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Abstract: In this study, we address the formidable challenge of solving large-scale Max-Cut 
problems (MCP). We introduce a rapid computational procedure utilizing a hybrid 1-flip/r-flip local 
search heuristic. This innovative strategy significantly reduces the computational time required for 
MCP problems while consistently generating solutions of exceptional quality. The paper presents 
substantial computational insights, showcasing the effectiveness of our approach on very-large-
scale Max-Cut instances with varying densities. Our proposed heuristic is rigorously evaluated by 
comparing its performance against a quantum annealing solver, leveraging a multi-start Tabu 
Search framework. The results underscore the potency of this unique combination as an efficient 
and effective solution for large-scale QUBO problems. Notably, our hybrid heuristic consistently 
delivers high-quality solutions within the stringent CPU time limits of 600 seconds, demonstrating 
its efficacy across Max-Cut instances ranging from 10,000 to 40,000 variables. This research 
contributes to advancing the state-of-the-art in large-scale QUBO problem-solving, offering a 
powerful and time-efficient approach with broad applicability. 

Keywords: hybrid heuristics; quantum annealing solver; max-cut 
 

1. Introduction 

The Quadratic Unconstrained Binary Optimization (QUBO) problem holds significant relevance 
across various applications, particularly as a unifying approach for many combinatorial optimization 
challenges [1]. The emergence of quantum computing, particularly quantum annealing solvers, has 
brought QUBO into the spotlight [2]. However, the complexities of modelling and analyzing very 
large-scale problems on conventional computing platforms often hinder effective solutions through 
mathematical programming methods. 

While quantum computing platforms offer the potential to overcome hardware limitations, 
transforming real-world problems into the suitable qubit architecture remains challenging. This 
study addresses the gap between quantum and traditional computing platforms, focusing on the very 
large-scale Max-Cut problem (MCP)—a critical research area with applications spanning statistical 
physics [3], communication infrastructure [3], machine learning [4], and computer chip design [5]. 

The computational landscape of the Max-Cut problem has sparked diverse solution strategies, 
ranging from approximation algorithms leveraging semidefinite programming to metaheuristic 
methods and exact approaches. While approximation algorithms like the seminal work of Goemans 
and Williamson [6] and subsequent contributions by Karish et al. offer theoretical performance 
guarantees [7], empirical evaluations often reveal their inferiority to other methodologies. 

Exact methods, exemplified by Krishnan and Mitchell’s cut and price approach [8] and Rendl et 
al.’s branch and bound method [9], have emerged as viable alternatives, particularly for smaller 
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problem instances. However, their applicability remains constrained to scenarios with relatively few 
nodes, typically in the hundreds. 

For more substantial Max-Cut instances, characterized by thousands of nodes, metaheuristic 
methods become imperative. Recent advancements in this domain include the rank-2 relaxation 
method, dubbed CirCut, by Burer et al. [10], Festa et al.’s hybrid randomized method [11], and Marti 
et al.’s scatter search method [12]. Computational evaluations consistently demonstrate the 
superiority of these techniques, with the scatter search method notably achieving outstanding 
performance across test problems featuring up to 3000 nodes. Additionally, Alidaee et al. proposed 
a diversification strategy based on sequential local improvement, demonstrating substantial 
enhancements in solutions for a significant portion of benchmark Max-Cut problems within 
reasonable CPU time constraints [13]. 

Further breakthroughs have been made to tackle even larger problem sizes. Kochenberger et al. 
introduced the DDT approach, delivering state-of-the-art solutions for test problems boasting up to 
10,000 nodes [14]. 

Max-Cut problem is a popular testbed for Quantum Computing platforms and algorithms due 
to its natural formulations. Recent developments in quantum computing, especially quantum 
annealing solvers, put Max-Cut in the spotlight [15–24]. Alam et al. used the graph Max-Cut problem 
as a prototype while using the quantum approximate optimization algorithm (QAOA) where a 
quantum circuit and a classical optimizer operate in a closed loop solving hard combinatorial 
optimization problems [15]. Basso et al. also applied QAOA to Max-Cut on large-girth regular graphs 
[16]. Galda et al. showed that the transferability of the parameters among QAOA instances and 
convergence of the optimal parameters around specific values can be predicted based on local graph 
properties [17]. Bianchi et al. proposed a pooling operator for graph neural networks to generate 
coarser graphs while maintaining the overall topology of the graph and used a spectral algorithm 
approximating the Max-Cut solution [18]. Shaydulin et al. utilized a multi-start optimization 
technique in a QAOA framework to improve the performance of quantum machines on various 
graph clustering problems [19] and introduced QAOA Kit for the combination and standardization 
of previously known parameters for Max-Cut problems [20]. Shaydulin and Wild proposed a new 
method to accelerate the assessment of QAOA energy by using the problem symmetry and 
implemented the proposed method on the Max-Cut problem using a graph auto-morphism solver 
and tensor network simulator [21]. Umasankar et al. used a Time-Multiplexed Opto-Electronic 
Oscillator-based Coherent Ising Machine on Max-Cut Problems [22]. Wurtz and Love defined the 
Spanning Tree QAOA for Max-Cut and utilizes an “ansatz” whose structure results from an 
approximate classical solution and reaches the same performance level as the classical algorithm to 
outperform QAOA at low depth [23]. 

In this research, we introduce a local search strategy based on the r-flip strategy for QUBO [24]. 
The dynamic adjustment of the r value in the r-flip strategy strikes a balance between computational 
cost and solution quality. This approach effectively reduces computational time while reaching 
superior solutions [25]. Our proposed heuristic achieves results within a strict CPU time limit of 600 
seconds, addressing Max-Cut instances ranging from 10,000 to 40,000 variables. Comparative 
evaluations against a quantum annealing solver based on multi-start Tabu Search [26] provide 
insights into the efficiency and effectiveness of our proposed approach. 

By bridging the gap between quantum and conventional computing, our study contributes to 
the exploration of quantum computing’s potential in solving complex optimization problems, 
showcasing a novel local search strategy tailored for QUBO with promising results in the context of 
the challenging Max-Cut problem. 

2. QUBO and MCP Solution 

Before we present the r-flip strategy to solve QUBO and MCP in this study, the notations used 
are given as follows: 

n The number of variables 
x  An initial feasible solution 
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x* The best solution found by the algorithm 
K The largest value of k for r-flip, k≤r 
π(i)  The i-th element of x in the order π(1)⋯π(n) 
S {i:xi is tentatively chosen to receive a new value to produce a new solution xi’} restricting 

consideration to |S| = r 
D The set of candidates for an improving move 𝐸(𝑥௜) Derivative of f(x) with respect to 𝑥௜ 𝐸(𝑥) = (𝐸(𝑥1), … ,𝐸(𝑥௡)) The vector of derivatives 
x(.)  A vector representing the solution of x 
E(.)  A vector representing the value of derivative 𝐸(𝑥௜) 

The general form of QUBO can be given as [27], 

𝑀𝑎𝑥 𝑓(𝑥) = ෍𝑞௜𝑥௜௡
௜ୀଵ + 12෍෍𝑞௜,௝𝑥௜𝑥௝௡

௝ஷ௜
௡
௜ୀଵ ,   𝑠. 𝑡.  𝑥௜ ∈ ሼ0,1ሽ, 𝑖 = 1,⋯ ,𝑛 (1)

In (1), ଵଶ 𝑞௜,௝ is the i,j-th entry of a given n by n symmetric matrix Q and the linear term 𝑞௜ can 
be the entry in the diagonal of the matrix. Since 𝑥௜ଶ = 𝑥௜, and Q may be written as an upper triangular 
matrix by doubling each entry of the upper triangle part of the matrix and letting 𝑞௜,௜ = 𝑞௜, then we 
can write (1) as (2). 𝑀𝑎𝑥 𝑓(𝑥) = ∑ ∑ 𝑞௜,௝𝑥௜𝑥௝௡௝ஹ௜௡௜ୀଵ = 𝑥்𝑄𝑥, 𝑠. 𝑡. 𝑥_𝑖 ∈ {0,1}, 𝑖 = 1,⋯ ,𝑛   (2)

Numerous combinatorial optimization problems lend themselves to reformulation as QUBO by 
employing a quadratic infeasibility penalty. However, determining the optimal penalty values poses 
a considerable challenge. In light of this, we focus our investigation on the very large-scale MCP as a 
prime candidate application, given its inherent and natural formulation within the QUBO framework. 

2.1. Max-Cut problems 

Max-Cut problem with many real-world implementations is an NP-hard problem which means 
that exact solution algorithms are not sufficient for large-scale problems, since obtaining a solution is 
very time-consuming [28]. Following the advances in quantum computers, max-cut problems have 
received much interest recently [29]. Two formulations, linear and nonlinear, exist for the MCP [27]. 
Initially, we present the natural QUBO model for MCP. 𝑀𝑎𝑥 ∑ ∑ 𝑞௜௝൫𝑥௜ + 𝑥௝ − 2 ∗ 𝑥௜𝑥௝൯௡௝ୀଵ,௜ழ௝௡௜ୀଵ   (3)

s.t. 𝑥௜  ∈ {0,1}∀𝑖 = 1, … ,𝑛 

The QUBO model (3) can be transformed to a linear model using classical linearization 
techniques [30]. 

 𝑀𝑎𝑥 ∑ ∑ 𝑞௜௝൫𝑥௜ + 𝑥௝ − 2 ∗ 𝑦௜௝൯௡௝ୀଵ,௜ழ௝௡௜ୀଵ  (4)

 s.t.   𝑦௜௝ ≤  𝑥௜, ∀𝑖, 𝑗 = 1, … ,𝑛 𝑎𝑛𝑑 𝑖 < 𝑗 (5)𝑦௜௝ ≤  𝑥௝, ∀𝑖, 𝑗 = 1, … ,𝑛 𝑎𝑛𝑑 𝑖 < 𝑗 (6)

 𝑦௜௝ ≥  𝑥௜ + 𝑥௝ − 1, ∀𝑖, 𝑗 = 1, … ,𝑛 𝑎𝑛𝑑 𝑖 < 𝑗 (7)𝑥௜  ∈ {0,1},∀𝑖 = 1, … ,𝑛 𝑦௜௝ ∈ [0,1], ∀𝑗 = 1, … ,𝑛 𝑎𝑛𝑑 𝑖 < 𝑗 
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The linear model for the MCP undergoes a substantial increase in size on very large-scale 
instances, both in terms of the number of variables and constraints. In this research, we specifically 
present solutions for the QUBO model, solely for the purpose of conducting a comparative analysis 
with a quantum annealing solver. 

2.2. Solution Representation 

Here Q is a symmetric matrix. Given a solution 𝑥 = (𝑥ଵ, … , 𝑥௡) define 𝛥௜(𝑥) = 𝑞(𝑖, 𝑖) + ∑ 2𝑥௞𝑞௜௞௞ஷ௜ , 𝑖 ∈ 𝑁  (8)

With respect to 1-flip neighborhood, x is locally optimal if and only if it satisfies 𝛥௜(𝑥) ≤ 0, ∀𝑥௜ = 0,   𝑎𝑛𝑑   𝛥௜(𝑥) > 0, ∀𝑥௜ = 1 (9)

Then the objective function will satisfy ∆𝑓 = ∑ (𝑥′௜ − 𝑥௜)𝐸(𝑥௜)௜∈ௌ + ∑ (𝑥′௜ − 𝑥௜)(𝑥′௝ − 𝑥௝)𝑞௜,௝௜,௝∈ௌ,௜ழ௝   (10)

and ∀𝑗 ∈ 𝑆,𝐸൫𝑥௝൯ ← 𝐸൫𝑥௝൯ + ෍ (𝑥௜ᇱ − 𝑥௜)௜∈ௌ\{௝} 𝑞௜,௝ (11)

The rationale behind the r-flip move is rooted in the notion that a larger value of moves (here, a 
larger value of r) offers the opportunity to explore a more extensive and diverse solution space. 
Moreover, when improvement within a specific neighborhood (e.g., a 1-flip move) is exhausted, and 
a solution x attains local optimality with respect to the 1-flip move, employing another neighborhood 
move (such as a 2-flip move) becomes viable for further exploration of the solution space. This 
strategic approach forms the basis for various meta-heuristics. Upon obtaining a locally optimal 
solution x concerning a 1-flip move, the elements of x are ordered based on the ascending absolute 
value of derivatives, as follows: |𝐸(𝑥గ(ଵ))| ≤ ⋯ ≤ |𝐸(𝑥గ(௡))|   (12)

Here, 𝜋(𝑖) means the i-th element of x in the order (𝜋(1),⋯ ,𝜋(𝑛)). Now, one at a time in the 
given order, check the summation in (13) for k=1,2,…,n. For m<n, define (m, n) to be the number 
of combinations of m elements out of n, and let 𝜑 = Max௜,௝∈ே൛ห𝑞௜,௝หൟ, and for the r-flip move let 𝑀 = 𝜑 ∗ (2, 𝑟). Let K be the largest value of k where the inequality (13) holds, and define the set D(n) 
(14). ∑ |𝐸(𝑥గ(௜))|௞௜ୀଵ < 𝑀,  for 𝑘 = 1,2,3,⋯,n (13)𝐷(𝑛) = {𝑥గ(ଵ),⋯ , 𝑥గ(௄)}  (14)

To implement an r-flip local search, the main decision is to choose a set S with |S|=r at each step 

and change ix to 1 ix− for all i S∈ if it improves the objective function. This search process is 
inherently computationally demanding. The strategies mentioned above, including Lin and 
Kernighan's approach and very large-scale neighborhood search, are inherently tailored to specific 
problem domains. For instance, these strategies have predominantly found application in graph 
theoretic problems. However, in this paper, we introduce a novel implementation of the r-flip 
strategy, coupled with a sequential diversification technique. This approach enables the exploration 
of diverse sets S, each comprising r elements, while strategically avoiding non-improving sets. The 
incorporation of sequential diversification fundamentally reduces the computational time required 
for QUBO. 
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2.3. Implementation Details 

The solution implementation is detailed in Section 2.2 through Algorithm 1 and Algorithm 2, 
with a comprehensive comparison of very large-scale MCP instances presented in the subsequent 
section. For additional insights and theoretical underpinnings, we draw upon the work and proofs 
by Alidaee and Wang [31], particularly for the novel r-flip results in general QUBO problems. It’s 
worth noting that in Algorithm 2, the sets S and M dynamically evolve as the search progresses. 

Algorithm 1. 1-flip Local Search 

Initialize: n, x, evaluate the vector E(x) 

Flag=1 

1 Do while (Flag=1) 

2 Flag=0 

3 Randomly choose a sequence 𝜋(1), … ,𝜋(𝑛) of integers 1,…,n. 

4 Do i= 𝜋(1), … ,𝜋(𝑛) 

5 If (𝐸(𝑥௜) < 0 and 𝑥௜ = 1) or (𝐸(𝑥௜) > 0 and 𝑥௜ = 0): 𝑥௜ = 1 − 𝑥௜, update the vector E(x) using Equation (11), Flag=1 

6 End do 

7 End while 
Note that, the algorithm is similar to the greedy algorithm for a KP. Here, the value that each 

time is added to the knapsack is equal to. We used a random sequence to greedily choose items, 
however, another alternative that many researchers have used is, each time choosingse the item with 
the maximum contribution to F(x). Furthermore, due to the dynamicsm nature of the problem, when 
an is changed to it is possible the algorithm will come back to the same variable and change its value 
to what it was before (this might happen several times during the search possible). Also, note that, 
reaching a locally optimal solution by the greedy Algorithm 1, is NP-hard, (…). 

In a 1-flip search, we only look at one variable at a time to possibly change its value. However, 
in r-flip search the process is similar to 1-flip search except that up to r variables may be considered 
for a change of values. The idea behind the r-flip search is that, the larger value of moves (here larger 
value of r) may provide an opportunity to explore a larger and thus more diverse solution space. In 
this process when a neighborhood search, for example, k-flip ( ) search, is exhausted, i.e., x is locally 
optimal with respect to k-flip move, another neighborhood move, for example (k+1)-flip search, may 
be implemented to explore the solution space. Such a strategy is the basis for several meta-heuristics 
Algorithm 2. r-flip Local Search 

Initialize: n, x, evaluate vector E(x), value of r, M 
Flag=1 
1 Do while (Flag=1) 
2 Flag=0 
3 Call Algorithm 1:1-flip local search 
4 Sort variables according to ห𝐸(𝑥గ(௜))ห ≤ ห𝐸(𝑥గ(௜ା1))ห, using 
Inequality (13) evaluate value of K 
5 For 𝑗 = 𝜋(1),⋯ ,𝜋(𝐾): 
6 For 𝑆௝ = {𝜋(1),⋯ ,𝜋(𝑗)}, evaluate 𝑀ௌೕ 
If ∑ ห𝐸(𝑥గ(௜))ห௝௜ୀ1 < 𝑀ௌೕ evaluate ∆f using Equation (10). 

7 If ∆𝑓>0: 𝑥௜ = 1 − 𝑥௜ , for 𝑖 ∈ 𝑆௝ , update E(x) using Equation (11), 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 February 2024                   doi:10.20944/preprints202402.1698.v1



 6 

 

Flag=1, go to Step 1 
8 End for 
9 End while 

An alternative way to implement this algorithm is that k=r throughout the process. The 
Algorithm 2 is simple but inefficient; it requires some mechanism to choose the set S, and a process 
mechanism to implement elements of the k-flip move. Below, we give several results that allow an 
efficient implementation of the r-flip search process. 
Lemma 1. Given a locally optimal solution x with respect to a 1-flip search, we have 

( ' ) ( ) 0i i ix x E x− ≤ , for i=1,…,n (15)

Proof. Directly follows from the local optimality condition (6), which states 

( ) ( )( ) 0,     1   and ( ) 0,     0i i i iE x iff x E x iff x≥ = ≤ = , for i=,…,.n (16)

Lemma 2. Let S N⊆ , and |S|=r, given any solution x, and M as defined earlier, we have 

,
( ' )( ' )i i j j iji j S
x x x x q M

∈
− − ≤  (17)

Proof. For each pair of elements, i,j in S, the left-hand-side (LHS) in (17) is either ijq  or ijq− .Using 

definition of M, the summation in LHS is at most equal to M. 
Theorem 3. Given a locally optimal solution x of f(x) with respect to 1-flip search, a subset S N⊆ , with 
|S|=r, is an improving r-flip move if and only if we have 

,
| ( ) | ( ' )( ' )i i i j j iji S i j S
E x x x x x q

∈ ∈
< − −   (18)

Proof. Using (10), a subset S with r elements is an improving r-flop move if and only if we have (19) 

,
( ' )( ' ) ( ' ) ( ) ( )i i j j ij i i i ii j S i S i S
x x x x q x x E x E x

∈ ∈ ∈
− − > − − =    (19)

Since x is a locally optimal solution with respect to a 1-flip search, it follows from Lemma 1 that 
inequality (19) is equivalent to (20); which completes the proof. 

,
( ' )( ' ) ( ' ) ( ) ( )i i j j ij i i i ii j S i S i S
x x x x q x x E x E x

∈ ∈ ∈
− − > − − =    (20)

Proposition 2. Let x be any locally optimal solution of f(x) with respect to a 1-flip search. If a subset S N⊆
, with |S|=r, is an improving r-flip move, then we must have ( )ii S

E x M
∈

< . 

Proof. The result follows from Theorem 3 and Lemma 2. 
A consequence of Theorem 3 is as follows. Given a locally optimal solution x with respect to a 

1-flip search, if there is no subset of S with |S|=r that satisfies (18), then x is also locally optimal 
solution with respect to an r-flip search. In fact, if there is no subset S of any size that (18) is satisfied, 
then x is also a locally optimal solution with respect to an r-flip search for all r n≤ . Similar 
statements are true also regarding Proposition 2. The result of Proposition 2 is significant in the 
implementation of an r-flip search. It illustrates that, after having a 1-flip search implemented, if an 
r-flip search is next served as a locally optimal solution, only those elements with the sum of absolute 
value of derivatives less than M are eligible for consideration. Furthermore, when deciding about the 

elements of an r-flip search, we can easily check to see if any element ix by itself or with a 
combination of other elements is eligible to be a member of an improving r-flip move. 

We adopted the following notation for computational results in next section: 
BFS Best found solution among 10 runs within the CPU time limit. 
APD Average percentage difference: the measurement for the performance of individual 

algorithm across runs on the same instance. 
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RPD  Relative percentage deviation: the measurement for the relative performance across 
algorithms/methods on the same instance 

3. Computational Experiments 

In this investigation, we conducted extensive computational experiments to assess the efficacy 
of the proposed r-flip strategy across varying problem sizes, densities, and r values. The 
implementation of Algorithm 2 is executed using the GNU C++ compiler and undergoes 10 runs on 
the AMD Ryzen 5 3500U processor equipped with 16GB RAM. Simultaneously, the Quantum 
Annealing Solver (QAS), employing a multi-start tabu search, is implemented via a Python client on 
the same processor. 

For the hybrid 1-flip/r-flip strategy in Algorithm 2 applied to very-large-scale MCP instances, 
we set a CPU time limit of 600 seconds. To comprehensively evaluate the r-flip strategy’s performance 
on very large-scale instances, we generate a diverse set of planar graph instances tailored for the 
MCP. This dataset comprises 120 instances, ranging from Q matrices sized 10,000 by 10,000 to 40,000 
by 40,000. Among these instances, three distinct weight types with discrete values are introduced: 
Type ‘a’ with values of 1 and -1, Type ‘b’ with random discrete values between -10 and 10, and Type 
‘c’ with random discrete values between -1,000 and 1,000. The instance data, ranging in size from 
10,000 to 40,000, is conveniently accessible in the supplementary materials provided. 

4. Numerical Results 

Tables 1-3 present the outcomes obtained from both the hybrid 1-flip/r-flip Algorithm 2 and QAS 
across the 120 instances. It’s crucial to note that the results from the QAS are derived using the 
sampler approach (sampler=10). In reporting the QAS results, we focus on Relative Percentage 
Deviation (RPD) as the quality of solutions hinges on the parameter of sufficient reads (num_reads) 
and the collection of samples for potential solutions. 

Concurrently, for Algorithm 2, we provide the Average Percentage Deviation (APD) value to 
illustrate the consistent performance over 10 runs. This dual reporting approach allows for a 
comprehensive evaluation of the comparative performance between the hybrid 1-flip/r-flip 
Algorithm 2 and the Quantum Annealing Solver across the diverse set of instances. 

Table 1. Computational Results of MCP with 10,000 variables. 

Instance ID  
Type a  Type b  Type c  

Algorithm2 QAS Algorithm2 QAS Algorithm2 QAS 
BFS APD RPD BFS APD RPD BFS APD RPD 

MC10000_1 8156  1.87 8.96 50228  1.94 1.35 4672506  2.03 1.79 
MC10000_2 8067  2.00 2.45 50884  1.89 1.2 4572770  2.02 1.43 
MC10000_3 8129  1.87 2.4 51390  1.87 7.62 4675380  1.96 1.33 
MC10000_4 8253  1.93 2 51680  1.88 1.37 4574974  2.03 1.4 
MC10000_5 8218  1.84 2.19 51078  1.9 3.5 4664286  1.98 1.32 
MC10000_6 8369  1.75 2.17 50710  1.87 2.76 4622312  1.94 1.5 
MC10000_7 8142  1.86 3.13 50322  1.87 5.76 4639744  1.99 1.02 
MC10000_8 8218  1.81 2.29 50334  1.96 1.53 4728400  1.92 1 
MC10000_9 8190  1.85 4.19 50588  1.98 1.74 4699270  2.02 1.27 
MC10000_10 8074  1.84 2.29 50790  1.55 3.34 4749898  1.92 1.33 
MC10000_11 8292  1.94 2.45 51800  1.61 3.32 4638566  1.99 1.25 
MC10000_12 8011  1.93 4.12 50338  1.91 1.7 4698042  1.95 1.62 
MC10000_13 8233  1.89 9.15 50718  1.87 1.64 4585190  1.97 1.25 
MC10000_14 8276  1.91 15.08 51338  1.87 1.69 4681668  2.01 1.48 
MC10000_15 8224  1.83 7.5 50604  1.94 2.06 4680394  1.93 1.43 
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Table 2. Computational Result of MCP with 20,000 variables. 

Instance ID 
Type a  Type b  Type c  

Algorithm2 QAS Algorithm2 QAS Algorithm2 QAS 
BFS APD RPD BFS APD RPD BFS APD RPD 

MC20000_1 16476  1.60 7.03 102580  2.46 3.4 9392660  0.40 2.21 
MC20000_2 16368  2.12 6.77 100878  2.52 8.11 9407570  0.53 2.29 
MC20000_3 16384  1.65 8.57 102006  2.55 4.99 9217500  2.45 6.18 
MC20000_4 16547  2.07 8.22 101174  2.49 7.68 9359374  2.43 4.24 
MC20000_5 16365  2.11 6.37 100236  2.59 9.84 9261876  2.45 4.43 
MC20000_6 16253  1.69 10.66 101064  2.57 8.51 9268934  2.44 4.46 
MC20000_7 16177  2.15 7.08 102820  2.55 8.95 9228882  2.45 4.43 
MC20000_8 16492  2.14 7.43 101914  2.47 8.49 9236988  2.50 4.81 
MC20000_9 16597  1.62 6.98 103390  2.51 14.7 9345570  2.42 5.02 
MC20000_10 16586  1.38 7.65 102896  2.43 4.33 9126342  2.48 4.53 
MC20000_11 16307  1.40 6.89 101566  2.49 3.93 9313278  2.48 5.33 
MC20000_12 16433  2.10 6.66 102376  2.47 3.83 9439436  2.42 4.23 
MC20000_13 16621  1.37 8.36 100238  2.50 4.11 9304690  2.50 4.76 
MC20000_14 16407  2.10 8.26 100524  2.57 4.58 9390564  2.41 4.09 
MC20000_15 16254  2.13 7.57 102768  2.52 4.03 9215550  2.47 6.36 

Table 3. Computational Result of MCP with 40,000 variables. 

Instance ID 
Type a Type b Type c 

Algorithm2 QAS Algorithm2 QAS Algorithm2 QAS 
BFS APD RPD BFS APD RPD BFS APD RPD 

MC40000_1 33036  4.52 11.02 201520  3.46 8.13 18412388  3.23 9.29 
MC40000_2 32780  4.60 11.14 202278  2.71 8.19 18533702  3.28 9.47 
MC40000_3 32971  4.62 10.87 204676  2.70 8.16 18443578  3.33 9.43 
MC40000_4 32797  4.63 10.52 203482  2.69 8.18 18478330  3.28 9.41 
MC40000_5 32676  4.68 10.73 204004  2.69 8.27 18351592  3.25 9.59 
MC40000_6 32770  4.67 10.94 204288  2.71 8.22 18645472  3.25 10.33 
MC40000_7 32833  4.67 10.89 202726  2.74 8.79 18511826  3.29 8.98 
MC40000_8 32805  4.62 10.67 201954  3.45 9.1 18520832  3.23 10.18 
MC40000_9 32374  4.75 10.43 201384  2.73 8.67 18574756  3.29 9.72 
MC40000_10 32922  4.64 10.55 203348  2.68 8.57 18478474  3.31 9.31 
MC40000_11 32733  4.64 10.83 201328  2.73 8.25 18516990  3.24 8.94 
MC40000_12 33111  4.58 10.34 202800  3.42 8.78 18557510  3.24 9.6 
MC40000_13 32863  4.62 11.1 201674  2.71 8.66 18613850  3.21 10.18 
MC40000_14 32917  4.63 9.91 204160  2.70 8.27 18448596  3.25 9.76 
MC40000_15 33079  4.63 10.75 204466  2.70 7.82 18510938  3.26 9.17 

The r-flip strategy holds the potential for integration into various other local search heuristics as 
an enhancement procedure. A judicious implementation of the hybrid 1-flip/r-flip strategy not only 
diminishes computing time but also enhances solution quality. The outcomes reported here represent 
the best solutions obtained from 10 independent runs for each instance using the hybrid 1-flip/r-flip 
strategy. Given the constraints on computing resources in this study, the solution deviation across 
these 10 runs is calculated within the specified short CPU time limits. Figures 1–3 illustrate the 
performance of Algorithm 2 vs. QAS for 10, 20, and 40 thousand variables. 
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Figure 1. MCP with 10,000 variables. 

 

Figure 2. MCP with 20,000 variables. 

 

Figure 3. MCP with 40,000 variables. 
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5. Conclusions 

In this paper, we explore the application of r-flip search within the context of a very large-scale 
Max-Cut problem, treating it as a case of QUBO. Specifically, our investigation centers on assessing 
the local optimality of the r-flip search when a 1-flip search has already reached its local optimum. 
Our computational findings demonstrate a significant reduction in the pool of candidates for 
potential r-flip implementation, showcasing the efficiency of this novel strategy in solving very large-
scale Max-Cut instances within a strict 600-second timeframe. 

In our approach, we employed a 1-flip strategy to achieve local optimality. Yet, it’s well 
recognized that numerous problems, particularly those in constrained optimization, can reap 
substantial benefits from r-flip strategies as local procedures. Comparisons with alternative 
methodologies documented in the literature underscore the remarkable performance of our 
approach, surpassing leading competitors by a significant margin. Notably, our method consistently 
discovered previously undiscovered optimal solutions for the majority of the problem instances 
tackled. What distinguishes our achievement is that our solution framework isn’t tailored specifically 
for the Max-Cut problem but rather accommodates a broader class of problems. Our findings strongly 
indicate the potential for significant advancements in r-flip solution techniques, hinting at their 
capacity to tackle even larger-scale Max-Cut challenges with further refinement. 

These results present notable advantages, particularly in scenarios where variable neighborhood 
strategies are being employed for very large-scale problems or sparse matrices. Furthermore, we 
benchmark our outcomes against those obtained from a quantum annealing solver based on multi-
start tabu search. Notably, the quantum annealing solver has also proven effective in addressing the 
challenges posed by very large-scale MCP. This comparative analysis provides insights into the 
strengths and applicability of both the r-flip strategy and quantum annealing solver in tackling 
complex optimization problems. 
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