11) suggests 5 

that SPI is much better suited to indicate when the agricultural system is not in a drought state, more so 6 

that when it is in the drought state.     7 

Accuracy measures the total number of coincident agricultural and meteorological drought and non-8 

drought states against all possible states.  Accuracy thus provides a comprehensive evaluation of using SPI 9 

as a surrogate for other agricultural drought indicators considering both drought and non-drought states. 10 

 11 

Figure 12:  Accuracy Measure Measures of Agricultural and Meteorological Droughts 12 
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Figure 12 suggests that SPI has at least 60% accuracy in predicting agricultural (drought and non-drought) 1 

states and it can be over 95% in some instances.   Again, the spatial variability of accuracy for different 2 

agricultural drought indicators is evident from Figure 12.  In general, the accuracy is better for SPI-SPEI 3 

combinations more so than SPI-PDSI (Z index) combinations.  However, as seen from Figure 11, the 4 

accuracy is high because of the ability of SPI to better predict agricultural non-drought states, more so 5 

than its ability to predict agricultural drought states. Therefore, a stand-alone evaluation of accuracy does 6 

not provide the full picture with regards to the ability of SPI to predict agricultural droughts and accuracy 7 

results must be viewed in the context of false positive rate (recall) and precision estimates to assess which 8 

states (drought or non-drought) are being better predicted by SPI.   9 

Closing Remarks 10 

Rainfall undoubtedly plays a significant role in sustaining agricultural and pastoral activities in 11 

predominantly rural Ethiopia.  Meteorological droughts arise due to deficits in precipitation and propagate 12 

through agricultural systems to create agricultural droughts.  However, meteorological and agricultural 13 

droughts need not be coincident.  Antecedent soil moisture (stored water supply) and plant water 14 

regulation (demand management) may help plants withstand some meteorological droughts.  On the 15 

other hand, as soil moisture dynamics are affected by a variety of slow hydrologic processes such as 16 

evapotranspiration (ET), exfiltration and deep percolation, agricultural droughts may persist long after the 17 

cessation of meteorological droughts.  Which brings up the question of whether meteorological drought 18 

indicators can serve as effective surrogates for prescribing agricultural droughts? 19 

The standardized precipitation index (SPI) is now recognized as a de facto standard for characterizing 20 

meteorological droughts.  While a de facto standard agricultural drought indicator does not exist, drought 21 

indicators that account for both precipitation (supply) and evapotranspiration (demand) are used to 22 

characterize agricultural droughts. In this context, the standardized precipitation evapotranspiration 23 

index (SPEI), Palmer drought severity index (PDSI) and Palmer Z-index are commonly used to model 24 
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agricultural droughts.  As agricultural seasons are short (typically < 6 months), these drought indicators 1 

are computed for 1 – 6 months accumulation times.  Is SPI a useful surrogate to model agricultural 2 

droughts as defined using SPEI and PDSI (Z-index)?   3 

  An evaluation framework comprising of a suite of exploratory and confirmatory data analysis methods 4 

was postulated and used to evaluate the covariation of SPI (meteorological droughts) and agricultural 5 

droughts (as defined using SPEI and PDSI (Z-index).  SPI-2, SPEI-2, and Z-index were used to quantify short-6 

term droughts, while SPI-6, SPEI-6, and PDSI were used to characterize full season behavior.  The results 7 

indicate that agricultural droughts are indeed correlated to meteorological droughts.  However, the 8 

strength of this relationship not only depends upon the choice of the agricultural drought indicator but 9 

also the location (i.e., spatial variability) and if the interest is on intra-seasonal or full season droughts 10 

(accumulation time-period).  In general, SPI is better correlated to SPEI, but the relationship is highly 11 

variable.  SPI is less correlated to PDSI and Z-index, but the relationship is spatially homogeneous.  12 

Knowledge of SPI can help improve our predictions of agricultural droughts, but the lag (lead) between 13 

meteorological and agricultural droughts must be properly accounted for.  Contingency table analysis 14 

indicated that agricultural droughts can exist when there are no meteorological droughts and not all 15 

meteorological droughts cause agricultural droughts.  Based on overall assessment metrics (accuracy and 16 

AUC), there is a strong to moderate relationship between SPI and agricultural drought indicators.   The SPI 17 

exhibits high specificity but much lower recall (false positive rate), indicating that SPI is useful in defining 18 

agricultural non-drought states more than predicting drought states.   19 

In the Ethiopian context, SPI has been widely used to quantify agricultural droughts under the assumption 20 

that most of the agriculture in the country is rainfed and therefore meteorological droughts should have 21 

a direct impact on agricultural production.  However, as this study suggests, agricultural and 22 

meteorological droughts need not be coincident, and SPI does not provide a full picture of agricultural 23 

droughts.  Efforts should be made to initiate a nationwide soil moisture network, which in the long run 24 
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will provide direct evidence of agricultural droughts and in the short term, help farmers make better 1 

farming choices.  In the interim, water planners and policy makers must make use of multiple drought 2 

indicators that indirectly capture the soil moisture dynamics when developing their drought preparedness 3 

schemes.   In general, SPEI-2 and PDSI were seen to be more aggressive indicators of short- and long-term 4 

agricultural droughts. SPI can potentially be used as an early-warning indicator of agricultural droughts, 5 

but it cannot used for defining the cessation of agricultural droughts.   The postulated framework provides 6 

useful tools to elucidate the relationships between meteorological and agricultural droughts and in 7 

conjunction with spatial mapping provide an intuitive visualization of how these two droughts vary over 8 

large regional scales.  The presented framework in conjunction with high-resolution gridded precipitation 9 

and temperature data available in the public-domain provide necessary tools to conduct century-scale 10 

national-scale drought assessments and visualize results across large spatial scales.  11 
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