

Article

Not peer-reviewed version

Mo-W₁₈O₄₉/ZnIn₂S₄ Composites Synthesized by Metal Doping for Photocatalytic Hydrogen Evolution

Ruiqin Sun, Yue Liu, Jiamei Yang, Tuoya WuRen, Haochen Duan, Zhibing Tan, Shiyong Yu

Posted Date: 25 February 2025

doi: 10.20944/preprints202502.1918.v1

Keywords: Visible light; photocatalytic; Mo- $W_{18}O_{49}$; $ZnIn_2S_4$

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Mo-W₁₈O₄₉/Znln₂S₄ Composites Synthesized by Metal Doping for Photocatalytic Hydrogen Evolution

Ruiqin Sun^{1,+}, Yue Liu^{2,+}, Jiamei Yang¹, Tuoya WuRen¹, Haochen Duan¹, Zhibing Tan^{1,*} and Shiyong Yu^{1,*}

- ¹ College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
- ² China FAW Motor Corporation Limited Kinetic Energy Branch, Changchun, 130011, China
- * Correspondence: zhibingtan@imu.edu.cn (Z.T.); syyunano@imu.edu.cn (S.Y.)
- [†] These authors contributed equally to this work.

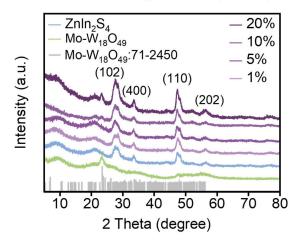
Abstract: Utilizing two or more semiconductor materials with distinct geometric and electronic energy arrangements at the nanoscale to construct heterostructures is an important means for developing high-performance catalysts for photocatalytic hydrogen evolution. In this study, ZnIn₂S₄ serves as the primary catalyst carrier, while Mo-W₁₈O₄₉ functions as the cocatalyst supported on the surface of ZnIn₂S₄. A series of ZnIn₂S₄/Mo-W₁₈O₄₉ heterojunction composite materials were synthesized through a straightforward hydrothermal method. The ZnIn₂S₄/Mo-W₁₈O₄₉ photocatalyst demonstrates exceptional photocatalytic hydrogen evolution activity. Notably, with a Mo-W₁₈O₄₉ loading of 10%, the photocatalyst achieves optimal hydrogen evolution, yielding 2592.8 µmol g h⁻¹, which is 31 times greater than that of pure ZnIn₂S₄. Further characterized results of the samples showed that loading Mo-W₁₈O₄₉ with an appropriate mass ratio on ZnIn₂S₄ can increase the electron transfer rate, which facilitates reducing the recombination probability of photo-generated electron and holes, thus improve hydrogen evolution efficiency.

Keywords: Visible light; photocatalytic; Mo-W18O49; Znln2S4

1. Introduction

Photocatalytic hydrogen evolution is a highly efficient and environmentally friendly method for obtaining hydrogen, therefore, numerous catalysts have been developed for improve the efficiency of this process[1-4]. To date, researchers have identified numerous photocatalysts, including metal oxides such as TiO₂[5,6], ZnO[7], and WO₃[8], as well as g-C₃N₄[9-12] and metal sulfides like CdS[13], ZnS[14], and MoS₂[15]. Recently, ternary metal sulfide compounds, such as ZnIn₂S₄[16-18], Cd_{0.9}Zn_{0.1}S[19], and CaIn₂S₄[20], have been extensively studied due to their unique optical band gaps and good structural stability. Among these, ZnIn₂S₄ is notable as the only compound with a layered structure in the metametal sulfide family. Its unit cell consists of three sub-layers: the tetrahedral ZnS₄ surface, the octahedral InS₄ intermediate layer, and another tetrahedral InS₄ bottom layer. This distinctive structure offers advantages for photocatalytic applications[21].

With a hybrid metal sulfide characterized by its monolayer structure, ZnIn₂S₄ has garnered significant interest due to its unique architecture and photoelectric properties[22]. It has been proven to possess several advantages, including low toxicity, exceptional absorption of visible light, stability, and an appropriate band gap[23]. However, ZnIn₂S₄ exhibits a high recombination rate of photogenerated electrons and holes due to its narrow band gap, and the presence of ultra-thin ZnIn₂S₄ nanosheets may lead to spontaneous accumulation and aggregation. Consequently, the performance of ZnIn₂S₄ as a catalyst for photocatalytic hydrogen evolution need further optimization. Although W₁₈O₄₉ exhibits high chemical stability[24], due to the presence of most oxygen vacancies on the surface, it demonstrate higher overpotentials. which restricts further enhancement of its catalytic performance[25]. Doping is an important method for optimizing semiconductor structures and improving their catalytic capabilities. thus, employing Mo doping to alter the electronic structure of


W₁₈O₄₉ may effectively enhance light absorption and improve its optical properties. Consequently, the development of a viable synthesis method for Mo-doped W₁₈O₄₉ nanomaterials as efficient hydrogen evolution reaction (HER) catalysts warrants careful consideration.

In this work, Znln₂S₄ is utilized as the primary catalyst carrier, while Mo-W₁₈O₄₉ serves as the cocatalyst, which is deposited onto the surface of Znln₂S₄. A series of Znln₂S₄/Mo-W₁₈O₄₉ heterojunction composite materials were prepared using a straightforward hydrothermal synthesis method. This distinctive Znln₂S₄/Mo-W₁₈O₄₉ photocatalyst demonstrates excellent photocatalytic hydrogen evolution activity. Notably, with a Mo-W₁₈O₄₉ loading of 10%, the photocatalyst achieves optimal hydrogen evolution performance, yielding 2592.8 µmol g h⁻¹, which is 31 times greater than that of pure Znln₂S₄. Experimental characterization results indicate that the incorporation of Mo-W₁₈O₄₉ onto Znln₂S₄, at an appropriate mass ratio, reduces charge transfer resistance, enhances the electron transfer rate, and facilitates increased electron transport, thereby improving hydrogen evolution efficiency.

2. Results and Discussion

2.1. Characterization of 10% Mo-W18O49/Znln2S4 photocatalysts

The crystallographic phases of the prepared pure phase ZnIn₂S₄, Mo-W₁₈O₄₉, and Mo-W₁₈O₄₉/ZnIn₂S₄ composites with varying compound proportions were investigated using X-ray diffraction (XRD) patterns. As illustrated in Figure 1, the pure ZnIn₂S₄ nanomaterials exhibit distinct diffraction peaks at 27.9°, 33.74°, 47.3°, and 55.5°, corresponding to ZnIn₂S₄. These peaks are attributed to the (102), (400), (110), and (202) crystallographic planes, in accordance with the standard card JCPDS No. 72-0773, and are consistent with the reported literature[26-28]. The spectrum of Mo-W₁₈O₄₉ reveals diffraction peaks at 23.4° and 26.2°, corresponding to the (010) and (-104) crystal planes, respectively. The XRD pattern of Mo-W₁₈O₄₉ aligns with the monoclinic crystal form, with the corresponding standard card being JCPDS No. 71-2450[25,29]. Furthermore, when Mo-W₁₈O₄₉ is combined with ZnIn₂S₄ to form a composite material, additional diffraction peaks of Mo-W₁₈O₄₉ appear in the XRD spectrum alongside the original peaks of ZnIn₂S₄. As the loading amount of Mo-W₁₈O₄₉ increases, the intensity of these diffraction peaks also rises. Notably, the intensity and width of the XRD peaks for ZnIn₂S₄ remain unaffected by the incorporation of Mo-W₁₈O₄₉, indicating that the hybridization with Mo-W₁₈O₄₉ has minimal impact on the crystallinity and particle size of ZnIn₂S₄.

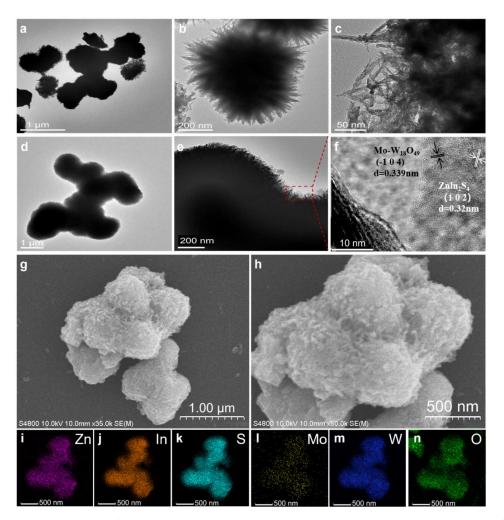


Figure 1. XRD patterns of Znln₂S₄, Mo-W₁₈O₄₉ and Mo-W₁₈O₄₉ with loading amount of 1%, 5%, 10%, 20% on Znln₂S₄.

The morphology and microstructure of pure Mo-W₁₈O₄₉, 10% Mo-W₁₈O₄₉, and ZnIn₂S₄ were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). As illustrated in Figure 2, Mo-W₁₈O₄₉ exhibits a sea urchin-like structure formed by the aggregation

of multiple linear structures, with an average particle size of approximately 500 nm. Upon further magnification, Figure 2(c) reveals that Mo-W₁₈O₄₉ possesses a branched nanowire structure. Figure 2(d, e) presents a transmission electron micrograph of 10% Mo-W₁₈O₄₉/ZnIn₂S₄; from this image, it is evident that the sea urchin-like structure of Mo-W₁₈O₄₉ is deposited on the surface of ZnIn₂S₄ nanoflowers, resulting in a smoother surface, albeit with slight agglomeration, approximately 1 micron in size.

Figure 2(f) displays a high-resolution transmission electron micrograph of 10% Mo-W₁₈O₄₉/ZnIn₂S₄, where two lattice fringes can be observed at 0.339 nm and 0.32 nm, corresponding to the (-104) surface of Mo-W₁₈O₄₉ and the (102) crystal plane of ZnIn₂S₄, respectively[30]. Finally, Figures 2(g, h) show scanning electron microscope images of 10% Mo-W18O49/ZnIn2S4, clearly demonstrating that the sea urchin-like material is uniformly coated on the surface of the nanoflower structure. The results from the electron microscope tests indicate that Mo-W18O49 and ZnIn2S4 were successfully combined to form a composite nanomaterial via in-situ deposition. An Energy Dispersive Spectroscopy (EDS) analysis was performed on the composite material to confirm the presence of its constituent elements. The EDS element map (Figure 2 (i-n)) revealed the detection of Mo, W, O, Zn, In, and S. These elements were found to be evenly distributed across the analyzed area. Notably, the lower incorporation levels of Mo, W, and O resulted in a less uniform distribution, which aligns with the experimental observations. These findings robustly demonstrate that the onepot solvothermal reaction can effectively synthesize 10% Mo-W₁₈O₄₉/ZnIn₂S₄ composite materials, establishing a strong intimate contact that facilitates the transfer of photogenerated carriers between ZnIn₂S₄ and Mo-W₁₈O₄₉. This intimate contact may be a critical factor contributing to the enhanced photocatalytic hydrogen evolution activity.

Figure 2. Microstructures of the proposed Mo-W₁₈O₄₉ and 10% Mo-W₁₈O₄₉/Znln₂S₄ composites. TEM of Mo-W₁₈O₄₉ (a-c) and 10% Mo-W₁₈O₄₉/Znln₂S₄ (d-e), HAADF-STEM images of 10% Mo-W₁₈O₄₉/Znln₂S₄ (f), SEM of 10% Mo-W₁₈O₄₉/Znln₂S₄ (g, h) and EDS elemental results of Zn, ln, S, Mo, W, O, (i-n).

The effect of introducing Mo-W₁₈O₄₉ on the surface chemical state of ZnIn₂S₄ was investigated using X-ray photoelectron spectroscopy (XPS) characterization. Figure 3(a) presents the binding energy spectrum of Zn 2p. It is evident from the figure that pure ZnIn₂S₄ exhibits two prominent diffraction peaks at 1023.3 eV and 1046.3 eV, corresponding to Zn 2p_{3/2} and Zn 2p_{1/2}, respectively, which confirms that the valence state of Zn is +2[31]. After the incorporation of Mo-W18O49, the peak positions of the two electron binding energies in the composite material shift slightly to lower binding energies, now located at 1022.4 eV and 1045.4 eV, respectively. Figure 3(b) illustrates the binding energy spectrum of In 3d. The pure phase ZnIn₂S₄ corresponds to In 3d_{5/2} and In 3d_{5/2} at binding energy positions of 445.3 eV and 452.9 eV, respectively, indicating that the In element exists as a +3 valence ion[32,33]. Similarly, the binding energy of In3d displays a blue shift following the loading of Mo-W₁₈O₄₉. Figure 3(c) presents the high-resolution XPS spectrum of the S element. The XPS spectrum of the pure phase can be fitted into two peaks, corresponding to S 2p_{3/2} and S 2p_{1/2}, confirming the presence of S²[34,35]. It is apparent from the figure that the diffraction peak of the composite also exhibits a slight shift. As illustrated in Figure 3(d), the high-resolution XPS spectrum of W 4f can be categorized into two pairs of peaks corresponding to W $4f_{7/2}$ and W $4f_{5/2}$, respectively. The peaks at 32.4 eV and 36 eV are associated with W 4f_{5/2}, while those at 37.7 eV and 38.3 eV correspond to W 4f7/2. Specifically, the peak at 32.4 eV indicates the presence of +4-valent W, the emission peaks at 36 eV and 37.7 eV signify the existence of +5-valent W, and the peak at 38.3 eV represents +6-valent W[25]. In Figure 3(e), the peak at 531.3 eV corresponds to the bond between

tungsten and oxygen, whereas the peak at 532.9 eV is attributed to the C-O bond. Figure 3(f) shows peaks at 228.3 eV and 231.7 eV, corresponding to the 3d_{5/2} and 3d_{3/2} states of Mo, respectively, indicating that Mo is doped in the +4 valence state[36]. In summary, the analysis confirms the successful recombination of the two materials. A notable shift in peak positions suggests a significant interface interaction between the two, which facilitates electron transmission. The direction of electron transfer is from ZnIn₂S₄ to Mo-W₁₈O₄₉.

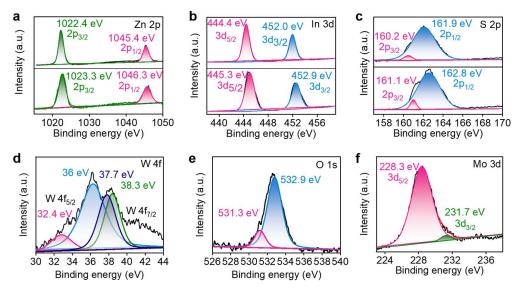
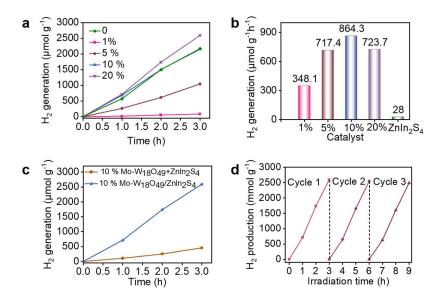



Figure 3. XPS spectra of 10%Znln₂S₄/Mo-W₁₈O₄₉ (a) Zn 2p, top: 10%Mo-W₁₈O₄₉/Znln₂S₄; bottom: Znln₂S₄. (b) In 3d, top: 10%Mo-W₁₈O₄₉/Znln₂S₄; bottom: Znln₂S₄. (c) S 2p, top: 10%Mo-W₁₈O₄₉/Znln₂S₄; bottom: Znln₂S₄. (d) W 4f (e) O 1s (f) Mo 3d.

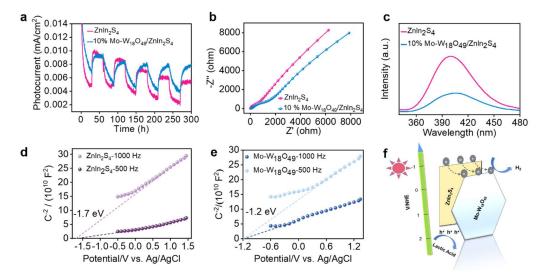
2.2. Photocatalytic hydrogen evolution performance

The hydrogen evolution activity of the synthesized samples was evaluated through photocatalytic water splitting experiments. Under visible light irradiation, 10 mL of lactic acid was utilized as a catalyst, and the hydrogen evolution activity of various synthesized samples was measured in an aqueous solution containing 90 mL of ultrapure water. Figure 4(a) illustrates that both pure-phase ZnIn₂S₄ and composites loaded with varying masses of Mo-W₁₈O₄₉/ZnIn₂S₄ effectively drive the photocatalytic reduction of water to produce hydrogen under visible light irradiation, with the amount of hydrogen evolution varying among the samples. The cumulative hydrogen evolution of pure ZnIn₂S₄ over three hours reached only 83.5 μmol/g. However, by loading Mo-W₁₈O₄₉ at different mass ratios, a significant increase in hydrogen evolution was observed. At a loading of 10%, the photocatalyst exhibited optimal hydrogen evolution, yielding 2592.8 µmol/g, which is 31 times greater than that of pure ZnIn₂S₄. Conversely, as the loading of Mo-W₁₈O₄₉ gradually increased, a decline in photocatalytic hydrogen evolution was noted, likely due to excessive Mo-W₁₈O₄₉ coverage on the active sites of ZnIn₂S₄. Figure 4(b) presents the photocatalytic hydrogen evolution rate of ZnIn₂S₄ and composite materials loaded with different mass ratios of Mo-W₁₈O₄₉/ZnIn₂S₄. The calculations indicate that the best performance achieved was 864.3 µmol/g. These results are consistent with those shown in Figure 4(a), confirming that the 10% Mo-W18O49/ZnIn2S4 composite catalyst exhibits the highest hydrogen evolution performance.

Figure 4. (a) The photocatalytic hydrogen evolution of Mo-W₁₈O₄₉/Znln₂S₄ catalysts with different loadings of Mo-W₁₈O₄₉ under visible light irradiation. (b) The photocatalytic hydrogen evolution rate of Znln₂S₄ and Znln₂S₄/Mo-W₁₈O₄₉ samples under light irradiation. (c) Comparison of photocatalytic hydrogen evolution of 10%Mo-W₁₈O₄₉/Znln₂S₄ catalyst and the same mass of Mo-W₁₈O₄₉ Znln₂S₄ mechanical mixture sample under visible light irradiation. (d) Cycling runs for the photocatalytic hydrogen evolution of the 10%Mo-W₁₈O₄₉/Znln₂S₄ sample under visible light irradiation.

As illustrated in Figure 4(c), a comparison between the 10% Mo-W₁₈O₄₉/ZnIn₂S₄ sample and the physically mixed sample of Mo-W18O49 + ZnIn2S4, both having the same mass ratio, reveals a significant difference in hydrogen evolution. The hydrogen output from the physically mixed sample is notably lower, being 5.6 times less than that of the 10% Mo-W18O49/ZnIn2S4 sample. This reduction indicates that Mo-W₁₈O₄₉ has deposited on ZnIn₂S₄ to form a heterojunction structure. Consequently, the composite photocatalyst establishes a close contact interface between Mo-W18O49 and ZnIn2S4, which facilitates charge transfer. This interaction effectively addresses the recombination issue, thereby enhancing photocatalytic hydrogen evolution activity. To evaluate the stability of the composite material, the catalyst exhibiting the best performance was selected for testing cycle performance, as illustrated in Figure 4(d). The reusability of the catalyst was further assessed through three consecutive 3-hour photocatalytic experiments. As shown in Figure 4(d), after three cycles, hydrogen evolution remained stable, with no significant decline, achieving a total of 2488 μmol g⁻¹. Compared to the first cycle, hydrogen evolution in the last two cycles exhibited a slight decrease. This reduction can be attributed to the continuous consumption of the sacrificial agent, which became insufficient during the final two cycles, leading to a decrease in hydrogen yield. Nonetheless, the photocatalyst within this composite material demonstrates commendable stability.

2.3. Explore the mechanism of photocatalytic hydrogen evolution


To investigate the enhanced efficiency of photogenerated carrier separation and transfer in 10% Mo-W₁₈O₄₉/ZnIn₂S₄ composites, we measured the performance of both pure ZnIn₂S₄ and the 10% Mo-W₁₈O₄₉ composite under visible light irradiation through multiple on/off cycles. The transient photocurrent response of the W₁₈O₄₉/ZnIn₂S₄ composite material was analyzed. As illustrated in Figure 5a, the sample generates photocurrent immediately upon illumination, which vanishes instantly when the light source is turned off. After several on/off cycles, the photocurrent response of pure ZnIn₂S₄ gradually decreases. In contrast, the 10% Mo-W₁₈O₄₉/ZnIn₂S₄ composite exhibits a higher and more stable transient photocurrent response, indicating that the incorporation of Mo-W₁₈O₄₉ enhances the photocurrent intensity. This synthesized composite material facilitates the

transfer of interface electrons and holes, suggesting that photogenerated electrons are transferred more rapidly. Figure 5(b) presents the electrochemical impedance spectrum, where the semicircle corresponding to the 10% Mo-W₁₈O₄₉/ZnIn₂S₄ composite is the smallest and has a reduced radius compared to pure ZnIn₂S₄. This observation indicates a higher electron transfer rate in the 10% Mo-W₁₈O₄₉/ZnIn₂S₄ composite. Therefore, the loading of Mo-W₁₈O₄₉ onto ZnIn₂S₄ at an appropriate mass ratio reduces charge transfer resistance, increases the electron transfer rate, and enables the transport of more electrons, thereby enhancing hydrogen evolution efficiency[37,38].

Photoluminescence (PL) experiments illuminate photocatalysts with light of specific wavelengths, allowing for the acquisition of information related to electronic transitions in the emission spectrum. This further verifies the separation and transfer of electron-hole pairs. Under the excitation of incident light at a wavelength of 250 nm, the photoluminescence performance of ZnIn₂S₄ and 10% Mo-W₁₈O₄₉/ZnIn₂S₄ catalysts was evaluated. As shown in Figure 5(c), ZnIn₂S₄ exhibits a pronounced peak at approximately 400 nm, which is attributed to the direct recombination of photogenerated electrons and holes resulting from intrinsic band gap excitation[39]. The figure also indicates that the 10% Mo-W₁₈O₄₉/ZnIn₂S₄ composite material displays a strong peak around 400 nm; however, the emission intensity of the composite is significantly lower than that of ZnIn₂S₄. This observation suggests that the strong interaction at the interface formed between the co-catalysts reduces the recombination efficiency of charges and holes, leading to fluorescence quenching.

To elucidate the photocatalytic mechanism, the Mott-Schottky technique was employed to analyze the samples and determine the sideband positions of ZnIn₂S₄ and Mo-W₁₈O₄₉, as well as their semiconductor types. As illustrated in Figure 5(d, e), both ZnIn₂S₄ and Mo-W₁₈O₄₉ exhibit positive slopes in the Mott-Schottky plots, indicating that they are n-type semiconductors[40]. Additionally, the intersection with the X-axis allows for the determination of the sideband positions of ZnIn₂S₄ and Mo-W₁₈O₄₉. From the data presented in Figure 5(d, e), it can be concluded that the flat band potentials of ZnIn₂S₄ and Mo-W₁₈O₄₉ are -1.7 eV and -1.2 eV (vs. Ag/AgCl), respectively. Previous studies have shown that the conduction band position (Ec₁₈) of an n-type semiconductor is determined by the flat band potential (E₁₆)[41]. Since the Ec₁₈ of n-type semiconductors is typically 0.1 eV more negative than E₁₆[42], the conduction band potentials of ZnIn₂S₄ and Mo-W₁₈O₄₉ are calculated to be -1.8 eV and -1.3 eV, respectively.

Following the series of characterization results, we can further elucidate the mechanism diagram of the composite material Mo-W₁₈O₄₉/ZnIn₂S₄, as illustrated in Figure 5(f). Under visible light excitation with a wavelength exceeding 420 nm, the primary catalyst ZnIn₂S₄ and the cocatalyst Mo-W₁₈O₄₉ generate photogenerated electrons and holes at their respective conduction band and valence band positions, owing to their suitable band gaps. Mott-Schottky analysis indicates that the conduction band position of ZnIn₂S₄ is more negative than that of Mo-W₁₈O₄₉. Consequently, the electrons generated in the conduction band of ZnIn₂S₄ are readily transferred to the conduction band of Mo-W₁₈O₄₉, leading to the reduction of H⁺ in H₂O to form H₂. Additionally, the holes generated in the valence band of Mo-W₁₈O₄₉ are transferred to the valence band of ZnIn₂S₄, where they are ultimately oxidized and decomposed by the sacrificial agent. This composite enhances the efficiency of photocatalytic hydrogen evolution.

Figure 5. (a) Photocurrent density spectrum of ZnIn₂S₄ and 10%Mo-W₁₈O₄₉/ ZnIn₂S₄. (b) Electrochemical impedance spectroscopy. (c) Photoluminescence spectrum. (d) Mott Schottky plot of ZnIn₂S₄ and (e) Mo-W₁₈O₄₉. (f) Proposed photocatalytic mrchanism disgram of 10%Mo-W₁₈O₄₉/ ZnIn₂S₄ composites.

3. Experimental

3.1 Materials and method

To synthesize Mo-W18O49, the following procedure was employed: 200 mg of WCl6 and 40 mg of MoCl5 were dispersed in 70 mL ethanolandstired for 20 min. The resulting mixture was then transferred into a 100 mL Teflon-lined stainles steel autoclave, where it was maintained at $200 \, ^{\circ}\text{C}$ for $10 \, \text{h}$. The products were were subsequently washed repeatedly with deionized water and ethanol. Finally, the samples were dried at $65 \, ^{\circ}\text{C}$ overnight.

To synthesize ZnIn₂S₄/Mo-W₁₈O₄₉ composites, 10 mg of Mo-W₁₈O₄₉ powder was dissolved in 50 mL of deionized water. Appropriate amounts of Zn(NO₃)₂·6H₂O and In(NO₃)₃·4.5H₂O were then added to this solution, followed by the adjustment of the pH to 1 using 0.5 M HCl. A specific quantity of thioacetamide, dissolved in 20 mL of deionized water, was slowly introduced to the solution, while stirring for 1 h. The resulting mixture was transferred into 100 mL a Teflon-lined stainles steel autoclave and maintained at 160 °C for 12 h. After this period, the products were washed with deionized water and ethanol, and subsequently dried at 65 °C. The molar ratios of Mo-W₁₈O₄₉ to ZnIn₂S₄ were controlled at 1%, 5%, 10%, and 20%, labeled as 1% Mo-W₁₈O₄₉/Znln₂S₄, 5% Mo-W₁₈O₄₉/Znln₂S₄, 10% Mo-W₁₈O₄₉/Znln₂S₄, respectively.

3.2Characterization

The crystal phase properties of the as-prepared products were characterized using X-ray diffraction (XRD, Rigaku, Japan) with Cu-K radiation (λ = 1.5406 Å). The morphology of the samples was examined through scanning electron microscopy (SEM, HITACHI S-4800) and transmission electron microscopy (TEM, FEI Tecnai G2 F20 STwin) at 200 kV. X-ray photoelectron spectroscopy (XPS) analysis was performed using a PHI 5300 ESCA instrument. Additionally, electrochemical impedance spectroscopy (EIS), photocurrent measurements, and Mott–Schottky analysis were conducted on a CHI660E electrochemical workstation.

2.3 Photocatalytic reaction test

The H₂ evolution reactions were conducted using a gas-circulation system (Perfectlight, Beijing). A total of 50 mg of catalyst was dissolved in 90 mL of deionized water and 10 mL of lactic acid. The resulting solution was irradiated with a 300 W xenon lamp equipped with a λ >420 nm cut-off filter.

Nitrogen served as the carrier gas. Ultimately, the quantity of H₂ produced was quantified using gas chromatography (GC7900) with a thermal conductive detector (TCD).

4. Conclusions

Sea urchin-like Mo-W₁₈O₄₉ was synthesized using a two-step solvothermal method and subsequently loaded onto the ZnIn₂S₄ nanoflower structure to create a ZnIn₂S₄/Mo-W₁₈O₄₉ heterojunction composite photocatalyst. In this system, ZnIn₂S₄ serves as the primary catalyst while Mo-W₁₈O₄₉ acts as the Co-catalyst. Under visible light irradiation, electrons generated by the primary catalyst are effectively transferred to the co-catalyst, while holes in the co-catalyst are also efficiently transferred back to the primary catalyst. This process significantly reduces the recombination rate of charge carriers. The Mo-W₁₈O₄₉/ZnIn₂S₄ heterostructure photocatalyst markedly enhances the photocatalytic performance of ZnIn₂S₄ for water splitting and hydrogen evolution under visible light. In the optimal 10% Mo-W₁₈O₄₉/ZnIn₂S₄ system, the hydrogen generation rate reaches 2592 µmol g⁻¹. The intimate atomic-level contact and strong interaction between ZnIn₂S₄ and Mo-W₁₈O₄₉ in the composite facilitate efficient electron transfer between the two components, thereby boosting photocatalytic activity. These findings provide a crucial foundation for the design of composite photocatalysts aimed at effective catalytic water splitting for hydrogen evolution.

Supplementary Materials: The following supporting information can be downloaded at the website of this paper posted on Preprints.org.

Author Contributions: Z. T. and S. Y. co-supervised the project. Z. T. and S. Y. convinced the concept and designed the experiments. Z. T., R. S., and Y. L. wrote the manuscript with input from all authors. Y. L. and T. W. prepared the photocatalysts and performed the photocatalytic water splitting experiments and analyzed the data. R. S., Y. L., T. W. and H. D. interpreted the data and developed the discussion. All authors conceived the work and discussed the experiments. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Program of Higher-Level Talents of IMU (No. 21300-5223748), the National Natural Science Foundation of China (No. 22103065, 21661024, 22363008), Young Technology Talent Support Program of Inner Mongolia Autonomous Region Higher Education Institutions (No. NJYT24022), and a Talent Development Fund of Inner Mongolia Province (No. 13100-15112011).

Acknowledgments: The authors are grateful for the instrumental support from the School of Chemistry and Chemical Engineering of Inner Mongolia University.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- Wang, Y.; Gudiño, L.; Bedia, J.; Belver, C. Solar photocatalytic hydrogen production through metal sulfide/UiO-66-NH2 heterojunctions. Sep. Purif. Technol. 2025, 353, 128663. https://doi.org/10.1016/j.seppur.2024.128663.
- 2. Gong, G.; Liu, Y.; Mao, B.; Tan, L.; Yang, Y.; Shi, W. Ag doping of Zn-In-S quantum dots for photocatalytic hydrogen evolution: simultaneous bandgap narrowing and carrier lifetime elongation. *Appl. Catal. B: Environ.* **2017**, *216*, 11-19. https://doi.org/10.1016/j.apcatb.2017.05.050.
- Zhang, H.; Shao, C.; Wang, Z.; Zhang, J.; Dai, K. One-step synthesis of seamlessly contacted non-precious metal cocatalyst modified CdS hollow nanoflowers spheres for photocatalytic hydrogen production. *J. Mater. Sci. Technol.* 2024, 195, 146-154. https://doi.org/10.1016/j.jmst.2023.11.081.
- Yang, Z.; Wang, X.; Ren, J.; Xue, Y.; Tian, J. Synergy of atom doping and defect construction in marigold-like Zn₃In₂S₆ for improved photocatalytic hydrogen production. *Mater. Today Phys.* 2024, 46, 101484. https://doi.org/10.1016/j.mtphys.2024.101484.

- Li, X.; You, J.; Li, J.; Wang, Z.; Zhao, Y.; Xu, J.; Duan, M.; Zhang, H. Progress of copper-based nanocatalysts in advanced oxidation degraded organic pollutants. *ChemCatChem* 2024, 16, e202301108. https://doi.org/10.1002/cctc.202301108.
- Hu, X.; Song, J.; Luo, J.; Zhang, H.; Sun, Z.; Li, C.; Zheng, S.; Liu, Q. Single-atomic Pt sites anchored on defective TiO₂ nanosheets as a superior photocatalyst for hydrogen evolution. *J. Energy Chem.* 2021, 62, 1-10. https://doi.org/10.1016/j.jechem.2021.03.003.
- Dhiman, P.; Rana, G.; Kumar, A.; Sharma, G.; Vo, D.N.; Naushad, M. ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: a review. *Environ. Chem. Lett.* 2022, 20, 1047-1081. https://doi.org/10.1007/s10311-021-01361-1.
- 8. Xie, X.; Fan, Y.; Tian, W.; Zhang, M.; Cai, J.; Zhang, X.; Ding, J.; Liu, Y.; Lu, S. Construction of Ru/WO₃ with hetero-interface structure for efficient hydrogen evolution reaction. *J. Energy Chem.* **2023**, *83*, 150-157. https://doi.org/10.1016/j.jechem.2023.04.026.
- 9. Wang, X.; Gong, J.; Dong, Y.; An, S.; Zhang, X.; Tian, J. Energy band engineering of hydroxyethyl group grafted on the edge of 3D g-C₃N₄ nanotubes for enhanced photocatalytic H₂ production. *Mater. Today Phys.* **2022**, 27, 100806. https://doi.org/10.1016/j.mtphys.2022.100806.
- 10. Shen, J.; Luo, C.; Qiao, S.; Chen, Y.; Tang, Y.; Xu, J.; Fu, K.; Yuan, D.; Tang, H.; Zhang, H.; et al. Single-atom Cu channel and N-vacancy engineering enables efficient charge separation and transfer between C₃N₄ interlayers for boosting photocatalytic hydrogen production. *ACS Catal.* **2023**, *13*, 6280-6288. https://doi.org/10.1021/acscatal.2c05789.
- He, F.; Wang, S.; Lu, Y.; Dong, P.; Zhang, Y.; Liu, F.; Liu, X.; Wang, Y.; Zhao, C.; Wang, S.; et al. Unification of hot spots and catalytic sites on isolated boron centers in porous carbon nitride nanosheets for efficient photocatalytic oxygen evolution. *Nano Energy* 2023, 116, 108800. https://doi.org/10.1016/j.nanoen.2023.108800.
- Sun, J.; Yang, J.; Liang, J.; Tu, L.; Bin, Y.; Hou, Y. Construction of microspherical flower-like Zn₃In₂S₆-BGQDs/AgBr S-scheme heterojunction for photocatalytic elimination of nitrofurazone and Cr (VI). Sep. Purif. Technol. 2022, 299, 121563. https://doi.org/10.1016/j.seppur.2022.121563.
- Zhou, W.; Li, F.; Yang, X.; Yang, W.; Wang, C.; Cao, R.; Zhou, C.; Tian, M. Peanut-chocolate-ball-inspired construction of the interface engineering between CdS and intergrown Cd: boosting both the photocatalytic activity and photocorrosion resistance. *J. Energy Chem.* 2023, 76, 75-89. https://doi.org/10.1016/j.jechem.2022.09.013.
- Huang, R.; Qin, Z.; Shen, L.; Lv, G.; Tao, F.; Wang, J.; Gao, Y. Interface engineering of InP/ZnS core/shell quantum dots by the buffer monolayer for exceptional photocatalytic H₂ evolution. *J. Mater. Chem. A* 2023, 11, 6217-6225. https://doi.org/10.1039/D3TA00168G.
- Li, Z.; Li, C.; Chen, J.; Xing, X.; Wang, Y.; Zhang, Y.; Yang, M.; Zhang, G. Confined synthesis of MoS₂ with rich Co-doped edges for enhanced hydrogen evolution performance. *J. Energy Chem.* 2022, 70, 18-26. https://doi.org/10.1016/j.jechem.2022.01.001.
- Su, L.; Wang, P.; Wang, J.; Zhang, D.; Wang, H.; Li, Y.; Zhan, S.; Gong, J. Pt-Cu interaction induced construction of single Pt sites for synchronous electron capture and transfer in photocatalysis. *Adv. Funct. Mater.* 2021, 31, 2104343. https://doi.org/10.1002/adfm.202104343.
- 17. Lu, Y.; Jia, X.; Ma, Z.; Li, Y.; Yue, S.; Liu, X.; Zhang, J. W⁵⁺–W⁵⁺ pair induced LSPR of W₁₈O₄₉ to sensitize ZnIn₂S₄ for full-spectrum solar-light-driven photocatalytic hydrogen evolution. *Adv. Funct. Mater.* **2022**, 32, 2203638. https://doi.org/10.1002/adfm.202203638.
- 18. Du, C.; Yan, B.; Lin, Z.; Yang, G. Enhanced carrier separation and increased electron density in 2D heavily N-doped ZnIn₂S₄ for photocatalytic hydrogen production. *J. Mater. Chem. A* **2020**, *8*, 207-217. https://doi.org/10.1039/C9TA11318E.
- 19. Kang, F.; Shi, C.; Zhu, Y.; Eqi, M.; Shi, J.; Teng, M.; Huang, Z.; Si, C.; Jiang, F.; Hu, J. Dual-functional marigold-like Zn Cd1-xS homojunction for selective glucose photoreforming with remarkable H₂ coproduction. *J. Energy Chem.* 2023, *79*, 158-167. https://doi.org/10.1016/j.jechem.2022.11.043.
- 20. Bariki, R.; Kumar Pradhan, S.; Panda, S.; Kumar Nayak, S.; Majhi, D.; Das, K.; Mishra, B.G. In-situ synthesis of structurally oriented hierarchical UiO-66(–NH₂)/CdIn₂S₄/CaIn₂S₄ heterostructure with dual S-scheme

- engineering for photocatalytic renewable H₂ production and asulam degradation. *Sep. Purif. Technol.* **2023**, 314, 123558. https://doi.org/10.1016/j.seppur.2023.123558.
- Janani, R.; Preethi V, R.; Singh, S.; Rani, A.; Chang, C. Hierarchical ternary sulfides as effective photocatalyst for hydrogen generation through water splitting: a review on the performance of ZnIn₂S₄. Catalysts 2021, 11, 277. https://doi.org/10.3390/catal11020277.
- 22. Luan, J.; Chen, J. Photocatalytic water splitting for hydrogen production with novel Y₂MSbO₇ (M = Ga, In, Gd) under visible light irradiation. *Materials* **2012**, *5*, 2423-2438. https://doi.org/10.3390/ma5112423.
- Zhang, Z.; Huang, L.; Zhang, J.; Wang, F.; Xie, Y.; Shang, X.; Gu, Y.; Zhao, H.; Wang, X. In situ constructing interfacial contact MoS₂/ZnIn₂S₄ heterostructure for enhancing solar photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2018, 233, 112-119. https://doi.org/10.1016/j.apcatb.2018.04.006.
- 24. Li, A.; Peng, Z.; Fu, X. Exfoliated, mesoporous W₁₈O₄₉/g-C₃N₄ composites for efficient photocatalytic H₂ evolution. *Solid State Sci.* **2020**, *106*, 106298. https://doi.org/10.1016/j.solidstatesciences.2020.106298.
- 25. Zhong, X.; Sun, Y.; Chen, X.; Zhuang, G.; Li, X.; Wang, J.G. Mo doping induced more active sites in urchinlike W₁₈O₄₉ nanostructure with remarkably enhanced performance for hydrogen evolution reaction. *Adv. Funct. Mater.* **2016**, *26*, 5778-5786. https://doi.org/10.1002/adfm.201601732.
- Gao, Y.; Xu, B.; Cherif, M.; Yu, H.; Zhang, Q.; Vidal, F.; Wang, X.; Ding, F.; Sun, Y.; Ma, D.; et al. Atomic insights for ag interstitial/substitutional doping into ZnIn₂S₄ nanoplates and intimate coupling with reduced graphene oxide for enhanced photocatalytic hydrogen production by water splitting. *Appl. Catal. B: Environ.* 2020, 279, 119403. https://doi.org/10.1016/j.apcatb.2020.119403.
- Pudkon, W.; Kaowphong, S.; Pattisson, S.; Miedziak, P.J.; Bahruji, H.; Davies, T.E.; Morgan, D.J.; Hutchings, G.J. Microwave synthesis of ZnIn₂S₄/WS₂ composites for photocatalytic hydrogen production and hexavalent chromium reduction. *Catal. Sci. Technol.* 2019, 9, 5698-5711. https://doi.org/10.1039/c9cy01553a.
- 28. Bo, L.; He, K.; Tan, N.; Gao, B.; Feng, Q.; Liu, J.; Wang, L. Photocatalytic oxidation of trace carbamazepine in aqueous solution by visible-light-driven ZnIn₂S₄: performance and mechanism. *J. Environ. Manage.* **2017**, 190, 259-265. https://doi.org/10.1016/j.jenvman.2016.12.050.
- Bhavani, P.; Praveen Kumar, D.; Jeong, S.; Kim, E.H.; Park, H.; Hong, S.; Gopannagari, M.; Amaranatha Reddy, D.; Song, J.K.; Kim, T.K. Multidirectional-charge-transfer urchin-type Mo-doped W₁₈O₄₉ nanostructures on CdS nanorods for enhanced photocatalytic hydrogen evolution. *Catal. Sci. Technol.* 2018, 8, 1880-1891. https://doi.org/10.1039/C7CY02162C.
- Zou, X.; Yuan, C.; Cui, Y.; Dong, Y.; Chen, D.; Ge, H.; Ke, J. Construction of zinc-indium-sulfide/indium oxide step-scheme junction catalyst for enhanced photocatalytic activities of pollutant degradation and hydrogen generation. Sep. Purif. Technol. 2021, 266, 118545. https://doi.org/10.1016/j.seppur.2021.118545.
- Zhang, Z.; Huang, L.; Zhang, J.; Wang, F.; Xie, Y.; Shang, X.; Gu, Y.; Zhao, H.; Wang, X. In situ constructing interfacial contact MoS₂/ZnIn₂S₄ heterostructure for enhancing solar photocatalytic hydrogen evolution. *Appl. Catal. B: Environ.* 2018, 233, 112-119. https://doi.org/10.1016/j.apcatb.2018.04.006.
- 32. Xiong, M.; Chai, B.; Yan, J.; Fan, G.; Song, G. Few-layer WS₂ decorating ZnIn₂S₄ with markedly promoted charge separation and photocatalytic H₂ evolution activity. *Appl. Surf. Sci.* **2020**, *514*, 145965. https://doi.org/10.1016/j.apsusc.2020.145965.
- Zhao, C.; Zhang, Y.; Jiang, H.; Chen, J.; Liu, Y.; Liang, Q.; Zhou, M.; Li, Z.; Zhou, Y. Combined effects of octahedron NH₂ -UiO-66 and flowerlike ZnIn₂S₄ microspheres for photocatalytic dye degradation and hydrogen evolution under visible light. *J. Phys. Chem. C* 2019, 123, 18037-18049. https://doi.org/10.1021/acs.jpcc.9b03807.
- 34. Gao, Z.; Chen, K.; Wang, L.; Bai, B.; Liu, H.; Wang, Q. Aminated flower-like ZnIn₂S₄ coupled with benzoic acid modified g-C₃N₄ nanosheets via covalent bonds for ameliorated photocatalytic hydrogen generation. *Appl. Catal. B: Environ.* **2020**, *268*, 118462. https://doi.org/10.1016/j.apcatb.2019.118462.
- Ye, L.; Fu, J.; Xu, Z.; Yuan, R.; Li, Z. Facile one-pot solvothermal method to synthesize sheet-on-sheet reduced graphene oxide (RGO)/ZnIn₂S₄ nanocomposites with superior photocatalytic performance. ACS Appl. Mater. Interfaces 2014, 6, 3483-3490. https://doi.org/10.1021/am5004415.
- 36. Xiong, M.; Yan, J.; Chai, B.; Fan, G.; Song, G. Liquid exfoliating CdS and MoS₂ to construct 2D/2D MoS₂/CdS heterojunctions with significantly boosted photocatalytic H₂ evolution activity. *J. Mater. Sci. Technol.* **2020**, 56, 179-188. https://doi.org/10.1016/j.jmst.2020.03.037.

- 37. Ren, D.; Shen, R.; Jiang, Z.; Lu, X.; Li, X. Highly efficient visible-light photocatalytic H₂ evolution over 2D–2D CdS/Cu₇S₄ layered heterojunctions. *Chin. J. of Catal.* **2020**, *41*, 31-40. https://doi.org/10.1016/S1872-2067(19)63467-4.
- 38. Wang, K.; Li, Y.; Li, J.; Zhang, G. Boosting interfacial charge separation of Ba₅Nb₄O₁₅/g-C₅N₄ photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H₂ generation. *Appl. Catal. B: Environ.* **2020**, 263, 117730. https://doi.org/10.1016/j.apcatb.2019.05.032.
- 39. Li, C.; Che, H.; Yan, Y.; Liu, C.; Dong, H. Z-scheme AgVO₃/ZnIn₂S₄ photocatalysts: "one stone and two birds" strategy to solve photocorrosion and improve the photocatalytic activity and stability. *Chem. Eng. J.* **2020**, *398*, 125523. https://doi.org/10.1016/j.cej.2020.125523.
- 40. Mishra, P.; Acharya, L.; Parida, K. A comparison study between novel ternary retrieval NiFe₂O₄@p-doped g-C₃N₄ and Fe₃O₄@p-doped g-C₃N₄ nanocomposite in the field of photocatalysis, H₂ energy production and super capacitive property. *Mater. Today: Proceedings* 2021, 35, 281-288. https://doi.org/10.1016/j.matpr.2020.05.764.
- 41. Yang, C.; Li, Q.; Xia, Y.; Lv, K.; Li, M. Enhanced visible-light photocatalytic CO₂ reduction performance of ZnIn₂S₄ microspheres by using CeO₂ as cocatalyst. Appl. Surf. Sci. 2019, 464, 388-395. https://doi.org/10.1016/j.apsusc.2018.09.099.
- 42. Guo, W.; Lian, X.; Nie, Y.; Hu, M.; Wu, L.; Gao, H.; Wang, T. Facile growth of β-Cu₂V₂O₇ thin films and characterization for photoelectrochemical water oxidation. Mater. Lett. 2020, 258, 126842. https://doi.org/10.1016/j.matlet.2019.126842.NE.Bib

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.