
Article Not peer-reviewed version

The Impact of Transportation

Accessibility on Regional Land Price

Disparities in South Korea, 2010–2019

Kyungjae Lee , Dohyeong Choi , Seongwoo Lee *

Posted Date: 21 April 2025

doi: 10.20944/preprints202504.1629.v1

Keywords: Transportation Accessibility; Land Price; Regional Disparity; Spatial Panel Model; Geographically

Weighted Regression Model

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4394203
https://sciprofiles.com/profile/4395547
https://sciprofiles.com/profile/441381


 

Article 

The Impact of Transportation Accessibility on 

Regional Land Price Disparities in South Korea, 

2010–2019 

Kyungjae Lee 1, Dohyeong Choi 2 and Seongwoo Lee 1,* 

1 Department of Agricultural Economics and Rural Development, Seoul National University, Seoul, Korea 

2 Department of Agricultural and Applied Economics, University of Illinois Urbana-Champaign, Urbana-

Champaign, Illinois, US 

* Correspondence: seonglee@snu.ac.kr 

Abstract: Transportation infrastructure is a fundamental driver of economic growth and regional 

connectivity, and the supply of this infrastructure has been expected to reduce spatial disparities. 

This study investigates the impact of transportation accessibility on regional disparities in land prices 

across South Korea from 2010 to 2019. Using spatial econometric models and geographically 

weighted regression (GWR), this study evaluates how variations in transportation networks 

influence land price differentials between regions. The results confirm that transportation 

accessibility positively affects land prices, but GWR coefficients reveal substantial regional variations 

in the extent to which accessibility improvements drive land price growth. Furthermore, while the 

overall distribution of transportation accessibility remained relatively stable, its influence on land 

price appreciation varied significantly, contributing to a widening gap in land values between 

regions. These findings underscore the critical role of transportation infrastructure in shaping 

regional inequalities and highlight the need for more equitable transportation policies to mitigate 

spatial disparities and promote balanced regional development. 

Keywords transportation accessibility; land price; regional disparity; spatial panel model; 

geographically weighted regression model 

 

1. Introduction 

Transportation infrastructure, including roads and railways, is a key determinant of regional 

quality of life. It ensures equitable market access across all spatial units within a nation. By facilitating 

efficient movement of labor and logistics between regions, transportation infrastructure directly and 

indirectly enhances productivity in beneficiary areas, thereby contributing to national and regional 

economic growth. Consequently, the establishment and maintenance of transportation infrastructure 

are crucial for economic revitalization and income growth in underdeveloped regions and essential 

for achieving balanced regional development. 

Concerns regarding balanced development have consistently been raised since the early stages 

of economic development periods in South Korea (hereafter Korea). Korea has endeavored to 

enhance regional competitiveness, mitigate regional disparities, and improve quality of life in 

underdeveloped areas through diverse initiatives such as the Five-Year National Balanced 

Development Plans in the 1970s. Among these initiatives, the provision of social infrastructure, 

particularly nationwide transportation networks, serves as a foundational policy for balanced 

regional development. However, despite substantial investments in transportation infrastructure, 

disparities between metropolitan and nonmetropolitan areas have continued to widen in such 

indicators as assets, employment, and income, etc. Consequently, criticisms have emerged regarding 

the equity of nationwide transportation infrastructure policies (Chung et al., 2011; Jo & Woo, 2014; 

Jun & Lee, 2007; Lee & Jung, 2011; Park et al., 2020). 
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From a spatial equity perspective, policy evaluation should consider the regional distribution of 

economic benefits resulting from transportation infrastructure policies. This study focuses on 

disparities in land value escalation as a key indicator of regional economic activation, which is a 

primary benefit of transportation infrastructure investments. Land prices encapsulate the efficiency 

of spatial allocation and the capitalized expectation of future returns. Thus, changes in land value 

serve as a representative metric for comprehensively assessing the economic value of specific areas. 

While microlevel studies examining the relationship between land value and transportation 

accessibility, such as the impact of transportation facility development on nearby land prices, are 

abundant (Chae & Sung, 2019; Choi & Kim, 2021; Kang, 2021), macrolevel research investigating how 

nationwide transportation network improvements influence regional land value changes remains 

limited. In particular, studies examining land price variations driven by improved transportation 

accessibility in relation to forward and backward linkages with existing regional infrastructure are 

extremely rare. 

This study investigates how transportation accessibility influences land prices and analyzes 

changes in regional disparities driven by accessibility shifts from 2010 to 2019. Using transportation 

accessibility as a proxy for regional investment efficiency in transportation infrastructure, this study 

evaluates the extent to which improvements in roads, railways, and utilities contribute to variations 

in land prices. Furthermore, it examines how accessibility-driven changes affect regional equity, 

highlighting the spatial heterogeneity of their impacts. By providing empirical insights into the 

relationship between transportation accessibility and land price disparities, this study offers valuable 

guidance for policymakers aiming to develop transportation infrastructure policies that promote 

balanced regional development. 

2. Background 

2.1. Transportation Accessibility and Regional Development 

Transportation accessibility is a driver of national and regional development, facilitating 

interregional trade and the movement of production factors and final output. Numerous studies have 

confirmed the positive impact of transportation infrastructure on productivity by reducing logistics, 

storage, and transportation costs, enhancing labor and capital productivity, and increasing demand 

for goods and services (Cook & Munnell, 1990; Litman, 2015; Munnell, 1990; Qi et al., 2020). The 

increase in productivity by the improved transportation accessibility significantly stimulates 

intraregional employment and income growth (Aschauer, 1990; Harris Jr., 1980; Mills & Carlino, 

1989). Regions experiencing efficiency improvements due to enhanced accessibility accrue economic 

benefits such as market expansion, income growth, and increased land values (Ahlfeldt & Feddersen, 

2017; Banister & Berechman, 2001; Bröcker et al., 2010; Hwang, 2002; Monzon et al., 2013; Qin, 2017). 

Notably, Aschauer (1990) demonstrated a significant correlation between public capital 

investments—including transportation infrastructure such as highways, airports, and public 

transit—and national productivity. 

Previous studies have confirmed network effects of transportation, demonstrating that 

transportation infrastructure investments generate positive spillovers beyond directly affected areas. 

Munnell (1992) argued for positive spillover effects of regional transportation infrastructure 

investments on other regions, and numerous studies across various countries have identified 

significant interregional spillovers (Cai et al., 2022; Chen et al., 2019; Gutiérrez et al., 1996; Kim et al., 

2021; Cantos et al., 2005; Yu et al., 2013). Improved transportation accessibility has particularly 

enhanced labor market integration by enabling workers from peripheral regions to access broader 

employment opportunities, thus contributing to wage convergence between core and peripheral 

areas (Leck et al., 2008). 

However, an opposing viewpoint suggests that transportation infrastructure investments may 

generate backwash effects, causing the outflow of quality production factors from less-developed 

regions to more advanced ones, potentially exacerbating regional disparities (Cavallaro et al., 2022; 
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Lin & Huang, 2021; Meijers et al., 2012; Sánchez-Mateos & Givoni, 2012; Zhang et al., 2019). Chong et 

al. (2019) provide empirical evidence supporting this argument, demonstrating that high-speed rail 

(HSR) development in China has primarily stimulated economic growth in well-connected urban 

centers, while peripheral regions have struggled to capture similar benefits. Their findings indicate 

that instead of fostering regional convergence, transportation investments may reinforce existing 

spatial inequalities. 

Several studies in the Korean context have examined the effects of transportation network 

investments on regional disparities. Park et al. (2020) showed that improved road and railway 

accessibility positively influences population influx and Gross Regional Domestic Product (GRDP) 

within beneficiary regions; however, these improvements negatively affect population influx in 

adjacent areas, exerting adverse impacts on GRDP growth in neighboring regions. Kim & Yi (2019) 

applied a computable general equilibrium model to analyze high-speed railway infrastructure 

investments and interregional inequality, finding most benefits concentrate within established 

traditional growth corridors. These results suggest that although transportation infrastructure 

investments may enhance overall economic activity across regions, regional disparities can 

simultaneously be intensified. 

2.2. Transportation Accessibility and Land Price 

This study analyzes the impact of improved transportation accessibility on regional and national 

economies, using land prices as a mediating indicator that comprehensively reflects regional 

disparities. The theoretical underpinning of the relationship between transportation infrastructure 

and land price is that transportation infrastructure improvements enhance the accessibility of land. 

This increased accessibility directly translates to reduced transportation costs (time, monetary 

expenses, and effort) for individuals and businesses. These reduced transportation costs and 

improved accessibility are then capitalized into land values. This means that the benefits of better 

transportation are reflected in higher prices that people are willing to pay for land in those accessible 

locations. The primary concern for these theories is that publicly funded transportation infrastructure 

projects generate an “unearned increment” in the value of nearby land due to improved accessibility. 

That is, the increase in land value is a result of public investment, not the landowner’s efforts. In this 

regard, analyzing the impact of transportation network development on interregional differences in 

land prices is essential for ensuring equitable resource distribution and balanced regional 

development. 

In recent years, land prices in certain Korean regions have risen sharply, contributing to 

deepening interregional disparities. This widening gap in land prices results from uneven economic 

development and influences the movement of production factors, further exacerbating regional 

inequalities. Studies addressing the relationship between transportation accessibility and land prices 

have examined various impacts of transportation network improvements on rising land prices 

(Bollinger et al., 1998; Gatzlaff & Smith, 1993). Enhanced transportation accessibility produces 

spillover effects not only in the target areas but also in geographically adjacent regions, allowing 

areas without direct benefits to experience positive externalities (Bröcker et al., 2010). However, 

limited empirical research has analyzed the spatial correlation between transportation accessibility 

and land price differentials. One of the few recent studies investigated the relationship between 

regional transportation network density and land price disparities in China (Li & Chen, 2022), 

demonstrating that increased provincial-level transportation network density reduces the Gini 

coefficient measured by provincial land prices. 

2.3. Transportation Infrastructure Policies in Korea 

Concerns regarding regional disparities have consistently been raised since Korea’s 

implementation of economic development plans in the 1960s. Since the 2000s, efforts have been 

undertaken to address regional imbalances through initiatives such as the Five-Year National 
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Balanced Development Plans. Among these initiatives, the provision of social overhead capital 

(SOC), including the development of a nationwide transportation network, has been a fundamental 

policy for achieving balanced regional development. The Ministry of Land, Infrastructure, and 

Transport’s investment in road construction averaged over 7 trillion KRW annually from 2016 to 

2020, with a projected investment of approximately 26 trillion KRW from 2021 to 2025. Additionally, 

the national railway network received budgetary allocations exceeding 15 trillion KRW from 2016 to 

2020, totaling around 21 trillion KRW when including private investments (Kim et al., 2021). 

Transportation infrastructure supply is predominantly financed by the government. Therefore, the 

economic efficiency of constructed roads and railways, along with regional equity, has been a critical 

focus of policy concerns. 

Figure 1 illustrates interregional differences in road, railway, and utility accessibility in Korea 

from 2010 to 2019 across 247 local governments, measured by the Gini coefficient. During this period, 

disparities in road and railway accessibility remained relatively stable, ranging from 0.50 to 0.51 and 

0.54 to 0.55, respectively, while utility accessibility exhibited a slight decrease of approximately 4% 

(from 0.50 to 0.48). Although transportation accessibility remains higher in major metropolitan areas, 

extreme skewness is not observed. In summary, regional disparities in transportation accessibility 

either decreased or remained stable, suggesting transportation infrastructure investment policies 

have not contributed to widening regional disparities. Based solely on this argument, balanced 

investments in transportation networks appear to have been effective. 

 

Figure 1. Regional Disparities in Transportation Accessibility (GINI). 

Despite stable or reduced regional disparities in transportation accessibility, disparities between 

metropolitan and nonmetropolitan areas have been widening across various indicators, including 

population, employment, assets, and income (Kim, 2023). That is, even with apparently balanced 

investments in transportation networks, regional disparities continue to intensify in those key 

indicators. The benefits of transportation network investments typically concentrate in regions with 

pre-existing infrastructure (Banister & Thurstain-Goodwin, 2011; Kim & Sultana, 2015; Kim & Yi, 

2019). Therefore, if benefits from transportation infrastructure investments predominantly 

accumulate in specific regions, regional disparities are likely to expand beyond the scope of 

accessibility. 

Since Korea’s active industrialization, wealth disparities have continued to rise (Kim & Yu, 

2018), indicating that improved accessibility under the existing transportation policy has not 

translated into investments aimed at enhancing regional equity. In formulating transportation 

policies, considerations must extend beyond the economic benefits of accessibility improvements and 
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encompass equity, as previous studies have asserted (Donaldson, 2018; Tsutsumi & Seya, 2008). In 

particular, land prices represent a critical asset indicator capable of comprehensively reflecting 

changes in regional economic activity, attractiveness, and asset value. By analyzing regional equity 

in transportation infrastructure through land prices, this study can provide insightful implications 

for developing balanced transportation policies. 

3. Methodologies and Data 

3.1. Methodologies 

As noted above, investments in transportation infrastructure have direct and indirect effects on 

beneficiary areas and spatially adjacent regions. In addition, spillover effects arising from preexisting 

transportation infrastructure contribute to increasing regional utility. To control for inherent spatial 

heterogeneity and spatial autocorrelation embedded in improved transportation accessibility, this 

study sequentially employs panel and cross-sectional spatial econometric models as well as 

geographically weighted regression models. 

Spatial econometric models use spatial weight matrices to account for spillover effects based on 

regions’ proximity (Anselin et al., 2008; LeSage & Pace, 2009). Spatial weight matrices can take various 

forms, such as adjacency matrices or inverse distance weight matrices, with no fundamental 

differences in their essence, assigning higher weights to spatially closer entities (Lee et al., 2006). 

Because transportation accessibility does not discretely influence regions according to administrative 

boundaries but affects all spaces nationwide, excluding remote regions inaccessible by roads or 

railways, this study employs an optimized inverse distance weight matrix to capture interactions 

among all regions nationwide. This matrix assigns higher weights to geographically closer regions 

based on the inverse of distances between regional centroids. By calculating weights using distance 

rather than adjacency alone, this approach incorporates interactions across a broader spatial range, 

capturing more diverse spatial relationships and dependencies. 

3.1.1. Spatial Panel Model 

The fundamental equation of the spatial panel model proposed by Lee and Yu (2010) is 

represented by Equation (1). 

���  =  �����  + ���� + ��  +  ���   (1) 

���  =  �����  + ��� 

where ��� represents the vector of dependent variables at certain time points, ��� is the matrix of 

independent variables, W is the spatial weight matrix, ��  denotes the vector of fixed effects 

corresponding to regional characteristics, ���  is the spatial error vector, and ���  is the vector of 

errors independently distributed over time and space without spatial dependence. The coefficients 

� and � indicate the spatial dependence of the dependent variable and the error term, respectively. 

This study uses the spatial error model (SEM), which incorporates the spatial dependence of the error 

term to analyze the panel data, estimating the model under the constraint � =  0, as indicated in 

Equation (1). 

3.1.2. Cross-Sectional Spatial Econometrics Model 

The general formula for the spatial econometric model utilized in cross-sectional data analysis 

is as follows: 

� =  ��� +  �� +  �    (2) 

� =  ��� +  � 

This study employs the spatial autoregressive confused (SAC) model to analyze cross-sectional 

data, assuming spatial dependence for the dependent variable and the error term to estimate � and 

�. 
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3.1.3. Geographically Weighted Regression Model 

This study is predicated on the assumption that the correlation between transportation 

accessibility and land prices will exhibit geographical variations due to the spillover effects of 

preexisting infrastructure. The geographically weighted regression (GWR) model is the most suitable 

approach for such a scenario as it enables the examination of spatial heterogeneity. The GWR 

approach, which is formulated by estimating a locally weighted least squares model, assigns spatial 

weights based on the physical distance between coordinates in a regression analysis. This approach 

provides regression coefficients that account for the interdependence of regional samples, reflecting 

the spatial relationships among them. The fundamental equation is expressed as follows: 

��  =  ��(��, ��)  + ∑ ��(��, ��)���
�
� � �  +  ��  (3) 

��(��, ��)  =  [���(��, ��)�]�����(��, ��)�   (4) 

Equation (4) signifies the estimated parameters specific to individual regions through the 

regression equation in Equation (3), where ��(��, ��) is the coefficient of the ��� variable for region 

�. �(��, ��) is the spatial weight matrix used in the regional model estimation. This weight differs 

from spatial econometric models as it employs regional-specific diagonal matrices. This study applies 

an Adaptive bi-square kernel function to assign spatial weights, referencing Fotheringham et al. 

(2003)1. Unlike spatial panel models or spatial econometric models, the GWR model estimates region-

specific coefficients, providing an effective method for analyzing spatial heterogeneity in land price 

changes. This approach enables a more detailed understanding of how transportation accessibility 

impacts land prices across different regions, allowing for a more precise identification of region-

specific variations in land price increases. 

3.1.4. Gini Coefficient 

This study employs the Gini coefficient to assess regional disparities in the efficiency of 

transportation infrastructure investments. The Gini coefficient is a widely used measure of inequality, 

effectively capturing disparities through the Lorenz curve, and ranges from 0 (perfect equality) to 1 

(maximum inequality). The calculation of the Gini coefficient is expressed by the following formula: 

���� =  
1

2�2�
 ∑ ∑ ���  − ����

� � 1
�
� � 1   (5) 

where � represents the nationwide average land price, and ��  and ��  denote the land prices for 

respective regions � and �. n represents the number of regions (=247). 

3.2. Data 

This study utilizes municipal-level panel data sourced from the Ministry of Land, Infrastructure, 

and Transport and the Korea Real Estate Board, combined with transportation accessibility data 

provided by the Korea Transport Institute. The variables and corresponding data sources are 

summarized in Table 1. The dataset covers the period from 2010 to 2019 and includes 247 cities and 

counties across South Korea. Notably, Ulleung-gun, Jeju-si, and Seogwipo-si are excluded from the 

analysis due to their limited connectivity to nationwide road and railway networks, which are central 

to this study. 

  

 
1 Adaptive bi-square kernel function assigns weights that decrease with increasing distance from the target 

location, reaching zero beyond a certain threshold distance, which is automatically optimized based on the 

spatial distribution of the data to ensure the most appropriate bandwidth for the analysis. 
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Table 1. Description of Variables for Spatial Econometrics Models. 

 Variable Name Definition Source 

Dependent Variable   

 Average Land 

Price 
(log) Average land price by region (KRW/�2) 

Korea Real Estate 

Board 

Regional Variables   

 GRDP (log) GRDP per capita (million KRW/person) 

Statistics Korea 

 Establishment 
(log) Number of establishments per 1,000 people

  

 Manufacturer 
% of manufacturing establishments to total 

establishments 

 Density (log) Population per total area (people/��2) 

 Aging % of population aged 65 and above 

 Restriction % of restricted development area to total area 

Accessibility 

Variables 

  

 ln_TRAD_R  (log) TRAD road accessibility 

Korea Transport 

Institute 

 ln_TRAD_T (log) TRAD railway accessibility 

 ln_WATT_R  (log) WATT road accessibility 

 ln_WATT_T (log) WATT railway accessibility 

 ln_UTILITY (log) Utility accessibility 

The majority of land-related research conducted in Korea has utilized government-designated 

standard land prices (Officially Announced Price of Reference Land) as indicators of land value. The 

term “reference land” refers to representative and stable parcels selected from groups of parcels 

recognized as generally similar in terms of land use conditions, surrounding environment, and other 

natural and social characteristics. The standard land disclosure price is determined by the Minister 

of Land, Infrastructure, and Transport through an annual investigation and evaluation of prices for 

approximately 500,000 standard parcels, as of the disclosure reference date (January 1st), in 

accordance with the Real Estate Price Disclosure and Appraisal Law. The assessed prices, subject to 

deliberation by the Central Real Estate Evaluation Committee, are publicly disclosed as fair market 

values. Local governments, including city, county, and district offices, subsequently adopt and 

announce individual disclosure prices based on this process (Jeong et al., 2020). The dependent 

variable selected for this study is the Officially Announced Price of Reference Land per square meter, 

due to its suitability for analyzing trends in land price differentials across regions, as it provides 

annually standardized land prices for each region. 

Other independent variables used in this study, including regional economic and local 

development indicators, are constructed based on theoretical rationales drawn from regional 

economic and development studies. The selection of these variables was guided by previous research 

findings and data availability at the municipal level from 2010 to 2019. Detailed explanations 

regarding the causal relationships between individual regional variables and regional economic 
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activities (i.e., GRDP and land prices) have been thoroughly established in prior studies by Park et 

al. (2020), Lee et al. (2021), and Choi et al. (2020), obviating the need for additional elaboration. 

Various transportation accessibility indicators are employed as independent variables to reflect 

the efficiency of transportation infrastructure investments. Regional accessibility, as defined by 

Hansen (1959), represents the latent potential for interaction between regions. Transportation 

accessibility variables used in this study include TRAD, weighted average travel time (WATT), and 

utility accessibility, calculated using origin–destination (OD) data from transportation demand 

forecasting models, where population figures are replaced with arrival counts. Unlike traditional 

approaches estimating potential size based on population and employment data, this method 

measures potential size using actual travel volumes. Arrival counts are commonly employed in 

transportation demand models by Metropolitan Planning Organizations in the United States and 

have been widely adopted in Korean studies (Choi et al., 2020; Lee et al., 2021; Park et al., 2020). 

The traditionally adopted accessibility measure in accessibility calculations is TRAD 

accessibility (road and railway), and its formulation is as follows: 

�����  =  
�

�(���)
�∑

��

���

�
� � �,���  + ∑

��

���

�
� � �,��� �  (6) 

where � refers to administrative divisions in Korea, specifically targeting 247 cities and counties of 

the total 250 regional units (excluding Ulleung-gun, Jeju-si, and Seogwipo-si). ���  represents the time 

required for travel from region � to region �, while ���  denotes the time incurred in transit from 

region  �  to region � . ��  represents the number of travelers originating from region � , and ��  

corresponds to the travelers (arrival count) destined for region �. In calculating TRAD accessibility, 

the separate considerations of road and railway accessibility imply a distinction based on the 

difference between traffic volumes and travel times for each mode, although there is no difference in 

the computational process. 

WATT accessibility (road and railway) differs from the TRAD approach as it assigns higher 

values to regions with longer travel times. This variable is computed as the weighted average of travel 

times (���) by arrival counts (��). The formula is as follows: 

�����  =  
∑ ��� × ����� � �

∑ ��� � �
    (7) 

Regions’ utility accessibility is calculated by estimating the utility function obtained through 

connections from one region to another, which is measured considering time, distance, 

socioeconomic variables, and local characteristics of population, employment, and building floor 

area. This approach offers the advantage of providing a more realistic and detailed estimation of local 

accessibility, as it incorporates nuanced factors related to land use modifications and inclusive 

considerations of time and expenses (Geurs et al., 2010). The calculation formula is expressed as 

follows: 

��������  =  ��� ∑ ������������    (8) 

where �� represents the logsum coefficient for the purpose of travel �, ���� denotes the utility, � 

indicates income-stratified population groups considered, and �  signifies transportation zones 

(Geurs et al., 2010; Kim et al., 2019). Utility accessibility is an accessibility indicator derived by 

summing the expected utility for all modes of travel that can be used for segment-specific travel from 

a specific region. 

4. Results 

This study constructs transportation accessibility at municipal levels to analyze the impact of 

changes in road and railway infrastructure on the standardized land disclosure prices of individual 

regions. First, spatial econometric models are applied to estimate the elasticity of land prices based 

on changes in accessibility for each region. Second, GWR models are employed to account for 

differentiated spatiotemporal linkage effects based on regional infrastructure conditions, enabling 

the estimation of regression coefficients for all 247 regions. Third, temporal changes in the Gini 

coefficient are analyzed based on the elasticity of land prices attributed to estimated regional 
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transportation infrastructure investments through accessibility. The regional disparities in land value 

appreciation and elasticity calculated through these processes provide evidence of the influence of 

transportation policies on spatial inequality over the past decade. 

Before estimating spatial econometric models at the panel and cross-sectional levels, an 

examination of the spatial dependence of the dependent variable (land prices) was conducted using 

Moran’s Index (Table 2). A global Moran’s I approaching 1 suggests strong spatial clustering, whereas 

approaching -1 indicates significant spatial dispersion. According to the global Moran’s I estimates, 

spatial dependence in land prices is evident in nationwide city and county regions from 2010 to 2019 

and is statistically significant at the p < .01 level for all years. These results align with the study’s 

objective of analyzing regional disparities in land prices and highlight the necessity of accounting for 

spatial dependence to avoid biased or inefficient estimates. Consequently, spatial econometric 

models are applied in this study to appropriately capture the spatial interactions and heterogeneity 

inherent in the data. 

Table 2. The Global Moran’s I Indices. 

 Yearly Index 

 2010 2011 2012 2013 2014 

Moran’s I 0.544*** 0.545*** 0.548*** 0.545*** 0.542*** 

 2015 2016 2017 2018 2019 

Moran’s I 0.539*** 0.537*** 0.531*** 0.525*** 0.501*** 

*** p<0.01, ** p<0.05, * p<0.1. 

The use of panel data allows for more robust estimation results by eliminating endogeneity 

among latent variables when empirically examining the relationship between spatial unit 

transportation accessibility and local utility. To leverage these empirical advantages, this study 

estimates a one-way fixed effects panel SEM that does not include lagged terms for the dependent 

variable, enabling the interpretation of each independent variable’s coefficients as direct effects on 

the dependent variable. The estimation results are presented in Table 3. The key predictor variables 

for land prices in all three regression models are road, railway, and utility accessibility, while 

controlling for independent variables related to the economy, population, and urban planning areas. 

Applying quasi-maximum likelihood estimation, the resulting pseudo �� ranges between 76% 

and 87%, indicating that the panel model effectively explains a substantial portion of the variance in 

land prices. The coefficient ( � ), representing the spatial autocorrelation of regional errors, is 

statistically significant at the 1% level in all models, revealing spatial dependence in regional errors. 

Control variables of GRDP, industrial structure, demographic composition, and restricted 

development area exhibit significant impacts on average land prices at the 1% significance level. An 

increase in GRDP implies a positive correlation with land prices, indicating that a 1% increase in 

GRDP results in a 0.1% increase in regional land value. The results for the number of manufacturing 

establishments, which is controlled as an indicator of economic activity, reveal that a 1% increase in 

establishments corresponds to a 0.08% increase in land prices. The positive correlation between 

manufacturing establishments and land prices underscores the significant impact of industrial 

structure on regional economic growth. The results for higher population density suggest efficient 

land use, which positively influences land prices. A positive correlation is revealed between the aging 

rate and land prices, showing that a 1% increase in the aging rate corresponds to a 0.01% increase in 

land prices. Finally, the restricted development area consistently shows statistical significance at the 

p < .01 level across all models, with an elasticity indicating a roughly −0.9% decrease in land prices 

associated with a one unit increase in this variable. 
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Transportation accessibilities generally demonstrate a statistically significant positive 

correlation with land prices at the 1% significance level. Regarding TRAD road accessibility, a 1% 

increase is associated with a 1.497% increase in land prices, while railway accessibility is linked to a 

0.079% increase for a 1% rise; however, TRAD railway accessibility is statistically insignificant. 

Comparable results are obtained in the analysis based on travel time-based indicators (WATT). 

Comparing the absolute estimates of road and railway accessibility, the elasticity for road 

accessibility is considerably larger than that for railway accessibility. This suggests that road 

networks have a stronger influence on residential and economic activities than the railway network 

when considered from the perspective of regional living areas at the city and county regional level. 

Utility accessibility also exerts a statistically significant positive impact on regional land prices at the 

p < .01 level. Similar findings have been documented in studies such as Bollinger et al. (1998) and 

Gatzlaff and Smith (1993), which highlight the influence of transportation infrastructure on land price 

dynamics. 

Overall, the results confirm the significant and positive relationship between transportation 

accessibility and land prices, as discussed in the background section of this study. The observed 

elasticities indicate that transportation infrastructure investments contribute to regional land price 

increases, reinforcing the importance of equitable and strategic transportation development policies 

to address regional disparities. 

Table 3. SEM Panel Model Estimation Results, 2010-2019. 

  TRAD Accessibility WATT Accessibility Utility 

Accessibility Variable Road Railway Road Railway 

GRDP 0.103 *** 0.125 *** 0.075 *** 0.124 *** 0.115 *** 

Establishment 0.091 *** 0.082 *** 0.078 *** 0.082 *** 0.084 *** 

Manufacturer 0.713 *** 0.678 *** 0.569 *** 0.676 *** 0.657 *** 

Density 0.521 *** 0.557 *** 0.515 *** 0.555 *** 0.476 *** 

Aging 0.013 *** 0.015 *** 0.009 *** 0.015 *** 0.015 *** 

Restriction -0.936 *** -0.983 *** -0.889 *** -0.985 *** -0.975 *** 

ln_TRAD_R 1.497 ***         

ln_TRAD_T   0.079        

ln_WATT_R     -2.965 ***     

ln_WATT_T       -0.115 ***   

ln_UTILITY         0.087 *** 

λ 1.279 *** 1.284 *** 1.074 *** 1.274 *** 1.252 *** 

σ 0.065 *** 0.066 *** 0.06 *** 0.066 *** 0.066 *** 

N 2,470 2,470 2,470 2,470 2,470 

Time Period 10 10 10 10 10 

# of groups 247 247 247 247 247 

Pseudo R2 0.871 0.859 0.760 0.847 0.844 

LL 2913 2874 3064 2877 2890 

Note: *** p<0.01, ** p<0.05, * p<0.1. 

While spatial panel models offer the advantage of robustly confirming relationships between 

variables, the limitation of such models is that they do not allow for the observation of annual trends 

in the relationships between variables. Therefore, we subsequently conduct cross-sectional analyses 
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to examine the annual variations in each accessibility coefficient. As noted previously, the SAC model 

are employed for these analyses, including spatial lagged terms for the dependent variable and error 

terms. Table 4 presents only the results for TRAD accessibility and utility accessibility2. 

The correlation between accessibility and land prices is significantly positive at the p<.01 level 

in all years, aligning with the results from the panel analysis. Additionally, the spatial lagged terms 

(� and �) for the dependent variable and error terms are significantly estimated in the positive 

direction, indicating that land prices in one region are influenced directly and indirectly by the spatial 

interactions with neighboring regions (see Appendix 1–3). In contrast, the annual impact of 

accessibility during the same period demonstrates a diminishing trend over time, which is observed 

consistently across all three types of accessibility. This underscores the dynamic relationship between 

transportation accessibility and land prices, indicating that the marginal effects of accessibility 

improvements diminish over time as regional infrastructure reaches a state of relative saturation. 

Table 4. SAC Cross-sectional Estimation Results (Accessibility Summary). 

Variable Yearly Estimates 

 2010 2011 2012 2013 2014 

ln_TRAD_R 0.208 *** 0.204 *** 0.178 *** 0.187 *** 0.204 *** 

ln_TRAD_T 0.143 *** 0.111 *** 0.123 *** 0.108 *** 0.108 *** 

ln_UTILITY 0.188 *** 0.203 *** 0.190 *** 0.199 *** 0.197 *** 

N 247 247 247 247 247 

 2015 2016 2017 2018 2019 

ln_TRAD_R 0.181 *** 0.180 *** 0.145 *** 0.154 *** 0.160 *** 

ln_TRAD_T 0.107 *** 0.107 *** 0.084 *** 0.086 *** 0.087 *** 

ln_UTILITY 0.194 *** 0.196 *** 0.161 *** 0.171 *** 0.176 *** 

N 247 247 247 247 247 

Note: *** p<0.01, ** p<0.05, * p<0.1. 

Summarizing the analyzed results thus far, first, transportation accessibility is shown to have a 

statistically significant positive impact on land prices. Second, the evolving trends of annual 

correlations and the indirect effects generated by the established transportation network are 

substantial, suggesting the potential discriminatory effects of transportation accessibility 

improvement depending on a region’s infrastructure level. To confirm this heterogeneity from a 

spatial perspective, we conduct additional analyses applying the GWR model. 

The heterogeneity in land price formation, as identified through GWR analysis, indicates that 

the impact of transportation infrastructure investment on the increase in regional utility varies 

according to forward and backward linkage effects. Tables 5–7 summarize the GWR model 

estimation results, controlling for TRAD road and railway and utility accessibility in 2019. 

Table 5. Road Accessibility (TRAD) GWR Estimation Result (2019). 

 GWR Coefficients % of (+) or (-) Coefficients % of t-Values 

p < 0.1 Variable Min Max Mean Std. (+) (-) 

Intercept 0.548 8.618 4.608 1.827 100%  0%  93.93%  

GRDP -0.192 0.406 0.101 0.181 63.56%  36.44%  34.41%  

 
2 The results for all regression analyses applying the SAC model for TRAD road and railway accessibility and 

utility accessibility from 2010 to 2019 are summarized in Appendix 1-3. 
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Establishment -0.024 1.564 0.504 0.412 98.79%  1.21%  60.32%  

Manufacturer -3.601 -0.031 -2.020 0.912 0%  100%  82.19%  

Density 0.308 0.650 0.504 0.086 100%  0%  100%  

Aging -0.050 0.077 0.006 0.039 35.63%  64.37%  61.94%  

Restriction 0.026 2.457 0.690 0.330 100%  0%  94.33%  

ln_TRAD_R -0.005 0.517 0.259 0.120 99.60%  0.40%   86.23%  

GWR Diagnostics Adj R2 0.982 AIC 13.889  

Table 6. Railway Accessibility (TRAD) GWR Estimation Result (2019). 

 GWR Coefficients % of (+) or (-) Coefficients % of t-Values 

p < 0.1 Variable Min Max Mean Std. (+) (-) 

Intercept 1.394 8.844 5.169 1.641 100%  0%  97.17%  

GRDP -0.185 0.416 0.103 0.186 60.73%  39.27%  35.63%  

Establishment 0.018 1.576 0.520 0.436 100%  0%  59.92%  

Manufacturer -3.519 0.043 -1.882 0.897 0.40%  99.60%   76.11%  

Density 0.315 0.695 0.512 0.079 100%  0%  100%  

Aging -0.054 0.074 0.003 0.039 34.41%  65.59%  71.26%  

Restriction 0.004 2.441 0.695 0.333 100%  0%  93.93%  

ln_TRAD_T -0.135 0.432 0.188 0.130 93.93%  6.07%  81.38%  

GWR Diagnostics Adj R2 0.981 AIC 20.327  

Table 7. Utility Accessibility GWR Estimation Result (2019). 

 GWR Coefficients % of (+) or (-) Coefficients % of t-Values 

p < 0.1 Variable Min Max Mean Std. (+) (-) 

Intercept -1.315 7.728 3.472 1.974 95.55%  4.45%  73.28%  

GRDP -0.204 0.477 0.111 0.198 64.37%  35.63%  36.84%  

Establishment 0.008 1.661 0.507 0.426 100%  0%  59.11%  

Manufacturer -3.981 0.015 -2.035 1.050 0.40%  99.60%   79.76%  

Density 0.305 0.67 0.516 0.093 100%  0%  100%  

Aging -0.056 0.095 0.008 0.041 36.03%  63.97%  60.73%  

Restriction 0.014 2.514 0.700 0.364 100%  0%  93.12%  

ln_UTILITY -0.107 0.500 0.23 0.109 96.76%  3.24%  85.83%  

GWR Diagnostics Adj R2 0.943 AIC 252.724  

All three outcomes of the GWR model exhibit explanatory power exceeding 94%. While direct 

comparison is challenging due to differing estimation methods, these results surpass the explanatory 

power of the previous SEM panel model and SAC cross-sectional model. The average magnitudes of 

each accessibility coefficient also follow the same order of road, utility, and railway. In all 247 regions 

(100%), population density and restricted development area are identified as independent variables 

with statistically significant positive impacts on land prices, with the number of businesses also 

demonstrating a similar level of influence. 

Conversely, the manufacturing establishment ratio on land prices is found to have a negative 

impact in over 99.6% of the regions across all three accessibility models. Among the controlled 
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regional variables, GRDP and aging rate exhibit high spatial diversity in associated impact on land 

prices. In all three models, the influence of GRDP is positive in over 60% of the regions, with a 

negative direction observed in 35%–39% of the regions. However, for the aging rate, more than 60% 

of the regions indicate a negative impact in all three models, with a positive impact observed in 34%–

36% of the regions. 

The relationships between the three types of accessibility and land prices are confirmed to be 

statistically significant at the level of p < .10 or higher in more than 80% of regions (85% or higher for 

road and utility), indicating a meaningful impact on land value changes in most areas. In all 247 

regions, population density has a statistically significant impact on land prices at the level of p < .10 

or higher for all three types of accessibility, and restricted development area has a significant impact 

on land prices in more than 90% of regions. 

The implications of the analyses using the GWR model lie in the heterogeneity of regional 

coefficients. For instance, if the elasticity of land prices to accessibility is higher in certain regions 

compared with others, this indicates the possibility that the asset effect of transportation 

infrastructure investment may be more pronounced in those regions. In contrast, if these distinctive 

effects are concentrated in metropolitan and major city areas, this indicates a potential for 

transportation infrastructure investment to contribute to widening regional inequality. 

Figure 2 illustrates the expected changes in land prices due from improvements in each form of 

transportation accessibility for all 247 regions, presenting the temporal trends of regional disparities 

using the Gini coefficient applied to Equation (5). The projected increases in land prices for region i 

are calculated as �������(��, ��) × exp (��) . Contrary to the trend showing regional disparities in 

accessibility for each local government unit in Figure 1, the results indicate that regional disparities 

in land value increments for road–rail–utility sectors have consistently widened from 2011 to 2019. 

 

Figure 2. Transport Infrastructure Investment and Regional Disparity (Gini). 

This finding signifies that despite investments in transportation infrastructure aimed at securing 

regional equity depicted in Figure 1, the economic inequality resulting from these investments is, in 

fact, worsening and becoming more entrenched. The increase in the Gini coefficient based on land 

value increments indicates that regions with already high land values are enjoying more significant 

economic benefits from accessibility improvements. This pattern is visually confirmed through a 

geographical illustration of the land value increments for all 247 regions in 2019 compared with the 

previous year. 

Figure 3 compares the three transportation accessibilities and land value increments for the 247 

local government units in 2019, ranking them based on accessibility and land value increments. The 

comparison, which uses rankings rather than actual increments, mitigates differences between 
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regions due to scale disparities. The distribution of accessibility rankings in the left chart suggests 

relative equity, particularly in major cities. Although the accessibility levels in metropolitan areas, 

particularly those along the central transportation axis, appear favorable and are not excessively 

skewed. However, the right chart, based on the ranking of land value increments, vividly 

demonstrates the concentration of land value increases, especially in the capital region, particularly 

around Seoul. This trend is consistent across all three accessibility types. 
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Figure 3. Geographical Visualization of Raw Accessibility Rankings and Land Price Increase Rankings Due to 

Accessibility Improvement (2019). 

In sum, evaluating the regional distribution of raw transportation accessibility data from 2010 

to 2019 indicates that regional disparities have either decreased or remained at similar levels, 

demonstrating that transportation infrastructure investment policies have not necessarily 

contributed to the widening of regional disparities but rather a balanced investment has occurred 

across regions. However, the diverse spillover effects on land prices due to investments in 

transportation network and the discriminatory effects of preexisting infrastructure are notably higher 

in metropolitan and major city regions. Consequently, the current transportation investments based 

on present population and economic demands are found to have a higher likelihood of contributing 
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to the widening disparity in land prices between regions, which is a critical indicator of regional 

economic vitality. 

5. Conclusion 

Transportation infrastructure, characterized by roads and railways, is a critical determinant of 

the quality of life within a region. Its significance is underscored by its role in ensuring equitable 

market access for all spatial units within a nation. Since the implementation of transportation 

infrastructure primarily relies on government funding, the economic efficiency of constructed roads 

and railways, along with regional equity are pivotal evaluation criteria. This study aimed to 

investigate how transportation accessibility influences regional land price disparities and to assess 

the broader implications for regional equity. This study examined the impact of investment in the 

transportation sector on regional land prices disparities in Korea. 

The major findings of this study are presented as follows. First, when using raw data at city and 

county levels, accessibility tends to be higher in metropolitan areas, including the capital region 

compared with other regions; however, this disparity is not exceedingly pronounced. This implies 

that regional disparities, when evaluated solely based on raw accessibility data, have either 

diminished or maintained similar levels over the past decade. Consequently, an assessment based 

solely on transportation accessibility suggests that the transportation infrastructure policies 

implemented over the last 10 years have contributed to alleviating regional accessibility disparities. 

Second, the relationship between transportation accessibility and land prices demonstrates a 

positive correlation. The findings reveal that land prices inherently exhibit statistically significant 

levels of spatial dependence, as evidenced by the application of spatial econometric models. The 

results indicate a robust relationship between transportation accessibility and land prices across 

panel and cross-sectional analyses. Furthermore, the spatial autocorrelation term in the SAC model 

consistently exhibits statistical significance in the positive direction, suggesting that land prices in 

adjacent regions are highly likely to be influenced by spatial interactions. 

Third, the results of GWR revealed significant regional disparities, with a pronounced skewness 

toward the Seoul Metropolitan Area and other major urban regions when assessing the net effects of 

changes in transportation accessibility on land prices. This skewness is attributed to the heightened 

impact of various infrastructural effects that influence the increase in assessed land values by 

promoting forward and backward linkages, particularly in the capital region and major metropolitan 

areas. The findings suggest that the influence of previously implemented transportation investments 

on the regional disparities in land values has, in fact, expanded. 

In sum, the findings reveal that improvements in transportation infrastructure can contribute to 

rising land prices, but the effects are uneven across regions. Enhanced accessibility has intensified 

the divergence in land values over the past decade, with regions that already have high land prices 

benefiting from wealth accumulation, while less developed regions could face economic loss in a 

relative sense. These results underscore the role of forward and backward linkages of transportation 

accessibility in amplifying regional disparities, highlighting the need for policies that address these 

disparities. 

While this study provides invaluable insights for the balanced development of transportation 

policies utilizing the relationship between transportation accessibility and land price dynamics, some 

limitations warrant consideration. Factors such as variations in regional economic structures, 

demographic characteristics, local policy interventions, and pre-existing infrastructure conditions 

may play a role in the relationship, but their specific interactions and causal pathways require further 

investigation. Future studies should address these gaps to better capture the multifaceted effects of 

transportation accessibility on land prices, ultimately providing a more comprehensive 

understanding of the complex interactions between transportation infrastructure investments and 

regional economic dynamics. 
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Appendix 1. Estimation Results of Road Accessibility SAC Cross-Sectional 

Model 

Variable 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Intercept 7.962*** 7.344 *** 7.329 *** 7.27 *** 7.249 *** 7.236 *** 7.213 *** 5.972 *** 5.811 *** 5.652 *** 

GRDP 0.048 0.014  0.046  0.060  0.074 * 0.085 * 0.103 ** 
-

0.021 

 -

0.025 

 0.006  

Establishment0.182*** 0.224 *** 0.236 *** 0.209 *** 0.181 *** 0.197 *** 0.180 *** 0.712 *** 0.723 *** 0.718 *** 

Manufacturer 
-

1.480
*** 

-

1.221 
*** 

-

1.251 
*** 

-

1.166 
*** 

-

1.261 
*** 

-

1.288 
*** 

-

1.370 
*** 

-

2.417 
*** 

-

2.449 
*** 

-

2.598 
*** 

Density 0.368*** 0.373 *** 0.379 *** 0.385 *** 0.394 *** 0.399 *** 0.407 *** 0.366 *** 0.371 *** 0.379 *** 

Aging 
-

0.070
*** 

-

0.043 
*** 

-

0.043 
*** 

-

0.039 
*** 

-

0.033 
*** 

-

0.035 
*** 

-

0.032 
*** 

-

0.041 
*** 

-

0.038 
*** 

-

0.035 
*** 

Restriction 0.276** 0.189  0.191 * 0.233 ** 0.289 *** 0.266 ** 0.295 ** 0.394 *** 0.419 *** 0.448 *** 

ln_TRAD_R 0.208*** 0.204 *** 0.178 *** 0.187 *** 0.204 *** 0.181 *** 0.179 *** 0.145 *** 0.154 *** 0.160 *** 

� 0.067*** 0.072 *** 0.051 * 0.076 *** 0.064 *** 0.050 * 0.053 * 0.087 *** 0.092 *** 0.096 *** 

� 2.582*** 2.623 *** 0.951 *** 1.741 *** 2.673 *** 0.956 *** 0.955 *** 0.945 *** 0.949 *** 0.953 *** 

�2 0.090*** 0.099 *** 0.105 *** 0.099 *** 0.089 *** 0.105 *** 0.105 *** 0.079 *** 0.080 *** 0.082 *** 

N 247 247 247 247 247 247 247 247 247 247 

Pseudo R2 0.960 0.955 0.952 0.956 0.954 0.951 0.952 0.966 0.965 0.963 

LL -54.38 -65.72 -74.68 -66.63 -53.18 -74.37 -74.65 -38.85 -41.61 -44.85 

Note: *** p<0.01, ** p<0.05, * p<0.1. 

Appendix 2. Estimation Results of Railway Accessibility SAC Cross-Sectional 

Model 

Variable 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Intercept 8.536 *** 7.994 *** 7.84 *** 7.837 *** 7.821 *** 7.796 *** 7.759 *** 6.399 *** 6.28 *** 6.162 *** 

GRDP 0.056  0.004  0.07  0.061  0.073  0.094 ** 0.112 ** 
-

0.016 

 -

0.021 

 0.002  

Establishment0.180 *** 0.268 *** 0.188 *** 0.232 *** 0.221 *** 0.197 *** 0.181 *** 0.727 *** 0.738 *** 0.733 *** 

Manufacturer 
-

1.326 
*** 

-

1.155 
*** 

-

1.177 
*** -1.05 *** 

-

1.179 
*** 

-

1.183 
*** -1.27 *** 

-

2.365 
*** 

-

2.392 
*** 

-

2.533 
*** 

Density 0.374 *** 0.368 *** 0.389 *** 0.395 *** 0.402 *** 0.410 *** 0.418 *** 0.375 *** 0.381 *** 0.391 *** 
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Aging 
-

0.075 
*** 

-

0.052 
*** 

-

0.042 
*** 

-

0.044 
*** 

-

0.041 
*** 

-

0.038 
*** 

-

0.036 
*** 

-

0.044 
*** 

-

0.042 
*** 

-

0.039 
*** 

Restriction 0.272 ** 0.109  0.247 ** 0.197 * 0.213 * 0.258 ** 0.289 ** 0.388 *** 0.413 *** 0.440 *** 

ln_TRAD_R 0.143 *** 0.111 *** 0.123 *** 0.108 *** 0.108 *** 0.107 *** 0.107 *** 0.084 *** 0.086 *** 0.087 *** 

� 0.069 *** 0.067 ** 0.081 *** 0.052 * 0.051 * 0.051 * 0.055 * 0.089 *** 0.094 *** 0.099 *** 

� 2.567 *** 0.933 *** 3.144 *** 0.953 *** 0.954 *** 0.956 *** 0.954 *** 0.943 *** 0.947 *** 0.951 *** 

�2 0.093 *** 0.113 *** 0.094 *** 0.108 *** 0.107 *** 0.107 *** 0.107 *** 0.08 *** 0.082 *** 0.085 *** 

N 247 247 247 247 247 247 247 247 247 247 

Pseudo R2 0.960 0.955 0.952 0.956 0.954 0.951 0.952 0.966 0.965 0.963 

LL -54.38 -65.72 -74.68 -66.63 -53.18 -74.37 -74.65 -38.85 -41.61 -44.85 

Note: *** p<0.01, ** p<0.05, * p<0.1. 

Appendix 3. Estimation Results of Utility Accessibility SAC Cross-Sectional 

Model 

Variable 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Intercept 7.149 *** 6.165 *** 6.202 *** 6.048 *** 6.053 *** 6.057 *** 6.000 *** 4.943 *** 4.703 *** 4.499 *** 

GRDP 0.042  0.009  0.054  0.061  0.064  0.088 * 0.103 ** 
-

0.021 

 -

0.026 

 0.006  

Establishment0.211 *** 0.262 *** 0.235 *** 0.229 *** 0.224 *** 0.197 *** 0.182 *** 0.706 *** 0.718 *** 0.715 *** 

Manufacturer 
-

1.418 
*** 

-

1.263 
*** 

-

1.242 
*** 

-

1.154 
*** 

-

1.279 
*** 

-

1.284 
*** 

-

1.312 
*** -2.41 *** 

-

2.461 
*** 

-

2.670 
*** 

Density 0.342 *** 0.346 *** 0.367 *** 0.373 *** 0.378 *** 0.388 *** 0.396 *** 0.359 *** 0.364 *** 0.373 *** 

Aging 
-

0.081 
*** 

-

0.047 
*** 

-

0.043 
*** 

-

0.039 
*** 

-

0.037 
*** 

-

0.034 
*** 

-

0.031 
*** 

-

0.039 
*** 

-

0.036 
*** 

-

0.033 
*** 

Restriction 0.238 ** 0.128  0.197 * 0.214 * 0.218 * 0.266 ** 0.297 ** 0.397 *** 0.423 *** 0.451 *** 

ln_TRAD_R 0.188 *** 0.203 *** 0.19 *** 0.199 *** 0.197 *** 0.194 *** 0.196 *** 0.161 *** 0.171 *** 0.176 *** 

� 0.078 *** 0.076 *** 0.061 ** 0.058 ** 0.061 ** 0.059 ** 0.062 ** 0.097 *** 0.103 *** 0.109 *** 

� 0.879 *** 0.918 *** 0.945 *** 0.948 *** 0.948 *** 0.952 *** 0.952 *** 0.94 *** 0.946 *** 0.951 *** 

�2 0.098 *** 0.108 *** 0.103 *** 0.103 *** 0.103 *** 0.103 *** 0.103 *** 0.078 *** 0.079 *** 0.081 *** 

N 247 247 247 247 247 247 247 247 247 247 

Pseudo R2 0.960 0.955 0.952 0.956 0.954 0.951 0.952 0.966 0.965 0.963 

LL -54.38 -65.72 -74.68 -66.63 -53.18 -74.37 -74.65 -38.85 -41.61 -44.85 

Note: *** p<0.01, ** p<0.05, * p<0.1. 
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