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Abstract: Deploying UAVs as aerial base stations is an exceptional approach to reinforce terrestrial

infrastructure owing to their remarkable flexibility and superior agility. However, it is essential to

design their flight trajectory effectively to make the most of UAV-assisted wireless communications.

This paper presents a novel method for improving wireless connectivity between UAVs and terrestrial

users through effective path planning. This is achieved by developing a goal-directed trajectory

planning method using active inference. First, we create a global dictionary using TSPWP instances

executed on various training examples. This dictionary contains letters representing available

hotspots, tokens representing local paths, and words depicting complete trajectories and hotspot

order. By using this world model, the UAV can understand the TSPWP’s decision-making grammar

and how to use the available letters to form tokens and words at various levels of abstraction and time

scales. With this knowledge, the UAV can assess encountered situations and deduce optimal routes

based on the belief encoded in the world model. Our proposed method outperforms traditional

Q-learning by providing fast, stable, and reliable solutions with good generalization ability.

Keywords: UAVs; wireless networks; trajectory design; AI-enabled radios; active inference

1. Introduction

In recent years, there has been a significant amount of research interest in unmanned aerial vehicles

(UAVs) due to their impressive features, such as their maneuverability, ease of positioning, versatility,

and the high likelihood of line-of-sight (LoS) air-to-ground connections [1,2]. UAVs are feasibly

exploited to alleviate a wide range of challenges in commercial and civilian sectors [3,4]. It is expected

that forthcoming wireless communication networks will need to provide exceptional service to meet

the demands of users. This presents difficulties for traditional terrestrial-based communication systems,

particularly in hotspot areas with high traffic [5–7]. UAVs have the potential to serve as flying base

stations, providing support to the land-based communication infrastructure without the need for costly

network construction [8]. In addition, their ability to be easily relocated makes them particularly highly

beneficial in the aftermath of natural disasters [9,10]. UAVs can also be deployed as intermediaries

between ground-based terminals, improving transmission link performance and enhancing reliability,

security, coverage, and throughput [11,12]. As such, UAV-assisted communications are becoming

increasingly vital in developing future wireless systems.

UAV-aided wireless communications possess a distinct advantage owing to the controllable

maneuverability of UAVs, which allows for flexible trajectories. This added degree of freedom

significantly boosts the system’s performance. Therefore, optimizing the UAV’s trajectory is an

indispensable area of focus in this field, as it is paramount to exploit the potential of UAV-assisted

wireless communications fully [13]. Several studies have looked into improving system performance

through trajectory design. One study, for example, optimized the trajectory of a UAV to gather

received signal strength measurements efficiently and improve the accuracy of spectrum cartography
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[14]. Another study proposed a method for planning the trajectory of a UAV to provide emergency

data uploading for large-scale dynamic networks [15]. Multi-hop relay UAV trajectory planning is also

crucial in UAV swarm networks [16]. Joint optimization of the UAV’s trajectory and user association

was suggested in [17] to maximize total throughput and energy efficiency. Another study examined

joint UAV trajectory design and time allocation for aerial data collection in NOMA-IoT networks [18].

In a cluster-based IoT network, joint optimization of the UAV’s hovering points and trajectory was

studied to achieve minimal age-of-information data collection [19]. Autonomous trajectory planning

solutions were proposed in [20] to enable UAVs to navigate complex environments without GPS while

fulfilling real-time requirements. Lastly, the trajectory of a UAV was optimized in [21] to minimize

propulsion energy and ensure the required sensing resolutions for cellular-aided radar sensing.

Traditional methods rely on optimization mathematical models that require precise information

about the system, including the number of users in different areas and network parameters when

designing a UAV trajectory. However, this approach may not be feasible in real-world situations due to

the constantly changing environment and limited battery life, making it difficult to solve these problems

using traditional techniques [22]. On the other hand, artificial intelligence (AI) techniques, such as

machine learning (ML) and reinforcement learning (RL), have proven to be effective in addressing

challenges related to sequential decision-making. By equipping UAVs with AI capabilities (AI-enabled

UAVs), they can attain a remarkable level of self-awareness, transforming wireless communications

[23]. With AI, UAVs can effectively comprehend the radio environment by discerning and segregating

the explanatory factors that are concealed in low-level sensory signals [24]. However, most ML and RL

methods are not capable of adjusting to new situations that were not included in their initial training.

This limitation in generalizing requires extensive retraining efforts, which can pose challenges for

real-time prediction and decision-making [25].

When AI-enabled agents sense and interact with their environment, they struggle with structuring

the knowledge they gather and making logical decisions based on it. One way to address this is through

knowledge representation and reasoning techniques inspired by human problem-solving to handle

complex tasks effectively [26]. Causal probabilistic graphical models are a prime example of such

techniques, which are highly effective in capturing the hidden patterns in sensory data obtained from

the environment. These models also provide a seamless way to integrate sensory data from various

sources [27]. By statistically structuring the data, they can describe different levels of abstraction that

can be applied across different domains. For instance, when learning a language, one must learn how

sounds form words, how words form sentences, and how grammar characterizes a language. At every

level, the learning process requires making probabilistic inferences within a structured hypothesis

space. Dealing with uncertainty is a common challenge in AI and decision-making, as many real-world

problems have incomplete or ambiguous information. Probabilistic representation is an effective

technique that leverages probability theory to model and reason with uncertainty, enabling AI agents

to make better decisions and operate more efficiently [28].

Active inference is a mathematical framework that helps us understand how living organisms

interact with their environment [29]. It provides a unified approach to modelling perception, learning,

and decision-making, aiming to maximise Bayesian model evidence or minimise free energy [30].

Free energy is a crucial concept that empowers agents to systematically assess multiple hypotheses

concerning behaviors that can effectively achieve their desired outcomes. Moreover, active inference

governs our expectations of the world around us. Specifically, it posits that our brains utilize statistical

models to interpret sensory information [31]. By using active inference, we can modify our sensory

input to conform to our preconceived notions of the world and rectify any inconsistencies between our

expectations and reality. Probabilistic graphical models are used to represent active inference models

because they provide a clear visual representation of the model’s computational structure and how

belief updates can be achieved through message-passing algorithms [32].

Motivated by the previous discussion, we propose a goal-directed trajectory design framework

for UAV-assisted wireless networks based on active inference. The proposed approach involves two
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key computational units. The first unit meticulously analyzes the statistical structure of sensory signals

and creates a world model to gain a comprehensive understanding of the environment. The second

is the decision-making unit seeking to perform actions minimizing a cost function and generating

preferred outcomes. The two components are linked by an active inference process. To create the

world model, the UAV was trained to complete various flight missions with different realizations

(such as the locations of hotspots and users’ access requests) using the conventional travel salesman

problem with profit (TSPWP) [33] with 2-OPT local search algorithm in an offline manner. The

TSPWP instances (trajectories) were turned into graphs and used to build a global dictionary with two

sub-dictionaries. The first sub-dictionary represents the hotspots the UAV needs to serve and their

order of travel. In contrast, the second sub-dictionary shows the trajectories to follow between two

adjacent nodes. The global dictionary consists of letters at multiple levels, tokens, and words. The

world model is created by coupling the two sub-dictionaries, constructing a detailed representation of

the environment at different hierarchical levels and time scales. The world model is structured in a

Coupled Multi-Scale Generalized Dynamic Bayesian Network (C-MGDBN). This model builds upon

the Single-Scale GDBN, which is a statistical model that explains how hidden states drive time series

observations. However, unlike the conventional GDBN [34–36], which can only model single-scale

data, our enhanced GDBN representation can encode the dynamic rules that generate observations at

different temporal resolutions, making it far more versatile than traditional GDBNs. With this superior

model, we can simultaneously model a UAV’s behaviour at different time scales. The decision-making

unit relies on active inference to select actions based on the current state of the environment as inferred

from the world model. The proposed framework explains how UAVs navigate their surroundings with

a goal in mind, choosing actions that minimize unexpected or unusual observations (abnormalities),

which are measured by how much they deviate from the expected goal.

The main contributions of this paper can be summarized as follows:

• We developed a global dictionary during training to discover the TSPWP’s best strategy for

solving different realizations. The dictionary comprises letters representing the available hotspots,

tokens representing local paths, and words depicting the complete trajectories and order of

hotspots. By studying the dictionary, we can comprehend the decision-maker’s grammar (i.e., the

TSPWP strategy) and how it uses the available letters to form tokens and words.

• We have designed a novel hierarchical representation structuring the acquired knowledge (the

global dictionary) to accurately depict the properties of the TSPWP graphs at various levels of

abstraction and time scales.

• We tested the proposed method on different scenarios with varying hotspots. Our method

outperformed traditional Q-learning by providing fast, stable, and reliable solutions with good

generalization ability.

The remainder of the paper is organized as follows: the literature review is presented in Section 2.

The system model and problem formulation are presented in Section 3. The proposed goal-directed

trajectory design method is explained in Section 4. Section 5 is dedicated to the numerical results and

discussion, and finally Section 6 concludes this paper by highlighting the future directions.

Notations: Throughout the paper, capital italic letters denote constants, lowercase bold letters

denote vectors, capital boldface letters denote matrices. The shorthand N (µ, Σ) is used to denote a

Gaussian distribution with mean µ and covariance Σ. If X represents a matrix, the element in its ith

row and jth column is denoted by xij, and its ith row vector is represented by xi.

2. Literature Review

Solving the trajectory design problem is a crucial and leading research topic in AI-enabled wireless

UAV networks. This problem involves determining the optimal shortest path for a UAV to cover

all targeted hotspot zones (nodes) in a dynamic wireless environment while adhering to time and

mission completion constraints. This section discusses various techniques proposed in the literature
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for UAV trajectory design to optimize communication performance efficiently in a flexible wireless

environment. These techniques can be categorized as classical and modern optimization algorithms.

In order to meet time constraints for all ground users, a feasible UAV trajectory was proposed in

[37] using traditional dynamic programming (DP). However, due to an increase in hovering nodes, it

may not align with time constraint criteria and may not be suitable for real-time environments. DP was

also used to optimize the UAV trajectory in [38] for accessing multiple wireless sensor nodes (WSNs)

and collecting data under time constraints. However, the algorithm was inefficient in recognizing

and iterating through repeated grids, requiring high-order gridding for accuracy and resulting in

computational complexity. In the study referenced as [39], the problem of the UAV trajectory has been

formulated as a mixed integer linear program (MILP). The trajectory planning is carried out in discrete

time steps, where each step represents the dynamic state of the UAV in the environment. The algorithm

is designed for offline planning to ensure a feasible trajectory is available before the UAV performs

its tasks. However, this algorithm has limitations as it can easily get stuck due to its blind nature

and cannot generate long trajectories in a complex environment. The Dijkstra algorithm proposed in

[40] enables UAVs to perform environmental tasks efficiently by using the optimal battery level and

reaching the target point in the shortest possible time. However, as the network scale increases, the

algorithm takes a long time to provide a solution, making it unsuitable for real-time trajectory planning.

The A* algorithm, as discussed in [41], selects suitable node pairs and evaluates the shortest path for

UAVs based on feasible node pairs in a known static environment to address this issue. Although the

A* algorithm does not provide a continuous path, it ensures that the shortest path is followed in the

direction of the targeted node. However, this algorithm is not practical in a dynamic environment.

To overcome this, the D* algorithm and its variants, as reviewed in [42], are efficient tools for quick

re-planning in a cluttered environment. The D* algorithm updates the cost of new nodes, allowing

the use of prior paths instead of re-planning the entire path. However, D* and its variants do not

guarantee the quality of the solution in a large dynamic environment.

Traditional Algorithms 

Biologically Inspired  

Advance Algorithms 

Dynamic Programming (DP)

Dijkstra Algorithm

A* Algorithm

D* Algorithm

TSP Algorithm

Genetic Algorithm (GA)

Particle Swarm Optimization (PSO)   

Ant Colony Optimization (ACO)  

Machine Learning (ML) 

Reinforcement Learning (RL)    

Deep Q-Learning (DQL)  

Figure 1. An overview of existing trajectory design algorithms.
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In order to design an effective path planning model for a UAV, the discrete space-based travelling

salesman problem (TSP) [43] is utilized to search for the optimal shortest path for the UAV to travel

through a fixed number of cities, with each city only being visited once. The UAV must also return

to the starting city within a fixed flight time for battery charging. However, the TSP is an offline

algorithm, so when a new city appears in the UAV’s path, the cost of the new city is updated from the

starting point, resulting in the entire path being replanned from the start to the new end, which is a

major drawback. The TSP is a challenging NP-hard problem and can be difficult to solve in polynomial

time unless P=NP. Two approaches are available when dealing with the challenging NP-hard problem

in TSP. The first involves using heuristics, such as 2-OPT and 3-OPT, to quickly generate near-optimal

tours through local improvement algorithms [44]. The second approach is to utilize evolutionary

optimization algorithms, such as genetic algorithm (GA), particle swarm optimization (PSO), and

ant colony optimization (ACO), which have proven to be effective in minimizing the total distance

travelled by the salesman in real-world scenarios [45]. While the GA is a good solution for obtaining

an appropriate path for a UAV, it can be relatively slow, making it inefficient for modern path planning

problems that require fast performance [46]. On the other hand, the PSO is good at local optimization

and can be used in combination with a GA that is good at global optimization [47]. The ACO is also

effective in solving the UAV path planning problem, but it requires a significant amount of data to

find the optimal solution, has a slow iteration speed, and demands much more simulation time [48].

Therefore, a combination of these algorithms may be necessary to effectively solve the UAV path

planning problem.

Reinforcement learning (RL) is a popular AI tool used to tackle complex problems like trajectory

design and sum-rate optimization, which are critical challenges due to the continuous environmental

variation over time. Indeed, solving mathematical optimization models is only possible when a priori

input data is available or requires too high complexity and computational time. Recent studies [49–51]

proposed optimal trajectory design for UAV using Q-learning to maximize the sum rate [49], increase

QoE of users [50], and enhance the number and fairness of users served [51]. However, Q-learning has

a drawback in that the number of states increases exponentially with the number of input variables,

and its memory usage also increases sharply. Due to the mobility of both ground and aerial users, the

curse of dimensionality can cause Q-learning to fail. As a result, solving the trajectory design problem

in a large and highly dynamic environment is a challenging task. A machine learning (ML) technique

has been proposed in [52] to optimize the flight path of UAVs in order to meet the needs of ground

users within specific zones during set time intervals. Another study in [53] explored a multi-agent

Q-learning-based method to design the UAV’s flight path based on predicting the movement of the

user to maximize the sum rate. Additionally, a meta-learning algorithm was introduced in [54] to

optimize the UAV’s trajectory while meeting the uncertain and variable service demands of the GUs.

However, these reinforcement learning-based solutions can only work in certain environments and are

unsuitable for highly dynamic and unpredictable environments. A deep Q-learning (DQL) algorithm

was introduced in [55] to enable UAVs to provide network service for ground users in rapidly changing

environments autonomously. However, the user mobility model in this algorithm is simple and does

not account for ground users moving to different positions multiple times, resulting in inadequate

trajectory results for different paths.

In this work, we approached the task of designing a UAV trajectory as a TSP with profit problem.

To solve this problem optimally offline, we used the 2-OPT local search algorithm. We converted

the resulting TSP instances from various examples into graphs and used them to train the UAV. This

allowed the UAV to capture the TSP graphs’ properties and form a world model consisting of a

hierarchical and multi-scale representation. With this model, the UAV can realise the TSP’s strategy for

solving the problem and implicitly discover the objective function. Our approach allows the UAV to

deduce optimal routes when facing a new realization based on its belief encoded in the world model.

This helps the UAV determine the best solution when there are deviations between what it knows and

what it sees.
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3. System Model and Problem Formulation

Consider a UAV-assisted wireless network, as shown in Figure 2, with a single UAV acting as a

flying base station (FBS) to serve U ground users (GUs) distributed randomly across a geographical

area and requesting uplink data service. GUs that demand the data service are introduced as active

users; others are so-called inactive users, as illustrated in Figure 2. It is assumed that the GUs are

partitioned into N distinct groups, each of which is defined as a hotspot area. The UAV’s mission is to

fly from a start location, move towards hotspots with high data service requests, and then return to the

initial location within a time period T for battery charging. Thus, the UAV’s initial (l0) and final (lT )

locations are predefined, represented by l0 = lT = [x0, y0, z0]. It is important to note that the variable

T is directly proportional to the number of available hotspots (N). As N increases, T also increases

and vice versa. The UAV adjusts its deployment location at each flight slot according to the users

realization forming a trajectory denoted by qu(t) = [xu(t), yu(t), zu(t)]. The sequence tracing UAV’s

travels among the available hotspots during the flight time duration is given by q̄u = [h1, . . . , hN′ ],

where hn ∈ N is the nth hotspot served by the UAV and N′ is the total number of the hotspots

served along the trajectory. Let L be the set of all possible trajectories the UAV might follow and

Pr(hn+1|hn, τn) be the probability to move toward hotspot hn+1 after being in hn (visited at time

T − τhn
) where τhn+1

is the remaining time to go back to the original location after serving hn+1. The

set of available hotspot areas is denoted as N
∆
= {hn = h1, h2, . . . , hN} and GUs across the total

geographical area are denoted as K
∆
= {Kn = K1, K2, . . . , KN}, where Kn is the set of users belonging

to the nth hotspot and each GU belongs to a single hotspot where the coordinate of each GU is given

by pkn
= [xkn

, ykn
]. Each hotspot n is characterized by its center pn = [xn, yn], radius rn representing

the coverage range and the average data rate Rn that depends on the number of active users in hotspot

n where Rn ∈ R such that R
∆
= {Rn = R1, R2, . . . , RN}.

H

R

UAV

UAV

UAV

UAV-BS Active Ground Users Inactive Ground Users Trajectory Signal

Figure 2. Illustration of the system model.

To capture the dynamic nature of the network, the UAV flight time (T) is discretized into a set

T of M equal time slots where the length of each time slot is t = ( T
M ). Due to its short duration, the

UAV’s location, uplink data requests and channel conditions are considered fixed in each t. Further, in

the considered network, the UAV assigns a set of uplink resource blocks (RBs) to serve the active GUs

in a specific hotspot (one RB for each active GU) who transmit their data over the allocated RBs using

the orthogonal frequency division multiple access (OFDMA) scheme.
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In our network, the air-to-ground signal propagation is adopted and a probabilistic path loss

model subject to random line-of-sight (LoS) and Non-line-of-sight (NLOS) conditions is considered

[56]. Thus, the channel gain between GU (kn ∈ Kn) and UAV (u) can be expressed as:

gkn ,u(t) =
1

K0dα
kn ,u(t)

[PrLoSµLoS + PrNLoSµNLoS]
−1, (1)

where K0 =
( 4π fc

c

)2
, fc is the carrier frequency, c is the speed of light, α is the path loss exponent, PrLoS

and PrNLoS are the LoS and NLoS probabilities, respectively. µLoS and µNLoS are additional attenuation

factors to the free-space propagation for LoS and NLoS links. The distance between GU (kn) and the

UAV at time slot t is given by:

dkn ,u(t) =

√

hu(t)2 +
(

xkn
(t)− xu(t)

)2
+

(

ykn
(t)− yu(t)

)2
. (2)

The average achievable data rate of the set of users in hotspot n is calculated as:

rKn =
Kn

∑
kn=1

rkn
=

Kn

∑
kn=1

Bkn
log2

(

1 +
pkn

gkn ,u(t)

σ2

)

, (3)

where Bkn
is the bandwidth of the RB allocated to GU (kn), pkn

is the transmit power of GU (kn), and

σ2 = Bkn
N0 is the power spectral density of the additive white Gaussian noise (AWGN).

In this work, we focus on UAV trajectory design that can maximize the total sum-rate in the cell.

Therefore, our optimization objective can be formulated as:

max
qu∈L

rsum =
N′

∑
hn=1

Kn

∑
kn=1

rkn

N′−1

∏
hn=1

Pr(hn+1|hn, τhn+1
) (4a)

s.t. ki ∩ k j = φ, i 6= j, ∀i, j ∈ N , (4b)

t(qu) ≤ T, qu ∈ L, (4c)

0 ≤ Pr(hn+1|hn, τhn+1
) ≤ 1, 1 ≤ hn ≤ N′ − 1, (4d)

rkn
≥ r0, ∀kn, (4e)

0 ≤ pkn
≤ pmax, ∀kn. (4f)

Constraint (4b) indicates that each GU belongs to a specific hotspot. (4c) implies that the UAV must go

back to the initial location before T, where T is directly proportional to N. If N increases, T will also

increase; if N decreases, T will also decrease. Furthermore, (4e) represents the sum-rate requirement

for each GU and (4f) depicts the power allocation constraint. It is worth noting that in this paper, the

number of hotspots remains constant in a certain mission (realization). No new hotspots emerge nor

do any existing hotspots disappear while the UAV is solving a specific realization.

The symbols used in the article and their meanings are summarized in Table 1.
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Table 1. Variables Description.

Symbol Meaning

U Ground Users (GUs)
N Number of hotspots
T battery life time
l0 UAV’s initial location
lT UAV’s final location

qu(t) UAV’s trajectory
q̄u Sequence of hotspots served by the UAV
hn nth hotspot serverd by the UAV
N′ total number of hotspots served along the trajectory
L set of possible trajectories to follow by the UAV

Pr(hn+1|hn, τn) Probability to move toward hotspot hn+1 after visiting hn at time T − τhn

τhn
Remaining time to go back to the original location after serving hn

N The set of available hotspot areas
K The set of GUs distributed across the total geographical area
Kn The set of GUs belonging to the nth hotspot

pkn
= [xkn

, ykn
] The coordinate of GU kn belonging to the Kn

pn = [xn, yn] Center of nth hotspot
rn Radius of the nth hotspot
R The set of the average data rate of all the available hotspots
Rn Data rate of the nth hotspot
t Time slot
u UAV

gkn ,u(t) Channel gain between GU (kn) and UAV (u)
K Channel factor
fc Carrier frequency
c Speed of light
α Path loss exponent

PrLoS Probability of Line of Sight
PrNLoS Probability of Non Line of Sight

µLoS Additional attenuation for line of sight links
µNLoS Additional attenuation for non line of sight links

dkn ,u(t) Distance between GU kn and UAV u at time t
rKn

Achievable data rate in hotspot n
Bkn

The bandwidth of the resource block (RB) allocated to user kn

pkn
Transmit power of user kn

σ2 Power spectral density of the additive white Gaussian noise
D Training set of realizations representing M examples

L† Set of the sequences of hotspots selected by TSPWP to solve M examples

Q† Set of trajectory instances generated by TSPWP
S Set of clusters generated by GNG

l̃m Generalized letter
Al̃m

Adjacency matrix

Al̃ Global adjacency matrix

Πl̃ Global transition matrix
D Degree matrix

Θem Tokens
ΠΘ Tokens transition matrix

wo
T,em

Words on order

w
p
T,em

Words on motion

wc
T,em

Coupling word

4. Proposed Goal-Directed Trajectory Design Method

In this section, we propose a goal-directed method for UAV trajectory design based on active

inference. Latter is a model-based data-driven approach that rests upon the idea of using an internal

generative model (world model) to cast the surrounding environment and planning actions allowing

to realisation goals targeted by the agent. Firstly, we present the perceptual learning of desired
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observation based on a classical travel salesman problem (TSP) with 2-OPT [57]. Then, we show how

to build the world model representing the surrounding environment by encoding the dynamic rules

behind the optimal TSP trajectories.

4.1. TSP with profits instances

The traditional TSP is a classic algorithm problem in computer science and operation research

describing how a salesman travels to several vertices (cities) and returns to the terminal (initial location),

aiming to minimize travel cost (i.e., the travel distance) while ensuring visiting each city only once

[57]. In this work, we adopt the TSP with profits (TSPWP) with 2-OPT local search algorithm [33],

which is a generalization of the traditional TSP where the overall goal is the simultaneous optimization

of the collected profit and the travel cost, knowing that each vertex (city) is associated with a profit.

Thus, TSPWP is used to generate optimal trajectory instances offline that the UAV might follow to serve

more users within a predefined time. Given a list of hotspots where the active users are distributed, as

shown in Figure 2, and the cost (cij) of transiting between each pair of hotspots, the problem is to find

the optimal route that visits each hotspot once and returns to the origin providing maximum sum-rate

and minimum completion time.

Let G = (V , E) be a graph where V = {v1, . . . , vN} is a set of N vertices and E is a set of edges.

Let pn be the center of vn and rKn the profit associated with vn and a cost cij be associated with each

edge (vi, vj) ∈ E , such that:

cij = d(pi, pj) =
√

(xi − xj)2 + (yi − yj)2. (5)

The objective function of the TSPWP with N hotspots can be defined as:

min α ∑
(vi ,vj)∈E

cijxij − β ∑
vj∈V

rKj
yj, (6a)

s.t. ∑
vi∈V

vj∈V\{vi}

xij = yi, (6b)

∑
vj∈V

vi∈V\{vj}

xij = yj, (6c)

xij ∈ {0, 1}, (vi, vj) ∈ E , (6d)

yij ∈ {0, 1}, (vi ∈ V), (6e)

α + β = 1. (6f)

Constraints (6b) and (6c) are the assignment constraints where xij is a binary variable associated to

edge (vi, vj), equal to 1 if and only if (vi, vj) is used in the solution, and yi is a binary variable associated

to vertex vi ∈ V, equal to 1 if and only vi is visited.

4.2. World Model

The proposed approach consists of two computational units. The first unit aims to learn the

surrounding environment by representing the statistical structure of the sensory signals (world model).

The second is the decision-making unit seeking to perform actions minimizing (or maximizing) a cost

function describing preferred outcomes (similar to rewards in RL). The world model is an internal

generative model representing the surrounding environment (both physical and wireless environment)

utilized by the UAV to make predictions about incoming sensory signals. In this subsection, given the

TSPWP instances generated previously from several experiences (i.e., realizations of users distribution

and users requests), our objective is to encode the dynamic rules generating those instances in a
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probabilistic graphical model capable of reflecting the graph structure of the TSPWP instances at

multiple hierarchical levels and different time scales.

4.2.1. Dictionary Learning

Each TSPWP instance comprises the trajectory the UAV follows to reach the targeted hotspots in

a particular order. Hence, the objective is to form a dictionary capturing the TSPWP graph structure,

allowing one to predict the most probable hotspot to target conditioned on a specific location and

the most probable path to follow to reach that targeted hotspot. Thus, the dictionary consists of two

sub-dictionaries. The first encodes the rules generated the sequence order of the hotspots that UAV

intend to serve. In contrast, the second sub-dictionary encodes the rules generated the motion to travel

among to neighbouring hotspots. Figure 3 illustrates the process of forming the global dictionary.

1) TSPWP offline execution:

Let D
∆
= {Dm = D1, D2, . . . , DM} be a training set of realizations representing M examples of users’

distribution in the cell, where Dm is the m-th realization and M is the total number of realizations.

Each realization consists of the number of hotspots and their locations, the number of users inside

each hotspot as well as the users’ access request and users’ locations. The TSPWP algorithm will be

employed offline to solve all the examples in D. Consequently, let L† ∆
= {Lm = L1, L2, . . . , LM} be a

set of the sequences of hotspots selected by the UAV using TSPWP to solve the M examples, where

Lm = {h1, . . . , hN′} is the m-th sequence of hotspots selected by the UAV to solve the m-th example

and let Q† ∆
= {qm

u = q1
u, q2

u, . . . , qM
u } be the set of trajectory instances generated by the TSPWP, where

qm
u is the m-th TSPWP trajectory generated to solve the m-th example.

TSPWP

Users Realizations TSPWP Tours
Words 

(Order)

𝒆𝟏
𝒆𝟐

𝒆𝟑
𝒆𝟒

𝒆𝟓 𝒆𝟔
Events

Letters

𝑙1 𝑙2 𝑙3 𝑙4 𝑙5 𝑙6

Generalized Lettersሚ𝒍𝟏
ሚ𝒍𝟐

ሚ𝒍𝟑

ሚ𝒍𝟓

ሚ𝒍𝟒

ሚ𝒍𝟔

Φ2

Φ3Φ4
Φ6

Φ5 = {𝑠1𝑠2𝑠3𝑠4𝑠5}

Tokens

Words 

(Motion)

𝒘𝒑 ={𝜱𝟏, 𝜱𝟐, 𝜱𝟑, 𝜱𝟒, 𝜱𝟓, 𝜱𝟔}

𝒘𝒐 ={ሚ𝒍𝟏, ሚ𝒍𝟐, ሚ𝒍𝟑, ሚ𝒍𝟒, ሚ𝒍𝟓, ሚ𝒍𝟔}

Multi-scale 

GDBN 1

Multi-scale 

GDBN 2

Coupled Multi-

scale GDBN

Dictionary Formation

Sub-Dictionary 2

Sub-Dictionary 1

𝟏 𝟐 𝟑
𝟒𝟓𝟔

Figure 3. The procedure to form the global dictionary.

2) Unsupervised Clustering:

For each of the generated trajectories in Q†, a Growing Neural Gas (GNG) is employed to the

generalized errors (GEs) provided by the unmotivated Kalman filter (UKF) [58] to discover the

dynamic rules driving the different trajectories. Let S be the set of clusters generated by GNG and

defined as:

S
∆
= {s f = s1, s2, . . . , sF}, (7)

where s f is the f -th cluster following a Gaussian distribution such that s f ∼ N (µs f
, Σs f

), and F is the

total number of clusters. Clustering the trajectory data allows obtaining knowledge that reveal the

latent characteristics of the UAV’s motion.

3) Sub-Dictionary 1:

Accordingly, from L† we form a sub-dictionary encoding the decisions made by the UAV consisting of
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the sequences of targeted hotspots. We define a letter lm′ = hm representing a starting hotspot hm at a

given time and a generalized letter defined as:

l̃m = [hm, E(hm, hm′)], (8)

consisting of the letter itself and its derivative illustrating the event of travelling from hotspot hm to

hotspot hm′ . It is to note that a generalized letter l̃m can be seen as a pair of one node ni = hm and one

outgoing arc (ni, nj) from node ni to node nj as shown in Figure 3. Then, for each element Lm in L†, we

transform the sequence of generalized letters expressing that experience into the following sequence:

{l̃m,τ1
, l̃m,τ2 , . . . , l̃m,τT

} describing the transitions between adjacent event-steps. As mentioned before,

the generalized letters of a certain experience m can be seen as an unweighted graph Gm = (Vm, Em)

where Vm = {lm,τ1
, . . . , lm,τT

} is a set of vertices represented by the letters and Em = {l̇m,τ1
, . . . , l̇m,τT

} is

the set of edges represented by the letters’ derivatives. The adjacency matrix Al̃m
that captures the

pattern of co-occurrences in the generalized letters sequence is an τT × τT zero-one matrix defined as:

Al̃m
= [aij] where:

aij =

{

1 if (i, j) ∈ E ,

0 Otherwise.
(9)

After executing the M examples, we can form the global adjacency matrix Al̃ = [a
i
′
,j
′ ] comprising

all the generalized letters (forming a global graph Gglobal = (Vglobal , Eglobal)) occurred while solving

the M examples, such that:

a
i
′
,j
′ =

{

1 if (i
′
, j

′
) ∈ Eglobal ,

0 Otherwise.
(10)

Element a
i
′
,j
′ denotes the number of times that a generalized letter l̃

i
′ is followed by generalized letter

l̃
j
′ during two consecutive events in the global graph Gglobal .

The degree of each letter i = lm,τi
is the number of its adjacent letters (or the number of outgoing

edges at that letter) calculated as: di = ∑
|Vm |
j=1 a

i
′
j
′ . Considering the degrees of all letters, we can

construct the degree matrix D which is an |Vm| × |Vm| diagonal matrix defined as:

D
i
′
j
′ =

{

d
i
′ if i

′
= j

′
,

0 Otherwise.
(11)

Consequently, the global transition matrix can be constructed in the following way:

Πl̃ = D−1
Al̃ =













Pr(l̃1|l̃1) Pr(l̃1|l̃2) . . . Pr(l̃1|l̃M
′ )

Pr(l̃2|l̃1) Pr(l̃2|l̃2) . . . Pr(l̃2|l̃M
′ )

...
...

...
...

Pr(l̃
M

′ |l̃1) Pr(l̃
M

′ |l̃2) . . . Pr(l̃
M

′ |l̃
M

′ )













, (12)

where 0 ≤ Pr(l̃ĩ|l̃ j̃) ≤ 1 and ∑
J̃

j̃=1
Pr(l̃ĩ|l̃ j̃) = 1, ∀ j̃. During a flight mission that lasts for a time period T,

the order of visited hotspots is recorded in a word called wo
T = {l̃m,τ1

, l̃m,τ2 , . . . , l̃m,τT
}.

3) Sub-Dictionary 2:

Each event em = E(hm, hm′) can be associated with a local trajectory followed by the UAV to pass from

hm to hm′ which can be represented by a sequence of discrete clusters. This is possible after associating

the local trajectory with S defined in (7) to form a token comprising a sequence of letters depicting the

firing sequence of clusters (neurons) from S during a certain event, i.e, em. Hence, we define a token

consisting of a set of clusters and representing a local path between two adjacent hotspots as following:

Θem = {sem ,t1
, sem ,t2 , . . . , sem ,tτ}, (13)
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where sem ,ti
∈ S and tτ is the duration of event em specified in number of time slots. The stochastic

process decomposing the interdependent nature of the tokens that make up the local trajectories can

be illustrated in a transition matrix defined as:

ΠΘ =













Pr(Θe1
|Θe1

) Pr(Θe1
|Θe2) . . . Pr(Θe1

|ΘeM
)

Pr(Θe2 |Θe1
) Pr(Θe2 |Θe2) . . . Pr(Θe2 |ΘeM

)
...

...
...

...

Pr(ΘeM
|Θe1

) Pr(ΘeM
|Θe2) . . . Pr(ΘeM

|ΘeM
)













, (14)

where Pr(Θei
|Θej

) depicts the transition probability from token i to token j, such that 0 ≤ Pr(Θei
|Θej

) ≤

1 and ∑
J
j=1 Pr(Θei

|Θej
) = 1, ∀j. During a flight mission of duration T, the tokens that represent the

entire trajectory are recorded in a word called w
p
T = {Θej

, Θej+1
, . . . , ΘeJ

}.

4.2.2. The proposed graphical representation

Introducing Multi-scale GDBN: We can see that the UAV’s dynamic behaviour manifests at

multiple time scales, namely, slot scale and event scale. It is essential to have an efficient representation

that can model this dynamic behaviour, including a hierarchical structure and incorporating Markov

chains at various time scales. To achieve this, we propose to learn two separated dynamic models

representing the dynamic behaviour of the UAV when selecting the targeted hotspots (i.e., the sequence

of hotspots to serve during the flight time) and when moving between two consecutive hotspots

(i.e., the UAV’s motion path), respectively. The proposed representation considers observations

stemming from two different behavioural processes with different temporal resolutions. The first

process determines the decisions made by the UAV at the event scale, while the second process

determines the UAV’s motion at the finer time scale (slot scale), which is nested within the event scale.

The first dynamic model entails arranging particular elements of the dictionary (sub-dictionary 1),

particularly the generalized letters referenced in (8), into a multi-scale Generalized Dynamic Bayesian

Network (M-GDBN) displayed in Figure 4. The M-GDBN is a hierarchical probabilistic graphical

model that consists of four levels, two of which are continuous and two of which are discrete. Each

level corresponds to a distinct hierarchy and time scale. Furthermore, M-GDBN explains how the

latent state variables and the observation are probabilistically linked. The explanation for the evolution

of hidden variables at multiple levels is provided based on the following dynamic models:

𝒘𝑻𝐨 𝒘𝑻+𝟏𝐨

… …
… …

… …
… …

ሚ𝒍𝑻,𝒆𝒎 ሚ𝒍𝑻,𝒆𝒎+𝟏
෥𝒙𝑻,𝒆𝒎𝒍 ෥𝒙𝑻,𝒆𝒎+𝟏𝒍

ሚ𝒍𝑻+𝟏,𝒆𝒎 ሚ𝒍𝑻+𝟏,𝒆𝒎+𝟏
෥𝒙𝑻+𝟏,𝒆𝒎𝒍 ෥𝒙𝑻+𝟏,𝒆𝒎+𝟏𝒍

… …

෤𝒛𝑻,𝒆𝒎𝒍 ෤𝒛𝑻,𝒆𝒎+𝟏𝒍 ෤𝒛𝑻+𝟏,𝒆𝒎𝒍 ෤𝒛𝑻+𝟏,𝒆𝒎+𝟏𝒍
Figure 4. A multi-scale GDBN representing sub-dictionary 1 that encodes the dynamic rules generating

UAV’s hotspots sequence in different experiences.
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wo
T = f(1)(wo

T−1) + ηT , (15a)

l̃T,em = f(2)(l̃T,em−1
, wo

T) + ηT,em , (15b)

x̃l
T,em

= g(1)(x̃l
T,em−1

, l̃T,em) + ηT,em , (15c)

z̃l
T,em

= g(2)(x̃l
T,em

) + νT,em , (15d)

The discrete state equations in (15a) and (15b) illustrate how words and generalized letters change

over time at various temporal scales. f(1) and f(2) are nonlinear functions that experience random

fluctuations in the states influenced by higher levels and characterized by ηT ∼ N (0, Q) and

ηT,em ∼ N (0, Q). Going down the hierarchy, equations (15c) and (15d) stands for the continuous

state equation and the observation model, explaining the continuous state dynamic evolution and

the mapping from the continuous state space to the measurement space, respectively. Observations

are subject to random fluctuations playing the role of observation noise characterized by νT,em ∼

N (0, σ2
z̃T,em

). All (15a), (15b), (15c), (15d) can be expressed in a probabilistic form as Pr(wo
T |w

o
T−1),

Pr(l̃T,em |l̃T,em−1
, wo

T), Pr(x̃l
T,em

|x̃l
T,em−1

, l̃T,em) and Pr(z̃l
T,em

|x̃l
T,em−1

). Thus, the consistent global model

(i.e., the joint distribution function) corresponding to the network in Figure 4 is given by:

Pr
(

W o, L̃, X̃ l , Z̃ l
)

= ∏
T

Pr
(

wo
T

)

∏
T,em

Pr
(

l̃T,em |w
o
T

)

Pr
(

x̃l
T,em

|l̃T,em

)

Pr
(

z̃l
T,em

|x̃l
T,em

)

. (16)

M-GDBN is a directed acyclic graph where every node represents a random variable or uncertain

quantity that can have multiple values. The arcs indicate a direct causal influence between linked

variables, and the strength of these influences is measured by conditional probabilities. To determine

the structure of M-GDBN, a node is assigned to each variable, and arrows are drawn towards it from

nodes that are perceived to be its direct cause. To determine the strength of direct influences, each

variable is assigned a link matrix. This matrix represents the estimated conditional probabilities of the

event based on the parent set’s value combination.

In Figure 4, there is another multi-scale GDBN that deals with the dictionary components

concerning the UAV’s dynamic motion (sub-dictionary 2). This second network has three discrete

levels and three continuous levels. The variables at the various levels explain how the observations

(i.e., the UAV’s trajectory) were generated. For instance, at the word scale, each word is made up of

tokens that were realized at different events (event scale). Each token, in turn, is composed of discrete

and continuous letters that generate observations at different slots.

In order to comprehend the generative process forming the UAV’s global trajectory, we can refer

to the dynamic models below:

w
p
T = f(1)(w

p
T−1) + ηT , (17a)

ΘT,em = f(2)(ΘT,em−1
, w

p
T) + ηT , (17b)

s̃em ,ti
= f(3)(s̃em ,ti−1

, ΘT,em) + ηT,em , (17c)

x̃em ,ti
= g(1)(x̃em−1,ti−1

, s̃em ,ti
) + ηem ,ti

, (17d)

z̃em ,ti
= g(2)(x̃em ,ti

) + νem ,ti
. (17e)

The discrete state equations in (17a), (17b), and (17c) show how the trajectory words, tokens and

trajectory clusters change over time at various temporal scales. These equations use non-linear

functions f(1), f(2), and f(3) subject to process noise ηT ∼ N (0, Q). The continuous state equation

in (17d) explains how the trajectory states evolve over time, while (17e) links observations to these

states. The equations mentioned earlier can be expressed probabilistically as follows: Pr(wT |wT−1),

Pr(ΘT,em |ΘT,em−1
, w

p
T), Pr(s̃em ,ti

|s̃em ,ti−1
, ΘT,em−1

), Pr(x̃em ,ti
|x̃em ,ti−1

, s̃em ,ti
), and Pr(z̃em ,ti

|x̃em ,ti
). The
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network in Figure 5 has a compatible global model, represented by a joint distribution function

that can be expressed as:

Pr
(

W p, Φ, S̃ , X̃ , Z̃
)

= ∏
T

Pr
(

w
p
T

)

∏
T,em

Pr
(

ΘT,em |w
p
T

)

Pr
(

s̃T,em
|x̃T,em

)

Pr
(

z̃T,em
|x̃T,em

)

. (18)

Coupled-MGDBN: We have organized the dictionaries we obtained into a coupled multi-scale

Generalized Dynamic Bayesian Network (C-MGDBN), which includes the two dynamic models. The

first model represents the sequence of hotspots the UAV selects to solve the realizations encountered

during training, which is structured in sub-dictionary 1. Meanwhile, the second model represents

the UAV’s path to travel between consecutive hotspots, which is structured in sub-dictionary 2. By

coupling these two models stochastically in the C-MGDBN, we can incorporate more complex and

sophisticated dynamics and model stochastic representations of multiple behaviours. Additionally,

we have equipped an efficient mechanism to the C-MGDBN that captures multiple event and state

transitions, which help explain how the UAV approached a particular task (such as trajectory design)

in different examples.

𝚯𝒆𝒎 𝚯𝒆𝒎+𝟏
… …
… …

… …
… …

𝒔𝒆𝒎,𝒕𝒊−𝟏 𝒔𝒆𝒎,𝒕𝒊
෥𝒙𝒆𝒎,𝒕𝒊−𝟏 ෥𝒙𝒆𝒎,𝒕𝒊

𝒔𝒆𝒎+𝟏,𝒕𝒊−𝟏 𝒔𝒆𝒎+𝟏,𝒕𝒊
෥𝒙𝒆𝒎+𝟏,𝒕𝒊−𝟏 ෥𝒙𝒆𝒎+𝟏,𝒕𝒊

… …

෤𝒛𝒆𝒎,𝒕𝒊−𝟏 ෤𝒛𝒆𝒎,𝒕𝒊 ෤𝒛𝒆𝒎+𝟏,𝒕𝒊−𝟏 ෤𝒛𝒆𝒎+𝟏,𝒕𝒊

𝒘𝑻𝒑… …

Figure 5. A multi-scale GDBN representing sub-dictionary 2 that encodes the dynamic rules generating

UAV’s positions to travel among the hotspots in different events.

We coupled the two M-GDBN models mentioned earlier at the event scale. This was done

because multiple events make up a complete mission. We have yet to investigate coupling at the word

scale. However, this coupling technique can be useful if the UAV is performing various missions.

For instance, after serving active users in a specific cell, the UAV can return to its initial station for

recharging before proceeding to another mission. In this way, by learning the dynamics of real-life

scenarios, which include users’ activities and the emergence of hotspots, the UAV can plan its actions

at the word scale. For the rest of the paper, we will assume that the UAV is making plans at both the

event and slot scales.
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… …
… …

ሚ𝒍𝑻,𝒆𝒎 ሚ𝒍𝑻,𝒆𝒎+𝟏
෥𝒙𝑻,𝒆𝒎𝒍 ෥𝒙𝑻,𝒆𝒎+𝟏𝒍

෤𝒛𝑻,𝒆𝒎𝒍 ෤𝒛𝑻,𝒆𝒎+𝟏𝒍

𝚯𝑻,𝒆𝒎
… …
… …

𝒔𝒆𝒎,𝒕𝒊−𝟏 𝒔𝒆𝒎,𝒕𝒊
෥𝒙𝒆𝒎,𝒕𝒊−𝟏 ෥𝒙𝒆𝒎,𝒕𝒊

…

෤𝒛𝒆𝒎,𝒕𝒊−𝟏 ෤𝒛𝒆𝒎,𝒕𝒊

𝒘𝑻,𝒆𝒎𝒄… 𝒘𝑻,𝒆𝒎+𝟏𝒄 …

𝚯𝑻,𝒆𝒎+𝟏
… …
… …

𝒔𝒆𝒎+𝟏,𝒕𝒊−𝟏 𝒔𝒆𝒎+𝟏,𝒕𝒊
෥𝒙𝒆𝒎+𝟏,𝒕𝒊−𝟏 ෥𝒙𝒆𝒎+𝟏,𝒕𝒊
෤𝒛𝒆𝒎+𝟏,𝒕𝒊−𝟏 ෤𝒛𝒆𝒎+𝟏,𝒕𝒊

…

Figure 6. A coupled multi-scale GDBN (C-MGDBN) structures the acquired dictionaries by coupling

the corresponding models at the event scale.

In the C-MGDBN, the current discrete state is influenced by the state of its own chain and

that of the neighbouring chain from the previous event step. To avoid overwhelming complexity,

we conducted a meta-clustering process by merging dependent nodes in the connected network

into a single higher-dimensional node. In other words, Pr(ΘT,em+1
|ΘT,em , l̃T,em) and viceversa

Pr(l̃T,em+1
|l̃T,em , ΘT,em). To estimate these probabilities we need two transition matrices encoding

the probabilistic relationships between words and tokens. Merging letters and tokens allows to

simplify the case by coupling them into a higher node wc
T,em

= [l̃T,em , ΘT,em ]. The evolution of the

words wc
T,em

can be captured by the transition matrix defined as:

Πwc =













Pr(wc
1|w

c
1) Pr(wc

1|w
c
2) . . . Pr(wc

1|w
c
C)

Pr(wc
2|w

c
1) Pr(wc

2|w
c
2) . . . Pr(wc

2|w
c
C)

...
...

...
...

Pr(wc
C|w

c
1) Pr(wc

C|w
c
2) . . . Pr(wc

C|w
c
C)













, (19)

where, 0 ≤ Pr(wc
i |w

c
j ) ≤ 1 and ∑

J
j=1 Pr(wl

i |w
c
j ) = 1, ∀j. Πwc can be considered as a combined transition

matrix, formed by coupling (12) with (14).

4.3. Active Inference

During the active inference process, UAV can learn, adapt, and perceive its body as a

unit while interacting with the environment. The UAV’s world model can be defined as a

partially observable Markov decision process (POMDP). It involves a probability distribution

Pr(Z l ,Z , X̃ l , X̃ ,S , L̃,Al ,Ap,W) that determines the joint probability of the UAV’s observations,

belief states, actions, and words (i.e., policies). In simpler terms, a word (or policy) refers to a set of

actions. This concept is illustrated through events in Figure 7, and it can be expressed in the following

format:
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… …
… …

ሚ𝒍𝑻,𝒆𝒎 ሚ𝒍𝑻,𝒆𝒎+𝟏
෥𝒙𝑻,𝒆𝒎𝒍 ෥𝒙𝑻,𝒆𝒎+𝟏𝒍

෤𝒛𝑻,𝒆𝒎𝒍 ෤𝒛𝑻,𝒆𝒎+𝟏𝒍

…
…

𝒔𝒆𝒎,𝒕𝒊−𝟏 𝒔𝒆𝒎,𝒕𝒊
෥𝒙𝒆𝒎,𝒕𝒊−𝟏 ෥𝒙𝒆𝒎,𝒕𝒊
෤𝒛𝒆𝒎,𝒕𝒊−𝟏 ෤𝒛𝒆𝒎,𝒕𝒊

𝒘𝑻,𝒆𝒎𝒄… 𝒘𝑻,𝒆𝒎+𝟏𝒄 …
𝒂𝑻,𝒆𝒎−𝟏𝒍 𝒂𝑻,𝒆𝒎𝒍

𝒂𝒆𝒎,𝒕𝒊−𝟏𝒑 𝒂𝒆𝒎,𝒕𝒊𝒑 …
…
…

𝒔𝒆𝒎+𝟏,𝒕𝒊−𝟏 𝒔𝒆𝒎+𝟏,𝒕𝒊
෥𝒙𝒆𝒎+𝟏,𝒕𝒊−𝟏 ෥𝒙𝒆𝒎+𝟏,𝒕𝒊
෤𝒛𝒆𝒎+𝟏,𝒕𝒊−𝟏 ෤𝒛𝒆𝒎+𝟏,𝒕𝒊

𝒂𝒆𝒎+𝟏,𝒕𝒊−𝟏𝒑 𝒂𝒆𝒎+𝟏,𝒕𝒊𝒑 …
𝚯𝑻,𝒆𝒎 𝚯𝑻,𝒆𝒎+𝟏

Figure 7. An Active multi-scale GDBN involving the active states representing the actions that the UAV

can perform and affect the dynamic rules generating UAV’s positions to travel among the hotspots in

different events.

Pr(Z l ,Z , X̃ l , X̃ ,S , L̃,Al ,Ap,W) = Pr(l̃0)Pr(x̃l
0)Pr(wc

0)

Em

∏
em=1

Pr(z̃l
em
|x̃el
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)Pr(x̃l

em
|l̃em)Pr(l̃em |w

c
em
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∏
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)Pr(x̃em ,ti
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)Pr(s̃em ,ti
|a

p
em ,ti−1

)Pr(a
p
em ,ti−1
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p
em ,ti−2

, wc
em−1

).

(20)

4.3.1. Action selection

The UAV performs two types of actions: one related to the targeted hotspot and the other

pertaining to controlling its motion while moving towards it. To do this, the UAV relies on two AIn

tables to select these actions. The former table encodes the relationship between the words and the

discrete actions at the event scale defined as:

AIn1 =













Pr(al
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c
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C) Pr(al

2|w
c
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c
C)













, (21)

where 0 ≤ Pr(al
i |w

c
j ) ≤ 1 and ∑

J
j=1 Pr(al

i |w
c
j ) = 1, ∀j. The other table encodes the relationship between

the words and the continuous actions at the slot scale:

AIn2 =




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, (22)
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where 0 ≤ Pr(a
p
i |w

c
j ) ≤ 1 and ∑

J
j=1 Pr(a

p
i |w

c
j ) = 1, ∀j.

The decisions made by the UAV to select actions that represent the targeted hotspot depend on

the current word (i.e., the current location of the UAV), which is determined by the probability entries

in (21). Thus, discrete actions are sampled from:

al
em

∼ Pr(.|wc
em
), (23)

where al
em

is the selected discrete action at event em that impact future environmental hidden states

and observations at event em+1. This ensures that the decisions made by the UAV are targeted towards

the desired hotspots. Once the targeted hotspot is chosen (i.e., al
em

), the UAV will then select a second

action (a
p
em ) that dictates how it will reach the targeted hotspot. This action is determined by the UAV’s

starting hotspot and UAV’s target (represented by word wc
em

) and involves a series of actions at a more

detailed time scale (slot scale). At the beginning of event em, UAV selects the initial continuous action

at the initial time slot t1 of that event according to:

a
p
em ,t1

= randint(1, |Ap|), (24)

where Ap = {North, South, East, West}, |Ap| is the total number of available predefined actions, and

randint(1, |Ap|) is a function uniform distribution that generates an integer uniformly between 1 and

|Ap| with. During event em, the following continuous actions in the subsequent time slots ti are chosen

based on previous continuous actions and prediction errors. More details on this will be explained

later.

4.3.2. Prediction and Perception

The UAV can anticipate the outcomes of joint actions at different time scales and levels of hierarchy.

On a long-term scale, the UAV expects an increase in the number of served users after each event

and every discrete action representing the targeted hotspots. This helps the UAV achieve its primary

goal. On a smaller scale, while moving towards the targeted hotspot, the UAV anticipates reaching

its second goal with each continuous action it takes during each time slot. So, the predictions are

performed at two different temporal scales.

At the event scale, to predict the coupling word wc
T,em

, UAV employes a Particle filter (PF) that

propagates a set {w
c(n)
T,em

, ω
l(n)
T,em

}N
n=1 of equally weighted particles sampled from the matrix Πwc defined

in (19). The UAV expresses its belief of how a specific word changes into another based on the

performed action through a probabilistic form Pr(w
c(n)
T,em

|w
c(n)
T,em−1

, al
T,em−1

). The predicted coupled word

comprises the predicted generalized letter (l̃
(n)
T,em

) and predicted token (Θ
(n)
T,em

) since the word is formed

by coupling these two components. For each propagated particle, UAV employs a Kalman filter (KF)

to predict the continuous state x̃
l(n)
T,em

explaining the dynamics of the data rate. KF relies on the dynamic

model defined in (15c) which can be represented by the probability distribution Pr(x̃
l(n)
T,em

|x̃
l(n)
T,em−1

, l̃
(n)
T,em

).

The posterior refers to the updated belief that forms after considering previous observations. It is

connected to predictions and can be expressed as follows: π(x̃l
T,em

) = Pr(x̃
l(n)
T,em

, l̃
(n)
T,em

|z̃l
T,em−1

). As the

UAV obtains new observations, diagnostic messages propagating in a bottom-up manner can be used

to update the posterior according to:

π(x̃l
T,em

) = π(x̃l
T,em

)× λ(x̃l
T,em

), (25)

where λ(x̃l
T,em

) = Pr(zl
T,em

|x̃l
T,em

). Likewise, particles weights are updated at the higher level following:

ω
l(n)
T,em

= ω
l(n)
T,em

× λ(l̃T,em), (26)
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where

λ(l̃T,em) = λ(x̃l
T,em

)Pr(x̃l
T,em

|l̃T,em) = Pr(zl
T,em

|x̃l
T,em

)Pr(x̃l
T,em

|l̃T,em), (27)

and Pr(x̃l
T,em

|l̃T,em) ∼ N (µl̃T,em
, σl̃T,em

).

On the other hand, at the slot scale, UAV predicts the consequence of the continuous actions

following the same approach explained earlier. By employing another PF, UAV can predict the

evolution of the discrete states sem ,ti
realizing the discrete zone of the UAV’s trajectory forming a

token Θem . UAV believes that the discrete states evolve in accordance with Pr(sem,ti
|sem,ti−1

, Θem , a
p
em ,ti−1

).

PF propagates a set of particles representing the predicted discrete states: {s
(n)
em ,ti

, ω
(n)
em ,ti

}N
n=1 that are

sampled using the transition matrix ΠΘ defined in (14). Consequently, a bank of KFs is employed to

predict the continuous states representing the UAV’s positions using the dynamic model defined in

(15d) which can be expressed as Pr(x̃em ,ti
|x̃em ,ti−1

, s
(n)
em ,ti

). The posterior associated with the predicted

states is given by:

π(x̃em ,ti
) = Pr(x̃

(n)
em ,ti

, s
(n)
em ,ti

|z̃em ,ti−1
) =

∫

Pr(x̃em ,ti
|x̃em ,ti−1

, s
(n)
em ,ti

)λ(x̃
(n)
em ,ti−1

)dx̃em ,ti−1
, (28)

where λ(x̃
(n)
em ,ti−1

) = Pr(z̃em ,ti−1
|x̃em ,ti−1

) is the diagnostic message propagated in a bottom-up manner

after observing z̃em ,ti−1
at time slot ti−1. When a new observation is received, diagnostic messages can

be utilized to update the UAV’s belief in hidden states. The belief in continuous states can be corrected

by updating the posterior using:

π(x̃em ,ti
) = π(x̃em ,ti

)× λ(x̃
(n)
em ,ti

). (29)

Meanwhile, the belief in discrete states can be updated by adjusting the weights of the particles

following:

ω
(n)
em ,ti

= ω
(n)
em ,ti

× λ(s̃em ,ti
), (30)

where λ(s̃em ,ti
) = λ(x̃em ,ti

)Pr(x̃em ,ti
|sem ,ti

).

4.3.3. Abnormality measures and action update

At each level of the hierarchy, the messages that predict what should happen are compared to the

sensory messages that report what is actually happening. This comparison results in several indicators

of abnormalities and prediction errors. We can determine how well the current observations match

the model’s predictions by examining these indicators at each level. Additionally, we can use the

prediction errors to figure out how to prevent these abnormalities from occurring in the future. The

observations of the UAV are influenced by its actions. So, if an abnormality is detected, it means that

the actions taken were incorrect. The UAV can use the prediction errors to make necessary corrections

and prevent abnormalities in the future.

The UAV has the capability to evaluate ongoing actions by utilizing an abnormality indicator

that calculates the difference between predicted states and observations. This is achieved through the

calculation of the Bhattacharyya distance as follows:

Υx̃em ,ti
= −ln

(

BC
(

π(x̃em ,ti
), λ(x̃

(n)
em ,ti

)
)

)

= −ln
∫

√

π(x̃em ,ti
)λ(x̃

(n)
em ,ti

)dx̃em ,ti
, (31)

where BC is the Bhattacharyya coefficient. It is to note that during exploration, UAV’s expected states

realize the target position while during exploitation UAV’s expected states are guided by the tokens.

The abnormality indicator defined in (31) is associated with prediction errors calculated as:

Ex̃em ,ti
= [x̃em ,ti

, Ėx̃em ,ti
] = [x̃em ,ti

, H−1Ez̃em ,ti
], (32)
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where Ez̃em ,ti
∼ N (µEz̃em ,ti

, ΣEz̃em ,ti
) depicts the prediction errors computed in the observation space,

which is characterized by the following statistical properties:

µ̃Ez̃em ,ti
= z̃em ,ti

− Hx̃em ,ti
, (33a)

ΣEz̃em ,ti
= HΣEz̃em ,ti

H⊺ + R, (33b)

where (33a) is the Kalman innovation and (33b) is the innovation covariance.

In case the UAV encounters abnormal situations, it can use prediction errors to rectify its previous

actions through first-order Euler integration following:

a
p
em ,ti

= a
p
em ,ti−1

+ ∆ti
µ̇x̃em ,ti

, (34)

where ∆ti
is the step size.

On the other hand, the UAV can assess the discrete actions representing the targeted hotspots

only after completing a full mission that includes a sequence of events. This is because the UAV

needs to determine if the selected hotspots were efficiently reached in their designated order to

achieve the intended goal of maximizing the sum rate. As previously stated, a series of actions (or

generalized letters) form a word, and the UAV checks whether the resulting word fulfils the intended

goal. Therefore, to evaluate the formed word, it is necessary to consider the cumulative abnormality

indicator. This indicator adds up the abnormalities that measure the divergence between what was

expected and what was observed at each event. The abnormality indicator itself is defined as:

Υx̃T,em
= −ln

(

BC
(

π(x̃T,em), λ(z̃T,em)
)

)

= −ln
∫

√

π(x̃T,em)λ(z̃T,em)dx̃T,em . (35)

while the cumulative abnormality indicator is defined as follows:

Υx̃T
=

E

∑
em=1

Υx̃T,em
, (36)

In case UAV detects a high cumulative abnormality, this indicates that the entire mission was

unsuccessful. In this case, the UAV must correct the action selection process by updating its strategy of

forming the word. This can be done by updating the active inference table defined in (21) as follows:

Pr(al
em
|wc

em
) = Pr(al

em
|wc

em
)− γ, (37)

where the gradient γ determines the amount by which the probability should be decreased.

Additionally, if the mission is successful with minimal abnormalities, the transition matrix

specified in (12) will be modified as follows:

Pr(l̃i|l̃j) = Pr(l̃i|l̃j) + γ̄, (38)

where i and j are part of the successful word representing the sequence of hotspots visited by the

UAU during its successful mission and γ̄ is the gradient that determines the amount by which the

probability should be increased.

5. Numerical Results and Discussion

In this section, we will thoroughly assess how well the proposed framework performs in designing

a trajectory for the UAV that effectively allows it to attain the highest total sum-rate possible with

the cell. In our simulations, we are looking at a situation where a single UAV is providing service to

several users who are located in different hotspots across a square geographic area of 1000 × 1000
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m2. The main simulation parameters are listed in Table 2. It is assumed that the altitude of the UAV

remains constant at zu = 100m [59]. Throughout the training process, we place a total of N = 80

hotspots in various random locations across the geographical area. The frequency of user presence

and requests within each hotspot adheres to the Poisson distribution. We generate a training set D

that consists of M examples corresponding to different realizations. Each realization (m) consists of

7 hotspots picked randomly from the N total hotspots and the users’ requests in each hotspot are

generated following Poisson distribution. The TSPWP method is used to solve the M examples in D,

generating M trajectories (TSPWP instances) and M sequences of the order in which the hotspots are

visited, which are saved in L+ and Q+, respectively.

Table 2. Simulation Parameters.

Parameter Value Parameter Value

Pu 1 W α 2
BRB 180 KHz σ2 −104 dBm
µLos 3 µNLos 23

N 80 M 1000

We evaluate the TSPWP performance by conducting a thorough analysis of completion time and

cost with profit metrics for different numbers of hotspots to determine the optimal α and β values

mentioned in (6a). In Figure 8, we see how the completion time of TSPWP is impacted by various

α and β values, as well as changes in the number of hotspots. Meanwhile, Figure 9 displays the

TSPWP performance in terms of cost with profit for different α and β settings while also altering the

number of hotspots. It is evident from Figure 8 that the completion time increases as the number of

hotspots increases, as having more hotspots makes the trajectory longer. It is worth noting that the cost

with profit rises gradually as the number of hotspots increases, especially between five and twenty,

as shown in Figure 9. However, after twenty hotspots, the cost with profit slightly rises due to the

reduction of profit (i.e., the accumulated sum-rate) from the cost (i.e., the travelling distance between

the hotspots). This effect becomes stable for higher hotspots and has a minimal impact on the overall

cost with profit. By analyzing the data, we have found that the ideal α and β values for achieving both

minimal completion time and maximum profit with cost are 0.9 and 0.1, respectively. Therefore, we

will use these values when implementing TSPWP.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0

0.5

1

1.5

2

2.5

3
10

4

Figure 8. TSPWP’s completion time performance for varying alpha and beta values, as well as changes

in the number of hotspots.

To solve each realization m, we use the TSPWP with α = 0.9 and β = 0.1, as previously mentioned.

The TSPWP gives us the solution (i.e., the TSPWP instance), which includes the trajectory and the

order of the hotspots to visit. We then create two sub-dictionaries from the M TSPWP instances. The

first sub-dictionary comprises all the words that make up the TSPWP trajectories, which use letters to

represent the hotspots (explained in 4.2.1). The second sub-dictionary contains all the tokens that show

the path between two adjacent letters (hotspots), as described in 4.2.1.
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Figure 9. TSPWP’s cost with profit performance for varying alpha and beta values, as well as changes

in the number of hotspots.

In the example shown in Figure 10-(a), there is one realization with seven hotspots scattered

randomly in the geographic area. Each hotspot has some active users who need resources. The

goal is to start from the initial station at the origin, visit each hotspot only once, serve the users

there, and then return to the origin within a specific time frame. Give the realization depicted in

Figure 10-(a) to the TSPWP method. It will produce the TSPWP instance, which includes the trajectory

and the order of visited hotspots, as demonstrated in Figure 10-(b). To create the global dictionary,

TSPWP instances from M examples are utilized, which include sub-dictionary 1 and sub-dictionary

2. Sub-dictionary 1 records the events that take place during the flight mission, such as when the

UAV reaches hotspot j after departing from hotspot i. The process of detecting different events and

forming a word representing the sequence of hotspots served during a flight mission is illustrated in

Figure 11-(a). In this process, hotspots are considered as letters, and the full trajectory represents a

word. The first event occurs after reaching the letter "g" starting from "o". The second event occurs

after reaching "f" from "g", and so on for the third and subsequent events. The final event occurs when

the UAV returns to the initial location, represented by the letter "o", starting from "a". Therefore, the

word describing the mission is defined as "w=o,g,f,e,d,c,b,a,o". In contrast, if we cluster the trajectory

data (which includes positions and velocities), we can see the resulting clusters in Figure 11-(b). Each

event that was previously detected will be linked to the set of clusters that form the path from one

letter to another, as illustrated in Figure 11-(b). A token is created for each event, and all the tokens

are combined to form the resulting word, which represents the path followed during the mission.

Throughout the training process, the same procedure is done for M examples in order to create the

words that indicate the sequence of targeted hotspots and the words that describe the movement from

one hotspot to the next. These two sets of words are coupled statistically to create a world model that

the UAV will use during the active inference (testing) process to plan a suitable trajectory based on

encountered situations (realizations).

Let’s take a look at how a UAV, using active inference, completes a mission. For instance, suppose

there are 10 hotspots in a given testing scenario. The UAV will rely on the world model, made up of two

sub-dictionaries, that it learned during training to successfully navigate the testing scenario. Firstly,

the UAV examines the current letters and matches them against the words listed in sub-dictionary 1.

This process helps to establish how closely they resemble each other in the current testing scenario.

After that, the UAV chooses the closest word from the dictionary and uses it as a starting point to

create the initial graph. The goal is to expand the graph by adding new letters to form a word that

enables an efficient trajectory to reach all hotspots (letters) and serve their users as quickly as possible.

To achieve this, one letter is added during each iteration, with the number of iterations depending on

the size of the reference graph and the number of new letters required to include all available letters in

the current configuration. To update the graph and make it directed, one link must be removed from

the reference graph, and two links must be added to the newly added letter or node at every iteration.

The transition matrix, which encodes the probabilistic relationships among the letters, is crucial at each

step and can be found in Figure 12. This matrix determines whether it is possible to transition from a

letter already present in the reference graph to the newly added letter. The transition matrix is learned
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after solving M examples during training and allows for the generation of words based on probability

entries.
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Figure 10. An example of one realization: (a) Seven hotspots scattered randomly across the geographical

area labeled with different letters, and each has a varying number of active users requesting service. (b)

The trajectory provided by the TSPWP.
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Figure 11. Cont.
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Figure 11. The process of forming the dictionary: (a) The events that have been occurred during the

flight and the generated word consisting of the letters visited by the UAV. Event 1 occur after reaching

letter g starting from letter o. Event 2 occur after reaching letter f from g. Event 3 occur after reaching

letter e from f. Event 4 occur after reaching letter d from e. Event 5 occur after reaching letter c from d.

Event 6 occur after reaching letter b from c. Event 7 occur after reaching letter a from b. Event 8 occur

after returing to the origin from a. (b) The clusters obtained after clustering the trajectory. Clusters

are labeled as letters. The generated tokens each consisting of several letters corresponds to a specific

event and so explaining the path to follow between two adjacent letters.
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Figure 12. The transition matrix encoding the probabilities of passing from one letter to another based

on the examples solved during training.

Figure 13 displays all the available pathways from the 11 hotspots to other letters. Depending on

the current letter, you can determine which letters are reachable. For instance, if you start at letter 1

(the initial location), you cannot transition to letter 6, but you can transition to the other 9 letters with

varying probabilities. Similarly, if you reach letter 2, you cannot go towards letters 3, 4, 8, and 10, and

so on. It’s worth noting that the probability values provided by the world model prevent unnecessary

transitions that won’t help the UAV reach its desired goal.
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Figure 13. The transition probabilities suggested by the world model to generate a word that might

solve the current realization: (a) Possible letters to target starting from letter 1. (b) Possible letters to

target starting from letter 2. (c) Possible letters to target starting from letter 3. (d) Possible letters to

target starting from letter 4. (e) Possible letters to target starting from letter 5. (f) Possible letters to

target starting from letter 6. (g) Possible letters to target starting from letter 7. (h) Possible letters to

target starting from letter 8. (i) Possible letters to target starting from letter 9. (j) Possible letters to

target starting from letter 10. (k) Possible letters to target starting from letter 11.

The example shown in Figure 14-(a) expresses a word generated by the UAV through the proposed

method but before it fully converged. The generated word is not optimal as it contains hotspots in

the wrong order, which causes the mission to take longer and increases the time needed to return to

the initial location. Furthermore, Figure 14-(b) shows that the UAV detected abnormalities during

most of the operation events. When the UAV detects abnormalities in its position, it is usually because

it is not close enough to its goal. The UAV aims for a specific letter that represents its target. It is

drawn towards that goal and then assesses its distance from the goal after each continuous action that

represents its velocity. If there are any abnormalities, the UAV can use prediction errors to correct

its actions and adjust its path to reach the targeted letter. For instance, during event 1, the UAV

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 July 2023                   doi:10.20944/preprints202307.0158.v1

https://doi.org/10.20944/preprints202307.0158.v1


25 of 38

perceived high abnormalities and prediction errors while it was still far from the intended letter, with

the starting letter being 1 and the targeted being 10. However, utilizing the prediction error, the

UAV was able to adjust its actions and reach the destination faster. This resulted in the abnormality

signals gradually decreasing until they reached zero, indicating that the UAV had indeed arrived at

the targeted destination.

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

2

3

4

5

6

7

8

9

10

11

(a)

0 1000 2000 3000 4000 5000 6000

0

200

400

600

800

(b)

Figure 14. A word generated using active inference before convergence: (a) The trajectory followed by

the UAV based on active inference before the convergence. (e) The abnormalities occured during the

fligth mission.

Figure 15-(a) presents another example of a word created by the UAV after convergence. The

proposed approach enabled the UAV to design a trajectory that is comparable to the one generated by

the TSPWP, with a similar completion time. It is noticeable that the UAV was successful in reducing

high abnormalities in various events, as depicted in Figure 15-(b), compared to the example shown

before convergence. This reduction is due to the UAV’s ability to differentiate between similar events

encountered before and deduce the optimal path immediately.
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Figure 15. A word generated using active inference after convergence: (a) The trajectory followed by

the UAV based on active inference before the convergence. (e) The abnormalities occured during the

fligth mission.

Figure 16 displays the updated transition matrix for 11 letters, which includes corrected probability

entries detailing the possible transitions between the available letters. This updated transition matrix

was rectified using the one exhibited in Figure 12.
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Figure 16. The updated transition matrix encoding the probabilities of passing from one letter to

another after convergence.
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The process of creating new words is shown in Figure 17. The first step is to select a reference

word from the dictionary by comparing the available letters in the current realization with the encoded

words in the dictionary. The UAV selects the word with the highest probability of being a match based

on the similarity of its letters to the available ones. The matching letters from the most similar word

are then used as a reference for creating new words. This reference word is represented graphically as

a closed loop, as demonstrated in Figure 17-(a). The initial graph is expanded by adding one letter

at a time, as illustrated in the figure. This insertion approach dramatically reduces the likelihood of

the UAV needing to determine the optimal visiting order. For instance, if there are 11 nodes to visit,

and each node must be visited only once, there are approximately 11! (∼ 39 million) possible word

combinations to find the correct order, which is a time-consuming and challenging task, particularly

when using a trial-and-error method. However, the proposed word formation mechanism decreases

the number of possible combinations from 11! to just 40. In Figure 17-(a), there are 6 potential ways to

create a new word by adding the first letter to the reference graph. Figure 17-(b) has 7 possible words,

while the other graphs feature 8, 9, and 10 options. The total number of combinations is 40, which is

calculated by adding the number of edges in each graph.

(a) (b) (c)

(d) (e) (f)

Figure 17. This is a graphic explanation of the process for creating new words from a base word found

in the dictionary: (a) The reference word represented graphically, and the new letters encountered in

the new situation should be added to the reference graph. (b) The updated graph (word) after adding

letter 7. (c) The updated graph (word) after adding letter 3. (d) The updated graph (word) after adding

letter 6. (e) The updated graph (word) after adding letter 4. (f) The updated graph (word) after adding

letter 5.

In Figure 18, you can see different examples with different numbers of hotspot areas. The

trajectories generated by the proposed method (AIn) and the TSPWP using 2-OPT are also shown, along

with their respective completion times. It is evident that the proposed approach produces alternative

solutions when compared to the TSPWP. In some cases, it also results in a quicker completion time as

shown in Figure 18-(c)-(d)-(f). This highlights the adaptability of the proposed method in deriving

reasonable solutions that surpass those of the TSPWP.
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(b) 20 Hotspots
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(c) 25 Hotspots
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(d) 30 Hotspots
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(e) 40 Hotspots
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(f) 50 Hotspots

Figure 18. The figure displays various examples with varying numbers of hotspot areas, along with

the solutions produced by the proposed method (AIn) and the TSPWP utilizing 2-OPT.
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In Figure 19, we tested the scalability of the proposed method (AIn) and compared the cumulative

sum-rate convergence for various hotspots. We observed that as the number of hotspots increased,

the cumulative sum-rate also increased. However, it took longer to find the best solution and reach

convergence with more hotspots. This is because there were more possible generated words to test,

which takes longer. In contrast, Figure 20 shows the cumulative abnormality for various numbers of

hotspots. The trend of the cumulative abnormality is contrary to the cumulative sum-rate. It begins

with high values and gradually decreases until reaching quasi-zero at convergence. As the number of

hotspots increases, the time taken to reach quasi-zero abnormality also increases.
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Figure 19. Convergence of the proposed approach (AIn) in terms of sum-rate for different number of

hotspots.
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Figure 20. Cumulative abnormality convergence of the proposed approach (AIn) for different number

of hotspots.

In Figure 21, we can see the average sum-rate of the proposed method at convergence for various

numbers of hotspots, compared to the analytical sum-rate. It’s clear that the proposed approach

achieves the expected analytical sum-rate after convergence, regardless of the number of hotspots.
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Figure 21. The average sum-rate of the proposed approach (AIn) compared to the analytical value for

various number of hotspots.

5.1. Comparison with modified Q-learning

In this section, we are comparing the performance of the proposed approach (AIn) with a modified

version of the conventional Q-learning (QL) [60]. To ensure a fair comparison, the modified-QL follows

the same logic as the proposed approach. Thus, the modified version uses two probabilistic q-tables -

one for mapping discrete states (hotspots) to discrete actions (targeted letters) and another for mapping

discrete environmental regions to continuous actions (velocity). Unlike traditional QL, the q-values in

these tables are represented as probability entries that range between 0 and 1.

As in the proposed method, we can see that the discrete states stand for the letters, and the

discrete environmental regions stand for the clusters. In addition, the available letters during a specific

realization make up the discrete action space, while four continuous actions representing different

directions (Up, Down, Left, Right) make up the continuous action space. The reward function in

modified-QL was designed using the TSPWP instances. If the modified-QL behaves similarly to the

TSPWP, it will receive a positive reward (+1). Otherwise, the reward is zero.

In Figure 22, an example similar to the one in Figure 10-(a) is shown to illustrate how the

modified-QL algorithm solved the mission both before and after convergence. Prior to convergence

(Figure 22-(a)), the modified-QL selected the wrong order of letters to visit, leading to a longer

completion time. However, after convergence (Figure 22-(b)), the algorithm discovered the correct

order of letters, resulting in a reduced completion time, although it still fell short of the completion

time achieved by the TSPWP due to a slight deviation from the correct path. It’s important to note

that the agent’s movement was limited to travelling between two boundaries to simplify the process,

which reduced the environmental states it could discover. Consequently, the modified-QL agent’s

movements were guided by the TSPWP through positive and zero rewards.
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Figure 22. An example of the realization shown in Figure 10-(a): (a) The trajectory followed by the

UAV using the modified-QL before convergence. (b) The trajectory followed by the UAV using the

modified-QL after convergence.

Figure 23 displays the gathered sum-rate in relation to the number of iterations, providing insight

into the modified-QL’s overall performance and scalability with varying numbers of hotspots. It is

clear that as the number of hotspots increases, both the collected sum-rate and the time to converge

will also increase with the modified-QL. Despite requiring more iterations, the modified-QL achieves

the same sum-rate at convergence as the proposed method.
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Figure 23. Convergence of the modified-QL in terms of sum-rate for different number of hotspots.

In Figure 24, we compared the convergence time of the proposed method (AIn) to that of the

modified-QL, as we varied the number of hotspots. The results showed that the proposed method

requires less time to converge than the modified-QL. This difference is more noticeable as we increase

the number of hotspots, with the gap between the two trends increasing. The modified-QL takes

longer to converge as we increase the number of hotspots, and it does so at a faster rate than AIn due

to its random nature, which leads to a higher number of possible words to try compared to AIn.
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Figure 24. The convergence time of the proposed approach (AIn) compared to the convergence time of

the modified-QL for different number of hotspots.

Figure 25 compares the completion time of our proposed method, AIn, to that of modified-QL

and TSPWP as the number of hotspots varies. The results show that modified-QL takes longer to

complete the missions due to slight deviations from the reference trajectories designed by TSPWP.

These deviations are caused by the random actions performed before the convergence. On the other

hand, AIn is able to complete missions faster than modified-QL thanks to its ability to deduce certain

paths based on the world model and calculate prediction errors to correct continuous actions. This

allows AIn to reach the target destination more quickly.
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Figure 25. The performance of the proposed approach (AIn) in terms of completion time after

convergence compared with TSPWP for different number of hotspots.

6. Conclusions and Future Directions

This paper studied the trajectory design problem in UAV-assisted wireless networks. In the

considered system, a single UAV provides on-demand uplink communication service to ground users

by flying around the environment. To solve this problem, we have proposed a goal-directed method

based on active inference, consisting of two computation units. The first unit builds a world model to

understand the surrounding environment, while the second unit makes decisions to minimize a cost

function and achieve preferred outcomes. The world model represents a global dictionary that has

been learned from instances generated by the TSPWP using a 2-OPT algorithm to solve various offline

examples. The dictionary includes letters for hotspots, tokens for local paths, and words for complete

trajectories and order of hotspots. By analyzing the dictionary, we can understand the decision-maker’s

grammar, specifically the TSPWP strategy, and how it utilizes the available letters to form tokens

and words. To accurately represent the properties of TSPWP graphs at different levels of abstraction

and time scales, we developed a novel hierarchical representation called the coupled multi-scale

generalized dynamic Bayesian network (C-MGDBN) that structures the gathered knowledge (i.e., the

global dictionary). The simulation results indicate that the proposed method performs better than

the traditional Q-learning algorithm. It provides quick, stable, and alternative solutions with good

generalization capabilities. Additionally, the results demonstrate that our approach can be scaled up

to larger instances, despite being trained on smaller ones, proving its effectiveness in generalization.

Furthermore, we have proven that our method can solve a complex problem (known as NP-hard) by

significantly reducing the number of actions the UAV needs to take to solve a specific example.

In future work, we plan to tackle the challenge of determining the optimal solution when there

are more hotspot areas but a fixed flight duration. We will also address the challenge of new hotspots

appearing and old ones disappearing while the UAV is completing its current mission. Lastly, we will

investigate coupling at the word scale in future studies.
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Abbreviations

Abbreviations

The following abbreviations are used in this manuscript:

UAV Unmanned aerial vehicle

LoS Line of sight

NOMA Non-orthogonal multiple access

GPS Global positioning system

IoT Internet of things

AI Artificial intelligence

ML Machine learning

RL Reinforcement learning

TSPWP Travel salesman problem with profits

GDBN Generalized dynamic Bayesian network

C-MGDBN Coupled multi-scale generalized dynamic Bayesian network

DP Dynamic programming

WSN Wireless sensor node

MILP Mixed integer linear programming

TSP Travel salesman problem

GA Genetic algorithm

PSO Particle swarm optimization

ACO Ant colony optimization

QoE Quality of experience

QL Q-learning

DQL Deep Q-learning

FBS Flying base station

GU Ground users

RB Resource block

OFDMA Orthogonal frequency division multiple access

NLoS Non line of sight

AWGN Additive White Gaussian Noise

C-GDBN Coupled Generalized dynamic Bayesian network

M-GDBN Multi-scale generalized dynamic Bayesian network

GNG Growing neural gas

POMDP Partially observable Markov decision process

KF Kalman filter

PF Particle filter
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