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Abstract: In this study, we address the formidable challenge of solving large-scale Max-Cut
problems (MCP). We introduce a rapid computational procedure utilizing a hybrid 1-flip/r-flip local
search heuristic. This innovative strategy significantly reduces the computational time required for
MCP problems while consistently generating solutions of exceptional quality. The paper presents
substantial computational insights, showcasing the effectiveness of our approach on very-large-
scale Max-Cut instances with varying densities. Our proposed heuristic is rigorously evaluated by
comparing its performance against a quantum annealing solver, leveraging a multi-start Tabu
Search framework. The results underscore the potency of this unique combination as an efficient
and effective solution for large-scale QUBO problems. Notably, our hybrid heuristic consistently
delivers high-quality solutions within the stringent CPU time limits of 600 seconds, demonstrating
its efficacy across Max-Cut instances ranging from 10,000 to 40,000 variables. This research
contributes to advancing the state-of-the-art in large-scale QUBO problem-solving, offering a
powerful and time-efficient approach with broad applicability.

Keywords: hybrid heuristics; quantum annealing solver; max-cut

1. Introduction

The Quadratic Unconstrained Binary Optimization (QUBO) problem holds significant relevance
across various applications, particularly as a unifying approach for many combinatorial optimization
challenges [1]. The emergence of quantum computing, particularly quantum annealing solvers, has
brought QUBO into the spotlight [2]. However, the complexities of modelling and analyzing very
large-scale problems on conventional computing platforms often hinder effective solutions through
mathematical programming methods.

While quantum computing platforms offer the potential to overcome hardware limitations,
transforming real-world problems into the suitable qubit architecture remains challenging. This
study addresses the gap between quantum and traditional computing platforms, focusing on the very
large-scale Max-Cut problem (MCP)—a critical research area with applications spanning statistical
physics [3], communication infrastructure [3], machine learning [4], and computer chip design [5].

The computational landscape of the Max-Cut problem has sparked diverse solution strategies,
ranging from approximation algorithms leveraging semidefinite programming to metaheuristic
methods and exact approaches. While approximation algorithms like the seminal work of Goemans
and Williamson [6] and subsequent contributions by Karish et al. offer theoretical performance
guarantees [7], empirical evaluations often reveal their inferiority to other methodologies.

Exact methods, exemplified by Krishnan and Mitchell’s cut and price approach [8] and Rendl et
al.’s branch and bound method [9], have emerged as viable alternatives, particularly for smaller
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problem instances. However, their applicability remains constrained to scenarios with relatively few
nodes, typically in the hundreds.

For more substantial Max-Cut instances, characterized by thousands of nodes, metaheuristic
methods become imperative. Recent advancements in this domain include the rank-2 relaxation
method, dubbed CirCut, by Burer et al. [10], Festa et al.’s hybrid randomized method [11], and Marti
et al’s scatter search method [12]. Computational evaluations consistently demonstrate the
superiority of these techniques, with the scatter search method notably achieving outstanding
performance across test problems featuring up to 3000 nodes. Additionally, Alidaee et al. proposed
a diversification strategy based on sequential local improvement, demonstrating substantial
enhancements in solutions for a significant portion of benchmark Max-Cut problems within
reasonable CPU time constraints [13].

Further breakthroughs have been made to tackle even larger problem sizes. Kochenberger et al.
introduced the DDT approach, delivering state-of-the-art solutions for test problems boasting up to
10,000 nodes [14].

Max-Cut problem is a popular testbed for Quantum Computing platforms and algorithms due
to its natural formulations. Recent developments in quantum computing, especially quantum
annealing solvers, put Max-Cut in the spotlight [15-24]. Alam et al. used the graph Max-Cut problem
as a prototype while using the quantum approximate optimization algorithm (QAOA) where a
quantum circuit and a classical optimizer operate in a closed loop solving hard combinatorial
optimization problems [15]. Basso et al. also applied QAOA to Max-Cut on large-girth regular graphs
[16]. Galda et al. showed that the transferability of the parameters among QAOA instances and
convergence of the optimal parameters around specific values can be predicted based on local graph
properties [17]. Bianchi et al. proposed a pooling operator for graph neural networks to generate
coarser graphs while maintaining the overall topology of the graph and used a spectral algorithm
approximating the Max-Cut solution [18]. Shaydulin et al. utilized a multi-start optimization
technique in a QAOA framework to improve the performance of quantum machines on various
graph clustering problems [19] and introduced QAOA Kit for the combination and standardization
of previously known parameters for Max-Cut problems [20]. Shaydulin and Wild proposed a new
method to accelerate the assessment of QAOA energy by using the problem symmetry and
implemented the proposed method on the Max-Cut problem using a graph auto-morphism solver
and tensor network simulator [21]. Umasankar et al. used a Time-Multiplexed Opto-Electronic
Oscillator-based Coherent Ising Machine on Max-Cut Problems [22]. Wurtz and Love defined the
Spanning Tree QAOA for Max-Cut and utilizes an “ansatz” whose structure results from an
approximate classical solution and reaches the same performance level as the classical algorithm to
outperform QAQOA at low depth [23].

In this research, we introduce a local search strategy based on the r-flip strategy for QUBO [24].
The dynamic adjustment of the r value in the r-flip strategy strikes a balance between computational
cost and solution quality. This approach effectively reduces computational time while reaching
superior solutions [25]. Our proposed heuristic achieves results within a strict CPU time limit of 600
seconds, addressing Max-Cut instances ranging from 10,000 to 40,000 variables. Comparative
evaluations against a quantum annealing solver based on multi-start Tabu Search [26] provide
insights into the efficiency and effectiveness of our proposed approach.

By bridging the gap between quantum and conventional computing, our study contributes to
the exploration of quantum computing’s potential in solving complex optimization problems,
showcasing a novel local search strategy tailored for QUBO with promising results in the context of
the challenging Max-Cut problem.

2. QUBO and MCP Solution

Before we present the r-flip strategy to solve QUBO and MCP in this study, the notations used
are given as follows:

n The number of variables

X An initial feasible solution
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x*  The best solution found by the algorithm
K The largest value of k for r-flip, k<r
7t(i) The i-th element of x in the order n(1)---7t(n)
S {i:xi is tentatively chosen to receive a new value to produce a new solution xi’} restricting
consideration to S| =r
D The set of candidates for an improving move
E(x;) Derivative of f(x) with respect to x;
E(x) = (E(x7), ..., E(x3)) The vector of derivatives
x(.) A vector representing the solution of x
E() A vector representing the value of derivative E(x;)
The general form of QUBO can be given as [27],
n n n
Max f(x) = Z qix; + %ZZ qijxixj, s.t. x; €{0,1},i=1,-,n 1
=1 =1 j#i

In (1), iqi‘ ; is the i,j-th entry of a given n by n symmetric matrix Q and the linear term g; can
be the entry in the diagonal of the matrix. Since x;? = x;, and Q may be written as an upper triangular
matrix by doubling each entry of the upper triangle part of the matrix and letting q;; = q;, then we
can write (1) as (2).

Max f(x) = X1y X qijxi%; = xTQx,s.t.x_i € {0,1},i = 1,--,n )

Numerous combinatorial optimization problems lend themselves to reformulation as QUBO by
employing a quadratic infeasibility penalty. However, determining the optimal penalty values poses

a considerable challenge. In light of this, we focus our investigation on the very large-scale MCP as a
prime candidate application, given its inherent and natural formulation within the QUBO framework.

2.1. Max-Cut problems

Max-Cut problem with many real-world implementations is an NP-hard problem which means
that exact solution algorithms are not sufficient for large-scale problems, since obtaining a solution is
very time-consuming [28]. Following the advances in quantum computers, max-cut problems have
received much interest recently [29]. Two formulations, linear and nonlinear, exist for the MCP [27].
Initially, we present the natural QUBO model for MCP.

Max ¥y 37y e @i (% + x5 — 2 % x;%7) 3)
s.t. x; €{0,1}vi=1,...,n

The QUBO model (3) can be transformed to a linear model using classical linearization
techniques [30].

Max ¥y 37y ic; i (% + x; — 2% y35) “4)
st. y;< x, Vij=1,.,nandi<j 5)
Vi< x5, Vij=1,..,nandi<j 6)
yiiz % +x—-1,Vij=1.,nandi<j 7

x; €{01},vi=1,..,n

yij €[01], Vj=1,..,nandi <j
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The linear model for the MCP undergoes a substantial increase in size on very large-scale
instances, both in terms of the number of variables and constraints. In this research, we specifically
present solutions for the QUBO model, solely for the purpose of conducting a comparative analysis
with a quantum annealing solver.

2.2. Solution Representation
Here Q is a symmetric matrix. Given a solution x = (x4, ..., x,) define
4;(x) = q(, 0) + X 2X ik, L EN @®)
With respect to 1-flip neighborhood, x is locally optimal if and only if it satisfies
4;(x) <0, Vx; =0, and 4;(x) >0, vx; =1 9)

Then the objective function will satisfy

Af = ies(X's = x)E(x) + X jes,icj(x's — x) (X — %) 43 (10)
and
vj € S,E(xj) « E(x;) + Z (x{ — x;) qi (11)
ies\{j}

The rationale behind the r-flip move is rooted in the notion that a larger value of moves (here, a
larger value of r) offers the opportunity to explore a more extensive and diverse solution space.
Moreover, when improvement within a specific neighborhood (e.g., a 1-flip move) is exhausted, and
a solution x attains local optimality with respect to the 1-flip move, employing another neighborhood
move (such as a 2-flip move) becomes viable for further exploration of the solution space. This
strategic approach forms the basis for various meta-heuristics. Upon obtaining a locally optimal
solution x concerning a 1-flip move, the elements of x are ordered based on the ascending absolute
value of derivatives, as follows:

[ECerey)| < -0 < |E (Xl (12)

Here, n(i) means the i-th element of x in the order (m(1),::-,m(n)). Now, one at a time in the
given order, check the summation in (13) for k=1,2,...,n. For m<n, define (m, n) to be the number
of combinations of m elements out of #, and let ¢ = Mg;\(lﬂqi, j|}, and for the r-flip move let

Lj

M = @ * (2,7). Let K be the largest value of k where the inequality (13) holds, and define the set D(n)
(14).

YL IE(r@) < M, fork =1,2,3,n (13)

D(n) = Xy Xn(i) } (14)

To implement an r-flip local search, the main decision is to choose a set S with |S|=r at each step

and change i to I-x for all 1€ S if it improves the objective function. This search process is
inherently computationally demanding. The strategies mentioned above, including Lin and
Kernighan's approach and very large-scale neighborhood search, are inherently tailored to specific
problem domains. For instance, these strategies have predominantly found application in graph
theoretic problems. However, in this paper, we introduce a novel implementation of the r-flip
strategy, coupled with a sequential diversification technique. This approach enables the exploration
of diverse sets S, each comprising r elements, while strategically avoiding non-improving sets. The
incorporation of sequential diversification fundamentally reduces the computational time required
for QUBO.
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2.3. Implementation Details

The solution implementation is detailed in Section 2.2 through Algorithm 1 and Algorithm 2,
with a comprehensive comparison of very large-scale MCP instances presented in the subsequent
section. For additional insights and theoretical underpinnings, we draw upon the work and proofs
by Alidaee and Wang [31], particularly for the novel r-flip results in general QUBO problems. It's
worth noting that in Algorithm 2, the sets S and M dynamically evolve as the search progresses.

Algorithm 1. 1-flip Local Search

Initialize: n, x, evaluate the vector E(x)

Flag=1

1 Do while (Flag=1)

2 Flag=0

3 Randomly choose a sequence m(1),...,m(n) of integers 1,...,n.
4 Do i= n(1),...,m(n)

5If (E(x;) <0 and x; = 1) or (E(x;) > 0 and x; = 0):

x; = 1 — x;, update the vector E(x) using Equation (11), Flag=1
6 End do

7 End while

Note that, the algorithm is similar to the greedy algorithm for a KP. Here, the value that each
time is added to the knapsack is equal to. We used a random sequence to greedily choose items,
however, another alternative that many researchers have used is, each time choosingse the item with
the maximum contribution to F(x). Furthermore, due to the dynamicsm nature of the problem, when
an is changed to it is possible the algorithm will come back to the same variable and change its value
to what it was before (this might happen several times during the search possible). Also, note that,
reaching a locally optimal solution by the greedy Algorithm 1, is NP-hard, (...).

In a 1-flip search, we only look at one variable at a time to possibly change its value. However,
in r-flip search the process is similar to 1-flip search except that up to r variables may be considered
for a change of values. The idea behind the r-flip search is that, the larger value of moves (here larger
value of r) may provide an opportunity to explore a larger and thus more diverse solution space. In
this process when a neighborhood search, for example, k-flip (') search, is exhausted, i.e., x is locally
optimal with respect to k-flip move, another neighborhood move, for example (k+1)-flip search, may
be implemented to explore the solution space. Such a strategy is the basis for several meta-heuristics

Algorithm 2. r-flip Local Search

Initialize: n, x, evaluate vector E(x), value of r, M

Flag=1

1 Do while (Flag=1)

2 Flag=0

3 Call Algorithm 1:1-flip local search

4 Sort variables according to |E(X(;))| < |E(Xngisn)|, using
Inequality (13) evaluate value of K

5For j =n(1),:,n(K):

6 For S; = {n(1),--,m(j)}, evaluate Ms,

If Z{=1|E (xn(i))| < Mg, evaluate Af using Equation (10).

71f Af>0:
x; =1—x;, for i € §;, update E(x) using Equation (11),
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Flag=1, go to Step 1
8 End for
9 End while

An alternative way to implement this algorithm is that k=r throughout the process. The

Algorithm 2 is simple but inefficient; it requires some mechanism to choose the set S, and a process
mechanism to implement elements of the k-flip move. Below, we give several results that allow an
efficient implementation of the r-flip search process.

Lemma 1. Given a locally optimal solution x with respect to a 1-flip search, we have

(x'.=x,)E (x)<0, fori=1,...n (15)
Proof. Directly follows from the local optimality condition (6), which states
(E(x)=0, iff x,=1) and (E,(x)<0, iff x,=0),foris....n (16)
Lemma?2.Let SC N, and |Sl=r, given any solution x, and M as defined earlier, we have

Zi,jeS(x'i_xi)(x'j_x.f)qi/ =M (17)

Proof. For each pair of elements, i,j in S, the left-hand-side (LHS) in (17) is either q; or —q; .Using

definition of M, the summation in LHS is at most equal to M.
Theorem 3. Given a locally optimal solution x of f(x) with respect to 1-flip search, a subset S C N, with
| S1=r, is an improving r-flip move if and only if we have

ZieS| Ei(x) | < Zi,jeS (x'i_xi)(x'/_xj)qij (18)
Proof. Using (10), a subset S with r elements is an improving r-flop move if and only if we have (19)
zl’jes(x X)X x> —Zies(x'i—xi)Ei (x)= ZES E, (x)| (19)

Since x is a locally optimal solution with respect to a 1-flip search, it follows from Lemma 1 that
inequality (19) is equivalent to (20); which completes the proof.

Zi,jes(x 'l'_xi)(x 'j_xj)qij > _Zies(xvi_xi)E" (x) = Zi&S

Proposition 2. Let x be any locally optimal solution of f(x) with respect to a 1-flip search. If a subset S < N

E,(x)| 20)

, with | S1=r, is an improving r-flip move, then we must have Zies|Ei (x)| <M.

Proof. The result follows from Theorem 3 and Lemma 2.

A consequence of Theorem 3 is as follows. Given a locally optimal solution x with respect to a
1-flip search, if there is no subset of S with |S|=r that satisfies (18), then x is also locally optimal
solution with respect to an r-flip search. In fact, if there is no subset S of any size that (18) is satisfied,

then x is also a locally optimal solution with respect to an r-flip search for all ” SN Similar
statements are true also regarding Proposition 2. The result of Proposition 2 is significant in the
implementation of an r-flip search. It illustrates that, after having a 1-flip search implemented, if an
r-flip search is next served as a locally optimal solution, only those elements with the sum of absolute
value of derivatives less than M are eligible for consideration. Furthermore, when deciding about the

elements of an r-flip search, we can easily check to see if any element i by itself or with a
combination of other elements is eligible to be a member of an improving r-flip move.

We adopted the following notation for computational results in next section:

BEFS Best found solution among 10 runs within the CPU time limit.

APD Average percentage difference: the measurement for the performance of individual
algorithm across runs on the same instance.
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RPD Relative percentage deviation: the measurement for the relative performance across
algorithms/methods on the same instance

3. Computational Experiments

In this investigation, we conducted extensive computational experiments to assess the efficacy
of the proposed r-flip strategy across varying problem sizes, densities, and r values. The
implementation of Algorithm 2 is executed using the GNU C++ compiler and undergoes 10 runs on
the AMD Ryzen 5 3500U processor equipped with 16GB RAM. Simultaneously, the Quantum
Annealing Solver (QAS), employing a multi-start tabu search, is implemented via a Python client on
the same processor.

For the hybrid 1-flip/r-flip strategy in Algorithm 2 applied to very-large-scale MCP instances,
we set a CPU time limit of 600 seconds. To comprehensively evaluate the r-flip strategy’s performance
on very large-scale instances, we generate a diverse set of planar graph instances tailored for the
MCP. This dataset comprises 120 instances, ranging from Q matrices sized 10,000 by 10,000 to 40,000
by 40,000. Among these instances, three distinct weight types with discrete values are introduced:
Type ‘a’ with values of 1 and -1, Type ‘b” with random discrete values between -10 and 10, and Type
‘¢’ with random discrete values between -1,000 and 1,000. The instance data, ranging in size from
10,000 to 40,000, is conveniently accessible in the supplementary materials provided.

4. Numerical Results

Tables 1-3 present the outcomes obtained from both the hybrid 1-flip/r-flip Algorithm 2 and QAS
across the 120 instances. It's crucial to note that the results from the QAS are derived using the
sampler approach (sampler=10). In reporting the QAS results, we focus on Relative Percentage
Deviation (RPD) as the quality of solutions hinges on the parameter of sufficient reads (num_reads)
and the collection of samples for potential solutions.

Concurrently, for Algorithm 2, we provide the Average Percentage Deviation (APD) value to
illustrate the consistent performance over 10 runs. This dual reporting approach allows for a
comprehensive evaluation of the comparative performance between the hybrid 1-flip/r-flip
Algorithm 2 and the Quantum Annealing Solver across the diverse set of instances.

Table 1. Computational Results of MCP with 10,000 variables.

Type a Typeb Type ¢

Instance ID Algorithm2 QAS Algorithm2 QAS Algorithm2 QAS

BFS APD RPD BFS APD RPD BFS APD RPD
MC10000_1 8156  1.87 8.96 50228 194 135 4672506 2.03  1.79
MC10000_2 8067  2.00 2.45 50884  1.89 1.2 4572770  2.02 143
MC10000_3 8129  1.87 24 51390 1.87 7.62 4675380 196  1.33
MC10000_4 8253 193 2 51680 1.88 137 4574974  2.03 14
MC10000_5 8218  1.84 2.19 51078 1.9 3.5 4664286 198  1.32
MC10000_6 8369 175 217 50710 1.87 276 4622312 194 1.5
MC10000_7 8142  1.86 3.13 50322 187 576 4639744 199  1.02
MC10000_8 8218 181 2.29 50334 196 153 4728400  1.92 1
MC10000_9 8190  1.85 4.19 50588  1.98 174 4699270  2.02 127
MC10000_10 8074  1.84 2.29 50790 155 334 4749898 192  1.33
MC10000_11 8292 194 2.45 51800 1.61 332 4638566 199  1.25
MC10000_12 8011  1.93 4.12 50338 191 1.7 4698042 195  1.62
MC10000_13 8233 189 9.15 50718 187  1.64 4585190 197 125
MC10000_14 8276  1.91 1508 51338 1.87 1.69 4681668  2.01 1.48
MC10000_15 8224  1.83 7.5 50604 194 2.06 4680394 193 143
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Table 2. Computational Result of MCP with 20,000 variables.

Type a Typeb Type c

Instance ID Algorithm?2 QAS Algorithm?2 QAS Algorithm?2 QAS

BFS APD RPD BFS APD RPD BFS APD RPD

MC20000_1 16476 1.60 7.03 102580  2.46 34 9392660 040 221

MC20000_2 16368  2.12 6.77 100878 252 811 9407570 053  2.29

MC20000_3 16384  1.65 8.57 102006 255 499 9217500 245  6.18

MC20000_4 16547  2.07 8.22 101174 249  7.68 9359374 243  4.24

MC20000_5 16365  2.11 6.37 100236 259  9.84 9261876 245 443

MC20000_6 16253 169  10.66 101064 257 851 9268934 244  4.46

MC20000_7 16177  2.15 7.08 102820 255 895 9228882 245 443

MC20000_8 16492 2.14 7.43 101914 247 849 9236988 250 481

MC20000_9 16597  1.62 6.98 103390 251 147 9345570 242  5.02

MC20000_10 16586  1.38 7.65 102896 243 433 9126342 248  4.53
MC20000_11 16307  1.40 6.89 101566 249 393 9313278 248  5.33
MC20000_12 16433  2.10 6.66 102376 247  3.83 9439436 242 423
MC20000_13 16621  1.37 8.36 100238 250 411 9304690 250  4.76
MC20000_14 16407  2.10 8.26 100524 257 458 9390564 241  4.09
MC20000_15 16254  2.13 7.57 102768 252  4.03 9215550 247  6.36

Table 3. Computational Result of MCP with 40,000 variables.

Type a Typeb Type ¢
Instance ID Algorithm?2 QAS Algorithm?2 QAS Algorithm2 QAS
BFS APD RPD BFS APD RPD BFS APD RPD

MC40000_1 33036 452 11.02 201520 3.46 8.13 18412388  3.23 9.29
MC40000_2 32780 460 11.14 202278 271 8.19 18533702  3.28 9.47
MC40000_3 32971 462 1087 204676  2.70 8.16 18443578  3.33 9.43
MC40000_4 32797  4.63 10.52 203482  2.69 8.18 18478330  3.28 9.41
MC40000_5 32676  4.68 10.73 204004  2.69 8.27 18351592  3.25 9.59
MC40000_6 32770  4.67 1094 204288 2.71 8.22 18645472 325 10.33
MC40000_7 32833 4.67 10.89 202726 274 879 18511826  3.29 8.98
MC40000_8 32805 4.62 10.67 201954  3.45 9.1 18520832 323  10.18
MC40000_9 32374 475 1043 201384 273 8.67 18574756  3.29 9.72
MC40000_10 32922 4.64 1055 203348  2.68 857 18478474  3.31 9.31
MC40000_11 32733 4.64 10.83 201328 273 8.25 18516990  3.24 8.94
MC40000_12 33111 458 10.34 202800 3.42 8.78 18557510  3.24 9.6

MC40000_13 32863  4.62 11.1 201674  2.71 8.66 18613850  3.21  10.18
MC40000_14 32917  4.63 9.91 204160  2.70 8.27 18448596  3.25 9.76
MC40000_15 33079 4.63 10.75 204466 2.70 7.82 18510938  3.26 9.17

The r-flip strategy holds the potential for integration into various other local search heuristics as
an enhancement procedure. A judicious implementation of the hybrid 1-flip/r-flip strategy not only
diminishes computing time but also enhances solution quality. The outcomes reported here represent
the best solutions obtained from 10 independent runs for each instance using the hybrid 1-flip/r-flip
strategy. Given the constraints on computing resources in this study, the solution deviation across
these 10 runs is calculated within the specified short CPU time limits. Figures 1-3 illustrate the
performance of Algorithm 2 vs. QAS for 10, 20, and 40 thousand variables.
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5. Conclusions

In this paper, we explore the application of r-flip search within the context of a very large-scale
Max-Cut problem, treating it as a case of QUBO. Specifically, our investigation centers on assessing
the local optimality of the r-flip search when a 1-flip search has already reached its local optimum.
Our computational findings demonstrate a significant reduction in the pool of candidates for
potential r-flip implementation, showcasing the efficiency of this novel strategy in solving very large-
scale Max-Cut instances within a strict 600-second timeframe.

In our approach, we employed a 1-flip strategy to achieve local optimality. Yet, it's well
recognized that numerous problems, particularly those in constrained optimization, can reap
substantial benefits from r-flip strategies as local procedures. Comparisons with alternative
methodologies documented in the literature underscore the remarkable performance of our
approach, surpassing leading competitors by a significant margin. Notably, our method consistently
discovered previously undiscovered optimal solutions for the majority of the problem instances
tackled. What distinguishes our achievement is that our solution framework isn’t tailored specifically
for the Max-Cut problem but rather accommodates a broader class of problems. Our findings strongly
indicate the potential for significant advancements in r-flip solution techniques, hinting at their
capacity to tackle even larger-scale Max-Cut challenges with further refinement.

These results present notable advantages, particularly in scenarios where variable neighborhood
strategies are being employed for very large-scale problems or sparse matrices. Furthermore, we
benchmark our outcomes against those obtained from a quantum annealing solver based on multi-
start tabu search. Notably, the quantum annealing solver has also proven effective in addressing the
challenges posed by very large-scale MCP. This comparative analysis provides insights into the
strengths and applicability of both the r-flip strategy and quantum annealing solver in tackling
complex optimization problems.
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