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Abstract 

Phosphorus (P) is an essential plant nutrient for energy transfer, photosynthesis, and cell division 

during growth, but its management in soil remains complex and challenging. Applied P fertilizers 

react in the soil, entering into equilibrium with less soluble phosphorus pools. These reactions are 

reversible and depend on the P concentration in the soil solution. Efficient phosphorus use requires 

fertilizers that supply P when and where crops need it while minimizing losses. Novel formulations, 

including  coated  fertilizers,  humic  substances, microbial  inoculants,  and  nanomaterials,  aim  to 

improve P  availability  and use  efficiency  (PUE). Coated  fertilizers  show promise by matching P 

release with  crop  demand,  especially  in  low‐P  or  high‐fixation  soils  and may  reduce  seedling 

damage. However, their success depends on product cost, field performance, and compatibility with 

the 4R nutrient stewardship. Humic substances and microbial inoculants such as mycorrhizae and 

phosphorus‐solubilizing organisms can enhance P availability in pot or greenhouse settings, but their 

benefits in the field are inconsistent. Similarly, pH‐modifying additives and ion‐sequestering agents 

show  potential  but  have  variable  performance  and  may  not  be  economically  viable.  Recycled 

products like struvite, graphene oxides, and layered double hydroxides are slow‐release P sources 

that can be environmentally beneficial. Blending these with soluble P fertilizers may ensure both early 

and sustained P supply. However, their low nutrient concentration and high cost can limit practical 

use. Ultimately, several emerging P fertilizers show promise in controlled environments but require 

further testing under varying field conditions in conjunction with 4Rs management practices. Future 

research  could  explore  optimizing  the  economic  and  agronomic  performance  of  innovative  P 

fertilizer  formulations  across  different  soils  and  cropping  systems  to  ensure  they  contribute  to 

sustainable and profitable agriculture. Balancing P removal with replenishment remains essential to 

avoid long‐term soil nutrient depletion. 

Keywords: phosphorus; phosphate fertilizer; coated fertilizer; phosphorus availability; phosphorus 

uptake; 4R nutrient management 

 

1. Role of Phosphorus in Crop Production 

Key Points 

 Phosphorus is an essential plant nutrient required for energy transfers, photosynthesis, and cell 

division 

 Early‐season deficiencies of P can reduce final crop yield 

 Phosphorus  deficiency  symptoms  are  often  subtle,  but  can  include  dark  green  or  purple 

coloration of leaves and stems, stunting, reduced tillering, delayed maturity, and reduced yield 

 Phosphorus removed from the soil in the harvested crop should be replaced to ensure long‐term 

sustainability 

1.1. Functions of P in the Plant 

Phosphorus  is one of  the 17 essential plant nutrients  that are critical  for a plant  to grow and 

reproduce. The  concentration  of P  in  plant  tissue  varies with  crop  type,  part  and maturity,  but 
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typically  is  in  the  range of  0.1  to  0.5% P  (Hopkins  2015; Mills  and  Jones  1996). Phosphorus  is  a 

component  of  adenosine  triphosphate  (ATP),  adenosine  diphosphate  (ADP),  and  nicotinamide 

adenine  dinucleotide  phosphate  (NADP,  NADPH,  NADP+)  (Glass  et  al.  1980;  Hopkins  2015; 

Sultenfuss and Doyle 1999; Raven et al. 2005). During photosynthesis, light energy is absorbed by 

chlorophyll and stored in the high‐energy bonds in ATP. The NADPH and ATP formed using the 

energy captured during the light reactions are used to reduce carbon dioxide to carbohydrates during 

the dark reactions of photosynthesis. 

6 CO2 + 6 H2O Light energy C6H12O6 + 6 O2 

In addition to its role in photosynthesis, ATP is also the primary molecule for energy storage 

and transport in the plant. When the phosphate is transferred from the ATP to another molecule by 

hydrolytic enzymes, the high‐energy bond in the ATP is broken, and the chemical energy is released 

to drive energy‐requiring reactions of plant metabolism. 

Phosphorus also plays an important structural role in the plant. It is a critical component of the 

phospholipid bilayer of cell membranes and is essential for cellular reproduction and plant growth. 

It  is  also  a  structural  component  of  nucleic  acids,  including  deoxyribonucleic  acid  (DNA)  and 

ribonucleic acid (RNA), that make up genes and chromosomes. These nucleic acids are required for 

the  transfer  of  genetic  information  during  cell  division  and  reproduction  and  to  enable  protein 

synthesis. Phosphorus is a component of many coenzymes and phosphoproteins and of phosphate 

compounds that are intermediate metabolites in a wide range of metabolic processes (Raven et al. 

2005). The level of inorganic P present in the cell plays a role in enzyme regulation and in the control 

of starch synthesis (Mills and Jones 1996). Dissociation of phosphoric acid is involved in the buffering 

of cellular pH and the maintenance of homeostasis (Mills and Jones 1996). 

The importance of P in photosynthesis, all energy transfers, cell division and a wide range of 

metabolic processes means  that P  is  required  from  the  initial  reactions  in  the  germinating  seed, 

throughout plant growth, to maturity. Each time a cell divides, P is required to provide energy for 

reactions, to replicate the genetic material that is passed to the new cell, to form the phospholipids of 

the  cell membranes,  and  to  produce  a wide  range  of  enzymes  and  other  P‐containing  cellular 

components. 

1.2. Accumulation of P by the Plant 

Seeds contain a reserve of P stored primarily as phytic acid (Sparvoli and Cominelli 2015). For 

the first few days of growth, a plant may rely on its seed reserves to supply the P that it requires, but 

as the reserves are depleted, the plant must access P from the soil to maintain growth (Nadeem et al. 

2011). An adequate supply of P is needed by the crop throughout its life cycle, but it is particularly 

important that the plant can access sufficient P during early growth to ensure optimum crop yield 

(Grant et al. 2001). If the plant can access more P than its current requirement, plants will accumulate 

more P than they require. The “luxury consumption” can be stored as inorganic phosphate in plant 

vacuoles as a  reserve  that can be mobilized  to supply P  if  the external supply becomes  restricted 

(Yang et al. 2017; El Mazlouzi et al. 2020a; El Mazlouzi et al. 2020b). In cereal crops (Malhi et al. 2006), 

pulses (Malhi et al. 2007b) and oilseed crops (Malhi et al. 2007a) the maximum rate of P accumulation 

and  maximum  total  P  uptake  precedes  the  corresponding  values  for  biomass  accumulation, 

indicating that the P supply is needed to support biomass production. 

Phosphorus  in  the  grain  will  come  from  a  combination  of  external  sources  or  internal 

remobilization of P from plant organs (El Mazlouzi et al. 2020a), with 75 to 80% of the plant P being 

present in the grain at maturity (Mohamed and Marshall 1979; El Mazlouzi et al. 2020a). Plants are 

very efficient at remobilizing the P from vegetative tissue to the seed, especially under P stress. Using 
32P, it was found that durum wheat plants with low P status remobilized most of their stored P, and 

the concentration of P in the vegetative organs reached very low levels ( El Mazlouzi et al. 2020a; El 

Mazlouzi et al. 2020b) . About 80% of the grain P came from remobilization of P in low P plants, while 

65% came from remobilization in high P plants, with the remaining 20 to 35% coming from absorption 
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between anthesis and maturity. Plant uptake of P can continue into the ripening phase, but the supply 

in the early growth stages strongly affects plant response (Malhi et al. 2006, 2007b, a). Therefore, early 

season limitations in P availability can result in restrictions in crop growth from which the plant will 

not recover, even when P supply is increased to adequate levels (Grant et al. 2001). 

1.3. Phosphorus Deficiency Symptoms 

Phosphorus  deficiency  symptoms  are  often  subtle,  and mild  deficiencies may  not  produce 

obvious symptoms. Plants experiencing P deficiency tend to increase root production at the expense 

of  the  above‐ground  plant,  in  an  attempt  to  access more  P  from  the  soil  (Malhotra  et  al.  2018; 

Hinsinger 2001). They may also increase the secretion of organic acids in an attempt to mobilize P. 

As  P  becomes  more  limiting,  deficiency  may  interfere  with  metabolic  pathways  and  cause 

carbohydrates or anthocyanins to accumulate, producing dark green or purple discoloration of the 

leaves and stems (Hopkins 2015; Hoppo et al. 1999; Close and Beadle 2003). Protein synthesis may 

also be impaired, so soluble N compounds accumulate in the tissue. The lack of proteins interferes 

with metabolic processes, reducing cell growth and leading to shorter plants, delayed leaf emergence, 

delayed development, reduced tillering and secondary root development, decreased dry matter yield 

and reduced seed production (Elliott et al. 1997; Glass et al. 1980; Grant et al. 2001; Hoppo et al. 1999; 

Konesky et al. 1989). Plant maturity is delayed, and crop yield declines. 

In response to P deficiency, plants attempt to increase the probability of producing at least some 

viable seeds with the limited P supply. For example, in cereal crops under P stress, seed number will 

be reduced because the number of fertile tillers and the number of grains per tiller decrease, but seed 

size will be maintained (Hoppo et al. 1999; El Mazlouzi et al. 2020b). In soybeans, P deficiency reduces 

the  number  of  pods  and  seeds,  but  seed  size  is maintained,  increasing  the  likelihood  that  the 

remaining seeds will be viable. The decrease in seed number leads to a decrease in final crop yield. 

Sufficiency  thresholds  for P concentration  in crop  tissue can be used  to determine  if plant P 

supply is adequate. Deficiency thresholds will vary with crop, growth stage and tissue type, but a 

concentration of P in plant tissue below 0.2% often indicates deficiency (Mills and Jones 1996). As the 

plant ages, the proportion of metabolically active tissue declines, and the amount of low‐P structural 

tissue  increases  (Bélanger and Richards 1999; Elliott et al. 1997a; Racz et al. 1965) so  the critical P 

concentration required in the tissue for optimum growth decreases as plants age (Elliott et al. 1997a; 

Elliott et al. 1997b; Tomasiewicz 2000). 

Phosphorus  is generally mobile  in  the  crop and will  re‐translocate  from vegetative  tissue  to 

storage organs such as seeds. As a result, most of the P taken up by the crop will be removed in the 

harvested material. Replacement of P removed in the harvest crop is important to maintain long‐term 

soil productivity. 

1.4. Summary 

Phosphorus plays a critical role in crop physiology from the initial reactions in the germinating 

seed, throughout plant growth, to maturity. If plants cannot access sufficient P, yield will decline. 

Phosphorus removed in the harvested crop should be replaced to maintain long‐term soil quality. 

2. Constraints to Phosphorus Availability for Crop Uptake 

Key Points 

 Plants take up P from the soil solution as the inorganic orthophosphate ion Pi. 

 Phosphorus concentration in the soil solution is very low and must be replenished from other 

soil pools to meet plant demand 

 Uptake will be affected by the concentration of Pi at the root surface and the speed at which the 

concentration can be replenished 
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 Phosphorus fertilizer will undergo a series of adsorption and precipitation reactions that move 

it from solution into less soluble, labile and non‐labile pools of P in the soil. These reactions are 

reversible and respond to the concentration gradient 

 Phosphorus use efficiency can be measured through different methods that consider the short‐ 

and long‐term use in the cropping system 

2.1. Uptake of P from the Soil Solution 

Phosphorus is taken up by the plant from the soil solution as the inorganic orthophosphate ion 

Pi. Phosphorus uptake occurs mainly in the area of actively growing cells just behind the root cap, 

where  root hair density  is high  (Hopkins 2015). Phosphorus uptake by  the plant  is driven by  the 

concentration of Pi in the soil solution at the root surface and the area of absorbing surface in contact 

with  the solution  (Barber 1995). The concentration of Pi  in  the soil solution  is normally very  low, 

ranging from 10‐8 M in low fertility tropical soil, to 10‐6 M in deficient soils and as high as 10‐4 M in 

some  high  P  soils  (Pierre  and  Parker  1927;  Plaxton  and  Lambers  2015;  Syers  et  al.  2008).  The 

concentration of Pi in the soil is as much as one thousand times lower than that in the plant, so it must 

move from the soil solution into the plant against a steep concentration gradient, requiring an input 

of energy (Schachtman et al. 1998; Vance et al. 2003). Both the movement of Pi across cell membranes 

into the plant root and the distribution of Pi from the root throughout the plant are active processes 

using transporter proteins to move the Pi through the symplasm, xylem and across cell and organelle 

membranes to the regions of the cell cytoplasm and organelles where it is required (Schroeder et al. 

2013). 

An actively growing crop can require between 0.3 and 0.5 kg P ha− 1 each day (Johnston et al. 

2014). The Pi in the soil solution around the root hairs is depleted quickly, leading to a zone of low Pi 

concentration at the root surface (Bagshaw et al. 1972). Roots can access some P as they grow into 

parts of the soil that have not been depleted, but only a very small proportion of the soil is explored 

by roots in any one growing season, so the P accessed by the plant through direct interception is less 

than  1%  of  crop  requirement  (Barber  1995).  Most  Pi  that  the  plant  requires  is  supplied  by 

replenishment  of  the  P  in  the  rhizosphere  surrounding  the  plant  root  through mass  flow  and 

diffusion (Barber 1980; Barber et al. 1963). 

Mass flow is the movement of dissolved nutrients with water as the water moves to the roots to 

meet the plant’s transpirational demand, while diffusion is the movement of nutrients through the 

soil solution  from an area of high concentration  to an area of  low concentration  (Glossary of Soil 

Science Terms | Soil Science Society of America, accessed December 5, 2024). The movement of Pi by 

mass  flow  is  low because of the  low concentration of Pi present  in  the soil solution, so mass  flow 

provides only about 2‐3% of the amount required for optimum crop growth (Johnston et al. 2014). 

Most Pi moves to the root surface by diffusion down the concentration gradient created by the active 

uptake of Pi by plant roots (Barber 1995). Phosphorus diffusion in soil is affected by the water‐filled 

pore space through which the ions can move and by sorption reactions that impede ion movement. 

The path of movement through the soil moisture films around the soil particles is long and tortuous, 

and its movement along the path is slow, so the net movement of Pi through the soil is low, in the 

range of 0.13 mm per day (Johnston et al. 2014). 

2.2. Reactions of P in the Soil 

The Pi in the soil solution is present as orthophosphate ions, usually H2PO4– and HPO42–, with 

the dominant form in solution depending on the soil pH (Figure 1). Within the normal range of soil 

pH, HPO4‐2  dominates  if  pH  is  greater  than  7.2,  and H2PO4‐ dominates  at  pH  levels  below  7.2 

(Pierzynski and McDowell 2005). The availability of P for plant uptake tends to be the greatest in a 

pH range of 5‐6, where the monovalent form of P dominates (Schachtman et al. 1998). 
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Figure 1. Influence of pH on the distribution of orthophosphate forms in solution (Havlin et al. 2014). 

Plants take up the P ions from the soil solution, but the soluble Pi in solution generally represents 

less than 1% of P used by crops over a growing season and  less than 1% of the total amount of P 

present in the soil. Most soil P is present in organic and inorganic forms that can be viewed as being 

“pools” of P that vary in availability. Labile P is the pool that moves in and out of the soil solution in 

the short‐term, while non‐labile P is more stable, slowly retaining and releasing P over the long‐term 

(Johnston et al. 2014; Syers et al. 2008) (Figure 2). 

If Pi is added or removed from the soil solution, P can move from pool to pool along the resulting 

concentration gradients (Johnston et al. 2014; Syers et al. 2008). For example, plant uptake reduces 

the Pi concentration of  the soil solution at  the  root surface, creating a concentration gradient  that 

drives the diffusion of P to the root surface and the mobilization of Pi into solution from the labile 

pools. Conversely, adding soluble forms of P such as fertilizers increases the Pi concentration in the 

soil solution and shifts the equilibria towards movement of P into the less available pools (Morel and 

Plenchette 1994; Morel et al. 2000; Schneider and Morel 2000). 

The intensity factor (I) refers to the concentration of Pi in the soil solution, while the quantity 

factor (Q) or the P buffering capacity describes the ability of the soil to replenish the Pi  in the soil 

solution from other pools of P (Morel et al. 2000). During periods of peak P demand, the Pi in the soil 

solution at the root hair surface must be replenished at least 10 to 20 times per day (Syers et al. 2008). 

Therefore, plant‐available P is affected both by the concentration of Pi in the soil solution (I) and the 

amount and rate of release P from other soil pools (Q) (Morel et al. 2000). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 August 2025 doi:10.20944/preprints202508.1475.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1475.v1
http://creativecommons.org/licenses/by/4.0/


  6  of  57 

 

 

Figure  2.  Conceptual  diagram  for  the  forms  of  inorganic  P  in  soils  categorized  in  terms  of  accessibility, 

extractability and plant availability (Johnston et al. 2014). 

When a  fertilizer granule  is added  to  the  soil,  the P  source must dissolve and enter  the  soil 

solution  before  it  becomes  available  for  soil  reactions  or  plant  uptake.  Phosphate  fertilizers  are 

hygroscopic,  so  they will  be  dissolved  by water  vapour  from  the  soil  air‐filled  space  and  soil 

porewater that moves towards the fertilizer through mass flow and capillary flow (McLaughlin et al. 

2011; Hettiarachchi et al. 2006). As the granule or droplet dissolves, the highly concentrated P solution 

created  from  the dissolution of  the  fertilizer granule begins  to diffuse away  from  the application 

point, with  the  P  concentration  decreasing with  increasing  distance  from  the  origin.  The  initial 

dissolution and movement of P out of the granule occurs rapidly, within a few days (Lombi et al. 

2004; Hedley and McLaughlin 2005; McLaughlin et al. 2011). 

The residual granule or droplet contains insoluble P compounds from the original fertilizer as 

well  as  the  compounds  that  precipitated  from  the  reaction  of  the  highly  concentrated  fertilizer 

solution with reacting cations (Hedley and McLaughlin 2005; Kar et al. 2012). Beyond this is a zone 

of soil surrounding the granule where the capacity of the soil to adsorb P has been saturated, and 

precipitates have formed from the reaction of the fertilizer solution with the metal ions and organic 

matter  released  from  the  soil. As  the distance  from  the  application point  increases,  the  solution 

becomes more dilute, and the soil will be able to adsorb the P without being saturated. 

Only a small portion of the P from the fertilizer remains in solution because it will equilibrate 

with the less soluble labile and non‐labile pools of P in the soil through a series of adsorption and 

precipitation reactions (McLaughlin et al. 2011; Sample et al. 1980; Hedley and McLaughlin 2005). 

These reactions include adsorption on the surface of the soil particles, diffusion (absorption) of the 

adsorbed P from the outer surface to the inner surfaces of the particles, where it is less available, and 

precipitation of a new sparingly soluble solid phase P (Johnston et al. 2014; Ajiboye et al. 2007; Ajiboye 

et al. 2008). The reactions that occur depend on the concentration of the phosphate and reacting ions 

in the soil solution. 

The soil pH affects the formation of phosphate compounds. In high pH soils, phosphate ions 

react with Ca and Mg ions to produce sparingly soluble Ca and Mg phosphate compounds. 

e.g., dicalcium phosphate dihydrate (DCPD): 

CaHPO4 ∙ 2H2O + H+ ↔ H2PO4− + Ca2+ + 2H2O 

In a high pH soil, H+ is an ingredient in the dissolution reactions for calcium and magnesium 

phosphates,  so  decreasing  pH  increases  dissolution.  In  contrast, Ca  and Mg  and  phosphate  are 

reactants  in  the precipitation  side  of  the  reaction,  so  increasing  their  concentration will  increase 
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precipitation.  Hydroxyapatite  is  generally  the  most  stable  Ca‐P  form  in  soils,  but  a  range  of 

metastable forms such as such as dicalcium phosphate dihydrate or octacalcium phosphate can exist 

(Lombi et al. 2006; Fixen et al. 1983; Sample et al. 1980). 

In acid soils, phosphate reacts with Fe or Al to form increasingly less available compounds. 

e.g., for strengite: 

FePO4 ∙ 2H2O + H2O ↔ H2PO4− + H+ + Fe(OH)3 

Since  H+  is  a  product  of  the  reactions  for  Fe  or  Al  phosphates,  low  pH  and  increasing 

concentrations of Fe, Al, or phosphate will  increase precipitation. There  is  little evidence of bulk 

precipitation of P with Al or Fe in soils, but phosphate may be sorbed onto Fe and Al (hydr)oxides, 

form complexes with these oxides, or become occluded within Fe and Al oxide‐rich minerals such as 

hematite, goethite, and gibbsite (Mabagala and Mng’ong’o 2022; Penn and Camberato 2019; Hedley 

and McLaughlin 2005). 

The formation of compounds in the residual granule and the surrounding fertilizer‐soil interface 

is  affected  primarily  by  the  type  of  solution  formed  by  the  applied  fertilizer  and  the  available 

moisture  from  the  soil  (Hedley and McLaughlin 2005; Sample et al. 1980). Mass  flow of  reacting 

cations  in  the  soil water moving  towards  the  granule may  increase P precipitation,  limiting  the 

movement of P away from the granule and reducing the volume of the fertilizer reaction zone. In 

some soils, when P fertilizer is applied as a solution rather than as a granule there is less movement 

of water carrying reacting ions towards the fertilizer, so precipitation is reduced, and P will move 

further away from the site of application, increasing its availability (Bertrand et al. 2006; Holloway et 

al. 2001; McBeath et al. 2005). 

Blending  soluble  salts  such  as  ammonium  nitrate,  ammonium  sulphate,  potassium  nitrate, 

potassium  chloride  or  potassium  sulphate with  the  phosphate  fertilizer  can  produce  relatively 

soluble  reaction  products  such  as  Ca2KH7(PO4)4.2H2O  or  Ca2NH4H7(PO4)4.2H2O  and  increase 

phosphate movement away  from  the granule  (Sample et al. 1980; Hedley and McLaughlin 2005). 

Creating a larger reaction zone with more soluble reaction products can improve plant‐availability 

of the P. 

These retention reactions reduce  the  immediate availability of P  fertilizers, but  the process  is 

reversible and the retained P forms can become available over time in response to P removal from 

the soil solution (Syers et al. 2008). Therefore, effects of soil reactions on P fertilizer availability need 

to be considered in both in the short‐term and over time. 

2.3. Phosphorus Use Efficiency 

Fertilizer phosphorus  is applied  to  increase crop yield. However, not all  fertilizer applied  is 

immediately used by the crop. The reactions described in the previous sections can remove P from 

the soil solution, so that it is not taken up by the crop in the year of application. 

Phosphorus use efficiency refers to how well the P fertilizer applied is used by the crop. It is a 

critical aspect of P fertilizer management as it influences both profitability for the producer and the 

potential  for  negative  environmental  impact.  There  are  different methods  of  viewing  PUE with 

different implications for productivity, economics of production and environmental impact. 

Crop recovery of added fertilizer P can be measured directly by using 32 P, but this is effective 

primarily  for  shot  term  studies due  to  the  limited half‐life of  the  isotope. More  commonly,  crop 

recovery efficiency  (RE) of P  is measured by  the difference method, where  the P  taken up by  the 

unfertilized crop (U0) is subtracted from the P taken up by the fertilized crop (UP) and divided by the 

amount of fertilizer P applied (FP), expressed as a percentage (Roberts and Johnston 2015). 

RE = (Up− U0 / Fp) x 100 

Values for RE are often very low, in the 10‐15% range, meaning that most of the P that is present 

in the crop comes from soil P reserves or legacy P (residual P) that has accumulated from previous P 

inputs. Values for RE will tend to be low if soil P reserves are high. 
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Rather than being used directly, fertilizer P can be used after it cycles through the soil reserves. 

Therefore, much of the fertilizer applied in a particular year serves to replenish the reserves that are 

being used. The RE measures only short‐term benefit of the fertilizer and does not consider the legacy 

benefit of P fertilizer. As such, it can underestimate the benefits derived from fertilization. 

An alternate method of assessing P use efficiency that considers the use of this “legacy P” is the 

partial nutrient balance (PNB) method, or the balance method (Syers et al. 2008). 

PNB=Up/FP 

The PNB method is the ratio of the P removed by the crop (Up) relative to the P fertilizer input 

(Fp). If more P is removed than applied, the P in the available or sparingly available pools will be 

depleted over time. If more P is applied than removed, the P in the pools will increase over time. The 

PNB is often in the range of 50‐70%. If the PNB is very low over the long term, the P is being used 

inefficiently, and the management practices being used should be reviewed to determine if efficiency 

can be improved. To be meaningful, PNB should be assessed over several years to determine long‐

term trends. 

If P input and offtake are nearly balanced, plant‐available P as measured by a soil test will be 

relatively  stable  over  time,  and  the  efficiency  of  P  use  will  be  relatively  high.  One  fertilizer 

management  strategy would be  to assess  the  soil  test  levels. The  critical  level  for  crop growth  is 

normally viewed as the soil test level above which applications of P fertilizer do not provide a yield 

response  (Johnston et al. 2014; Roberts and  Johnston 2015). If soil  test  levels are below  the critical 

level, P should be added at higher than removal levels  to build soil  test P and  improve the soil P 

status. If the P level is above the critical level (such as on manured soils), P should be applied at less 

than removal levels to draw down the soil P. If the P in the soil is near the critical level, the P should 

be applied at approximately the removal values to keep soil P at the desired level. 

For a producer, the impact that a fertilizer application has on crop yield and profitability is often 

the most relevant consideration. This is measured by Partial Factor Productivity (PFP), which refers 

to the units of crop yield (Y) per nutrient applied (Fp) (Roberts and Johnston 2015; Fixen et al. 2015). 

The PFP will be strongly affected by the overall productivity of the system, so factors that increase 

crop yield will tend to increase measured PFP. 

PFP = Y/Fp 

Agronomic efficiency (AE) addresses the question of how much agronomic benefit was gained 

by applying the fertilizer. It is calculated as the difference  in yield between the fertilized (Yp) and 

unfertilized crop (Y0), divided by the fertilizer applied (F). 

AE = (Yp‐Y0)/F 

If soils have high levels of available P, approaching or exceeding the critical soil test value, crop 

demand for P may be satisfied from the soil reserves; therefore, yield response and AE will be low. 

Internal Utilization Efficiency describes  the ability of  the crop  to convert  the nutrients  that  it 

accumulates  into yield.  It  is calculated as yield  (Y) divided by nutrient uptake  (U). This provides 

information on  the genetic ability of a crop  to convert P  into marketable yield, but  it will also be 

affected by environmental conditions that restrict yield potential 

IEF = Y/U 

Physiological efficiency describes the ability of the plant to transform nutrients supplied by the 

fertilizer  into yield.  It  is  calculated as  the difference between  the yield  in  the  fertilized  (Yp) and 

unfertilized ( Yo) crop, divided by the P uptake in the fertilized (Up) and unfertilized (U0) crop. 

PE = (Yp‐Y0)/(Up‐U0) 

As with  the  IEF,  this provides  information on  the genetic  capacity of  a plant  to  respond  to 

fertilizer application but is affected by environmental conditions. 
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Finally, return on investment (ROI) measures the economic benefit of fertilizer application. It 

can be calculated as the difference in yield of the fertilized crop (Yp) and the unfertilized crop (Y0) 

multiplied by the price of the crop divided by all costs associated with applying the fertilizer. 

ROI = (Yp‐Y0)*crop price/fertilizer cost 

The return on investment is often of greatest importance to a producer. 

The selection of a method of assessing phosphorus use efficiency depends on  the goal. Plant 

breeders may be interested in using physiological assessments such as PE and IEF values in breeding 

programs to assess the genetic capacity of breeding lines to convert available P or fertilizer P  into 

yield. 

The RE provides a short‐term assessment of P fertilizer recovery in the year of application. It is 

useful for comparing relative efficiencies of various fertilizer products in the year of application, but 

does not consider  long‐term benefits or effects on residual soil P. The PNB considers the P  that  is 

taken up by the crop from both the soil reserves and the applied fertilizer. Long‐term measurement 

of PNB provides information on long‐term fertilizer use efficiency and on the potential depletion or 

accumulation of P reserves in the soil. 

The PFP assesses the yield produced per unit of P applied and is useful as an indicator of the 

productivity of  the system.  It will decrease  if  factors other  than P supply are  limiting crop yield. 

Agronomic efficiency and ROI provide an assessment of the short‐term effect of fertilizer applications 

on crop productivity and economic return. This would be useful for producers to determine the short‐

term benefits of fertilization, especially in years where financial margins are tight or if the land tenure 

is short‐term. However, if P application is lower than P removal, the short‐term ROI may be high, 

but declines in long‐term soil productivity may decrease future economics of production. 

2.4. Summary 

Plants take up P from the soil solution as the inorganic orthophosphate ion Pi. The concentration 

of Pi in the soil solution is very low and is depleted quickly by plant uptake. The Pi in the soil solution 

must be replenished from other soil pools to meet plant demand. Uptake of Pi by the plant is affected 

by  the  concentration  of  Pi  at  the  root  surface  and  the  speed  at which  the  concentration  can  be 

replenished. Phosphorus fertilizer is used to increase the supply of P to the plant when soil levels are 

insufficient. Phosphorus fertilizer will undergo a series of adsorption and precipitation reactions that 

move it from solution into less soluble labile and non‐labile pools of P in the soil. These reactions are 

reversible and respond  to  the concentration gradient. Phosphorus use efficiency can be measured 

through  different methods  that  consider  the  short‐  and  long‐term  use  in  the  cropping  system. 

Improvements  in  phosphorus  use  efficiency  can  contribute  to  the  long‐term  sustainability  of 

agricultural production. 

3. Traditional Fertilizer Formulations 

Key Points 

 Traditional phosphate fertilizers are formulated to provide available phosphorus to the plant as 

required for crop growth 

 Phosphorus availability will be affected by the solubility of the fertilizer source and its reactions 

in the soil 

 Rock phosphate is the source material for most commercial phosphate fertilizers 

 Presence of ammonium in the fertilizer can increase its uptake by plants 

 Fluid forms of fertilizer may be more available than solid granules on dry, calcareous soils 

3.1. Phosphorus Fertilizer Forms and Reactions 

Phosphorus fertilizer should provide available forms of P to the plant as required to optimize 

crop  growth.  Commercial  fertilizers  normally  supply  P  in  the  form  of  orthophosphate, 

polyphosphate, or a blend of the two sources (Figure 3). Orthophosphate is immediately available for 
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crop uptake when it dissolves and enters the soil solution, while polyphosphate will become available 

as it breaks down into its orthophosphate components. Plant roots absorb phosphate ions from the 

soil solution so  the availability of  the P  in different P  fertilizer  sources  is directly  related  to  their 

solubility (Chien et al. 2011). 

As discussed in section 2, Pi in the soil solution will react with Ca and Mg in neutral to alkaline 

soils and with Fe and Al in more acid soils to form increasingly less soluble products (Chien et al. 

2011; Racz and Soper 1970; Racz and Soper 1967). The soil reaction of phosphate will influence the 

volume and nature of the reaction zone around the fertilizer granule, and the ability of the plant to 

access the Pi. The effectiveness of various fertilizer sources will therefore be affected both by the initial 

content of plant‐available P and by the type and rate of its reactions in the soil. 

Orthophosphate  Polyphosphate 

   

Figure 3. Linear structure of orthophosphate and polyphosphate. 

3.2. Phosphate Rock 

Phosphate rock is the original source to produce most phosphate fertilizers. Phosphate in rock 

phosphate  is  primarily  present  as  apatites  that  include  a  range  of  calcium  phosphate minerals 

(Ca5(PO4)3X, where X  is an anion). Phosphate rock  is relatively  insoluble, especially on calcareous 

soils, with the solubility varying with its chemical composition and particle size (Nelson and Janke 

2007; Chien and Menon 1995). Efficacy of rock phosphate as a fertilizer source is directly related to 

its solubility, so it can vary widely depending its specific physical and chemical characteristics (Chien 

and Menon 1995; Kucey and Bole 1984). 

Soil characteristics, especially pH and Ca content, will strongly affect the solubility of phosphate 

rock. Dissolution of apatite follows the following reaction, using fluorapatite as an example: 

Ca5(PO4)3F + 6H+ ⇋ 5Ca2+ + 3H2PO4‐ +F‐ (Lindsay and Moreno 1960) 

If the concentration of reactants on the left side of the equation increases, the reaction will shift 

towards dissolution of  the  rock phosphate, while  increasing  the concentration of  reactants on  the 

right side of the equation will suppress dissolution. On acid soils, the high concentration of H+ ions 

in solution increases the solubility of apatite and its potential effectiveness as a P source (Choudhary 

et al. 1996; Choudhary et al. 1994; Kucey and Bole 1984; Ellis et al. 1955). In contrast, since Ca2+ is a 

product on the right side of the equation, high concentrations of Ca2+ decrease the solubility of rock 

phosphate, making it much less likely to be an effective P source on high pH, calcareous soils (Malhi 

et al. 2014). 

As  the rock phosphate dissolves,  the Ca2+ that  is released may adsorb  to  the cation exchange 

capacity  (CEC) of  the soil,  removing  it  from solution. Therefore,  increasing CEC can  increase  the 

dissolution  and  agronomic  effectiveness  of  rock  phosphate  (Chien  and Menon  1995).  Increasing 

organic matter content may also increase dissolution of rock phosphate, both because organic matter 

can increase CEC and because the organic matter may form direct complexes with Ca2+, removing it 

from solution and again shifting the equilibrium towards dissolution. 

The effectiveness of rock phosphate as a fertilizer source can vary with plant type. Plants can 

increase the solubility of P in the soil by secreting substances such as organic acids or chelating agents 

that  increase their ability to use rock phosphate. Buckwheat appears to be particularly effective at 
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accessing  rock phosphate,  legumes  are  intermediate,  and grasses  are  relatively  ineffective  (Fried 

1953). Crops such as lupins that acidify their rhizosphere or that have high uptake of Ca2+ tend to be 

relatively effective at accessing P from rock phosphate (Bekele et al. 1983; Hinsinger and Gilkes 1995). 

Rock phosphate may  also be  a better P  source  for perennial  crops  as  compared  to  annual  crops 

because the slow dissolution of the P over time may supply the needs of the perennial crop over a 

number of years (Chien and Menon 1995). 

Rock phosphate is more commonly used  in organic systems than  in conventional production 

systems because it is a permitted organic fertilizer source, while more soluble phosphate fertilizers 

are prohibited. Rock phosphate may be more plant‐available  in organic  farming  systems  than  in 

conventional systems because the legume pulse and green manure crops that are used to provide N 

in organic farming systems may have the additional benefit of mobilizing and releasing P from rock 

phosphate for the following crops in the rotation (Arcand et al. 2010). Organic systems also tend to 

have lower P concentrations in the soil than conventionally farmed fields, which may increase the 

solubility and effectiveness of rock phosphate as a P source (Entz et al. 2001). 

3.3. Commercial Phosphate Fertilizers 

Rock phosphate  is  the  source material  for  the production  of  the most  common  commercial 

phosphorus fertilizers. The rock phosphate is beneficiated to remove impurities such as sand, clay, 

carbonates, organics and iron oxide. The beneficiated ore  is then ground and reacted with acid to 

create  soluble,  plant‐available  fertilizers.  Phosphoric  acid  (H3PO4)  is  formed  by  reacting  rock 

phosphate with sulphuric acid (Follett et al. 1981). The impure phosphoric acid is filtered to remove 

gypsum, then heated to drive out water and increase the P concentration. High quality phosphoric 

acid  can be used directly as a  liquid  fertilizer  source  (0‐55‐0), but  it  is very corrosive and can be 

difficult to handle, so it is more commonly used to produce other fertilizers 

3.3.1. Dry Granular Phosphate Fertilizers 

Single  superphosphate  (SSP)  is  also  called  normal  superphosphate  (NSP)  or  ordinary 

superphosphate (OSP). Single superphosphate was the first improved phosphate fertilizer produced, 

dating back  to a patent  issued  in 1845  (Follett et al. 1981). Single superphosphate  is produced by 

blending ground, beneficiated rock phosphate with sulphuric acid of about 60‐72% concentration. 

The mixture is left to react for several weeks until the apatite in the rock is converted to monocalcium 

phosphate (Ca(H2PO4)2 H2O) and gypsum. Single superphosphate has a low analysis of about 18 to 

20% P2O5 (0‐20‐0‐10) so it is expensive to transport per unit of available P. Single superphosphate is 

reasonably soluble and serves as a source of available S as well as P but because of its low analysis, 

its  importance as a P fertilizer has declined steadily since  the mid 20th century  in favour of more 

concentrated  P  fertilizers  (https://fertechinform.org/knowledgebase/single‐superphosphate‐ssp/, 

accessed December 8. 2024). 

Triple superphosphate (TSP) is produced by reacting rock phosphate with phosphoric acid. It 

is highly water soluble and is agronomically similar in availability to SSP. It has a higher phosphorus 

concentration than SSP, containing about 40 to 46% P2O5. As with SSP, the P in TSP is in the form of 

monocalcium phosphate, but unlike SSP, TSP does not contain gypsum. Use of TSP has decreased 

over  time  with  the  increasing  popularity  of  ammonium  phosphate  sources 

(https://fertechinform.org/knowledgebase/single‐superphosphate‐ssp/, accessed December 8. 2024). 

Ammonium phosphates are the most popular phosphate fertilizers currently in use worldwide 

due  to  their  good  handling  characteristics  and  high  analysis 

(https://fertechinform.org/knowledgebase/ammonium‐phosphates/ accessed January 25, 2025). They 

include monoammonium phosphate and diammonium phosphate. 

Monoammonium phosphate (MAP) is produced by reacting a 1:1 molar ratio of ammonium 

and phosphoric acid and solidifying the resulting slurry into granules. Pure MAP (NH4H2PO4) would 

have an analysis of approximately 12% N and 62% P2O5, but commercial MAP generally contains 10 

to  11%  N  and  48‐55%  P2O5  (https://fertechinform.org/knowledgebase/ammonium‐phosphates/ 
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accessed December 8, 2024). Commercial MAP is highly water soluble and provides both N and P. 

The solution around the MAP granule is moderately acidic, which can increase P solubility on neutral 

to high pH soils. 

The ammonium ions in MAP can increase crop uptake of phosphate by decreasing pH in the 

rhizosphere and reducing precipitation of phosphate (Miller et al. 1970; Riley and Barber 1971). When 

the plant  takes up NH4+,  it  expels  an H+  that  lowers pH  in  the  rhizosphere  and  can  reduce  the 

formation of CaHPO4.2H2O near the root surface. Ammonium can also increase root proliferation in 

the fertilizer reaction zone (Jing et al. 2012). The ability of a plant to take up P is proportional to the 

root area and the concentration of P in solution, so increasing P solubility and root proliferation can 

increase the ability of the plant to absorb the applied P (Barber 1995; Miller and Ohlrogge 1958). The 

presence of ammonium in MAP tends to make it superior to TSP for P fertilization of crops on high 

pH soils (do Nascimento et al. 2018). For example, in 75 site‐years of field trials on summer fallow 

fields in Saskatchewan from 1939 to 1943, the increase in wheat yield with MAP was 30% greater than 

with TSP (Mitchell 1946). 

Diammonium phosphate (DAP) is produced in a similar manner to MAP, but a 2:1 molar ratio 

of ammonium to phosphoric acid is used, resulting in a product with the analysis of (NH4)2HPO4 con. 

The  standard  grade  of  DAP  is  18%  N  and  46  phosphate  (as  P2O5) 

(https://fertechinform.org/knowledgebase/ammonium‐phosphates/ accessed December 12, 2024). As 

with MAP, the phosphate in DAP is in the form of orthophosphate, and ammonium is present in the 

fertilizer, which can benefit P availability to plants. While DAP has a higher concentration of N than 

does MAP, it has a disadvantage on calcareous soils because its solution pH is higher than that of 

MAP.  If  too  much  DAP  is  placed  too  near  the  seed  row,  the  high  pH  and  high  ammonium 

concentration  can damage  the germinating  seedling. While  this  can  also happen with MAP,  the 

toxicity of DAP is greater than that of MAP at a given P concentration and the effect is accentuated 

by CaCO3 (Allred and Ohlrogge 1964). The higher pH of DAP as compared to MAP may also make it 

less plant‐available on calcareous soils, but may make it more available on acid soils (Bouldin and 

Sample 1959; Beaton and Read 1963). Mobility of P away  from a  fertilizer, as measured with  32P‐

labelling was greater with MAP  than DAP, while P movement with both  sources was greater  in 

noncalcareous than calcareous soils (Lewis and Racz 1969). The high pH and concentration of Ca and 

Mg in the soil solutions of the calcareous soils would lead to rapid P precipitation very close to the 

pellet, restricting P movement. 

3.3.2. Fluid Fertilizers 

Ammonium  Polyphosphate  (APP)  is  the  most  common  fluid  phosphate  fertilizer  used 

commercially. It is produced by the dehydration of phosphoric acid to form superphosphoric acid, 

which  is  then  reacted  with  ammonia  and  water  (https://www.cropnutrition.com/resource‐

library/polyphosphate/ accessed December 8, 2024). Ammonium polyphosphate contains about 70‐

75% of its P as polyphosphate and the rest as orthophosphate (Figure 3). Most of the polyphosphates 

are  in  the  form  of  pyrophosphate, which  contains  two  linked  phosphate molecules,  but  longer 

phosphate chains will also be present (Zhou et al. 2023). The analysis of APP is 10‐34‐0 or 11‐37‐0. 

Plants take up P in the orthophosphate form and cannot directly use polyphosphates. However, 

in the soil, polyphosphates will quickly hydrolyze to pyrophosphate and then to orthophosphate by 

chemical and biochemical reactions (Zhou et al. 2023; Chang and Racz 1977; Racz and Savant 1972). 

The  rate  of  conversion  will  be  influenced  by  soil  and  environmental  factors  such  as  soil  pH, 

temperature  and moisture  content  (Dick  and Tabatabai  1986; Racz  and  Savant  1972).  Incubation 

studies using two Manitoba soils showed that bout 40 to 70% of the added polyphosphate hydrolyzed 

in 120 h at 5  °C, whereas about 80  to 95% hydrolyzed  in 120 h at 35  °C  (Chang and Racz 1977). 

Polyphosphate hydrolysis was greater on noncalcareous than on calcareous soils (McBeath et al. 2006; 

Zhou et al. 2023). Increasing the amount of polyphosphate applied to the soils increased the rate of 

orthophosphate  production.  Hydrolysis  was  rapid  both  at  field  capacity  and  under  flooded 

conditions  (Racz  and  Savant  1972)  The  rates  of  polyphosphate  hydrolysis  and  total  amounts  of 
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polyphosphate hydrolyzed shortly after application would normally be great enough to meet plant 

demand and would not limit the early‐season crop uptake of P (Dick and Tabatabai 1986; McBeath et 

al. 2006; Khasawneh et al. 1979; Chang and Racz 1977). The presence of NH4+ in APP will increase its 

effectiveness as discussed previously. An advantage of APP over granular  fertilizers  is  that, as a 

liquid source, it is suitable for uniform blending with other nutrients. 

The liquid form of APP may also improve its effectiveness as a P source under certain conditions. 

Studies  in Australia showed that  fluid formulations such as APP or even dissolved MAP or DAP 

solutions were much more effective than dry granular fertilizer on highly calcareous alkaline soils 

(Bertrand et al. 2003; Bertrand et al. 2006; Holloway et al. 2001; McBeath et al. 2005; McBeath et al. 

2007; Lombi et al. 2004, 2005). On the dry, calcareous soils used in these studies, P precipitated rapidly 

with Ca when the dry fertilizer forms were used. More detailed studies showed greater diffusion of 

P from the site of application with the fluid than the granular forms (Lombi et al. 2004, 2005; Bertrand 

et al. 2006). The proposed mechanism  for  the  improvement was  that  the Ca carried with  the  soil 

moisture moving along the osmotic gradient towards the dry fertilizer granule, rapidly precipitated 

the P, limiting the size of the fertilizer reaction zone and the ability of the plant to access the P. With 

fluid sources, less water moved towards the fertilizer, so there was less movement of Ca. The fertilizer 

was not precipitated as rapidly, and the size of the reaction zone was larger, increasing the fertilizer 

availability. Laboratory studies compared the lability, solubility and mobility over a five‐week period 

of three P products applied in a fluid form and three applied in a granular form on two calcareous 

and one alkaline non‐calcareous soil (Lombi et al. 2005). With dry fertilizer granules, between 9.5 and 

18% of the P initially present did not diffuse away from the application site, and the degree of granule 

dissolution was independent of the soil type. The P solubility, lability and diffusion were greater with 

fluid  products  than  with  granular  products  on  the  calcareous  soils,  but  not  on  the  alkaline 

noncalcareous soil. Availability was also better when MAP was applied as a dissolved solution rather 

than as a granule (Lombi et al. 2004). 

These large differences between the behaviour of fluid versus granular sources have not always 

been observed in other regions. Studies with maize showed that APP could produce greater tissue 

concentration of P than MAP, but the yield was similar with the two sources (Adriano and Murphy 

1970). Field studies in Manitoba and Alberta showed no difference in spring wheat yield with APP 

or MAP (Grant et al. 2007). Other field studies in Manitoba also showed that the application of either 

APP or MAP had similar effects on the yield of durum wheat (Grant et al. 2008) and canola (Grant 

and Relf‐Eckstein 2009). The effect of two ammonium orthophosphates (6–24–6 and 9–18–9), an APP 

and a MAP on plant‐available phosphate was assessed over  time  in  laboratory studies on soils of 

varying pH (Goh et al. 2013). Liquid phosphate products produced greater water‐soluble and sodium 

bicarbonate‐extractable  P  concentrations  than MAP  for  the  first  two days  of  incubation,  but  the 

differences among the products disappeared over time, and the available P was similar among the 

products after 4 days of incubation (Goh et al. 2013). These very transient differences in availability 

among the different fertilizer forms would be unlikely to have a major effect on crop growth and final 

yield. 

The  increased  effectiveness  of  fluid  sources  in  the  Australian  situation  is  related  to  the 

movement of water  carrying  ions  towards  the hygroscopic  fertilizer granule,  resulting  in greater 

precipitation and a smaller reaction zone than would occur with fluid forms (Bertrand et al. 2003; 

Bertrand et al. 2006; Holloway et al. 2001). The highly calcareous and dry  soils  in  the Australian 

studies may accentuate the benefits of fluid fertilizer forms. 

3.4. Summary 

Traditional phosphorus fertilizers are formulated to provide available phosphorus to the plant 

as required  for crop growth. Rock phosphate  is the source material to produce  the most common 

commercial fertilizers. The rock phosphate is  treated  to remove impurities and create more plant‐

available fertilizers. Phosphorus availability will be affected by the solubility of the fertilizer source 
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and its reactions in the soil. The presence of ammonium in the formulation may increase its uptake 

by plants, especially on calcareous soils. 

4. Microbial Products 

Key Points 

 Soil microorganisms play an important role in phosphorus interaction in the soil 

 Soil microorganisms can mobilize soil P and increase its availability for plant uptake 

 P solubilizing microorganisms are more often beneficial in pot studies than under field conditions 

 Mycorrhizal  associations  are  very  important  in  natural  ecosystems  and  for  specific  highly‐

dependant crop species 

 Mycorrhizal inoculants have mixed results under field conditions 

 Managing  production  systems  to  encourage  the  development  of  the  natural  mycorrhizal 

population may benefit crop types that depend on mycorrhizal colonization 

 Increasing removal of soil P without replenishment can lead to loss of soil fertility over time 

4.1. Microorganism and Phosphorus Availability 

The major limitations to P availability for crops are the mobilization of available orthophosphate 

from the sparingly available forms in the soil into the soil solution and its movement to the plant root 

for uptake. Soil microorganisms play an important part in solubilizing and mineralizing phosphorus 

in the soil. Soil microorganisms, including bacteria, fungi, actinomycetes, and algae, can solubilize P 

and/or mineralize P, increasing their bioavailability from the soil (Alori et al. 2017; Richardson et al. 

2011). Microorganisms can also  form associations with plants  to directly  influence  their ability  to 

access P from the soil. The important role that soil microorganisms play in P dynamics in the soil and 

plant  has  led  to  an  interest  in  inoculating  soil  or  crops  with  microorganisms  to  enhance  P 

solubilization or mineralization of P from the soil and increase its plant availability 

4.2. Phosphorus‐Solubilizing Microorganisms 

Microorganisms play a crucial role in P reactions in the soil. Microorganisms may solubilize P 

by  releasing  protons,  organic  acids  such  as  citrate,  oxalate,  succinate  or  gluconate,  and  cation 

chelating compounds such as siderophores into the rhizosphere (Khan et al. 2023; Raymond et al. 

2021). These secretions can complex P, chelate cations that are bound to P, dissolve sparing soluble 

forms of P or desorb phosphate ions from soil minerals by ligand exchange (Raymond et al. 2021; 

Sharma et al. 2013; Bargaz et al. 2021; de Oliveira‐Paiva et al. 2024). Microorganisms can also produce 

P‐hydrolyzing enzymes such as phytases and phosphatases that speed the mineralization of organic 

P  (de Oliveira‐Paiva  et  al.  2024). Phosphorus‐solubilizing microorganisms  (PSB) may  enhance P 

availability to crops by stimulating root growth, by up‐ or down‐regulating gene expression of Pi 

transporters in roots, or by stimulating plant production of P‐hydrolyzing enzymes or products (de 

Oliveira‐Paiva  et  al.  2024;  Gulden  and  Vessey  2000;  Vessey  and  Heisinger  2001).  Therefore, 

microorganisms may be able to enhance the availability of residual P in the soil or improve the use 

of P fertilizers. 

A wide range of bacteria and fungi have been shown to solubilize inorganic soil P (Richardson 

and Simpson 2011; Amy et al. 2022b, a; de Oliveira‐Paiva et al. 2024). Under laboratory conditions, a 

large proportion and wide diversity of bacterial isolates from the rhizosphere of rapeseed, faba bean 

and winter pea showed the ability to solubilize P, with those from the rapeseed being most efficient 

at direct P solubilization (Amy et al. 2022b). Similarly, various Penicillium species have been shown 

to  have P‐solubilizing  effects  (Wakelin  et  al.  2007b; Wakelin  et  al.  2004). Penicillium  bilaiae  (also 

described in the literature as Penicillium bilaii or Penicillium bilaji) has been sold commercially since 

the  1990s  as  an  inoculant  to  improve  the  availability  of  soil P,  by  colonizing  the  root  zone  and 

secreting citric and oxalic acids that can solubilize P. 
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Under  controlled  conditions,  inoculation with P  solubilizing microorganisms has  frequently 

been shown to increase yield and/or P uptake (Raymond et al. 2021). In laboratory and greenhouse 

studies, plant P uptake increased with the use of P. bilaiae (Kucey 1988; Kucey and Leggett 1989). In 

greenhouse studies with wheat, P. bilaiae increased the solubilization of inorganic P and increased 

the amount of P in solution through a decrease in the solution pH (Asea et al. 1988). The improved P 

supply led to an increase in wheat dry matter yield and P uptake. In pot studies using sterilized, air‐

dried and sieved soil, P solubilizing bacteria increased maize growth and P concentration and uptake, 

with effects being greater when applied with rock phosphate or single superphosphate (Adnan et al. 

2020). In contrast, in pot studies, when Pseudomonas lines selected from rapeseed, pea or fababean 

roots were applied to rapeseed with triple superphosphate rates of 125, 62.5, 31.5 and 0 mg P2O5 per 

plant, shoot biomass and P content after 10 weeks of growth were increased by P fertilization but not 

by any of the Pseudomonas lines (Amy et al. 2022a). Similarly, in studies with durum wheat grown in 

a  sterile mixture  of  soil,  sand  and  peat,  application  of  a  blend  of  P  solubilizing  bacteria with 

polyphosphate or orthophosphate produced higher root and shot dry weight than the polyphosphate 

or orthophosphate alone at 35 days after seeding, but by 75 days there was no difference between the 

blend and the fertilizer applied alone (Khourchi et al. 2023). 

While inoculation of plants with P‐solubilizing microorganisms has often demonstrated benefits 

under greenhouse conditions, performance under field conditions  is much less consistent. Studies 

have occasionally reported benefits under field conditions. For example, two years of field study in 

Turkey with sunflower evaluated a P solubilizing bacterium with and without three rates of triple 

superphosphate  (Ekin 2010). Adding  the bacterium either by  itself or with  the  fertilizer  increased 

sunflower  yield,  with  the  highest  yield  occurring  with  the  highest  rate  of  P  (100  kg/ha)  plus 

bacterium.  In  field  studies with maize,  single  inoculations with  either  the  rhizospheric  Bacillus 

megaterium or the endophytic B. subtilis increased maize grain yield by an average of 22% and 16% in 

a low fertility soil, and 6% and 3% in a high fertility soil, respectively. Co‐inoculation proved more 

effective, with an average yield increase of 24% on the low fertility soil and 11% in the high fertility 

soil compared to the non‐inoculated control (de Oliveira‐Paiva et al. 2024). 

In contrast,  little benefit of  inoculation was observed  in a  total of 47  field and 94 pot studies 

conducted  across Europe  and  Israel  over  three  years  to  evaluate  the  effect  of  various  biological 

enhancers,  including P‐solubilizing microorganisms, on maize,  tomato and wheat  (Nkebiwe et al. 

2024). Effects were seen under greenhouse conditions but not under field conditions, and effects were 

largest  in  tomato, smaller  in maize and not  significant  in wheat. Other  field studies  showed  that 

inoculation with Enterobacter radicincitans or Pseudomonas fluorescens did not increase maize yield in 

two  years  of  study  on  soils  that  had  received  applications  of  biosolids,  manures  or  triple 

superphosphate for the preceding ten years while Pseudomonas fluorescens led to a higher grain yield in 

one of the two years when the soil had received no fertilizer inputs over the preceding years (Krey et al. 2013). 

In studies conducted under field conditions, crop yield responses to the use of P. bilaiae have 

also been erratic. In 92 replicated small plot trials and 369 large, unreplicated field trials with maize 

across the maize producing area of the United States, inoculation with P. bilaiae increased grain yields 

by only 1.8% in the small plot studies and by 3.5% in the field scale studies (Leggett et al. 2014). The 

increase was not affected by pH, P fertilizer application or the level of P in the soil. 

In field trials in Saskatchewan, inoculating alfalfa seed with P. bilaiae increased alfalfa dry matter 

production,  P  uptake,  and  forage  yield,  most  likely  due  to  increased  P  availability  from  the 

solubilization of otherwise unavailable soil P (Beckie 1997; Beckie et al. 1998; Schlechte et al. 1996). 

However, in subsequent alfalfa trials in Saskatchewan, biomass yield generally did not increase, and 

in some cases seemed to decrease with P. bilaiae application (Farden and Knight 2005). 

Studies on field peas in Saskatchewan and Alberta showed that P. bilaiae did not affect shoot 

growth but increased root growth and P concentration  in the tissue in one of two site‐years on P‐

deficient soils, possibly because of the effect of the fungus in stimulating root growth (Vessey and 

Heisinger 2001). In nine site‐years in Manitoba and Alberta, wheat grain yield was not significantly 

affected by P. bilaiae (Grant et al. 2002). In 47 site‐years of experiments with hard red spring wheat 
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across western Canada,  fertilizer  P  increased  grain  yield  in  33  site‐years, while  there were  five 

increases  and  nine  decreases  in  yield with  P.  bilaiae  inoculation  (Karamanos  et  al.  2010).  These 

responses were considered random effects and were not related to extractable P soil concentration, 

soil organic matter or texture, or weather conditions. At four sites in North Dakota, P fertilization 

consistently increased early‐season growth, main stem development, tillering and P uptake while 

seed inoculation with P. bilaiae had little or no effect (Goos et al. 1994). Phosphorus fertilization and 

P. bilaiae inoculation both increased grain yield at one site, although P. bilaiae did not increase plant 

growth and P uptake earlier in the season. 

In canola studies in Manitoba and Saskatchewan, inoculation with P. bilaiae slightly increased 

early‐season  P  concentration  in  4  of  9  site‐years,  but  increased  yield  in  only  one  site‐year  and 

decreased yield in one site‐year, while P application increased yield in 6 of 9 site‐years (Mohr et al. 

2013). Similarly, there was no yield benefit of using P. bilaiae on flax in nine site‐years of field studies 

in Manitoba (Grant et al. 2000; Grant et al. 2005). Field trials have demonstrated no consistent effects 

of P. bilaiae on the growth, development and seed yield of lentil in field trials in Saskatchewan (Gan 

et al. 2005). Studies on corn and winter wheat in Kansas also showed no benefit to the use of P. bilaiae 

when applied with or without P fertilizer (Ward 2010). Therefore, it appears that P. bilaiae is unreliable 

as a method of improving the P nutritional status of crops under field conditions. 

Several factors may contribute to the erratic performance of P solubilizing microorganisms in 

the field. Acidification by microorganisms could be beneficial in high pH, calcareous soils, where it 

can lead to the dissolution of Ca‐P minerals (Raymond et al. 2021). For example, Penicillium strains 

were found to perform better on high pH rather than neutral soils (Wakelin et al. 2007a). However, 

if pH buffering in soils is high, the effects of secretions on soil pH would be limited to a small area. 

The availability and forms of soil P present in the soil may also be important (Raymond et al. 

2021). If the microorganisms are acting by mobilizing P, insoluble or organic forms of P would need 

to be present in the soil to be mobilized. However, if there is too much available P in the soil, the plant 

will not benefit from the mobilization of additional P. Therefore, the greatest benefit is likely to be on 

moderate P soils. 

Response to P solubilizing microorganisms may depend on the crop type. Microbes would have 

to work in the rhizosphere to provide P to the plant. Different plants may differ in their ability to host 

microbial colonization in the rhizosphere. Plants themselves will secrete numerous substances that 

can mobilize P, especially in response to P deficiency. If the plant itself is effective in mobilizing P, 

the microorganisms may not have an additional benefit. 

Problems in performance could also relate to poor colonization due to competition with other 

organisms (Richardson 2001). Native soil microorganisms may be better adapted to a particular field 

than the inoculants. Placing microbes directly in the seed row or as a coating on the seed may improve 

the likelihood of successful inoculation. 

It also may be that the organisms solubilize the P for their own needs, and it is only transferred 

to the plants when the microorganisms die and decompose. Decomposing soil microorganisms can 

release  P,  which  can  produce  inorganic  P  for  plant  uptake.  However,  the  inorganic  P  would 

reprecipitate if not used rapidly. 

A final concern is that the P solubilizing microorganisms do not produce P, but rather mobilize 

it  from  the soil. While soils with a  long‐term history of application of manures or high rates of P 

fertilizer may contain large reserves of P in an unavailable form, many soils have limited P reserves. 

Mobilizing the legacy P may lead to long‐term depletion of soils, reducing overall soil fertility. 

4.3. Mycorrhizal Inoculants 

Mycorrhizae play a key role in the soil microbial community and are of great importance to a 

wide range of plant species (Hamel et al. 2014; Hamel and Strullu 2006; Hamel 2004; Dai et al. 2014; 

Miller 2000; Miller et al. 1995; Grant et al. 2005). In the symbiotic mycorrhizal relationship, the plant 

provides photosynthate to the fungus, and the fungus provides nutrients and possibly water to the 

plant. The external hyphae of arbuscular mycorrhizal fungi (AMF) extend beyond the P depletion 
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zone of the root and so can access a greater volume of soil than the root alone (Figure 4) (Grant et al. 

2005;  Jakobsen  et  al.  1992).  Some  hyphae may  extend more  than  10  cm  from  the  root  surfaces 

(Jakobsen et al. 1992; Elliott et al. 2021) which is a hundred times further than most root hairs. The 

length combined with the small diameter of hyphae (20–50 μm) increases the effective surface area 

for nutrient absorption and  allows  the  root‐mycorrhizal  system  to access  regions of  the  soil  that 

cannot be  explored by  roots alone. Mycorrhizae  are naturally present  in  soils  and are  extremely 

important  in natural ecosystems, but  their populations can be  reduced by excess  tillage,  summer 

fallow, P fertilization and growing a non‐mycorrhizal crop such as canola or sugar beet (Gavito and 

Miller 1998; Grant et al. 2005; McGonigle et al. 2011; McGonigle et al. 1999; Miller 2000; Miller et al. 

1995; Monreal et al. 2011). Crops such as maize or flax are more dependent on mycorrhizae than crops 

such  as wheat or barley,  and  their yields  can decline when grown  after  a non‐mycorrhizal  crop 

(McGonigle et al. 2011; Bittman et al. 2006; McGonigle et al. 1999; Miller 2000; Grant et al. 2009). 

 

Figure 4. Mycorrhizal colonization can increase the volume of soil that can be accessed for P. 

The importance of mycorrhizal associations for P acquisition in a wide range of plant species, 

especially  in  natural  ecosystems,  has  sparked  interest  in  inoculation with mycorrhizal  spores  to 

encourage colonization in agricultural crops. Inoculation with a mycorrhizal fungus may be able to 

increase  mycorrhizal  colonization,  especially  under  conditions  where  the  background  level  of 

mycorrhizal spores is low. Inoculants are commercially used in horticulture and forestry as well as 

in organic production systems. Many horticulture crops seem to be highly dependent on mycorrhizal 

colonization to optimize crop yield (Ortas 2012; Plenchette et al. 1983). In contrast, Gramineae species 

such as wheat or oat, although they will form mycorrhizal associations, tend to be unlikely to show 

increased yield from colonization (Pons and Müller 2022; Plenchette et al. 1983; Elliott et al. 2021). 

Brassica crops and sugar beets  tend  to be non‐mycorrhizal  (Plenchette et al. 1983). Therefore,  the 

benefit from the use of mycorrhizal inoculation in agriculture is less clear than in horticulture. 

Under some circumstances, AMF inoculation has increased crop yield, both under greenhouse 

and field conditions. In growth chamber studies using soil containing native AMF and fertilized with 

0, 5, 10, and 20 ppm of added P, lentil yield was increased by AMF inoculant at low rates of P fertilizer 

even in soil containing high concentrations of indigenous AMF while one wheat cultivar showed no 

response and one only responded to AMF inoculation at the high rate of P (Xavier and Germida 1997). 

A meta‐analysis of mycorrhizal effects on Gramineae species showed that there was an overall benefit 

from mycorrhizal association  in maize, wheat,  sorghum and  rice, but not  in barley, and  that  the 

benefit was greater in lab than in field studies (Zhang et al. 2019). Another meta‐analysis of 38 field 
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studies also showed that wheat yield and P uptake increased with inoculation and with the degree 

of colonization (Pellegrino et al. 2015). 

In contrast, AMF inoculation has been ineffective in many field studies. On a P‐deficient soil in 

Saskatchewan, application of an AMF inoculant produced only a slight increase in barley grain yield, 

while yield  increased  substantially with  application of  triple  superphosphate  (Malhi  et  al.  2014). 

Similarly, in field trials conducted over three years at three locations, an AMF inoculant increased 

mycorrhizal colonization of wheat roots but decreased biomass production, while grain yield was 

generally unaffected (Grant et al. 2006). Grain yield was greater when P fertilizer was used alone than 

when the mycorrhizal inoculant was used alone. Applying the inoculant with P fertilizer increased 

yield at some sites and decreased yield or had no effect at others. Decreased yields from inoculation 

may have occurred because wheat did not require the mycorrhizal association to access adequate P, 

so colonization was detrimental to the plant (Ryan and Angus 2003; Ryan and Graham 2002; Dai et 

al. 2014).  If  there  is no advantage  to  the plant  from  the mycorrhizal colonization,  the  fungus may 

depress yield potential by using the photosynthate of the crop. 

Mycorrhizal  colonization may  be more  important  in  organic  than  conventional  production 

systems. A  study  in Saskatchewan  examined  inoculation of wheat,  lentil, mustard and  flax with 

commercial  formulations  of  AMF  for  effects  on  seedling  emergence,  biomass  production,  and 

nutrient uptake on an organically managed soil and a conventionally managed soil (Knight 2011). 

Inoculation  did  not  generally  improve  crop  growth  on  the  conventionally  farmed  soil,  possibly 

because the soil contained sufficient nutrients, so plants were not P limited. In the organic soil, soil P 

content was lower, and biomass production and nutrient uptake of wheat increased with inoculation. 

However, flax grown in the organic soil was unresponsive to inoculation. Lentil grew poorly in the 

organic soil and showed low AMF colonization, with approximately 1/3 of the colonization that was 

observed  in  the conventional  soil. The  lower colonization  in  the organic  soil was  reflected  in  the 

overall poor growth and low nutrient uptake. 

A  field demonstration  at  Indian Head,  SK,  also  failed  to  show  any  benefits  to mycorrhizal 

inoculation  for  field  pea,  lentil  or  soybean  (Holzapfel  2014). This demonstration was  conducted 

following  a  spring wheat  or  barley  host  crop  and  in  long‐term  no‐till  fields,  factors  that may 

encourage native AMF and thus reduce reliance on and response to mycorrhizal inoculation (Gavito 

and Miller 1998; Grant et al. 2005; McGonigle et al. 2011; McGonigle et al. 1999; Miller et al. 1995; 

Miller 2000; Monreal et al. 2011). Benefits for inoculation would be more likely to occur following 

non‐host  crops  such  as  canola  or  summer  fallow,  or when  tillage  disrupts mycorrhizal  hyphal 

networks. Crops such as maize, flax, or pulse crops that are dependent on AMF inoculation may be 

affected when soil levels of inoculum are reduced by tillage, fallow or crop sequence (Hamel et al. 

2014; Dai  et al. 2014; McGonigle  et al. 2011; McGonigle  et al. 1999; Miller  et al. 1995). Therefore, 

inoculation may have  the potential  to  re‐establish colonization when  it  is  restricted by preceding 

management practices. 

In growth chamber and field studies,  flax  typically supported a relatively high  level of AMF 

colonization, showing the importance of this association for flax nutrition and growth (Walley and 

Germida 2015). Application of a non‐indigenous AMF inoculant altered the AMF root community 

composition, showing that the introduced AMF was able to compete with native AMF communities 

to colonize flax roots, but there were no significant seed yield responses in the growth chamber or 

field and no economic benefits for AMF inoculation. 

In contrast, in greenhouse trials with tomato  in Australia and  leek in Europe, as well as field 

trials with  soybean  in North America,  testing 28 different commercial  inoculants, no  commercial 

inoculant increased root colonization compared to the respective control (Salomon et al. 2022). None 

of the commercial inoculants in the Australian and North American studies bolstered mycorrhizal 

root colonization in the presence of indigenous AMF, although they could colonize roots in sterilized 

soils. Of  the 25 commercial  inoculants  that were  tested  in  sterile soil and under AMF‐favourable 

conditions,  only  four  (all  found  in  the  European  study)  resulted  in  distinctive mycorrhizal  root 

colonization (Salomon et al. 2022). 
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The wide variation in response to inoculation with mycorrhizal may relate to several different 

factors.  Failures may  occur  because  of  problems with  the  initial  viability  or  formulation  of  the 

inoculant, or because of a lack of adaptation to the environment or plant type (Salomon et al. 2022). 

Improper storage may also decrease the viability of the inoculum. These factors may lead to a lack of 

colonization of the root by the fungus. 

Even with a viable  inoculant, AMF may not benefit  the plant. The  introduced AMF may be 

unable to compete with native fungi, or the native fungi may already be effectively colonizing the 

plant, so the inoculant may not improve mycorrhizal function. If the nutrient level in the soil is high, 

the  plant may  be  able  to  access  sufficient  P  to  optimize  crop  yield,  rendering  the mycorrhizae 

unnecessary. On the other hand, if the P level in the soil is very low, the fungi may compete with the 

plant for P, reducing the P that is available for crop assimilation. Benefits from inoculation are most 

likely  to occur  in mycorrhizal‐dependent crops such as  flax or maize, grown on soils with  low  to 

moderate levels of plant available P and on soils where native mycorrhizae have been reduced by 

excessive tillage or growth of a non‐mycorrhizal crop. If there is no advantage to the plant from the 

mycorrhizal colonization, the fungus may depress the yield potential by using the photosynthate of 

the crop (Ryan and Angus 2003; Ryan and Graham 2002; Dai et al. 2014) 

While inoculation of crops with AMF spores may have small and infrequent benefits for field 

crops, the AMF association is critically important to many crops, including flax, legumes and maize. 

Therefore, management practices  that  encourage AMF,  such  as  reduced  tillage or  rotations with 

mycorrhizal crops preceding mycorrhizal‐dependant crops, would likely benefit yield (McGonigle et 

al. 2011; Grant et al. 2009; Monreal et al. 2011). Furthermore, although AMF clearly aid in P uptake, 

and uptake of P from fertilizer may be enhanced by AMF inoculation, the AMF populations provided 

by currently available inoculants may not be an improvement over a well‐established and maintained 

native AMF population. There may also be a concern that non‐native AMF may act as an invasive 

species, as shown by the decrease in diversity noted with inoculation (Salomon et al. 2022). Finally, 

while AMF can increase the ability of the crop to access soil P, it will not create P. In the long term, if 

more P is removed than added, it can lead to long‐term depletion of soil P reserves and a decline in 

soil fertility. 

4.4. Summary 

Phosphorus solubilizing microorganisms and mycorrhizae are of critical importance in natural 

ecosystems. They can mobilize soil P and increase its availability for plant uptake. Inoculation with 

microorganisms has shown variable results in agricultural production systems. Inoculation tends to 

be more effective in pot studies and with sterilized or artificial soils than under field conditions, for 

a variety of  reasons. Managing production  systems  to encourage  the development of  the natural 

mycorrhizal population may benefit crop types that depend on mycorrhizal colonization. Even when 

and where microbial products  can encourage P uptake,  increasing  the  removal of  soil P without 

replenishment can lead to loss of soil fertility over time. 

5. Humic Acids and Related Products 

Key Points 

 Humic substances play an important role in the physical and chemical quality of soils 

 Application of high rates of humic substances can act as a soil conditioner 

 High rates of humic substances can increase P solution concentration and mobility, particularly 

in pot studies and on soils that are low in organic matter 

 Low rates of humic acids have had mixed results, especially under field conditions. 

 Novel  fertilizer  formulations,  including  humic  substance  coating  or  humic‐metal‐phosphate 

complexed fertilizers, also have not consistently shown an advantage over standard soluble P 

fertilizers 
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 Inconsistent benefits from humic acids may indicate that low rates used are insufficient to be 

effective,  or  that  the  native  content  of  humic  acids  present  in  the  soil  makes  additional 

applications unnecessary. 

5.1. Characteristics of Humic Substances 

Humic  substances are  large,  complex organic molecules  that are highly variable  in  size and 

structure. They are formed by the breakdown of organic material and can comprise up to 80% of the 

soil organic matter  (Canellas  and Olivares  2014; Mikkelsen  2005). Humic  substances  are broadly 

classified based on their solubility in water as humic acid (soluble in water under alkaline conditions), 

fulvic acid (soluble in water under both acid and alkaline conditions) and humin (insoluble in water) 

(Schnitzer 1978). Humic substances are relatively stable in the soil, resisting decomposition by soil 

microorganisms and enzymes. They contain a  large number of reactive functional groups, but the 

carboxyl (COOH) and phenolic (OH) groups are dominant in importance (de Melo et al. 2016). These 

reactive groups  interact strongly with the inorganic components in the soil, and this interaction  is 

important for the beneficial effects that humates have in the soil. Humic substances play a critical role 

in  the  formation  of  stable  soil  aggregates,  improving  the  structure  or  “tilth”  of  the  soil.  They 

contribute to the water holding capacity and cation exchange capacity of the soil, improving its ability 

to retain water and nutrients. 

The widely recognized benefits of humic substances  in  the soil have  led  to an  interest  in  the 

agricultural application of humic substances to improve soil quality and crop growth. Commercial 

humic substances can be produced from a wide variety of carbon‐rich sources, including brown coals 

such as lignite, leonardite and subbituminous coals, composts, peats, raw organic wastes and coals 

(Rose et al. 2014). Most commercial humic acid products are extracted using an alkali solution from 

soft brown coal‐like deposits (Lyons and Genc 2016) and are often produced as a by‐product of coal 

mining. While  the  benefit  of humic  substances  in  soil  is well‐known,  commercial  humates have 

different  compositions  and properties  from naturally occurring humates  and may differ  in  their 

effects on soils and crops. 

5.2. Effects of Humic Acids on Soil P Reactions 

Although they are not considered direct sources of P, humic substances have been investigated 

as  a method  of  increasing  P  availability  from  the  soil  and  increasing  phosphorus  fertilizer  use 

efficiency. Humic substance may influence P availability to crops through effects on P mobility and 

solubility in the soil or through effects on crop growth and physiology. 

As outlined  in Section 1,  inorganic P  in  the  soil  solution undergoes a  series of  sorption and 

precipitation  reactions  that  reduce  its bioavailability  (McLaughlin  et al.  2011; Sample  et al. 1980; 

Hedley and McLaughlin 2005; de Ávila et al. 2024). There are several mechanisms by which humic 

substances may  inhibit  these reactions and  influence P availability  in soil. Humic substances may 

compete with phosphate ions for adsorption sites on the soil, thus increasing the concentration of 

inorganic phosphate ions in the soil solution (de Ávila et al. 2024; Antelo et al. 2007). The large humate 

molecules may also physically block part of the colloid surface and decrease access of the phosphate 

ion  to binding  sites  (Antelo  et al. 2007). As well as effects on adsorption, humic  substances may 

complex Ca and Mg in calcareous soils and Fe and Al in acid soils, encouraging the dissolution of 

sparingly soluble phosphate minerals in unfertilized soils and preventing the formation of sparing 

soluble phosphate compounds when P fertilizers are applied (Guppy et al. 2005; Freiberg et al. 2024; 

Alvarez  et  al.  2004). Humates may  also  complex  directly with  phosphate  ions,  increasing  their 

solubility. Increasing the solubility and mobility of phosphate in soil can increase its availability for 

crop uptake, but also increase the risk of P leaching and runoff (Chen et al. 2022). 

There  is  substantial  evidence  from  laboratory  studies  that  humic  substances  can  increase 

solution P concentration, mobility and hence P phytoavailability (Guppy et al. 2005; Jing et al. 2023; 

Du et al. 2013; Freiberg et al. 2024; Borggaard et al. 2005). Applying rates of 254.8 kg humic acid ha‐1 

with 26.6 kg P ha‐1 as MAP in soil columns on a calcareous soil increased the distance that P moved 
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and the concentration of plant‐available P in the soil (Du et al. 2013). Similarly, application of high 

rates of humic and fulvic acid (0, 1, 2, and 5 g kg‐1 of a blend of 11% humic acid and 4% fulvic acid) 

to six calcareous soils fertilized with 200 and 2000 mg P kg‐1 soil as MAP increased the amount of 

applied  P  recovered  up  to  150  days  after  application  (Delgado  et  al.  2002).  Sequential  chemical 

fractionation  and  31P  NMR  spectroscopy  showed  that  the  humates  appeared  to  inhibit  the 

precipitation  of  poorly  soluble Ca  phosphates  such  as  apatite  and maintain  phosphate  in more 

soluble forms. However, these effects occurred with rates of application greater than would normally 

be used for a fertilizer additive. 

Where  humic  substances  are  applied  at  lower  rates  or  as  a  fertilizer  coating,  effects  on  P 

availability  and  mobility  have  been  smaller  and  less  consistent.  In  studies  on  the  mobility  of 

phosphate  from MAP  fertilizer  granules,  coating  the  fertilizer with  an  organic  polymer did  not 

increase P mobility,  availability or diffusion  as measured  in Petrie dish diffusion  tests or  in  soil 

columns (Nunes et al. 2022). Similarly, the mobility of P in petri dish diffusion tests using soils from 

Brazil and the United States was not increased by the use of a humic acid‐coated MAP containing 220 

g P and 3 g humic acid kg‐1 as compared to uncoated MAP (do Nascimento et al. 2018). The addition 

of four commercially available fulvic acid‐based humic products with MAP, DAP, APP and a blend 

of 80% MAP and 20 % APP did not improve P movement and lability on a sandy acidic soil (Weeks 

and Hettiarachchi 2018). The lack of effect of humic substances in these studies is likely because the 

rate of application is insufficient to influence P reactions in the soil. 

Similarly,  lysimeter measurements  of  soluble P  near  a  simulated  fertilizer  band  on  either  a 

calcareous silty clay loam or a noncalcareous sandy loam soil collected from Montana fields were not 

affected by treatment of MAP fertilizer with one of two humic acid products through most of a 48‐

day  incubation  period  (Jones  et  al.  2007). However,  the  second  product  in  the Montana  study 

increased the soluble P concentration 3.8 cm below the band in the calcareous soil at 16 and 32 days, 

indicating that it may have increased P solubility. The rates of humic acid used in the Montana study 

were about 100 to 300‐fold lower in the area around the band than those used in the incubation study 

by Delgado et al. (2002) discussed previously. 

Reasons for differences in effects on P movement and lability may relate to the types of soil, the 

application rates or the characteristics of the humic substances used. Many of the positive results are 

associated with high rates of humic substance application. The lack of response at low rates of humic 

application may  indicate  that  humic  substances  are  only  effective  in  increasing P  solubility  and 

mobility at high rates of application, and that the amount of humic substances that would be required 

to reduce P fixation in the soil is not economically feasible (Nunes et al. 2022). 

5.3. Effects of Humic Substances on Plant‐P Interactions 

In  addition  to  effects  on  P  chemistry  in  the  soil,  humic  substances  are  said  to  improve  P 

availability by effects on plant growth or microbial activity. Phosphorus does not move far in the soil, 

and root interception is critical for P uptake by crops (Barber 1995). Therefore, increasing rooting and 

root  hair  production  can  increase  the  ability  of  a  plant  to  explore  the  soil  and  access P. Humic 

substances may act as hormonal  stimulants  to  improve growth of  the  root  system  (Canellas and 

Olivares 2014; Symanczik et al. 2023; Canellas  et al. 2002). Humic  substances may also  influence 

rhizosphere acidification, root exudation of organic anions and enzymes and microbial associations 

that influence the ability of the plant to access P from the soil (Canellas and Olivares 2014). It is also 

proposed that humic acids can affect H+‐ATPase activity on the plasma membrane of the root and 

stimulate  high‐affinity  transporters  to  improve  P  uptake. Humic  substances may  also  promote 

microbial activity in the soil, encouraging P solubilization and mineralization (Canellas and Olivares 

2014; Symanczik et al. 2023; Canellas et al. 2002). However, this mechanism does not appear to be 

likely, since a typical application of humic material will supply only a small fraction of that normally 

present in the soil or added from the residues of a typical corn crop (Mikkelsen 2005). 
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5.4. Impact of Humic Acids on Crop Yield 

While there are theoretical mechanisms by which humic substances may improve P supply from 

soils or fertilizers, and benefits have often been reported in sand, growth medium or hydroponics, 

positive  responses  in  natural  soils  or  field  studies  are  less  common.  Considering  humic  acid 

application alone, without specifically considering P effects, applications of relatively high rates of 

humic acid have been shown to increase crop yield in some instances. For example, application of 50 

or 100 mg per kg‐1 of humic acid with fertilizer increased shoot and root growth of maize plants in 

pot studies (Sharif et al. 2002). In field studies on maize comparing application of sulphur‐enhanced 

leonardite at 750 or liquid humic acid at 37.5 kg ha‐1 to unamended soils, there was a non‐significant 

tendency for the amendments to have higher yield than the unamended soils under water or P stress, 

but no significant difference in yield between the unamended and amended soils whether the plants 

were stressed or not (Kaya et al. 2020). A meta‐analysis of the effects of humic substances determined 

that increases in shoot and root growth of 15‐25% were often reported, but in about half of the studies, 

shoot dry weight was not increased by more than 5% (Rose et al. 2014). Response was affected by the 

rate of application and by the source of humic substance, with positive effects occurring more often 

with humic substances derived from compost or soil than from brown coal or peat. The compost or 

soil‐derived products may be more effective because they are less humified than the coal and peat 

forms and may decompose to release N or S. For example, greenhouse trials showed that high rates 

of leonardite increased the yield of canola by acting as a source of S (Akinremi et al. 2000). In the 

meta‐analysis, positive effects were more common with application rates between 25 and 750 kg ha‐

1. At higher rates of application, the observed benefits may be due to a soil conditioning effect or the 

release of nutrients during decomposition (Rose et al. 2014). 

In contrast to high rates of application where humic substances may act as soil conditioners or 

sources of N or S, many commercial humic products are recommended for application at very low 

rates to enhance P fertilizer availability. Several studies conducted in soils, either in pots or in the 

field, have shown that adding a low rate of humic acids to phosphate fertilizers can increase crop 

growth and/or P uptake as compared to phosphate fertilizers applied alone. In a field study over two 

years, single superphosphate was applied alone or with humic acid to wheat on a calcareous silt loam 

soil that was low in organic matter and P (Izhar Shafi et al. 2020). Phosphorus fertilizer rates were 0 

to 50 kg P ha‐1, and humic acid was applied at 0 or 5 kg ha‐1. Grain yield showed an average increase 

of about 200 kg ha‐1 when humic acid was used as compared to fertilizer alone. Similarly, a three‐year 

field study conducted on calcareous low organic matter soils at the University of Idaho to investigate 

the  application of  low  rates of humic  acid  to  liquid P bands  in potatoes  showed  a  tendency  for 

increased petiole P and higher yields of large no. 1 tubers compared to liquid P alone, but the results 

were not statistically significant (Hopkins and Stark 2003; Hopkins and Ellsworth 2005). 

However, many other studies have shown limited benefits from the application of low rates of 

humic acid with phosphate  fertilizer as a method of enhancing P  supply and crop  response. Pot 

studies on maize on calcareous soils showed no effects on growth or P nutrient uptake at rates up to 

2000 mg of humic substance kg‐1 (Leventoglu and Erdal 2014). In a series of greenhouse and field 

studies conducted in Germany and Switzerland, small effects of humic acids were seen in early stages 

in some soils in small pots under controlled conditions, but even these small effects vanished in larger 

pots when the growth time was extended, and no effects were seen under field conditions (Symanczik 

et al. 2023). 

Placing humic substances directly with a fertilizer in a tight band might be expected to improve 

its  efficacy,  because  the  effective  concentration  in  contact  with  the  fertilizer  would  be  higher. 

However,  results with  this method of application at recommended  rates have also been variable. 

Using  laboratory,  greenhouse  and  field  experiments,  humic  acid  effects  on  plant  growth were 

determined in tomato and lettuce (Hartz and Bottoms 2010). Five different commercial products were 

used  on  four  representative  low‐P  soils  in  California.  Application  rates  in  pot  trials  were  as 

recommended at 2.2 kg ha‐1 for the humic acid and 24 kg ha‐1 for the P, and the humic acid was applied 

with the P in a liquid band. Field trials with tomatoes were also conducted for two years at one site 
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where banded humic acid and fertilizer were used with humic acid rates of 1.1 and 3.4 kg ha‐1 and 34 

kg ha‐1 P, applied  individually,  together, or only N  applied without humic acid or P  (Hartz  and 

Bottoms 2010). Phosphorus fertilization strongly influenced plant growth, but humic acid generally 

had no effect on plant growth or P uptake in the greenhouse or field studies. 

The  inconsistency  of  humic  substances  in  increasing  P  availability  and  yield  response with 

natural soils or under field conditions at recommended rates of application likely relates to two major 

issues.  Firstly,  the  rate  of  application  of  humic  substances  required  to  show  an  effect may  be 

substantially higher than the recommended or economic rates of application. Secondly, soils already 

contain large amounts of humic substances in soil organic matter. The relatively low rate of humic 

substance application may be irrelevant in comparison to the amount already present in the soil and 

to the levels that have been shown to have an effect in research trials. 

5.5. Humic Substance Coating or Co‐Formulation with P Fertilizers 

Application of humic substances as a fertilizer coating, or co‐formulated with the fertilizer may 

increase the likelihood of achieving a response as the humic substance would be in intimate contact 

with  the  fertilizer and highly concentrated  in a small area  (Francioni et al. 2024; Erro et al. 2012). 

Commercial products  are  available  that  consist  of phosphate  fertilizer  combined  or  coated with 

humic substances (Gao et al. 2023; Jing et al. 2020; Jing et al. 2023). A number of these products have 

been assessed in pot and field trials, with varying degrees of success. Phosphate fertilizer formulated 

with  coal‐based  humic  acids  at  rates  from  0.2%  to  5%  produced  higher  grain  yield  and  P 

accumulation of winter wheat than phosphate fertilizer alone in pot studies on a high pH (8.45) and 

low organic matter content (about 1%) soil (Gao et al. 2023). The strongest effects were observed with 

humic  acid proportions of  about  1.0%.  In pot  studies on  a  calcareous  and  a non‐calcareous  soil, 

several different humic acids were coated onto MAP fertilizer at the recommended application rate 

of 1.7 kg ha‐1, and the fertilizer was applied in a simulated band (Jones et al. 2007). The products did 

not improve the use of phosphate fertilizer or increase the yield of spring wheat on either a calcareous 

or non‐calcareous soil (Jones et al. 2007). 

No significant difference in maize or soybean yield or P uptake occurred between humic acid 

coated MAP and uncoated MAP under rainfed no‐till field conditions on an Oxisol soil in Brazil (de 

Ávila et al. 2024). The general lack of response to coating or formulating fertilizer granules with low 

rates of humic application may indicate the rates are insufficient or that the native content of humic 

acids present in the soil renders additional applications unnecessary. 

Various organo‐mineral P‐complexes comprised of soluble phosphates complexed with humic 

substances have been proposed to decrease phosphate fixation in the soil and increase uptake by the 

crop (Francioni et al. 2024; Baigorri et al. 2013; Erro et al. 2012). These products may be derived from 

single superphosphate, triple superphosphate or monocalcium phosphate. 

Only a few field or pot studies have shown a benefit of organo‐mineral P‐complexed fertilizer 

when compared  to standard P  fertilizer products.  In a  field experiment  in Brazil, a humic‐metal‐

phosphate complexed fertilizer was compared to single superphosphate band‐applied at planting at 

cumulative rates from 0 to 196 kg P ha‐1 over 5 crop cycles on a sandy loam hapludox soil with pH 

5.8 (Bejarano Herrera et al. 2016). The crop cycle was maize, wheat, soybean, white oat, and soybean. 

Cumulative crop yield increased with increasing P rate, with yields and agronomic efficiency being 

higher with the complexed fertilizer than with the single superphosphate. In other studies, humic‐

complexed  orthophosphate  fertilizer  containing  7%  humic  extracts  derived  from  leonardite was 

compared to triple superphosphate additions at rates of P application up to 8 kg ha‐1 for wheat and 

20 kg ha‐1 for maize (Francioni et al. 2024). The studies were conducted under field conditions over 

two years for each crop. While there was some indication that P uptake and dry matter yield may 

have been slightly higher with  the humic‐complexed  fertilizer, both wheat and maize grain yield 

responses to P application were small and yields did not generally differ significantly with P rate or 

source. An exception was the maize in 2017, where all triple superphosphate applications produced 
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a yield that was numerically lower than the control. The limited grain response to P in this study 

makes it difficult to determine the actual treatment impacts on P nutrition. 

Most pot  and  field  studies  reported  in  the  literature  show  little  to no benefit of  complexed 

products in comparison to standard phosphate fertilizers. Pot studies were conducted to compare the 

effect of single superphosphate to Top Phos, a complexed phosphate fertilizer, for wheat production 

on  a  clayey Oxisol with  a  pH  of  4.92  (Molin  et  al.  2015). Dry matter  yield  of wheat  increased 

significantly with P application, but there was no difference between the single superphosphate and 

the Top Phos. As both fertilizers were equally effective, decisions should be made on the cost per kg 

of P. 

Similarly,  single  superphosphate  alone  and  complexed  with  humic  acid was  evaluated  in 

sugarcane production over two harvests in Brazil on an Ultisol that was a clayey soil with a pH of 

5.5‐5.6 and low P (Zavaschi et al. 2020). There was no benefit of the complexed humic acid product 

in promoting yield or P  content as  compared  to  the  single  superphosphate, with  the  complexed 

fertilizer numerically performing worse than the single superphosphate alone. 

5.6. Summary 

Humic substances play a crucial role in soil health and nutrient dynamics. Applications of high 

rates of humic substances can be beneficial as a soil conditioner or  long‐term source of nutrients, 

especially on  low organic matter soils. High rates of humic substances may reduce P  fixation and 

increase the availability of P fertilizer under laboratory conditions, but the benefits are less consistent 

with natural soils or in field studies. Responses appear more likely on low organic matter soils. The 

low  rates  of  humic  substances  often  recommended  for  commercial  applications  have  been 

inconsistent in improving crop yield or P availability. Novel fertilizer formulations, including humic 

substance coating or humic‐metal‐phosphate complexed fertilizers also have not consistently shown 

an advantage over  standard  soluble P  fertilizers. The  inconsistent  response  to commercial humic 

substances may  indicate  that  the  low  rates used are  insufficient  to be effective or  that  the native 

content of humic acids present in the soil makes additional applications unnecessary. 

6. Fertilizer Coatings 

Key Points 

 Coated soluble P fertilizers show some promise in improving phosphorus use efficiency. 

 Coatings can effectively slow the release of soluble P fertilizers into the soil solution. 

 Matching the release of the P to crop uptake can provide available P to the growing plant while 

limiting the conversion of soluble P to less available forms. 

 Coated products can reduce the risk of seeding damage from soluble P fertilizers by lowering 

the fertilizer concentration in contact with the germinating seeding. 

 Release pattern from the fertilizer must ensure that sufficient P is available to the crop early in 

the growing season to optimize crop growth. 

 The economic benefit will depend on the yield differential and cost of the product use relative 

to alternative 4R fertilizer management options. 

6.1. How Will Coated Fertilizer Products Affect P Efficiency? 

Availability of Pi in the soil solution is reduced by reaction with Ca and Mg in high pH soils and 

Fe and Al in low pH soils. Fertilizer coatings control the movement of P into the soil solution to reduce 

the  fixation of phosphate with  the  soil and  increase  the amount  that  is available  for crop uptake 

(Dahnke et al. 1963). Ideally, a fertilizer coating would release phosphorus into the soil solutions at a 

rate that closely matches the P uptake pattern of the growing crop. Matching the rate of release of the 

P to crop uptake could provide the required P to the plant over the growing season while reducing 

the exposure of P to fixation reactions or leaching (Nyborg et al. 1998). 
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Phosphorus fertilizer may also be coated with materials that act to increase fertilizer availability 

through chemical actions rather than by physically affecting the movement of soluble P into the soil 

solution. These products are discussed as chemical additives in Section 7, while the current Section 

will focus on products that influence P dynamics through a physical barrier. 

6.2. Reaction of Coated Phosphorus Fertilizers 

Controlled  release  granules  are  usually water‐soluble  fertilizers  coated with  a material  that 

limits the movement of water into the granule, slowing its dissolution and restricting the diffusion of 

the solution P into the soil (Shaviv and Mikkelsen 1993; Shaviv et al. 2003). A wide range of coating 

materials  have  been  evaluated  including  sulfur, waxes  and many  different  natural  or  synthetic 

polymers (Fertahi et al. 2020; Lawrencia et al. 2021; Majeed et al. 2015; Channab et al. 2024). There is 

a  concern  with  the  use  of  non‐biodegradable  coating materials  that  the  plastic  residues  could 

accumulate in the soil over time, so biodegradable coating materials would be more desirable. 

The release of P from the coated  fertilizer granule begins when water, usually  in the form of 

water vapor, enters the granule through the coating and begins to dissolve the fertilizer material. As 

the  fertilizer  dissolves within  the  coating,  a  steep  concentration  gradient  develops  between  the 

interior  of  the  granule  and  the  external  soil  solution  (Guelfi  et  al.  2022;  Shaviv  et  al.  2003). The 

concentration  gradient  drives  diffusion  of  soluble  P  across  the  coating  into  the  soil, where  it  is 

accessible by  the plant  root. With  a  coated  soluble  fertilizer,  there  is  an  initial  lag period before 

product  release  as  the water  enters  through  the  coating  and begins  to dissolve part of  the  solid 

fertilizer (Shaviv and Mikkelsen 1993; Shaviv et al. 2003), followed by a period of linear release as the 

P moves from the area of high concentration in the granule into the lower concentration into the lower 

concentration soil solution. Then, a period of “decaying release” occurs as the concentration inside 

the granule decreases (Shaviv et al. 2003). Removal of P from the soil solution by plant uptake drives 

more release of the P from the granule. The movement of P from the granule to the soil solution will 

continue at a decreasing  rate until  the granule becomes depleted and  the  concentration gradient 

between the granule and the soil solution disappears. 

The release pattern of  the P will be affected by  the  type of coating used,  the  thickness of  the 

coating and the size and shape of the granule. The thicker the coating or the larger the granule, the 

more slowly the nutrient release will proceed (Weeks Jr. and Hettiarachchi 2019; Zhang et al. 2000; 

Cruz et al. 2017). Moisture is required for the granule to dissolve and the nutrient to move into the 

soil solution, so release  is  limited by available moisture. The release will  increase with  increasing 

temperature (Zhang et al. 2000). Other environmental factors may also affect the release, including 

pH and microbial activity (Fertahi et al. 2020). 

6.3. Impacts of Coated Products on Crop Yield 

Much of the work on coatings has been done with N fertilizers as they are highly soluble. Work 

with P products is more limited; however, numerous studies have shown that controlling P release 

has  the potential  to  improve phosphorus use  efficiency and  crop growth.  In greenhouse  studies, 

controlled  release  of  monoammonium  phosphate  (MAP),  diammonium  phosphate  (DAP)  and 

ammonium polyphosphate (APP) was simulated by making small, periodic additions of fertilizer P 

over several weeks (Nyborg et al. 1998). The plants rapidly depleted the supplied P  from  the soil 

solution, reducing P retention and increasing P uptake as compared to a single application of P at the 

start of  the growing period, with  the effect being greater with DAP  than MAP. Growth chamber 

studies showed that polymer and shrink wrap coatings could be used to slow the release of P from 

MAP or DAP (Pauly et al. 2002). Coating MAP improved P uptake, fertilizer efficiency, and barley 

dry matter yield but did not affect the performance of DAP (Pauly et al. 2002). 

Benefits  of  the  slow  release  of  P  from  coated  products were  confirmed  in  other  controlled 

environment experiments. Greenhouse studies compared  two coated products  (lignin coated TSP 

and rosin coated DAP) to several standard uncoated P sources for effects on P release and growth of 

a ryegrass crop on soils high in calcium carbonate (García et al. 1997). Availability of the standard P 
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fertilizers on these soils was low because of strong fixation. Fertilizing with urea phosphate or with 

lignin‐coated TSP was more effective than the use of uncoated TSP, SSP and DAP, since those sources 

were rapidly fixed in these soils. Similarly, in pot studies with coffee plants, a polymer‐coated TSP 

increased dry matter accumulation and P accumulation as compared to uncoated TSP (Chagas et al. 

2016a). Pot studies also showed  that maize yield was  increased with  the use of a coated DAP as 

compared to uncoated DAP (Chen et al. 2021). 

Benefits of fertilizer coatings have also been observed under field conditions on various crops. 

Field and greenhouse studies  in western Canada  showed  that MAP with a  thin polymer coating 

frequently improved barley yield and P recovery more than did uncoated MAP (Malhi et al. 2002) In 

field studies at one location over three years with maize on a soil with pH 7.8, grain yield was about 

7‐10% higher with a polymer coated DAP than with an uncoated DAP (Chen et al. 2020). Similarly, 

in field studies at one location over two years in Pakistan, the use of a polymer coated DAP increased 

maize and wheat yield more than the application of an equivalent rate of uncoated DAP (Yaseen et 

al.  2017). A  field  study  in Pakistan  showed  higher wheat  yield with  polymer  coated DAP  than 

uncoated DAP (Noor et al. 2017). Coating DAP with a blend of elemental sulfur and sulfur‐oxidizing 

bacteria  increased maize yield as compared  to uncoated DAP under  field conditions  (Sattar et al. 

2021) 

While coated P products show an advantage over uncoated P products in many studies, they 

are not always superior. In greenhouse studies with onions on two soils, polymer‐coated TSP was 

compared to uncoated TSP at five rates of application (Chagas et al. 2016b). The polymer coating did 

not influence onion bulb yield and agronomic efficiency but did increase P accumulation on one of 

the two soils. Under field conditions in Manitoba, both coated and uncoated MAP were effective at 

increasing spring wheat yield, but there was no significant benefit of using coated MAP as compared 

to uncoated MAP (Grant 2002). 

Availability of P during  the early stages of crop growth  is  important  to ensure optimal yield 

(Grant  et  al.  2001).  Ideally,  the nutrient  release pattern of  the  fertilizer  should match  the uptake 

pattern of the crop, with the P being released into the solution as the plant requires it. If the release 

of P from the fertilizer during early growth is insufficient, crop growth may be reduced. For example, 

coating MAP with 1.8% polymer by mass improved P uptake in barley, but a 2.2% coating was less 

effective because the P release rate was too slow to meet crop demand (Pauly et al. 2002). An adequate 

supply of P early in the season is important for many crops; therefore, restricting release early in the 

season  too much may reduce yield by creating early‐season P deficiencies  (Allen and Mays 1971; 

Grant et al. 2001). 

6.4. Impacts of Coated Products on Seedling Toxicity 

Another benefit of coated phosphate fertilizers may be to increase the rate of P that can safely be 

applied near the seed row. While phosphate itself is not highly damaging to seeding germination, the 

ammonium that is present in MAP or DAP may cause seedling damage (Nyborg and Hennig 1969). 

Therefore, producers may restrict the rate of phosphate fertilizer that they place in the seed row to 

avoid the risk of seedling damage. Coatings may increase the safety of seed‐placed soluble P products 

by reducing the concentration in the soil solution adjacent to the emerging seedling. Growth chamber 

studies with  10  different  crops  showed  that  the  use  of  controlled  release  polymer  coated MAP 

increased the seedling safety so that rates of 35 kg P ha‐1 could be safely seed‐placed as compared to 

about half of that for the uncoated product (Schoenau et al. 2007). Under field conditions on two sites 

in Manitoba, seedling damage occasionally occurred with agronomic rates of seed‐placed MAP in 

canola, but not with a polymer coated MAP  (Grant 2011).  In greenhouse studies, using  two soils 

collected from Manitoba fields, a polymer coated MAP produced yields similar to those of uncoated 

MAP, but led to lower seedling toxicity when seed‐placed at higher rates of P (Katanda et al. 2016; 

Katanda et al. 2019). 
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6.5. Summary 

Soluble P fertilizers can be coated with a substance to allow the P to be released into the soil at a 

controlled rate. Matching the release of the P to crop uptake can provide available P to the growing 

plant while  limiting  the conversion of soluble P  to  less available  forms. Coated products can also 

reduce the risk of seeding damage from soluble P fertilizers by lowering the fertilizer concentration 

in contact with the germinating seed. Plants require an adequate amount of P early in growth, so the 

release pattern from the fertilizer must ensure that sufficient P is available to the crop early in the 

growing season to optimize crop yield. While coated products can increase crop yield, benefits will 

depend  on  the  yield differential  and  cost  of  the  product  use  relative  to  alternative  4R  fertilizer 

management options. 

7. Chemical Additives 

Key Points 

 Additives that modify pH in the fertilizer reaction zone can improve mobility and availability 

of P fertilizer. 

 Additives  designed  to  increase  pH  around  the  fertilizer  zone  include  carbonates,  oxides, 

hydroxides, oxysulfates and silicates and can improve P availability on acid soils. 

 Elemental sulphur, sulphate and ammonium can decrease pH around the fertilizer zone and can 

improve availability on high pH soils. 

 Ammonium ions may also enhance plant rooting, which can also benefit P uptake by crops. 

 Slow oxidation of elemental sulphur may reduce its effectiveness for enhancing P availability. 

 The performance of substances that sequester ions has been highly variable, and they seem to be 

unreliable as a method of increasing P availability. 

7.1. How Do Chemical Additives Increase Phosphorus Use Efficiency? 

The agronomic efficiency of water‐soluble P fertilizers can be reduced by conversion of water‐

soluble P to less available forms by reactions with Al and Fe in acid soils and Ca and Mg in high pH 

soils (Racz and Soper 1967; Sample et al. 1980; Syers et al. 2008; Hedley and McLaughlin 2005). Crop 

uptake of phosphate from a fertilizer reaction zone is related to the concentration of phosphorus in 

the soil solution and the amount of roots present to access the fertilizer (Claassen and Barber 1976). 

Therefore, uptake can be increased by increasing the solubility of the fertilizer, the size of the reaction 

zone or the proliferation of roots in the high P concentration around the fertilizer granule. Phosphate 

ions in the soil solution will diffuse away from the area of high concentration around the fertilizer 

granule and interact with the cations in the solutions. The distance that the phosphate ions move, and 

therefore the size of the reaction zone, will be affected by the type and concentration of ions that react 

with the diffusing phosphate ions. Adding products with the phosphate fertilizer to alter the solution 

chemistry and slow the soil reactions with the phosphate ion could therefore improve the availability 

of the fertilizer by increasing solution P concentration and/or increasing the volume of the reaction 

zone. In addition, some ions, such as ammonium, may increase root proliferation and/or lead to H+ 

exudation and acidification of  the rhizosphere,  further  increasing  the ability of the plant to access 

fertilizer P. 

7.2. Additives to influence soil pH 

Some of the early work on additives for P efficiency sought to influence the soil pH. Reactions 

of P with  the  soil are greatly affected by  soil pH. Therefore, P availability may be  influenced by 

altering the pH in the microregion of the soil surrounding the fertilizer granule. 

In acid soils, increasing pH can reduce the precipitation of P with Fe and Al. Increasing the pH 

in acid soils can also encourage rooting by reducing the toxicity of Al in the fertilizer reaction zone. 

Additives designed to increase pH around the fertilizer zone include carbonates, oxides, hydroxides, 

oxysulfates and silicates (Guelfi et al. 2022). Silicates may have the added benefit of competing with 
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phosphate  ions  for  adsorption  sites  on  the  soil  (Haynes  and Zhou  2018).  In pot  studies,  silicate 

application  increased maize root and shoot dry weight by  increasing soil pH  (Owino‐Gerroh and 

Gascho 2005). Similarly, the addition of silicate and phosphate increased wheat growth in pot studies 

(El‐Leboudi et al. 2019). The application of Si  increased P concentration  in the tissue and the total 

uptake of P by the plant. Applications of Ca silicate decreased P sorption on a low pH Oxisol (Smyth 

and  Sanchez  1980).  Increasing  silicate  availability  can  also  increase P  availability  in paddy  soils, 

possibly by increasing soil pH (Etesami and Schaller 2023) or competition with phosphate for binding 

sites to soil minerals (Schaller et al. 2022). However, Ca silicates may not increase P availability unless 

pH is increased to above 6.0 (Haynes and Zhou 2018). 

On high pH soils, acidification of the fertilizer reaction zone can reduce precipitation with Ca 

and Mg  and  enhance  P  availability.  Both MAP  and  DAP  have  an  acidifying  effect  due  to  the 

generation of H+ ions during the nitrification of ammonium to nitrite. 

2NH4+ + 3O2 → 2NO2‐ + 2H2O + 4H+. 

Additives or application of ammonium nitrate or ammonium sulphate with fertilizer P can be 

used to enhance this effect. 

As elemental S oxidizes, it will reduce the pH in its reaction zone. 

S0 + CO2 + 1/2 O2 + 2 H2O → [CH2O] + SO4 − + 2H+. 

Therefore, studies  in  the early 1950s  looked at  the effect of adding elemental S  to MAP and 

dicalcium phosphate‐nitrate to acidify the reaction zone and reduce P fixation (Mitchell et al. 1952). 

Growth chamber studies on a soil with a pH of 7.4 showed  that P availability  from both sources 

increased with the addition of elemental S, but in field studies on soils with pH of 8.4 and 7.2 showed 

no benefit. The authors suggested that the oxidation of the elemental S was too slow under the cool 

soil  conditions  in  the  field  to have  an  effect, or  that  there were not  enough S‐oxidizing bacteria 

available to convert the elemental S rapidly. In a subsequent study, adding S‐oxidizing bacteria to 

dicalcium phosphate‐nitrate increased S oxidation and P availability (Mitchell et al. 1952). The action 

of  S‐oxidizing  bacteria  on  elemental  S  in  the  fertilizer  doubled  the  availability  of  dicalcium 

phosphate‐nitrate, but even  this more effective mixture of S and dicalcium phosphate nitrate was 

only about 30 per cent as effective as MAP  in supplying phosphorus. The MAP was much more 

effective than any of the calcium‐based phosphate sources. 

For pH modifiers to be effective, they need to solubilize and dissociate rapidly to release H+ or 

OH‐ into the soil solution. For example, the oxidation of elemental S may be relatively slow in many 

soils. Ammonium sulphate or ammonium nitrate, as soluble nutrient sources, may be more effective 

than elemental S in reducing pH rapidly. Many subsequent studies evaluated the effect of various 

non‐phosphate  salts  on  the  solubility  and movement  of  fertilizer  P.  In  laboratory  studies,  the 

movement of phosphate  in  columns  containing a Ca2+‐saturated  resin‐sand mixture was  reduced 

when KH2PO4 was applied with KCl (Akinremi and Cho 1993). The mobility and solubility of the 

applied P were reduced by Ca2+ ions displaced from soil exchange sites by the K+ (Akinremi and Cho 

1991a, 1993, 1991b). The decrease in mobility of P with KCl addition on high pH soils fits with models 

in other studies (Barber and Ernani 1991; Ernani and Barber 1991). Laboratory column studies also 

showed  that  the addition of  (NH4)2SO4 and MgSO4 with MCP significantly  increased P diffusion, 

whereas  (NH2)2CO  (urea) had  little or no effect  (Kumaragamage et al. 2004). Application of urea 

initially  increased  soil  solution pH,  favoring precipitation  of  calcium phosphate.  In  contrast,  the 

sulphate ions competed with P for Ca, reducing the formation of Ca phosphates and increasing P 

solubility and mobility. 

Other column studies showed that adding ammonium sulphate or potassium sulphate salt to 

MAP or monopotassium phosphate reduced the pH of the system at a greater distance from the site 

of  application  than  for  the  phosphate  fertilizers  applied  alone  (Olatuyi  et  al.  2009a,  b). Adding 

ammonium sulphate or potassium sulphate to the MAP increased the concentration of water‐soluble 

P  in  the  reaction  zone by  43%  and  21%  respectively, while with monopotassium phosphate,  the 

corresponding  increases were 48% and 41%. The ammonium  sulphate was  likely better  than  the 
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potassium sulphate at enhancing P solubility because the NH4+ ion would replace less exchangeable 

Ca2+  than would  the K+,  leaving  less Ca2+  in  the  soil  solution  to  react with  the  phosphate  ions. 

Therefore,  combining  sulphate  sources with MAP  could  increase  the  solubility  and mobility  of 

phosphate in calcareous soils by pH reduction and competition between sulphate and phosphate ions 

for precipitation with soil Ca. 

Oxidation rate of elemental S depends on the activity of the oxidizing microorganisms, which is 

in turn affected by soil temperature, moisture and pH. The oxidation rate of the elemental S is also 

related to the surface area exposed to microbial action (Degryse et al. 2016). Therefore, micronized 

elemental S has been proposed as a more rapidly oxidised form. 

Phosphorus  formulations  are  available  that  include  co‐granulated  elemental  S,  ammonium 

sulphate, and MAP with a coating of elemental S. These formulations may also include micronutrient 

fertilizers.  In  theory,  as  the  elemental S  slowly oxidizes,  it will gradually  release  the P  from  the 

granule. Also, as the elemental S oxidizes, the fertilizer reaction zone can be acidified. For example, 

MicroEssentials  S15  (13‐33‐0‐15S)  is  a  fertilizer  product  that  is  a  homogeneous  blend  of MAP, 

ammonium sulphate and elemental sulphur  formulated  in a single granule. The product contains 

13% N, 33% plant‐available phosphate, 7.5% S as sulphate and 7.5% S as elemental S, which may 

improve  P  availability  on  calcareous  soils  (Mitchell  et  al.  1952;  Kumaragamage  et  al.  2004).  In 

addition, the presence of ammonium may enhance phosphate availability through the chemical and 

biological mechanisms discussed previously (Miller and Ohlrogge 1958; Miller et al. 1970). 

In  field studies on  five sites  in Manitoba,  the midseason uptake of phosphate by wheat and 

canola showed a tendency to be slightly higher with the MicroEssentials product than with MAP, but 

the differences were not statistically significant (Kroeker 2005). In growth chamber studies, P uptake 

was increased by either blending MAP and ammonium sulphate or by the use of the MicroEssentials 

product, with  the  effect  presumably  being  due  to  a  crop  response  to  the  added  sulphate‐S  in 

otherwise S‐deficient soil (Kroeker 2005). Over a two‐crop sequence in the growth chamber, total P 

uptake for both crops tended to be slightly higher for the MicroEssentials S15 than for MAP + AS, but 

the effects were not statistically significant. However, P uptake was higher with both MicroEssentials 

S15 and MAP +AS than with MAP alone, likely due in large part to an S response of the crops that 

led to higher yield and nutrient uptake. 

In studies conducted in Quebec, Ontario, Manitoba and Alberta, canola yield was similar with 

MicroEssentials S15 and MAP + AS, indicating that both products were good sources of phosphate 

for canola (Grant 2013). The MicroEssentials product led to less seedling damage when seed‐placed 

with canola  than did a blend of MAP and AS  that provided  the same  ratio of nutrients, without 

adjusting for the difference between the forms of S in these two treatments (Grant 2013; Grenkow 

2013; Grenkow et al. 2013). 

7.3. Additives that Sequester Ions 

Various products have been developed that aim to sequester or react with antagonistic metals 

in the soil around the fertilizer granule to reduce the retention of P and keep it in a plant‐available 

form  throughout  the  growing  season.  In  principle,  any  compound with many  negative  surface 

charges  could  potentially  tie  up  cations.  These  may  include  anionic  or  cationic,  or  chelating 

surfactants, organic acids such as humic or fulvic acids, or copolymers of itaconic and maleic acids 

(Guelfi et al. 2022). Additionally, other compounds can act by blocking adsorption sites of P onto the 

soil, reducing P adsorption and increasing the movement of P through the soil to the root (Guelfi et 

al. 2022). 

One example is Avail®, which is a maleic‐itaconic co‐polymer (C9H6XO8)n, where X = cation, that 

can  be  applied  to  either  granular  or  liquid  fertilizers  (Doydora  et  al.  2017;  Pierzynski  and 

Hettiarachchi 2018). The copolymer is designed to complex with ions in the soil solution to form Ca‐

, Fe‐, or Al‐maleic and itaconic acids. If effective, it could reduce P retention by complexing the cations 

Ca, Mg, Fe and Al that react with the P and render it less available. 
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There is substantial controversy concerning the potential benefits of AVAIL. In model systems, 

adding  PO4  and AVAIL  together  in  aqueous  suspensions  of  ferrihydrite  and  poorly  crystalline 

aluminium hydroxide (pxl‐Al(OH)3) at pH 6.2, led to increased dissolved PO4 concentrations, with 

greater effects shown for pxl‐Al(OH)3 (Doydora et al. 2017). AVAIL was more effective at reducing 

the sorption of phosphate by (pxl‐Al(OH)3) than by ferrihydrite, and its effectiveness increased with 

increasing phosphate concentration. The polymer carboxyl groups in AVAIL appear to compete for 

adsorption sites with H2PO4‐ for either ferrihydrite or pxl‐Al(OH)3, thus reducing phosphate sorption. 

In  contrast,  a  study  evaluated  several potential products,  including AVAIL,  for  effects on P 

availability on  four  soils  ranging  from pH  5.3  to  7.7  (Degryse  et  al.  2013). Adding Avail with P 

fertilizer led to a small increase in P solubility in soils when applied at a rate of 80 mg/L of Avail or 

1600 mg/kg  of  soil,  as  compared  to  a  recommended  application  rate  of  0.2 mg/kg  of  soil.  The 

movement of P away from the granule, assessed 50 days after application, was not affected by AVAIL 

application. There was no significant effect of AVAIL on P distribution and lability at >7.5 mm from 

the  granule.  The  ligands  had  little  effect  on  P  solubility  even  at  very  high  rates  of  application. 

Similarly, AVAIL was assessed with DAP, MAP and APP on  three  low pH soils  (Pierzynski and 

Hettiarachchi 2018). Phosphorus mobility was low on all three soils, and the AVAIL did not increase 

mobility. 

These  model  systems  used  far  higher  concentrations  of  AVAIL  than  the  recommended 

agronomic application rates. The recommended rate of Avail is 0.25% of MAP or DAP by weight, so 

even at an extremely high rate of application of 100 kg P ha–1 applied, the CEC of Avail is only 0.12 

cmol ha–1 (Chien and Rehm 2016; Chien et al. 2014). However, soils contain very high concentrations 

of  reacting  cations.  Stability  constant  calculations  indicate  that  the  affinity  of  these  cations  for 

phosphate is too high for AVAIL to have a meaningful impact on P complexation (Chien and Rehm 

2016; Degryse et al. 2013). Laboratory assessments of the effects of the products on the availability 

and mobility  of  P  fertilizers  support  the  theoretical  calculations  (Degryse  et  al.  2013). Although 

AVAIL will form complexes with the targeted cations, these ions are present in large concentrations 

in the soils, and the high concentrations are likely to overwhelm the relatively small amount of ligand 

applied. While commercial application rates may be  too  low  to have an effect  in  the bulk soils, a 

fertilizer‐AVAIL co‐application that concentrates both materials in a smaller soil volume, such as a 

concentrated fertilizer granule or band, might be able to enhance phosphate availability. 

The theoretical concerns about AVAIL effectiveness are supported by the relatively inconsistent 

benefits measured  in field studies. Very few studies show a significant advantage from the use of 

AVAIL with soluble P fertilizers, regardless of fertilizer placement. Independent field studies show 

no benefit from treatment with Avail when applied as a starter band application with ammonium 

polyphosphate (McGrath and Binford 2012). Similarly, studies in Kansas on corn and winter wheat 

showed no benefits of using AVAIL, even on sites where a P response occurred (Ward 2010). In two 

3‐yr trials in Alberta on wheat that included an unfertilized control and three rates of seed‐placed 

MAP (6, 12 and 18 kg P ha‐1) with or without AVAIL, there was no significant effect of treating MAP 

with Avail® on wheat yield or P uptake  (Karamanos and Puurveen 2011). Studies on  two soils  in 

Manitoba showed no advantage of using AVAIL as compared to untreated MAP or polymer‐coated 

MAP (Grant 2011). In studies with maize and wheat, adding AVAIL to APP or MAP did not increase 

yield as compared to application of P alone on P‐responsive sites (Ward 2010). Field studies on maize 

in North Carolina evaluated AVAIL applied with surface‐applied starter DAP at various fertilizer 

rates  (Cahill  et  al. 2013). Maize growth parameters  and  final grain yield were  similar with DAP 

applied alone or with AVAIL, but grain response to P fertilizer was limited in this trial, even on a low 

soil test P site. Similarly, in maize trials in Missouri, AVAIL treatment with MAP, DAP, or TSP did 

not affect crop yield, but there was no grain response to MAP or DAP applied alone and only a small 

response to TSP (Dudenhoeffer et al. 2013; Dudenhoeffer et al. 2012). Field studies with AVAIL on 

sugar beet in Wyoming and Montana showed mixed results, with an increase  in root yield in one 

year when applied as a band with APP, but no effect in the other site or when applied with broadcast 
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MAP.  (Kusi  et  al.  2021). A meta‐analysis  of published  and unpublished  studies  also  showed no 

benefit of the product (Chien et al. 2014). 

However, the benefits of AVAIL have been reported in some instances. Field studies conducted 

with irrigated maize in Kansas showed increased yield and P ear leaf concentration when Avail was 

included in a starter fertilizer as compared to the starter treatment alone (Gordon and Tindall 2006). 

A meta‐analysis of 503 field evaluations of AVAIL showed a modest yield increase of 2.1% with the 

use of AVAIL (Hopkins et al. 2018). When only low P sites where a response to P fertilization would 

be expected were included, the yield increase with AVAIL over P alone was 2.8%. When AVAIL was 

added with  low  rates of P,  it  increased yield by 4.6% while when added with high  rates of P,  it 

decreased yield by 0.4%. This analysis showed that AVAIL was effective when used under conditions 

where increasing P efficiency would be likely to increase plant yield. As the author suggests, benefits 

from increasing the availability of P would not be expected in situations where a yield response to 

available P would not occur. However, the highly erratic responses and the relatively small benefits 

reported even under conditions where a yield response would be expected to raise questions about 

the reliability of the product. 

7.4. Summary 

Various additives have been evaluated to reduce soil reactions of P that decrease P availability. 

Additives that modify pH in the fertilizer reaction zone can improve the mobility and availability of 

P fertilizer. Additives designed to increase pH around the fertilizer zone include carbonates, oxides, 

hydroxides,  oxysulfates  and  silicates  and  can  improve  P  availability  on  acid  soils.  Sulphur  and 

ammonium can decrease pH around the fertilizer zone and can improve availability on high pH soils. 

Ammonium ions may also enhance plant rooting, which can also benefit P uptake by crops. Slow 

oxidation  of  elemental  sulphur  may  reduce  its  effectiveness  for  enhancing  P  availability.  The 

performance  of  substances  that  sequester  ions  has  been  highly  variable,  and  they  seem  to  be 

unreliable as a method of increasing P availability. 

8. Modified Structure Phosphorus Products 

Key Points 

 The high surface area of nanoparticles may increase the mobility and availability of sparingly 

soluble phosphate sources, but effectiveness does not appear to exceed that of standard soluble 

fertilizer sources. 

 Recovery of P from waste streams in a form that can be used agronomically can have the dual 

benefit of removing P from the waste stream and recycling it as a beneficial nutrient. 

 Recycled materials such as layered double hydroxides and graphene oxides may act as slow‐ 

release P sources, and perform similarly to soluble P fertilizers, especially on acid soils. 

 The low loading of P onto layered double hydroxides and graphene oxides increases the cost of 

transport and application. 

 Struvite has low solubility relative to traditional P fertilizers, which will reduce its availability 

early in the season and recovery over the short term, but reduce the risk of seedling damage or 

nutrient leaching. 

 Blending struvite or other slowly available sources with a soluble P source may enhance early‐

season availability and provide slowly available P over time. 

 A large proportion of the P in struvite may still be unavailable several years after application. 

 Well‐designed  field  trials are needed to more adequately assess the effectiveness of modified 

structure products under a range of realistic field conditions. 

8.1. What are Modified Structure Phosphorus Products 

Conventional  phosphorus  fertilizers  are  normally  soluble  products  that  release  inorganic 

phosphates into the soil solution as they dissolve. Modified structure phosphorus compounds have 
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the P ions formulated with materials that allow the slow release of the P into the soil solution (Weeks 

Jr.  and Hettiarachchi  2019). The  Pi  is  released  through  reactions  such  as dissolution  and  ligand 

displacement. The rate of release will be driven by environmental conditions and  the  interactions 

between the fertilizer material and the plant. These substances may enhance P availability through 

slow release of the P into the soil solution or by increasing the mobility of the P. 

Wastewater  streams,  including municipal wastewater  and  liquid  livestock manure,  contain 

large  amounts  of  P.  Phosphorus  can  be  an  environmental  issue  if  released  into water  systems. 

Therefore, P  is  removed  from  these waste  streams by  various methods.  Several  of  the modified 

structure phosphorus products are used to capture P from waste streams and are being investigated 

as  fertilizer  sources.  Capturing  the  P  from  the  waste  streams  in  a  form  that  could  be  of  use 

agronomically would have the double benefit of removing P from the waste stream and recycling it 

as a beneficial nutrient. 

8.2. Nanoparticles 

Normally, P fertilizers are  large granules  that dissolve  into the soil solution. The soluble P  is 

subject to leaching and runoff and can also react in the soil solution to form less soluble and plant 

available products. Nanotechnology is being examined to reduce the losses of mobile nutrients and 

improve fertilizer use efficiency (Usman et al. 2020). 

Nanoparticles are defined as substances where at least one of their dimensions measures less 

than  100 nm  (Powers  et  al.  2006; Strambeanu  et  al.  2015). Nanoparticles of  a  substance differ  in 

behaviour  from  larger particles because of  their greater surface area, which means  that  there  is a 

larger proportion of atoms at the surface in nanomaterials and that the atoms situated at the surface 

in nanomaterials have fewer direct neighbors (Joudeh and Linke 2022). The higher surface area will 

increase the reactivity of the substances. However, the strong attractive interactions between particles 

can lead to aggregation of nanomaterials, reducing their surface area and negating their nanoscale 

properties. The behavior of nanoparticles will be affected by their size, shape, dispersity, localization, 

agglomeration/aggregation, surface morphology, surface area, and porosity. 

Some  nanofertilizers  consist  of  the  nutrient  itself delivered  as  a  nanoscale  sized  particle  or 

emulsion  (Mastronardi  et  al.  2015;  Liu  and Lal  2014). Alternatively,  the  nutrient  can  be  held  in 

nanoscale  pores  or  spaces  within  nanomaterials  such  as  nanotubes  or  nanoporous  materials, 

including  clay  lattices  (Mastronardi  et  al.  2015;  DeRosa  et  al.  2010).  Fertilizers  can  also  be 

encapsulated by a thin protective nanoscale film or coating. 

There  are  several mechanisms by which nanoparticles may  impact P dynamics,  alone or  in 

combination. The high surface area of nanoparticles may increase the solubility of sparing soluble 

fertilizer P sources, increasing their plant‐availability and effectiveness as a P source. The nutrients 

may be protected from decomposition and leaching as they are slowly released into the soil solution. 

The slow release may be matched to crop uptake, minimizing the potential for P immobilization in 

the  soil.  In  theory, a “smart” nanofertilizer  could  release P  in  response  to plant  root  signals  that 

indicate deficiency, such as ethylene production by roots or acidification of the rhizosphere (DeRosa 

et al. 2010). 

The presence of P as a colloidal nanoparticle rather than in solution may influence its mobility 

in  the  soil  solution  (Montalvo  et  al.  2015). Phosphorus uptake by plants  is primarily  a diffusion 

limited process. Root uptake of P creates a region of low P concentration near the root surface, and P 

ions move through the soil solution along the concentration gradient to replenish the depleted P. The 

low  solubility  of  P  in  the  soil  solution  means  that  the  diffusion  process  is  slow.  However, 

nanoparticles suspended in solution can move by mass flow, carry P into the depleted area around 

the root and then release P into the soil solution, reducing the distance P is required to diffuse and 

increasing the P concentrations at transport sites of the root (Eltohamy et al. 2023). 

Hydroxyapatite  (HA) nanoparticles have been  investigated as a carrier  for  fertilizer, as have 

urea‐modified HA  nanoparticles. Hydroxyapatite  is  normally  ineffective  as  a  fertilizer material 

because of its limited solubility. Nanoparticles should be more soluble and more mobile than larger 
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particles of the same material. Nano‐hydroxyapatite powder with a nominal particle size of 20 nm 

was compared to reagent‐grade bulk‐size hydroxyapatite powder and triple superphosphate for its 

mobility and effect on plant growth under growth chamber conditions (Montalvo et al. 2015). The 

nanofertilizer moved more  readily  in  leaching  studies  on  one  of  two  acid  soils  than  did  TSP, 

presumably because it moved as particles rather than in solution. In a glasshouse study on four soils, 

the nano‐hydroxyapatite was taken up more by wheat plants and increased crop growth more than 

the bulk hydroxyapatite, likely because of its faster dissolution, but was less effective than TSP on 

these P‐fixing soils. 

Similarly, spherical synthetic apatite nanoparticles increased the growth rate and seed yield of 

soybean  numerically  but  not  significantly  more  than  regular  TSP  fertilizer  under  greenhouse 

conditions (Liu and Lal 2014). In this study, fertilizer solutions were applied weekly at a rate of 1 litre 

of solution per pot  to plastic pots  filled with an  inert growing medium of peat moss and perlite. 

Repeated applications of  the nanoparticle  in solution may have  improved  the effectiveness of  the 

fertilizer. Greenhouse studies with lettuce on two calcareous soils showed that growth and P uptake 

were equivalent with synthetic nanohydroxyapatite and a soluble phosphate source  (Taskin et al. 

2018). On an acid soil, TSP and  three hydroxyapatite nanofertilizers with varying surface charges 

increased  sunflower  biomass  yield  and  P  concentration  under  greenhouse  conditions, with  the 

negatively charged nanohydroxyapatite being more effective than the TSP (Xiong 2019). The benefit 

of the negatively charged nanofertilizer appeared to be due to increased mobility from competition 

with the phosphate ion for negatively charged surface sites in this soil. In contrast, on the high pH 

soil, TSP increased dry matter yield, but neither of the nanohydroxyapatites nor rock phosphate had 

any effect. Similarly,  in greenhouse  trials using potting mix  inoculated with 5%  field soil, needle‐

shaped nano‐hydroxyapatite applied at  the  time of seeding was not an effective  source of P and 

produced lower growth of soybean as compared to soluble forms of P (McKnight et al. 2020). 

Nanocomposite  fertilizer  made  by  dispersing  hydroxyapatite  into  urea  reduced  P 

immobilization  over  a  42‐day  incubation,  providing  greater  P  availability  than  standard 

hydroxyapatite (Giroto et al. 2017). The effect was likely more to do with the reaction between the 

urea and the P fertilizer, which produced higher pH around the reaction zone and NH+ than due to 

nanoparticle effects, per se. The urea‐loaded hydroxyapatite would also serve as a source of slow‐

release nitrogen (Guo et al. 2018; Kottegoda et al. 2017). 

On  an  alkaline  soil,  combining  nanozeolite  saturated  with  ammonium  sulphate  with 

nanohydroxyapatite sulphate increased the yield of camomile by slow release of P combined with 

the  acidifying  effects  of  the  nitrogen  fertilizer  (Mikhak  et  al.  2017).  Nanoparticle  forms  of 

orthophosphate loaded zeolite were also more effective than bulk sized zeolites or superphosphate 

in promoting peanut yield and P uptake (Hegab et al. 2018). 

One challenge with the use of nanofertilizers is that the nanoparticles can aggregate in solution 

so that they lose the benefits of their small size if not formulated or applied correctly (Liu and Lal 

2014). Preserving the “nano” characteristics of the fertilizer would be important to ensure its proper 

function. 

8.3. Layered Double Hydroxides 

Layered double hydroxides (LDH) are a type of two dimensional nanofertilizer. Layered double 

hydroxides  or  anionic  clays  can  be  natural  or  synthetic.  They  are  inorganic  anion  exchangers, 

typically consisting of hydroxides of layered divalent and trivalent cations that hold anionic species 

in  the  interlayer  regions  and  at  the  outer  surface  of  the  crystallites  by  competitive  electrostatic 

interactions  (Everaert  et  al.  2017).  They  are  highly  selective  for  HPO42−  anions  and  have  been 

suggested  as  a mechanism  to  remove  P  from waste  streams.  The  P‐exchanged  layered  double 

hydroxide that is recovered from the waste stream has potential as a slow release P fertilizer (Everaert 

et al. 2017; Everaert et al. 2016). Phosphate  ions  can be  loaded between  the  layers and gradually 

released into the soil solution to be used by the plant (Guelfi et al. 2022; Kopittke et al. 2019). In a 

neutral or alkaline soil, the HPO42− from the interlayer or surface could release slowly into the soil 
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solution by  ion‐exchange, while  in an acid environment,  there may also be phosphate  release by 

dissolution of LDH (Everaert et al. 2016). In the rhizosphere, additional P release may occur due to 

plant activities  that  lead  to acidification,  excretion of organic anions, and an  increased  carbonate 

concentration. 

Phosphorus uptake by barley from an LDH powder treatment on an acidic soil was up to 4.5 

times greater than from a soluble KH2PO4 treatment, likely because of a beneficial liming effect from 

the LDH (Everaert et al. 2016). In a calcareous soil, P uptake by barley from the LDH was less than 

from KH2PO4 at the higher P rates and similar at low P rates (Everaert et al. 2016). In subsequent pot 

studies using two soils, granulated  forms of the LDH produced  lower wheat yields and P uptake 

than did granular MAP due to slow dissolution or P release from the slow release granules (Everaert 

et  al.  2017). As  in Everaert’s previous  experiments with LDH  and KH2PO4, when  the LDH was 

applied as a powder,  its agronomic performance was much better  than  in  the granular form. The 

powdered LDH performed slightly better than MAP on an acid soil, possibly because it had a liming 

effect, but slightly worse than MAP on an alkaline soil. All the powdered fertilizers produced less P 

availability  than granular MAP, with  the  advantage of  the granular P  likely  related  to  the more 

precise placement of the fertilizer granule close to the seed. 

Powdered LDH material was compared  to TSP  for maize seedings grown  for 25 days  in pot 

studies on two acid tropical soils (Benício et al. 2017). The LDH released more gradually over time 

than did the TSP. Maize growth and P uptake were higher with the LDH material than with the TSP 

on both acid soils, possibly because the LDH material led to significant increases in pH. Similarly, the 

growth of mung bean on a calcareous soil was higher after 40 days when treated with a concrete‐

derived LDH P fertilizer than with TSP (Liu et al. 2024). 

Various LDHs were  evaluated  for  their  effectiveness  as  a P  source  in hydroponics  and  soil 

(Singha Roy et al. 2023). The LDHs could supply P to the plant, but in hydroponics, the uptake was 

higher  for plants  treated with KH2PO4 and another slow‐release P  fertilizer, possibly due  to slow 

release from the LDH. In soil, the LDH produced P uptake and tomato growth comparable to the 

soluble P fertilizer and slightly better than the slow‐release P fertilizer. 

There  are  two problems with LDH materials as phosphate  fertilizers. Firstly,  the amount of 

phosphate that they can contain is relatively low, in the order of 4% by weight. This means that a 

larger amount of material would have  to be  transported and applied  to meet P  requirements. A 

second  issue  is  that only about half of the P present  in  the LDH will become plant available. The 

phosphate ions at the crystal edges and at the outside portions of the LDH will desorb readily, but 

the HCO3 anions that replace PO4 on the surface and the outside of the basal plane of the LDH create 

a barrier for the desorption of the remaining phosphate in the interior portions, restricting its release 

(Everaert et al. 2018b). Therefore, a  large proportion of  the  loaded P will be  trapped  in  the  inner 

portions of the scaffold and will remain unavailable for desorption and plant uptake (Everaert et al. 

2018b). Novel  products may  be  developed  that  have  higher  loading  and  greater  desorption,  to 

overcome this problem to a degree (Kong et al. 2019). 

8.4. Graphene and Graphene Oxide 

Graphene and its oxidized form, graphene oxide, have been evaluated as carriers for phosphate 

fertilizer. Graphene oxide is a two‐dimensional arrangement of carbon atoms that has a high surface 

area  and  a  unique  two‐dimensional  structure  that  can  provide  an  effective  platform  to  retain 

phosphate  and  release  it  over  time  (Andelkovic  et  al.  2018).  A  graphene  oxide‐iron  composite 

formulated from natural graphite rock treated with FeCl3 and then loaded with soluble phosphate, 

released the phosphate much more slowly than monoammonium phosphate (Andelkovic et al. 2018). 

A coating material formulated with graphene oxide, starch and kraft lignin slowed the release of TSP 

and led to higher dry matter production of maize after five weeks than did TSP alone (Channab et al. 

2024). Graphene oxide could be used in blended formulations with soluble P sources to provide both 

immediate and  long‐term P  release  (Kabiri et al. 2020).  It also has potential as a  carrier  for  trace 

elements (Kabiri et al. 2017). 
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As with LDHs, the graphene oxide iron P composites have P loadings in the range of 5% or less 

(Andelkovic et al. 2018; Everaert et al. 2022; Everaert et al. 2016). The low analysis would increase the 

volume  of  material  that  would  be  needed  to  satisfy  crop  nutrient  requirements,  increasing 

transportation and application costs. 

8.5. Metal‐Organic Frameworks 

Metal‐organic  frameworks  (MOFs) are porous materials  that release nutrients  into  the soil as 

they break down. They usually consist of organic  ligands coordinated with metal ions. Two MOF 

based on citric acid showed a gradual release of P in soil with about 40% released over 100 days of 

incubation (Wu et al. 2019b), while two MOF based on oxalic acid showed a gradual release of 70% 

by  the  end  of  the  incubation  period  (Wu  et  al.  2022).  The  oxalic  acid‐based MOFs  provided 

comparable rice yield to conventional fertilizers, including superphosphate and urea. An oxalic acid‐

based MOF  degraded  by  about  50%  in  the  field  during  the  growth  period  of wheat, with  the 

degradation  rate  increasing  with  increasing  soil  temperature  (Wu  et  al.  2019a).  The  soil  P 

concentration peaked about  two months after application,  then declined, but available P was still 

elevated as compared to the untreated control even after 6 months. Increasing nutrient release with 

soil  temperature may allow nutrient  release  to be matched  to crop growth and nutrient demand. 

Information on MOFs in the literature is limited, and further research is needed to determine their 

potential. 

8.6. Struvite 

Two major areas of P loss and hence potential areas for recovery of P from the waste stream are 

concentrated  livestock operations and municipal wastewater. Struvite  (MgNH4PO4∙6H2O)  is a  low 

solubility P‐containing mineral that can be manufactured from municipal wastewater and livestock 

manure, removing P from the waste stream (Ackerman et al. 2013; Degryse et al. 2017; Katanda et al. 

2016; Talboys et al. 2016). The struvite can then be used to recycle wastewater and manure P as a 

concentrated fertilizer, making it more economical to transport from areas of P surplus to areas of P 

deficit (Johnston and Richards 2003). 

The relative performance of struvite as a fertilizer source can vary substantially, depending on 

the specific conditions of  the study.  In a meta‐analysis, struvite produced somewhat  lower yields 

than  ammonium phosphate but often performed  similarly  to  superphosphate  (Hertzberger  et  al. 

2020) while in another meta‐analysis, struvite was as effective as soluble P fertilizers (Huygens and 

Saveyn 2018). Struvite would presumably be  similar  in  effectiveness  to  soluble  fertilizers once  it 

dissolves,  but  struvite  solubility  is  low  compared  to  soluble P  fertilizers  such  as MAP  or DAP. 

Struvite may  take  days  to  years  to  completely  dissolve,  depending  on  fertilizer,  soil  and  plant 

properties (Degryse et al. 2017). Large granule size, high excess base content, and high pH would 

slow  the dissolution of  struvites, while dissolution can be accelerated  in  soils with high sorption 

capacity (Everaert et al. 2017; Degryse et al. 2017; Hertzberger et al. 2020). 

Many studies have used a powdered form of struvite, but commercial fertilizer  forms would 

likely be in granular form to facilitate blending and handling. As an example, the mean particle size 

of the commercial struvite product Crystal Green is 2.4 mm. Growth chamber studies conducted in 

Australia compared granular MAP, a commercial granular struvite and several other synthesized 

struvites  (Degryse  et al. 2017). When  the products were ground and mixed  through  the  soil,  the 

solubility of MAP and struvite was similar. However, diffusion was lower with the struvites than 

with  the MAP when  the products were applied as granules. Movement of  the products  from  the 

application site followed the pattern of dissolution, with the greatest movement of MAP occurring in 

the first few days after application and then decreasing as the phosphate reacted with the soil, while 

the P  from  the struvite diffused slowly and gradually  from  the site of application as  the product 

dissolved. Similarly, in studies conducted in Brazil using soils from Brazil and the United States, the 

mobility  of  P  from  three  small  struvite  granules was  less  than  that  from  a MAP  granule  (do 

Nascimento et al. 2018). 
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The differences in solubility and mobility related to particle size can be reflected in differences 

in crop response. In pot studies with chickpea and wheat, powdered struvite was as or more effective 

than KH2PO4 in increasing dry matter yield and P concentration in the tissue over a 56‐day growing 

period (Sharma et al. 2024). Other pot studies with wheat showed that when struvite was ground and 

mixed through the soil, biomass yield and P uptake after six weeks were similar to that of the MAP 

(Degryse et al. 2017). However, wheat biomass yield and P uptake were much  lower for granular 

struvite than for MAP, especially on the high pH soil, where granular struvite provided no increase 

in yield and P uptake over the untreated control (Degryse et al. 2017). Biomass yield of maize was 

also much lower with struvite granules banded below the seed than with DAP in a 40‐day pot study 

with maize, although yield with struvite was higher than in the unfertilized control on one of two 

soils (Ferron et al. 2024). 

Placement of struvite may also  influence  its availability  (Degryse et al. 2017).  In pot studies, 

powdered struvite derived from hog manure was banded below the seed row in canola (Ackerman 

et al. 2013). Although P uptake was similar for struvite and commercial fertilizers at P2O5 rates of 38 

mg/pot or lower, biomass yield per unit of P taken up was smaller for the struvite, possibly because 

limited  struvite  solubility  restricted  early‐season  crop  growth. The  banding method used  in  the 

Ackerman study may have reduced the dissolution of the struvite (Degryse et al. 2017). Reducing the 

contact between the struvite and the soil through banding would slow the dissolution of the fertilizer. 

The  limited P  availability  of  struvite  early  in  the  growing  season  could  be  counteracted by 

applying a blend of struvite and a soluble P source. In pot studies with wheat, early‐season uptake 

of struvite was  lower  than uptake  from DAP, but blending mixtures of struvite and DAP, where 

struvite was no more than 20% of the blend, provided comparable levels of P uptake to the full DAP 

treatment (Talboys et al. 2016). In field studies on four acid soils on potatoes evaluating blends of 

struvite with TSP, substitution of up to 75% of TSP with struvite did not negatively affect potato yield 

at three locations, while at one site, yields were lower with the struvite blend (Benjannet et al. 2020). 

Struvite  tended  to be  less  effective on  the highly P deficient  soil  and under  cool  soil  conditions. 

Therefore, blending some struvite with more soluble  traditional P sources may be able  to supply 

enough P for early crop growth, depending on the level of P deficiency in the soil. Dual formulations 

of struvite with soluble P sources would also be a possibility (Kabiri et al. 2020). 

Because struvite dissolves under acid conditions,  root secretions  that acidify  the  rhizosphere 

could increase struvite solubility. Plant roots could also affect the dissolution rate through uptake of 

P and by otherwise modifying the chemistry of the rhizosphere. In laboratory assays, the dissolution 

rate of a commercial granular struvite and the equilibrium concentration of P in the solution increased 

when organic acid anions were added to the buffered solutions (Talboys et al. 2016). In pot studies, 

using field soil, buckwheat, which exudes high amounts of organic acids, absorbed as much P from 

struvite as from DAP, while wheat, which exudes fewer acids, absorbed only about 30% as much P 

from struvite as from DAP (Talboys et al. 2016). Struvites were also more effective as a fertilizer in 

pot studies with soybean than with wheat (Rech et al. 2018). 

There  is  a  risk  that pot  studies  could  overestimate  the  effectiveness  of  struvite  because  the 

restricted root volume and high root concentrations could enhance struvite dissolution rates due to 

the  high  concentration  of  root  exudates. On  the  other  hand,  this  could mimic  soil–struvite  root 

interactions  in  the  zone  of  fertilizer  banding. Well‐designed  field  studies  are  needed  to  more 

accurately assess the effectiveness of struvite for practical broad‐acre agriculture. 

While the low solubility of struvites may lead to problems in early‐season availability, it may 

have other agronomic advantages. As struvite dissolves slowly, it will release P gradually, acting as 

a slow‐release fertilizer. In pot studies, granular struvite, MAP or coated MAP were applied either in 

the seed row or in a sideband at two rates to an initial crop and evaluated over a three crop sequence 

of wheat‐canola‐wheat or canola‐wheat‐canola, (Katanda et al. 2016; Katanda et al. 2019). Dry matter 

yield in the first wheat and canola crops was similar for all three fertilizer sources, but struvite had 

more residual benefit than MAP. Dry matter yield was higher with struvite than with MAP in the 

second crop after application and higher with struvite than with either MAP or controlled release 
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MAP in the third crop. In field studies on an alkaline organically managed soil, a granular commercial 

struvite product was banded into an existing alfalfa‐grass blend in year one, and yield was monitored 

for  the next  three years  (Thiessen Martens et al. 2022). Alfalfa‐grass yield  increased with struvite 

application, and the response increased over the three years of the study. Total P recovery efficiency 

over  the  3‐year  duration  of  the  experiment was  26–27%, with  no  significant  difference  among 

application rates. Even after three years, over 70% of the struvite P was not recovered. More long‐

term field‐scale studies in a variety of crops are needed to assess the residual benefits and P recovery 

from struvite. 

Because of its low solubility, struvite is safer for seed placement than soluble forms of P such as 

MAP.  In greenhouse studies, seed‐placed struvite  led  to more  rapid emergence and higher stand 

density of canola as compared to seed‐placed MAP (Katanda et al. 2019). Struvite can also reduce 

leaching  losses  from  fall  applied phosphate  fertilizers  (Leon  et  al.  2024)  and may  reduce  runoff 

compared to soluble forms (Everaert et al. 2018a; Kabiri et al. 2020) 

8.7. Summary 

Traditional P fertilizers are granular or liquid applications of soluble fertilizer salts. Modified 

structure products aim  to  increase  the  efficiency of P  fertilizers by using nanotechnology  and/or 

having the P present in a structure that slowly releases the P over time. Many of these products use 

P that has been recovered from waste streams, with the dual benefit of removing P from the waste 

stream and recycling it as a beneficial nutrient. Nanoparticles have an extremely high surface area 

that  may  increase  the  mobility  and  availability  of  sparingly  soluble  phosphate  sources. 

Nanohydroxyapatite is more plant‐available than traditional hydroxyapatite, but does not appear to 

be as effective as standard soluble fertilizer sources 

Layered double hydroxides and graphene oxides may act as slow‐release P sources and perform 

similarly to soluble P fertilizers, especially on acid soils. The low loading of P onto layered double 

hydroxides and graphene oxides increases the cost of transport and application 

Struvite has low solubility relative to traditional P fertilizers, which will reduce its availability 

early in the season and recovery over the short‐term, but can reduce the risk of seedling damage or 

nutrient leaching. A large proportion of the P in struvite may still be unavailable several years after 

application. Blending struvite or other slowly available sources with a soluble P source may enhance 

early‐season availability and provide slowly available P over time 

Many of the slowly soluble compounds being marketed are products that recover P from waste 

streams.  This  is  an  important  objective,  both  from  the  viewpoint  of  preserving  P  reserves  and 

preventing P damage to the environment. Current products do not provide rapid release of P early 

in the season, but would be valuable as a long‐term source to maintain P levels in the soil over time. 

Well‐designed  field  trials  are  needed  to more  adequately  assess  the  effectiveness  and  long‐term 

availability of modified structure products under a range of realistic field conditions 

9. Enhanced Efficiency Products in a Sustainable Management System 

Key Points 

 The 4Rs of source, rate, time and place interact and must fit with one another and with other 

agronomic management practices, and with economic, environmental and social goals. 

 P  fertilizer  source  should  provide  adequate  plant‐available  P  during  early  growth  and 

throughout the growing season. 

 Rate, placement and timing of P application can be selected to optimize the efficiency of different 

novel fertilizer sources. 

 Phosphorus supply should be balanced with phosphorus removal over the long term to avoid 

excess depletion or accumulation. 

 Efficient  methods  of  P  fertilizer  management  will  improve  agronomic,  economic  and 

environmental sustainability. 
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Integrating the 4Rs with Sustainable Phosphorus Management 

The goal of 4R management of P  fertilization  is  to provide  the optimum amount of P  to  the 

growing crop at the time it is required, in the most cost‐efficient manner, with the least environmental 

risk  (IPNI 2016  ). An effective 4R management program  for P  fertilization will deliver maximum 

overall benefits only if the rest of the “pieces” in the management system “puzzle” are optimized to 

fit properly with each other (Figure 5). 

 

Figure 5. The 4R nutrient stewardship concept defines the right source, rate, time, and place for plant nutrient 

application as those producing the economic, social, and environmental outcomes desired by all stakeholders to 

the soil‐plant ecosystem (IPNI 2016 ). 

The source of phosphorus fertilizer being used is only one of the 4R factors in the management 

system. The  selection  and  effectiveness of  any given  fertilizer  source will depend on  the overall 

production  system,  including  soil,  environment,  crop  and  crop  sequence,  crop  yield  potential, 

residual soil nutrient levels, agronomic management and the other 4R practices being used. 

The P  fertilizer  source must  interact with other management practices  to  ensure  it  supplies 

adequate plant‐available P when the crop needs it, both early in the growing season and throughout 

plant growth. The enhanced efficiency  fertilizer sources and additives discussed  in  this paper are 

designed to improve the amount of P that is used by the crop. They aim to do this by matching the 

release of P to crop uptake, by reducing the tie‐up of P fertilizer by soil constituents or by increasing 

the mobilization of legacy P from the soil. The effectiveness of these products is affected by the risk 

of P  immobilization, the degree of P deficiency or presence of  legacy P and the other 4R  fertilizer 

management practices being used. 

A major consideration is the available P present in the soil. An effective soil test to determine 

available P is the first step in the 4R package. Soil testing provides an estimate of the plant‐available 

P in the field and the likelihood of a yield response to fertilizer P. Using a soil test, the producer can 

estimate the rate of P application required based on the sustainability goals, the crop requirements 

and the ability of the soil to supply P. The rate required will be affected by crop type, yield potential, 

residual soil nutrient levels, crop sequence, and other management factors, including the other 4R 

practices. 
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On soils that are highly deficient in P, it is important that the P source provide a supply of readily 

plant‐available P. Early‐season supply of P is critical in annual crops to ensure optimum yield. If the 

plant cannot access sufficient P from the soil during early growth, the fertilizer source must supply 

an adequate amount of plant‐available P in a position where the plant root can access it early in the 

season. Traditional soluble  fertilizer can be placed near  the seed‐row  to supply plant‐available P. 

Excess  amounts  of  soluble  P  fertilizer,  particularly  sources  containing  ammonium, may  lead  to 

seedling damage if placed too near the seed‐row of sensitive crops. In that case, blends of soluble and 

less soluble forms, or the use of controlled release products, may provide sufficient readily available 

P while reducing the risk of seedling damage. 

Controlled  release  coated products must be  formulated  to  ensure  that  enough P  is  released 

during early growth to satisfy crop demand, while slowly releasing the remainder of the P over the 

growing  season.  Slow‐release products may  not provide  sufficient plant‐available P  early  in  the 

season when soil P levels are low. On highly deficient soils, a strategy could be to provide soluble 

fertilizers in a band near the seed‐row to satisfy crop demand and apply additional slowly available 

forms to build available soil P over time until a critical soil test level is achieved. 

On soils where the soil test P is above the critical level, plants may be able to access sufficient P 

from the soil to optimize crop growth. Producers may not require P fertilizer in the short‐term, or 

may use a replacement strategy, adding fertilizer P to replace the P removed in the harvested crop to 

maintain  soil  fertility  over  time.  In  this  case,  it  is  not  as  critical  to  ensure  early‐season  fertilizer 

availability as it would be on soils that are highly deficient in P because the plant can access adequate 

P from the soil reserves early in the growing season. Therefore, a more slowly available source may 

be used to maintain soil fertility status without compromising early‐season P supply. In this case, 

materials such as struvite that release P gradually may be a good option. 

Depletion of P from soils where crops are grown and its concentration in urban areas or regions 

with intensive livestock production, where the crops are consumed, is a major environmental issue. 

Many of  the  slowly  soluble  compounds being marketed are products  that  recover P  from waste 

streams. Developing  an  effective  4R management  system  that  includes  recovered products  is  an 

important  objective,  both  as  a way  of  preserving  P  reserves  and  preventing  P  damage  to  the 

environment. 

The economic benefit of any novel fertilizer product will depend on the yield obtained and the 

cost of the product use relative to alternative 4R fertilizer management options, including transport 

and application costs. Some of the novel fertilizer products show some yield and efficiency benefits 

as compared to traditional products, but the benefits do not compensate for the extra costs. However, 

economic factors can change over time. When evaluating the potential of a new technology, current 

economics should not be the final consideration. 

10. Summary and Need for Future Research 

Key Points 

 Phosphorus fertilizer will undergo a series of reversible, concentration‐dependant adsorption 

and precipitation  reactions  that move  it  from solution  into  less soluble,  labile and non‐labile 

pools of P 

 Phosphorus use efficiency can be measured through different methods that consider the short‐ 

and long‐term use in the cropping system 

 Phosphorus availability will be affected by the solubility of the fertilizer source and its reactions 

in the soil. 

 In the long‐term, P removal should be balanced with P addition to avoid nutrient depletion. 

 Enhancing the removal of P through microbial  inoculation will not replace P removed  in the 

harvested crop. 

 High rates of humic substances can increase P solution concentration and mobility, but low rates 

do not reliably improve P use efficiency. 
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 Coated products can match  the release of  the P  to crop uptake  to provide available P  to  the 

growing plant while limiting the conversion of soluble P to less available forms. 

 Additives that modify pH in the fertilizer reaction zone can improve mobility and availability 

of P fertilizer. 

 The performance of substances that sequester ions has been highly variable, and they seem to be 

unreliable as a method of increasing P availability. 

 The high surface area of nanoparticles may increase the mobility and availability of sparingly 

soluble phosphate sources, but effectiveness does not appear to exceed that of standard soluble 

fertilizer sources. 

 Graphene oxides, layered double hydroxides, and struvite can provide slowly available P but 

may not supply adequate P early in the growing season. 

 Recovery of P from waste streams as a fertilizer can reduce the risk of environmental pollution 

and recycle P as a beneficial nutrient. 

 Effectiveness  in  laboratory or pot  studies  is often greater  than under  field  conditions. Well‐

designed field trials are needed to adequately assess the effectiveness of novel fertilizer products 

under a range of realistic field conditions. 

 The economic benefit of any enhanced efficiency fertilizer will depend on the yield differential 

and cost of the product use relative to alternative 4R fertilizer management options. 

Summary and Need for Future Research 

Crops require an adequate supply of P throughout growth to optimize crop yield. Phosphorus 

fertilizers are used when soils are deficient in available P to supply the required P when and where 

it is needed for the crop. Traditional P fertilizers supply P in a soluble form that enters rapidly into 

the soil solution as the fertilizer dissolves. The P in the soil solution is in equilibrium with various 

“pools”  of  P  that  vary  in  their  plant‐availability.  Novel  fertilizer  formulations,  additives  and 

microbial products aim to slow the conversion of solution P to a less available form or to release the 

legacy soil P in the less labile pools to enhance the P supply to the crop and improve PUE. 

Phosphorus  solubilizing  microorganisms  and  mycorrhizae  are  organisms  that  are  very 

important  in  soils  to  encourage P  cycling  and uptake  by plants. Under  controlled  conditions, P 

solubilizing microorganisms have been shown to increase the solubility of P and increase P uptake 

by  crops. Under  field  conditions,  inoculation with  P  solubilizing microorganisms  has  not  been 

consistently beneficial, possibly because of  competition with native microorganisms,  lack of  crop 

specificity or a range of other reasons described in detail in section 4. Inoculation with mycorrhizae 

has also proven beneficial in controlled conditions and for greenhouse production, but has not been 

reliably beneficial under  field conditions. Encouraging a healthy mycorrhizal population  through 

crop  rotation  and  reduced  tillage may  be more  effective  than  inoculation.  Both  P  solubilizing 

microorganisms and mycorrhizae aim to increase the mobilization of legacy P but do not contribute 

P to the soil reserves. Long‐term removal of P without replacement can lead to soil depletion and is 

not necessarily sustainable unless the soil contains excess levels of P. 

Humic substances are critical soil components  that contribute  to soil quality. Applications of 

high rates of humic substances can be beneficial as a soil conditioner or long‐term source of nutrients, 

especially on  low organic matter soils. High rates of humic substances may reduce P  fixation and 

increase the availability of P fertilizer under laboratory conditions, but the benefits are less consistent 

with natural soils or in field studies. Responses appear more likely on low organic matter soils. The 

low rates of humic substances often recommended for commercial applications have been unreliable 

in improving crop yield or P availability. Novel fertilizer formulations, including humic substance 

coating  or  humic‐metal‐phosphate  complexed  fertilizers,  also  have  not  consistently  shown  an 

advantage  over  standard  soluble  P  fertilizers.  The  inconsistent  response  to  commercial  humic 

substances may  indicate  that  the  low  rates used are  insufficient  to be effective or  that  the native 

content of humic acids present in the soil makes additional applications unnecessary. 
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Coated soluble P fertilizers show promise in improving PUE by slowing the release of soluble P 

fertilizers into the soil solution. Matching the release of the P to crop uptake can provide available P 

to the growing plant as it is needed while limiting the conversion of soluble P to less available forms. 

The benefit that will be obtained will depend on how much the reactions of P with the soil will restrict 

the ability of the plant to access the P that it requires for optimum yield through the growing season. 

Benefits would  therefore be most  likely  to occur on  soils  that are  low  in P, where  response  to P 

application would be high. Slow release would also be beneficial on soils with high P‐fixation that 

could limit crop access to P fertilizers. Coated products can also reduce the risk of seeding damage 

from soluble P fertilizers by lowering the fertilizer concentration in contact with the germinating seed. 

The release pattern from the fertilizer must ensure that sufficient P is available to the crop early in 

the growing season to optimize crop growth. If  the P release provides sufficient P to  the growing 

plant early in the season and reduces fixation to supply P to the crop throughout the growing period, 

it can have an agronomic benefit. The economic benefit would then depend on the yield differential 

and cost of the product use relative to alternative 4R fertilizer management options. 

Chemical additives that modify pH in the fertilizer reaction zone can improve the mobility and 

availability of P fertilizer. Calcium silicates may both serve as a fertilizer for some crops and improve 

P availability by increasing pH and by reducing P adsorption; however, high rates are required to 

have  any  influence  on  P  availability. Many  products,  including  ammonium  and  sulphate,  can 

decrease  pH  in  the  fertilizer  reaction  zone  and  increase  P  availability.  Traditional  phosphate 

fertilizers  such  as  MAP,  DAP  and  APP  include  ammonium  that  will  improve  P  availability. 

Formulations that include elemental S may be effective in enhancing P availability at high pH, but 

the  elemental S must oxidise  to be able  to  reduce pH and  improve P availability. Therefore,  the 

performance of elemental S is less reliable than that of ammonium or sulphate, but it may be able to 

improve P availability if oxidation is rapid. The sulphate could also provide a nutritional benefit if 

available S was deficient. 

The performance of substances that sequester ions has been highly variable, and they seem to be 

unreliable as a method of increasing P availability. The rate of application that would be needed to 

effectively sequester  ions that tie up P  in the soil  is  likely higher than commercially viable. While 

placement in a tight band may increase the effective concentration of the sequestering agent in the 

fertilizer reaction zone, performance is still erratic, even with band application. 

The high surface area of nanoparticles may increase the mobility and availability of sparingly 

soluble phosphate sources. Hydroxyapatite nanoparticles are much more available  than standard 

hydroxyapatite, likely because the increased surface area increases solubility, but they are not more 

effective than a traditional soluble P fertilizer source. 

Graphene  oxides,  layered  double  hydroxides,  metal‐organic  frameworks  and  struvite  can 

provide slowly available P that may be beneficial as long as adequate P is available to the crop both 

at early growth and throughout the season. Blending slowly available formulations with traditional 

soluble P fertilizers could allow for both early and long‐term P supply. Low analysis and incomplete 

release of these products can increase the cost of transport and application. 

Depletion of P from soils where crops are grown and its concentration in urban areas or regions 

with intensive livestock production, where the crops are consumed, is a major environmental issue. 

Many of  the  slowly  soluble or modified  structure  compounds being marketed  are products  that 

recover P  from waste  streams. Developing  effective  recovered products  for  agronomic use  is  an 

important  objective,  both  as  a way  of  preserving  P  reserves  and  preventing  P  damage  to  the 

environment. 

The economic benefit of any enhanced efficiency fertilizer will depend on the yield differential 

and cost of the product relative to alternative 4R fertilizer management options. More work is needed 

to ensure  that novel products have a  release pattern closely  linked  to crop uptake patterns, have 

higher analysis to reduce the cost of transport and application, and have a lower product cost so that 

they are more competitive with current fertilizer sources. Many of the novel products evaluated show 

promise in laboratory or pot studies but prove less effective under field conditions. Well‐designed 
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field trials are needed to adequately assess the effectiveness of novel fertilizer products under a range 

of realistic field conditions. 
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