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Abstract: Deploying UAVs as aerial base stations is an exceptional approach to reinforce terrestrial
infrastructure owing to their remarkable flexibility and superior agility. However, it is essential to
design their flight trajectory effectively to make the most of UAV-assisted wireless communications.
This paper presents a novel method for improving wireless connectivity between UAVs and terrestrial
users through effective path planning. This is achieved by developing a goal-directed trajectory
planning method using active inference. First, we create a global dictionary using TSPWP instances
executed on various training examples. This dictionary contains letters representing available
hotspots, tokens representing local paths, and words depicting complete trajectories and hotspot
order. By using this world model, the UAV can understand the TSPWP’s decision-making grammar
and how to use the available letters to form tokens and words at various levels of abstraction and time
scales. With this knowledge, the UAV can assess encountered situations and deduce optimal routes
based on the belief encoded in the world model. Our proposed method outperforms traditional
Q-learning by providing fast, stable, and reliable solutions with good generalization ability.

Keywords: UAVs; wireless networks; trajectory design; Al-enabled radios; active inference

1. Introduction

In recent years, there has been a significant amount of research interest in unmanned aerial vehicles
(UAVs) due to their impressive features, such as their maneuverability, ease of positioning, versatility,
and the high likelihood of line-of-sight (LoS) air-to-ground connections [1,2]. UAVs are feasibly
exploited to alleviate a wide range of challenges in commercial and civilian sectors [3,4]. It is expected
that forthcoming wireless communication networks will need to provide exceptional service to meet
the demands of users. This presents difficulties for traditional terrestrial-based communication systems,
particularly in hotspot areas with high traffic [5-7]. UAVs have the potential to serve as flying base
stations, providing support to the land-based communication infrastructure without the need for costly
network construction [8]. In addition, their ability to be easily relocated makes them particularly highly
beneficial in the aftermath of natural disasters [9,10]. UAVs can also be deployed as intermediaries
between ground-based terminals, improving transmission link performance and enhancing reliability,
security, coverage, and throughput [11,12]. As such, UAV-assisted communications are becoming
increasingly vital in developing future wireless systems.

UAV-aided wireless communications possess a distinct advantage owing to the controllable
maneuverability of UAVs, which allows for flexible trajectories. This added degree of freedom
significantly boosts the system’s performance. Therefore, optimizing the UAV’s trajectory is an
indispensable area of focus in this field, as it is paramount to exploit the potential of UAV-assisted
wireless communications fully [13]. Several studies have looked into improving system performance
through trajectory design. One study, for example, optimized the trajectory of a UAV to gather
received signal strength measurements efficiently and improve the accuracy of spectrum cartography
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[14]. Another study proposed a method for planning the trajectory of a UAV to provide emergency
data uploading for large-scale dynamic networks [15]. Multi-hop relay UAV trajectory planning is also
crucial in UAV swarm networks [16]. Joint optimization of the UAV’s trajectory and user association
was suggested in [17] to maximize total throughput and energy efficiency. Another study examined
joint UAV trajectory design and time allocation for aerial data collection in NOMA-IoT networks [18].
In a cluster-based IoT network, joint optimization of the UAV’s hovering points and trajectory was
studied to achieve minimal age-of-information data collection [19]. Autonomous trajectory planning
solutions were proposed in [20] to enable UAVs to navigate complex environments without GPS while
fulfilling real-time requirements. Lastly, the trajectory of a UAV was optimized in [21] to minimize
propulsion energy and ensure the required sensing resolutions for cellular-aided radar sensing.

Traditional methods rely on optimization mathematical models that require precise information
about the system, including the number of users in different areas and network parameters when
designing a UAV trajectory. However, this approach may not be feasible in real-world situations due to
the constantly changing environment and limited battery life, making it difficult to solve these problems
using traditional techniques [22]. On the other hand, artificial intelligence (AI) techniques, such as
machine learning (ML) and reinforcement learning (RL), have proven to be effective in addressing
challenges related to sequential decision-making. By equipping UAVs with Al capabilities (Al-enabled
UAVs), they can attain a remarkable level of self-awareness, transforming wireless communications
[23]. With AI, UAVs can effectively comprehend the radio environment by discerning and segregating
the explanatory factors that are concealed in low-level sensory signals [24]. However, most ML and RL
methods are not capable of adjusting to new situations that were not included in their initial training.
This limitation in generalizing requires extensive retraining efforts, which can pose challenges for
real-time prediction and decision-making [25].

When Al-enabled agents sense and interact with their environment, they struggle with structuring
the knowledge they gather and making logical decisions based on it. One way to address this is through
knowledge representation and reasoning techniques inspired by human problem-solving to handle
complex tasks effectively [26]. Causal probabilistic graphical models are a prime example of such
techniques, which are highly effective in capturing the hidden patterns in sensory data obtained from
the environment. These models also provide a seamless way to integrate sensory data from various
sources [27]. By statistically structuring the data, they can describe different levels of abstraction that
can be applied across different domains. For instance, when learning a language, one must learn how
sounds form words, how words form sentences, and how grammar characterizes a language. At every
level, the learning process requires making probabilistic inferences within a structured hypothesis
space. Dealing with uncertainty is a common challenge in Al and decision-making, as many real-world
problems have incomplete or ambiguous information. Probabilistic representation is an effective
technique that leverages probability theory to model and reason with uncertainty, enabling Al agents
to make better decisions and operate more efficiently [28].

Active inference is a mathematical framework that helps us understand how living organisms
interact with their environment [29]. It provides a unified approach to modelling perception, learning,
and decision-making, aiming to maximise Bayesian model evidence or minimise free energy [30].
Free energy is a crucial concept that empowers agents to systematically assess multiple hypotheses
concerning behaviors that can effectively achieve their desired outcomes. Moreover, active inference
governs our expectations of the world around us. Specifically, it posits that our brains utilize statistical
models to interpret sensory information [31]. By using active inference, we can modify our sensory
input to conform to our preconceived notions of the world and rectify any inconsistencies between our
expectations and reality. Probabilistic graphical models are used to represent active inference models
because they provide a clear visual representation of the model’s computational structure and how
belief updates can be achieved through message-passing algorithms [32].

Motivated by the previous discussion, we propose a goal-directed trajectory design framework
for UAV-assisted wireless networks based on active inference. The proposed approach involves two
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key computational units. The first unit meticulously analyzes the statistical structure of sensory signals
and creates a world model to gain a comprehensive understanding of the environment. The second
is the decision-making unit seeking to perform actions minimizing a cost function and generating
preferred outcomes. The two components are linked by an active inference process. To create the
world model, the UAV was trained to complete various flight missions with different realizations
(such as the locations of hotspots and users” access requests) using the conventional travel salesman
problem with profit (TSPWP) [33] with 2-OPT local search algorithm in an offline manner. The
TSPWP instances (trajectories) were turned into graphs and used to build a global dictionary with two
sub-dictionaries. The first sub-dictionary represents the hotspots the UAV needs to serve and their
order of travel. In contrast, the second sub-dictionary shows the trajectories to follow between two
adjacent nodes. The global dictionary consists of letters at multiple levels, tokens, and words. The
world model is created by coupling the two sub-dictionaries, constructing a detailed representation of
the environment at different hierarchical levels and time scales. The world model is structured in a
Coupled Multi-Scale Generalized Dynamic Bayesian Network (C-MGDBN). This model builds upon
the Single-Scale GDBN, which is a statistical model that explains how hidden states drive time series
observations. However, unlike the conventional GDBN [34-36], which can only model single-scale
data, our enhanced GDBN representation can encode the dynamic rules that generate observations at
different temporal resolutions, making it far more versatile than traditional GDBNs. With this superior
model, we can simultaneously model a UAV’s behaviour at different time scales. The decision-making
unit relies on active inference to select actions based on the current state of the environment as inferred
from the world model. The proposed framework explains how UAVs navigate their surroundings with
a goal in mind, choosing actions that minimize unexpected or unusual observations (abnormalities),
which are measured by how much they deviate from the expected goal.
The main contributions of this paper can be summarized as follows:

¢  We developed a global dictionary during training to discover the TSPWP’s best strategy for
solving different realizations. The dictionary comprises letters representing the available hotspots,
tokens representing local paths, and words depicting the complete trajectories and order of
hotspots. By studying the dictionary, we can comprehend the decision-maker’s grammar (i.e., the
TSPWP strategy) and how it uses the available letters to form tokens and words.

*  We have designed a novel hierarchical representation structuring the acquired knowledge (the
global dictionary) to accurately depict the properties of the TSPWP graphs at various levels of
abstraction and time scales.

e  We tested the proposed method on different scenarios with varying hotspots. Our method
outperformed traditional Q-learning by providing fast, stable, and reliable solutions with good
generalization ability.

The remainder of the paper is organized as follows: the literature review is presented in Section 2.
The system model and problem formulation are presented in Section 3. The proposed goal-directed
trajectory design method is explained in Section 4. Section 5 is dedicated to the numerical results and
discussion, and finally Section 6 concludes this paper by highlighting the future directions.

Notations: Throughout the paper, capital italic letters denote constants, lowercase bold letters
denote vectors, capital boldface letters denote matrices. The shorthand A (u, Z) is used to denote a
Gaussian distribution with mean ¢ and covariance . If X represents a matrix, the element in its ith
row and jth column is denoted by x;;, and its ith row vector is represented by x;.

2. Literature Review

Solving the trajectory design problem is a crucial and leading research topic in Al-enabled wireless
UAV networks. This problem involves determining the optimal shortest path for a UAV to cover
all targeted hotspot zones (nodes) in a dynamic wireless environment while adhering to time and
mission completion constraints. This section discusses various techniques proposed in the literature


https://doi.org/10.20944/preprints202307.0158.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 July 2023 d0i:10.20944/preprints202307.0158.v1

4 of 38

for UAV trajectory design to optimize communication performance efficiently in a flexible wireless
environment. These techniques can be categorized as classical and modern optimization algorithms.

In order to meet time constraints for all ground users, a feasible UAV trajectory was proposed in
[37] using traditional dynamic programming (DP). However, due to an increase in hovering nodes, it
may not align with time constraint criteria and may not be suitable for real-time environments. DP was
also used to optimize the UAV trajectory in [38] for accessing multiple wireless sensor nodes (WSNs)
and collecting data under time constraints. However, the algorithm was inefficient in recognizing
and iterating through repeated grids, requiring high-order gridding for accuracy and resulting in
computational complexity. In the study referenced as [39], the problem of the UAV trajectory has been
formulated as a mixed integer linear program (MILP). The trajectory planning is carried out in discrete
time steps, where each step represents the dynamic state of the UAV in the environment. The algorithm
is designed for offline planning to ensure a feasible trajectory is available before the UAV performs
its tasks. However, this algorithm has limitations as it can easily get stuck due to its blind nature
and cannot generate long trajectories in a complex environment. The Dijkstra algorithm proposed in
[40] enables UAVs to perform environmental tasks efficiently by using the optimal battery level and
reaching the target point in the shortest possible time. However, as the network scale increases, the
algorithm takes a long time to provide a solution, making it unsuitable for real-time trajectory planning.
The A* algorithm, as discussed in [41], selects suitable node pairs and evaluates the shortest path for
UAVs based on feasible node pairs in a known static environment to address this issue. Although the
A* algorithm does not provide a continuous path, it ensures that the shortest path is followed in the
direction of the targeted node. However, this algorithm is not practical in a dynamic environment.
To overcome this, the D* algorithm and its variants, as reviewed in [42], are efficient tools for quick
re-planning in a cluttered environment. The D* algorithm updates the cost of new nodes, allowing
the use of prior paths instead of re-planning the entire path. However, D* and its variants do not
guarantee the quality of the solution in a large dynamic environment.

9‘ Dynamic Programming (DP) l

9‘ Dijkstra Algorithm |

| Traditional Algorithms I A* Algorithm |

D* Algorithm |

E —>| TSP Algorithm |
£
=

< ‘ Genetic Algorithm (GA) |

& o ;

'z |  Biologically Inspired ‘ Particle Swarm Optimization (PSO) l
=

2 | Ant Colony Optimization (ACO) |
8
=
=

‘ Machine Learning (ML) l

=>|  Advance Algorithms ‘ Reinforcement Learning (RL) |

‘ Deep Q-Learning (DQL) l

Figure 1. An overview of existing trajectory design algorithms.
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In order to design an effective path planning model for a UAV, the discrete space-based travelling
salesman problem (TSP) [43] is utilized to search for the optimal shortest path for the UAV to travel
through a fixed number of cities, with each city only being visited once. The UAV must also return
to the starting city within a fixed flight time for battery charging. However, the TSP is an offline
algorithm, so when a new city appears in the UAV’s path, the cost of the new city is updated from the
starting point, resulting in the entire path being replanned from the start to the new end, which is a
major drawback. The TSP is a challenging NP-hard problem and can be difficult to solve in polynomial
time unless P=NP. Two approaches are available when dealing with the challenging NP-hard problem
in TSP. The first involves using heuristics, such as 2-OPT and 3-OPT, to quickly generate near-optimal
tours through local improvement algorithms [44]. The second approach is to utilize evolutionary
optimization algorithms, such as genetic algorithm (GA), particle swarm optimization (PSO), and
ant colony optimization (ACO), which have proven to be effective in minimizing the total distance
travelled by the salesman in real-world scenarios [45]. While the GA is a good solution for obtaining
an appropriate path for a UAV, it can be relatively slow, making it inefficient for modern path planning
problems that require fast performance [46]. On the other hand, the PSO is good at local optimization
and can be used in combination with a GA that is good at global optimization [47]. The ACO is also
effective in solving the UAV path planning problem, but it requires a significant amount of data to
find the optimal solution, has a slow iteration speed, and demands much more simulation time [48].
Therefore, a combination of these algorithms may be necessary to effectively solve the UAV path
planning problem.

Reinforcement learning (RL) is a popular Al tool used to tackle complex problems like trajectory
design and sum-rate optimization, which are critical challenges due to the continuous environmental
variation over time. Indeed, solving mathematical optimization models is only possible when a priori
input data is available or requires too high complexity and computational time. Recent studies [49-51]
proposed optimal trajectory design for UAV using Q-learning to maximize the sum rate [49], increase
QoE of users [50], and enhance the number and fairness of users served [51]. However, Q-learning has
a drawback in that the number of states increases exponentially with the number of input variables,
and its memory usage also increases sharply. Due to the mobility of both ground and aerial users, the
curse of dimensionality can cause Q-learning to fail. As a result, solving the trajectory design problem
in a large and highly dynamic environment is a challenging task. A machine learning (ML) technique
has been proposed in [52] to optimize the flight path of UAVs in order to meet the needs of ground
users within specific zones during set time intervals. Another study in [53] explored a multi-agent
Q-learning-based method to design the UAV’s flight path based on predicting the movement of the
user to maximize the sum rate. Additionally, a meta-learning algorithm was introduced in [54] to
optimize the UAV’s trajectory while meeting the uncertain and variable service demands of the GUs.
However, these reinforcement learning-based solutions can only work in certain environments and are
unsuitable for highly dynamic and unpredictable environments. A deep Q-learning (DQL) algorithm
was introduced in [55] to enable UAVs to provide network service for ground users in rapidly changing
environments autonomously. However, the user mobility model in this algorithm is simple and does
not account for ground users moving to different positions multiple times, resulting in inadequate
trajectory results for different paths.

In this work, we approached the task of designing a UAV trajectory as a TSP with profit problem.
To solve this problem optimally offline, we used the 2-OPT local search algorithm. We converted
the resulting TSP instances from various examples into graphs and used them to train the UAV. This
allowed the UAV to capture the TSP graphs’ properties and form a world model consisting of a
hierarchical and multi-scale representation. With this model, the UAV can realise the TSP’s strategy for
solving the problem and implicitly discover the objective function. Our approach allows the UAV to
deduce optimal routes when facing a new realization based on its belief encoded in the world model.
This helps the UAV determine the best solution when there are deviations between what it knows and
what it sees.
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3. System Model and Problem Formulation

Consider a UAV-assisted wireless network, as shown in Figure 2, with a single UAV acting as a
flying base station (FBS) to serve U ground users (GUs) distributed randomly across a geographical
area and requesting uplink data service. GUs that demand the data service are introduced as active
users; others are so-called inactive users, as illustrated in Figure 2. It is assumed that the GUs are
partitioned into N distinct groups, each of which is defined as a hotspot area. The UAV’s mission is to
fly from a start location, move towards hotspots with high data service requests, and then return to the
initial location within a time period T for battery charging. Thus, the UAV’s initial (lp) and final (IT)
locations are predefined, represented by Iy = IT = [Xq, Yo, 2o]. It is important to note that the variable
T is directly proportional to the number of available hotspots (N). As N increases, T also increases
and vice versa. The UAV adjusts its deployment location at each flight slot according to the users
realization forming a trajectory denoted by q,,(t) = [xu(t), yu(t), z4(t)]. The sequence tracing UAV’s
travels among the available hotspots during the flight time duration is given by 4, = [hy,..., hy/],
where h, € N is the nth hotspot served by the UAV and N’ is the total number of the hotspots
served along the trajectory. Let £ be the set of all possible trajectories the UAV might follow and
Pr(hy41|hn, T:) be the probability to move toward hotspot /1,1 after being in h, (visited at time
T — 13,,) where 7, | is the remaining time to go back to the original location after serving £;,;1. The
set of available hotspot areas is denoted as N 2 {hy = hy,hy,...,hn} and GUs across the total
geographical area are denoted as K L {Ky = K1,Ky, ..., Ky}, where K}, is the set of users belonging
to the nth hotspot and each GU belongs to a single hotspot where the coordinate of each GU is given
by py, = [Xx,, Y&, - Each hotspot  is characterized by its center p,, = [xu, yx], radius r, representing
the coverage range and the average data rate R, that depends on the number of active users in hotspot
n where R, € R such that R = {R, =Ry,Ry,...,RyN}.

L [
\@ UAV-BS m Active Ground Users ) Inactive Ground Users — —=» Trajectory ------— > Signal

Figure 2. Illustration of the system model.

To capture the dynamic nature of the network, the UAV flight time (T) is discretized into a set
T of M equal time slots where the length of each time slotis t = (%) Due to its short duration, the
UAV’s location, uplink data requests and channel conditions are considered fixed in each t. Further, in
the considered network, the UAV assigns a set of uplink resource blocks (RBs) to serve the active GUs
in a specific hotspot (one RB for each active GU) who transmit their data over the allocated RBs using
the orthogonal frequency division multiple access (OFDMA) scheme.
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In our network, the air-to-ground signal propagation is adopted and a probabilistic path loss
model subject to random line-of-sight (LoS) and Non-line-of-sight (NLOS) conditions is considered
[56]. Thus, the channel gain between GU (k,, € K;;) and UAV (u) can be expressed as:

1 _
Skyu(t) = m[f’rmsmos + PratostNLos) 1

kn,u

where Ky = (47? £ )2, fe is the carrier frequency, c is the speed of light, « is the path loss exponent, Pry og
and Pryy o5 are the LoS and NLoS probabilities, respectively. py s and pinpos are additional attenuation
factors to the free-space propagation for LoS and NLoS links. The distance between GU (k) and the

UAV at time slot t is given by:

2 2
i, (1) = \/hu(t)2 + %k, (8) = xu ()" + (ye, () = yu(8) @
The average achievable data rate of the set of users in hotspot 7 is calculated as:
Kn Kﬂ t
K, = Z Tk, = Z Bk,, logz (1 + 7}?1(,,8(1;;,14( ) )r (3)
kn=1 kn=1

where By is the bandwidth of the RB allocated to GU (ky), py, is the transmit power of GU (k,), and
0% = By, Ny is the power spectral density of the additive white Gaussian noise (AWGN).

In this work, we focus on UAV trajectory design that can maximize the total sum-rate in the cell.
Therefore, our optimization objective can be formulated as:

N Ky N'—-1

max feum = Z Z Iy, H Pr(hyy1lhn, T,y ) (4a)
queL ha=1ky=1  hy=1

st. kinkj=@,i+j VijeN, (4b)

t(q,) <T, q,€L, (4¢)

0 < Pr(hyy1ln, T,,,) <1, 1< hy <N' -1, (4d)

Ik, > 1o, Vkn, (4e)

0 < px, < Pmax, Vkn. (4f)

Constraint (4b) indicates that each GU belongs to a specific hotspot. (4c) implies that the UAV must go
back to the initial location before T, where T is directly proportional to N. If N increases, T will also
increase; if N decreases, T will also decrease. Furthermore, (4e) represents the sum-rate requirement
for each GU and (4f) depicts the power allocation constraint. It is worth noting that in this paper, the
number of hotspots remains constant in a certain mission (realization). No new hotspots emerge nor
do any existing hotspots disappear while the UAV is solving a specific realization.

The symbols used in the article and their meanings are summarized in Table 1.
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Table 1. Variables Description.

Symbol Meaning
u Ground Users (GUs)
N Number of hotspots
T battery life time
) UAV’s initial location
It UAV’s final location
q, () UAV’s trajectory
q. Sequence of hotspots served by the UAV
hy, nth hotspot serverd by the UAV
N’ total number of hotspots served along the trajectory
L set of possible trajectories to follow by the UAV
Pr(hy41|hy, 7))  Probability to move toward hotspot k1 after visiting 1, at time T — 1,
T, Remaining time to go back to the original location after serving /1,
N The set of available hotspot areas
K The set of GUs distributed across the total geographical area
Ky The set of GUs belonging to the nth hotspot
P, = Xk, Vi, ] The coordinate of GU k;, belonging to the K,
P, = [Xn, yn) Center of nth hotspot
In Radius of the nth hotspot
R The set of the average data rate of all the available hotspots
Ry Data rate of the nth hotspot
t Time slot
u UAV
Sk, u(F) Channel gain between GU (k) and UAV (1)
K Channel factor
fe Carrier frequency
€ Speed of light
« Path loss exponent
Prios Probability of Line of Sight
Prnios Probability of Non Line of Sight
ULoS Additional attenuation for line of sight links
UNLoS Additional attenuation for non line of sight links
Ay, u(t) Distance between GU k;, and UAV u at time ¢
K, Achievable data rate in hotspot n
By, The bandwidth of the resource block (RB) allocated to user k;,
Pk Transmit power of user k,
o2 Power spectral density of the additive white Gaussian noise
D Training set of realizations representing M examples
Yl Set of the sequences of hotspots selected by TSPWP to solve M examples
ot Set of trajectory instances generated by TSPWP
S Set of clusters generated by GNG
L Generalized letter
Aj, Adjacency matrix
Ay Global adjacency matrix
I1; Global transition matrix
D Degree matrix
(O Tokens
I1e Tokens transition matrix
W, Words on order
w?/ en Words on motion
WY, Coupling word

4. Proposed Goal-Directed Trajectory Design Method

d0i:10.20944/preprints202307.0158.v1

8 of 38

In this section, we propose a goal-directed method for UAV trajectory design based on active
inference. Latter is a model-based data-driven approach that rests upon the idea of using an internal
generative model (world model) to cast the surrounding environment and planning actions allowing
to realisation goals targeted by the agent. Firstly, we present the perceptual learning of desired
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observation based on a classical travel salesman problem (TSP) with 2-OPT [57]. Then, we show how
to build the world model representing the surrounding environment by encoding the dynamic rules
behind the optimal TSP trajectories.

4.1. TSP with profits instances

The traditional TSP is a classic algorithm problem in computer science and operation research
describing how a salesman travels to several vertices (cities) and returns to the terminal (initial location),
aiming to minimize travel cost (i.e., the travel distance) while ensuring visiting each city only once
[57]. In this work, we adopt the TSP with profits (TSPWP) with 2-OPT local search algorithm [33],
which is a generalization of the traditional TSP where the overall goal is the simultaneous optimization
of the collected profit and the travel cost, knowing that each vertex (city) is associated with a profit.
Thus, TSPWP is used to generate optimal trajectory instances offline that the UAV might follow to serve
more users within a predefined time. Given a list of hotspots where the active users are distributed, as
shown in Figure 2, and the cost (c;;) of transiting between each pair of hotspots, the problem is to find
the optimal route that visits each hotspot once and returns to the origin providing maximum sum-rate
and minimum completion time.

Let G = (V,€) be a graph where V = {v4,...,vN} is a set of N vertices and £ is a set of edges.
Let p, be the center of v, and ri, the profit associated with v, and a cost Cij be associated with each
edge (v;, v]-) € &, such that:

cij =d(p;, pj) = \/(Xz‘ —xj)2+ (yi —yj)% ©)

The objective function of the TSPWP with N hotspots can be defined as:

min « Z cijxij — P Z "KYjr (6a)
(z;,-,z;]-)eé‘ 'U]‘EV
s.t. Z Xij = Yi, (6b)
v;eV
v;€V\{v;}
Y. xi=y (6¢c)
‘()jGV
U,‘EV\{U]‘}
Xjj € {0,1}, (’0,’,0]') €é, (6d)
Yij € {0,1}, (v; € V), (6e)
atp=1. (66)

Constraints (6b) and (6¢) are the assignment constraints where x;; is a binary variable associated to
edge (v, v}), equal to 1 if and only if (v;, v;) is used in the solution, and y; is a binary variable associated
to vertex v; € V, equal to 1 if and only v; is visited.

4.2. World Model

The proposed approach consists of two computational units. The first unit aims to learn the
surrounding environment by representing the statistical structure of the sensory signals (world model).
The second is the decision-making unit seeking to perform actions minimizing (or maximizing) a cost
function describing preferred outcomes (similar to rewards in RL). The world model is an internal
generative model representing the surrounding environment (both physical and wireless environment)
utilized by the UAV to make predictions about incoming sensory signals. In this subsection, given the
TSPWP instances generated previously from several experiences (i.e., realizations of users distribution
and users requests), our objective is to encode the dynamic rules generating those instances in a
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probabilistic graphical model capable of reflecting the graph structure of the TSPWP instances at
multiple hierarchical levels and different time scales.

4.2.1. Dictionary Learning

Each TSPWP instance comprises the trajectory the UAV follows to reach the targeted hotspots in
a particular order. Hence, the objective is to form a dictionary capturing the TSPWP graph structure,
allowing one to predict the most probable hotspot to target conditioned on a specific location and
the most probable path to follow to reach that targeted hotspot. Thus, the dictionary consists of two
sub-dictionaries. The first encodes the rules generated the sequence order of the hotspots that UAV
intend to serve. In contrast, the second sub-dictionary encodes the rules generated the motion to travel
among to neighbouring hotspots. Figure 3 illustrates the process of forming the global dictionary.

1) TSPWP offline execution:
Let D = {D,, = D1,D5,...,Dy} be a training set of realizations representing M examples of users’
distribution in the cell, where D,, is the m-th realization and M is the total number of realizations.
Each realization consists of the number of hotspots and their locations, the number of users inside
each hotspot as well as the users’ access request and users’ locations. The TSPWP algorithm will be
employed offline to solve all the examples in D. Consequently, let £ = {Lw=1L4,Ly,...,Lys} bea
set of the sequences of hotspots selected by the UAV using TSPWP to solve the M examples, where
Ly = {hy,..., hy} is the m-th sequence of hotspots selected by the UAV to solve the m-th example
and let 9t £ {q" =ql,4%,...,4M} be the set of trajectory instances generated by the TSPWP, where
q7 is the m-th TSPWP trajectory generated to solve the m-th example.

Tokens Sub-Dictionary 2

gy = 2SR S wP =
/ Soq (@1, B3, By, B, D)
.
Words Multi-scale
L 3 Motion) GDBN 1
@, /// . )
= ’ upl -
S Coupled Multi
./w/[o Sub-Dictionary 1 scale GDBN
Multi-scale
Dictionary Formation GDBN 2
° Generalized Letters
é 4 Letters
U ks
* — TSPWP — — e+ .« (s ED €
i i / /
P, P
3 R
¢ ! ’ L th
Users Realizations TSPWP Tours e $ - n .
O e . Words
" (Order)
”_Z, 3 0
B - i
— < ol ol 1o 1o
esfa . i I
-
Events P

Figure 3. The procedure to form the global dictionary.

2) Unsupervised Clustering;:
For each of the generated trajectories in Qf, a Growing Neural Gas (GNG) is employed to the
generalized errors (GEs) provided by the unmotivated Kalman filter (UKF) [58] to discover the
dynamic rules driving the different trajectories. Let S be the set of clusters generated by GNG and
defined as:
S2 {sf =s1,52,...,5¢}, (7)

where s is the f-th cluster following a Gaussian distribution such that sy ~ A/ (;tsf, IR f), and F is the
total number of clusters. Clustering the trajectory data allows obtaining knowledge that reveal the
latent characteristics of the UAV’s motion.

3) Sub-Dictionary 1:
Accordingly, from £ we form a sub-dictionary encoding the decisions made by the UAV consisting of
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the sequences of targeted hotspots. We define a letter /,,; = h,, representing a starting hotspot h;, at a
given time and a generalized letter defined as:

Iw = [, E(h, B, (8)

consisting of the letter itself and its derivative illustrating the event of travelling from hotspot h,, to
hotspot 1,/ Tt is to note that a generalized letter [,, can be seen as a pair of one node n; = h,, and one
outgoing arc (n;,1j) from node n; to node n; as shown in Figure 3. Then, for each element Ly, in Lt we
transform the sequence of generalized letters expressing that experience into the following sequence:
{Tm,n , ZNm,TZ, s, Tm,TT} describing the transitions between adjacent event-steps. As mentioned before,
the generalized letters of a certain experience m can be seen as an unweighted graph G, = Vi, Em)
where Vi, = {lyxy, .., Im,z; } is a set of vertices represented by the letters and &, = {im,Tl, e, im,TT} is
the set of edges represented by the letters’ derivatives. The adjacency matrix A; = that captures the
pattern of co-occurrences in the generalized letters sequence is an 17 X Tr zero-one matrix defined as:
A;j = [aj] where:

1 if (i,j) €€,
aij = ( ])' )
0 Otherwise.

After executing the M examples, we can form the global adjacency matrix A; = [a, j’] comprising
all the generalized letters (forming a global graph Gejopar = (Vgi0pal, Eglovar)) 0ccurred while solving

the M examples, such that:
1 if (7)) € Egtovals
ap s = it ( ]') global (10)
- 0 Otherwise.
Element a, 7 denotes the number of times that a generalized letter Ti/ is followed by generalized letter

I, during two consecutive events in the global graph Gelobal-
The degree of each letter i = I, 1, is the number of its adjacent letters (or the number of outgoing

edges at that letter) calculated as: d; = ZJ'Z”{' ay - Considering the degrees of all letters, we can
construct the degree matrix D which is an |V,,| X |Vy,| diagonal matrix defined as:

fds i i =],
D,, — (11)
t 0 Otherwise.

Consequently, the global transition matrix can be constructed in the following way:

Pr(h|ly)  Pr(h|h) ... Pr(h|ly)
Pr(l|! Pr(l|l e Pr(b|l

o pg | P PR Pl | .
PI‘(ZNM/|T1) PI(TM/|Z~2) Pr(l~M/|l~M/)

where 0 < Pr(l~l~|l~]~) <1land Z]lzl Pr(l~l~|l~]~) = 1,V]. During a flight mission that lasts for a time period T,
the order of visited hotspots is recorded in a word called w% = {im,rlr l~m,T2, eeey im,rr}-
3) Sub-Dictionary 2:

Each event e,; = E(hy, h,,) can be associated with a local trajectory followed by the UAV to pass from
hy to h,,y which can be represented by a sequence of discrete clusters. This is possible after associating
the local trajectory with S defined in (7) to form a token comprising a sequence of letters depicting the
firing sequence of clusters (neurons) from § during a certain event, i.e, e;,. Hence, we define a token
consisting of a set of clusters and representing a local path between two adjacent hotspots as following:

®€m = {Semrtl’ Semrtz’ 4 SEWI/tT}’ (13)
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where s, 1, € S and t; is the duration of event e, specified in number of time slots. The stochastic
process decomposing the interdependent nature of the tokens that make up the local trajectories can
be illustrated in a transition matrix defined as:

Pr(0Q|©,) Pr(0|0O;) ... Pr(0,|0,)
I — Pr(@)e‘z|®e1) Pr(@,i2|®gz) Pr(®e2‘|@eM) , 19
Pr(®;,,|©c,) Pr(0c,|®c,) ... Pr(0.,|O,)

where Pr(®,,|®,;) depicts the transition probability from token i to token j, such that 0 < Pr(®,|©,;) <
1 and Z]]':l Pr(®|®,;) = 1,Vj. During a flight mission of duration T, the tokens that represent the

entire trajectory are recorded in a word called w’% = {@)e,-/ @e]. s @e] 1.

4.2.2. The proposed graphical representation

Introducing Multi-scale GDBN: We can see that the UAV’s dynamic behaviour manifests at
multiple time scales, namely, slot scale and event scale. It is essential to have an efficient representation
that can model this dynamic behaviour, including a hierarchical structure and incorporating Markov
chains at various time scales. To achieve this, we propose to learn two separated dynamic models
representing the dynamic behaviour of the UAV when selecting the targeted hotspots (i.e., the sequence
of hotspots to serve during the flight time) and when moving between two consecutive hotspots
(i.e., the UAV’s motion path), respectively. The proposed representation considers observations
stemming from two different behavioural processes with different temporal resolutions. The first
process determines the decisions made by the UAV at the event scale, while the second process
determines the UAV’s motion at the finer time scale (slot scale), which is nested within the event scale.

The first dynamic model entails arranging particular elements of the dictionary (sub-dictionary 1),
particularly the generalized letters referenced in (8), into a multi-scale Generalized Dynamic Bayesian
Network (M-GDBN) displayed in Figure 4. The M-GDBN is a hierarchical probabilistic graphical
model that consists of four levels, two of which are continuous and two of which are discrete. Each
level corresponds to a distinct hierarchy and time scale. Furthermore, M-GDBN explains how the
latent state variables and the observation are probabilistically linked. The explanation for the evolution
of hidden variables at multiple levels is provided based on the following dynamic models:

Figure 4. A multi-scale GDBN representing sub-dictionary 1 that encodes the dynamic rules generating
UAV’s hotspots sequence in different experiences.
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wr = £ (Wr_q) + 11, (15a)
iTzem = f(z) (iT,emflf w%) + NTepnr (15b)
flT’em g g(l) (.’f'lrlem71/ TT,gm) + 77T,gm, (15C)
2o = 8P (&) + VT (15d)

The discrete state equations in (15a) and (15b) illustrate how words and generalized letters change
over time at various temporal scales. f(1) and f(2) are nonlinear functions that experience random
fluctuations in the states influenced by higher levels and characterized by nr ~ N(0,Q) and
NTe, ~ N(0,Q). Going down the hierarchy, equations (15¢) and (15d) stands for the continuous
state equation and the observation model, explaining the continuous state dynamic evolution and
the mapping from the continuous state space to the measurement space, respectively. Observations
are subject to random fluctuations playing the role of observation noise characterized by vr,, ~
N(0, (TZng ). All (15a), (15b), (15¢), (15d) can be expressed in a probabilistic form as Pr(w%|w$_;),
Pr(Ire, ITe, 1 W%), Pr()?lT,em |’?lT,em_1rl~T,em) and Pr(ZlT,em ‘flT,em_l)' Thus, the consistent global model
(i-e., the joint distribution function) corresponding to the network in Figure 4 is given by:

PrOW°, L, &, 21) = [TPr(w§) [ ] Pr(Ire, |w§)Pr(%h,, |, ) Pr (2, 157, ). (16)
T

T,em

M-GDBN is a directed acyclic graph where every node represents a random variable or uncertain
quantity that can have multiple values. The arcs indicate a direct causal influence between linked
variables, and the strength of these influences is measured by conditional probabilities. To determine
the structure of M-GDBN, a node is assigned to each variable, and arrows are drawn towards it from
nodes that are perceived to be its direct cause. To determine the strength of direct influences, each
variable is assigned a link matrix. This matrix represents the estimated conditional probabilities of the
event based on the parent set’s value combination.

In Figure 4, there is another multi-scale GDBN that deals with the dictionary components
concerning the UAV’s dynamic motion (sub-dictionary 2). This second network has three discrete
levels and three continuous levels. The variables at the various levels explain how the observations
(i.e., the UAV’s trajectory) were generated. For instance, at the word scale, each word is made up of
tokens that were realized at different events (event scale). Each token, in turn, is composed of discrete
and continuous letters that generate observations at different slots.

In order to comprehend the generative process forming the UAV’s global trajectory, we can refer
to the dynamic models below:

wh = V() + 91, (17a)
Or,, = {2 (Or,, ., wh) + 11, (17b)
Sewt: = 1) Gopti 1) OTer,) + NToers (17¢)
Femt; = 81 (Repy 1t s Semts) F Temtis (17d)
Zont: = 82 (Rept) + Ve t.- (17e)

The discrete state equations in (17a), (17b), and (17c) show how the trajectory words, tokens and
trajectory clusters change over time at various temporal scales. These equations use non-linear
functions f(1), f2), and £ subject to process noise 77 ~ N (0,Q). The continuous state equation
in (17d) explains how the trajectory states evolve over time, while (17¢) links observations to these
states. The equations mentioned earlier can be expressed probabilistically as follows: Pr(wr|wr_1),
PI‘(@T,em ‘®Tr€m—1’ wp ), Pr(§gm,ti S~gm,ti71, ®T,em,1 ), Pr(fem,ti femrti—l’ SNg,mtl. ), and Pr(ng,t fgm’ti ) . The

i
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network in Figure 5 has a compatible global model, represented by a joint distribution function
that can be expressed as:

Pr(WF,®,8, X, Z) = Pr(wh) [] Pr(Ore, |wh)Pr (5, %1, )Pr(Zr,, [%1,, )- (18)
T

T.em

Coupled-MGDBN: We have organized the dictionaries we obtained into a coupled multi-scale
Generalized Dynamic Bayesian Network (C-MGDBN), which includes the two dynamic models. The
first model represents the sequence of hotspots the UAV selects to solve the realizations encountered
during training, which is structured in sub-dictionary 1. Meanwhile, the second model represents
the UAV’s path to travel between consecutive hotspots, which is structured in sub-dictionary 2. By
coupling these two models stochastically in the C-MGDBN, we can incorporate more complex and
sophisticated dynamics and model stochastic representations of multiple behaviours. Additionally,
we have equipped an efficient mechanism to the C-MGDBN that captures multiple event and state
transitions, which help explain how the UAV approached a particular task (such as trajectory design)
in different examples.

/\

Em+1

T2 S

Figure 5. A multi-scale GDBN representing sub-dictionary 2 that encodes the dynamic rules generating
UAV’s positions to travel among the hotspots in different events.

We coupled the two M-GDBN models mentioned earlier at the event scale. This was done
because multiple events make up a complete mission. We have yet to investigate coupling at the word
scale. However, this coupling technique can be useful if the UAV is performing various missions.
For instance, after serving active users in a specific cell, the UAV can return to its initial station for
recharging before proceeding to another mission. In this way, by learning the dynamics of real-life
scenarios, which include users’ activities and the emergence of hotspots, the UAV can plan its actions
at the word scale. For the rest of the paper, we will assume that the UAV is making plans at both the
event and slot scales.
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Figure 6. A coupled multi-scale GDBN (C-MGDBN) structures the acquired dictionaries by coupling
the corresponding models at the event scale.

(o)
T em+1

In the C-MGDBN, the current discrete state is influenced by the state of its own chain and
that of the neighbouring chain from the previous event step. To avoid overwhelming complexity,
we conducted a meta-clustering process by merging dependent nodes in the connected network
into a single higher-dimensional node. In other words, Pr(®r, +1|G)T,gm,l~T,gm) and viceversa
Pr(Ir,, " I7,, O, ). To estimate these probabilities we need two transition matrices encoding
the probabilistic relationships between words and tokens. Merging letters and tokens allows to
simplify the case by coupling them into a higher node wf., = (I, OTe,]. The evolution of the
words w7, can be captured by the transition matrix defined as:

Pr(w§|w]) Pr(w§lws) ... Pr(wf|lwg)
Pr(ws|w{) Pr(w§lws) ... Pr(w§|lwd)

My = | . S |y (19)
Pr(wg|w]) Pr(wg|ws) ... Pr(wg|wg)

where, 0 < Pr(wﬂw]c) <1land 2]1:1 Pr(w! |w]C ) = 1,Vj. Il e can be considered as a combined transition
matrix, formed by coupling (12) with (14).

4.3. Active Inference

During the active inference process, UAV can learn, adapt, and perceive its body as a
unit while interacting with the environment. The UAV’s world model can be defined as a
partially observable Markov decision process (POMDP). It involves a probability distribution
Pr(Zl,Z ,XLX,S, L, AL AP, W) that determines the joint probability of the UAV’s observations,
belief states, actions, and words (i.e., policies). In simpler terms, a word (or policy) refers to a set of
actions. This concept is illustrated through events in Figure 7, and it can be expressed in the following
format:
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Figure 7. An Active multi-scale GDBN involving the active states representing the actions that the UAV
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can perform and affect the dynamic rules generating UAV’s positions to travel among the hotspots in
different events.

pr(2,2,8,%,8,L, A, AP, W) = Pr(lo)Pr(&})Pr(w)

Enl ~ -
[T Pr(z, |2, )Pr(x, [T, Pr(L,, [wl, )Pr(wh, b, )Pr(a;, | |wf )%
em=1 " (20)
T;
Pr(30)Pr(%o) tl—ll Pr(Ze,, t; %o t: )P (Tey 1 Sep ) PY (Be s lah o Pr(al - fab o wf ).
p

4.3.1. Action selection

The UAV performs two types of actions: one related to the targeted hotspot and the other
pertaining to controlling its motion while moving towards it. To do this, the UAV relies on two Aln
tables to select these actions. The former table encodes the relationship between the words and the
discrete actions at the event scale defined as:

Pr(a;1 |ws) Pr(aiz|w§) e Pr(a§u|w§)
Pr(aj|ws) Pr(ay|ws) ... Pr(ay|ws)

Am = | LT T 21)
Pr(a}|ws) Pr(ablwt) ... Pr(al|wg)

where 0 < Pr(al \ch) <1land 2]1:1 Pr(a! |w]C) = 1,V]. The other table encodes the relationship between
the words and the continuous actions at the slot scale:

Pr(af|w$) Pr(ah|ws) ... Pr(af|w)
Pr(af|wg) Pr(ah|ws) ... Pr(aﬁ|w§)

Aln, = , (22)

Pr(a}|ws) Pr(ah|ws) ... Pr(af|wg)
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where 0 < Pr(af\ch-) <1land Z]]‘:1 Pr(af|w]'?) =1,Vj.

The decisions made by the UAV to select actions that represent the targeted hotspot depend on
the current word (i.e., the current location of the UAV), which is determined by the probability entries
in (21). Thus, discrete actions are sampled from:

aé ~ Pr( |wem) (23)

where aém is the selected discrete action at event e;, that impact future environmental hidden states
and observations at event e, 1. This ensures that the decisions made by the UAV are targeted towards
the desired hotspots. Once the targeted hotspot is chosen (i.e., uém), the UAV will then select a second
action (a}, ) that dictates how it will reach the targeted hotspot. This action is determined by the UAV’s
starting hotspot and UAV’s target (represented by word wp ) and involves a series of actions at a more
detailed time scale (slot scale). At the beginning of event e,;, UAV selects the initial continuous action
at the initial time slot #; of that event according to:

afm,tl = randint(1, | A7), (24)
where AP = {North, South, East, West}, | AP| is the total number of available predefined actions, and
randint(1, | A”|) is a function uniform distribution that generates an integer uniformly between 1 and
| AP| with. During event e, the following continuous actions in the subsequent time slots #; are chosen
based on previous continuous actions and prediction errors. More details on this will be explained
later.

4.3.2. Prediction and Perception

The UAV can anticipate the outcomes of joint actions at different time scales and levels of hierarchy.
On a long-term scale, the UAV expects an increase in the number of served users after each event
and every discrete action representing the targeted hotspots. This helps the UAV achieve its primary
goal. On a smaller scale, while moving towards the targeted hotspot, the UAV anticipates reaching
its second goal with each continuous action it takes during each time slot. So, the predictions are
performed at two different temporal scales.

At the event scale, to predict the coupling word w7, , UAV employes a Particle filter (PF) that

propagates a set {wCT(ZBI, “’IT(,Z,),, MV of equally weighted particles sampled from the matrix ITy,e defined

in (19). The UAV expresses its belief of how a specific word changes into another based on the

performed action through a probabilistic form Pr(wCT(Z |wCT(Zm Y alT ¢,_;)- The predicted coupled word

comprises the predicted generalized letter (T(T'fe)m) and predicted token (®T7,2m) since the word is formed
by coupling these two components. For each propagated particle, UAV employs a Kalman filter (KF)

~l( )

to predict the continuous state X7 ,’ explaining the dynamics of the data rate. KF relies on the dynamic

model defined in (15c) which can be represented by the probability distribution Pr(xT | T em v T o )
The posterior refers to the updated belief that forms after considering previous observations. It is
connected to predictions and can be expressed as follows: n(flum) =Pr (~¥’2ﬂ T(Tife)m ‘ZlT,e,,,,l ). As the
UAV obtains new observations, diagnostic messages propagating in a bottom-up manner can be used
to update the posterior according to:

n(flTem) = 7T(}ZIT,E ) X A(xTem) (25)

where A(flT,em) = Pr(le, o WTem ). Likewise, particles weights are updated at the higher level following:

A wlT(,ZZZ < ATre, ), (26)

em
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where
MI1e,) = MEr o, JPE(E7 |10, ) = Pr(zhp, |27, JPE(Rr s, 1TTe,, ) (27)

and Pr(xTe ITe,,) ~ N(VZT(, . ).

On the other hand, at the slot scale, UAV predicts the consequence of the continuous actions
following the same approach explained earlier. By employing another PF, UAV can predict the
evolution of the discrete states s, ;, realizing the discrete zone of the UAV’s trajectory forming a
token ©,,,. UAV believes that the discrete states evolve in accordance with Pr(semt |Sem,ti,1 , O, afm,tiil ).

e
PF propagates a set of particles representing the predicted discrete states: {s enti? @ é:?ti }V_| that are
sampled using the transition matrix Ilg defined in (14). Consequently, a bank of KFs is employed to
predict the continuous states representing the UAV’s positions using the dynamic model defined in
(15d) which can be expressed as Pr(%,,, 1| Xe,.t; ; s( 1) ). The posterior associated with the predicted
states is given by:

7t(%e, t;) = Pr(x E»m)trsgmt| Zemti 1 /Pr Kot Kot 1rs(n)t )/\(fézgti,l)dfem/ti—l’ (28)

Cm,

where A (% g )t ) =Pr(Z, ;. |%,u ) is the diagnostic message propagated in a bottom-up manner
after observing Z,, ;. , at time slot t;_;. When a new observation is received, diagnostic messages can
be utilized to update the UAV’s belief in hidden states. The belief in continuous states can be corrected

by updating the posterior using:

(e ) = 7(Fapt) X AT) 29)

Meanwhile, the belief in discrete states can be updated by adjusting the weights of the particles
following:

wg,i?t- = wg:,?ti X A(Sep t: ), (30)

where A(Se,, t;) = A(Xe, 1 ) PT(Zey t; |Sep t;)-

4.3.3. Abnormality measures and action update

At each level of the hierarchy, the messages that predict what should happen are compared to the
sensory messages that report what is actually happening. This comparison results in several indicators
of abnormalities and prediction errors. We can determine how well the current observations match
the model’s predictions by examining these indicators at each level. Additionally, we can use the
prediction errors to figure out how to prevent these abnormalities from occurring in the future. The
observations of the UAV are influenced by its actions. So, if an abnormality is detected, it means that
the actions taken were incorrect. The UAV can use the prediction errors to make necessary corrections
and prevent abnormalities in the future.

The UAV has the capability to evaluate ongoing actions by utilizing an abnormality indicator
that calculates the difference between predicted states and observations. This is achieved through the
calculation of the Bhattacharyya distance as follows:

Yfem,fi = <BC( (xemr ) /\( ( ) = —ll’l/\/ xem ) )dxem,t/ (31)

where BC is the Bhattacharyya coefficient. It is to note that during exploration, UAV’s expected states
realize the target position while during exploitation UAV’s expected states are guided by the tokens.
The abnormality indicator defined in (31) is associated with prediction errors calculated as:

s ; - 1
&?em,ti = [xfm,tilgfem,ti] = [xﬁm,tﬂH gzem,ti]’ (32)
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where &z, P N( He, | oe; ) depicts the prediction errors computed in the observation space,
em,t

mitj
which is characterized by the followmg statistical properties:

‘ugiem ‘. - Zem,ti - erm,ti/ (333)
i
Te.

Zem ti

=HZe,  HT+R, (33b)

where (33a) is the Kalman innovation and (33b) is the innovation covariance.
In case the UAV encounters abnormal situations, it can use prediction errors to rectify its previous
actions through first-order Euler integration following:

ay = + Dz, (34)

el‘rlr i—1

where Ay, is the step size.

On the other hand, the UAV can assess the discrete actions representing the targeted hotspots
only after completing a full mission that includes a sequence of events. This is because the UAV
needs to determine if the selected hotspots were efficiently reached in their designated order to
achieve the intended goal of maximizing the sum rate. As previously stated, a series of actions (or
generalized letters) form a word, and the UAV checks whether the resulting word fulfils the intended
goal. Therefore, to evaluate the formed word, it is necessary to consider the cumulative abnormality
indicator. This indicator adds up the abnormalities that measure the divergence between what was
expected and what was observed at each event. The abnormality indicator itself is defined as:

YfTﬂm =—In (BC(T[()ZT,em),A(ZT,em))) = —ll’l/ \/ n(xT,em)A@T,em)dfT,em' (35)

while the cumulative abnormality indicator is defined as follows:
E
=) Y, (36)
em=1

In case UAV detects a high cumulative abnormality, this indicates that the entire mission was
unsuccessful. In this case, the UAV must correct the action selection process by updating its strategy of
forming the word. This can be done by updating the active inference table defined in (21) as follows:

P em |wem> = Pr( e, |wem) e (37)

where the gradient 7y determines the amount by which the probability should be decreased.
Additionally, if the mission is successful with minimal abnormalities, the transition matrix
specified in (12) will be modified as follows:

Pe(ET) = Pr(]

)+, (38)

where 7 and j are part of the successful word representing the sequence of hotspots visited by the
UAU during its successful mission and 7 is the gradient that determines the amount by which the
probability should be increased.

5. Numerical Results and Discussion

In this section, we will thoroughly assess how well the proposed framework performs in designing
a trajectory for the UAV that effectively allows it to attain the highest total sum-rate possible with
the cell. In our simulations, we are looking at a situation where a single UAV is providing service to
several users who are located in different hotspots across a square geographic area of 1000 x 1000
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m?. The main simulation parameters are listed in Table 2. It is assumed that the altitude of the UAV
remains constant at z, = 100m [59]. Throughout the training process, we place a total of N = 80
hotspots in various random locations across the geographical area. The frequency of user presence
and requests within each hotspot adheres to the Poisson distribution. We generate a training set D
that consists of M examples corresponding to different realizations. Each realization (m) consists of
7 hotspots picked randomly from the N total hotspots and the users” requests in each hotspot are
generated following Poisson distribution. The TSPWP method is used to solve the M examples in D,
generating M trajectories (TSPWP instances) and M sequences of the order in which the hotspots are
visited, which are saved in £ and Q, respectively.

Table 2. Simulation Parameters.

Parameter Value Parameter Value
P, 1w o 2
Bgrp 180 KHz o2 —104 dBm
HLos 3 HNLos 23
N 80 M 1000

We evaluate the TSPWP performance by conducting a thorough analysis of completion time and
cost with profit metrics for different numbers of hotspots to determine the optimal « and f values
mentioned in (6a). In Figure 8, we see how the completion time of TSPWP is impacted by various
« and B values, as well as changes in the number of hotspots. Meanwhile, Figure 9 displays the
TSPWP performance in terms of cost with profit for different « and B settings while also altering the
number of hotspots. It is evident from Figure 8 that the completion time increases as the number of
hotspots increases, as having more hotspots makes the trajectory longer. It is worth noting that the cost
with profit rises gradually as the number of hotspots increases, especially between five and twenty,
as shown in Figure 9. However, after twenty hotspots, the cost with profit slightly rises due to the
reduction of profit (i.e., the accumulated sum-rate) from the cost (i.e., the travelling distance between
the hotspots). This effect becomes stable for higher hotspots and has a minimal impact on the overall
cost with profit. By analyzing the data, we have found that the ideal « and § values for achieving both
minimal completion time and maximum profit with cost are 0.9 and 0.1, respectively. Therefore, we
will use these values when implementing TSPWP.
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Figure 8. TSPWP’s completion time performance for varying alpha and beta values, as well as changes
in the number of hotspots.

To solve each realization m, we use the TSPWP with « = 0.9 and B = 0.1, as previously mentioned.
The TSPWP gives us the solution (i.e., the TSPWP instance), which includes the trajectory and the
order of the hotspots to visit. We then create two sub-dictionaries from the M TSPWP instances. The
first sub-dictionary comprises all the words that make up the TSPWP trajectories, which use letters to
represent the hotspots (explained in 4.2.1). The second sub-dictionary contains all the tokens that show
the path between two adjacent letters (hotspots), as described in 4.2.1.
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Figure 9. TSPWP’s cost with profit performance for varying alpha and beta values, as well as changes
in the number of hotspots.

In the example shown in Figure 10-(a), there is one realization with seven hotspots scattered
randomly in the geographic area. Each hotspot has some active users who need resources. The
goal is to start from the initial station at the origin, visit each hotspot only once, serve the users
there, and then return to the origin within a specific time frame. Give the realization depicted in
Figure 10-(a) to the TSPWP method. It will produce the TSPWP instance, which includes the trajectory
and the order of visited hotspots, as demonstrated in Figure 10-(b). To create the global dictionary,
TSPWP instances from M examples are utilized, which include sub-dictionary 1 and sub-dictionary
2. Sub-dictionary 1 records the events that take place during the flight mission, such as when the
UAV reaches hotspot j after departing from hotspot i. The process of detecting different events and
forming a word representing the sequence of hotspots served during a flight mission is illustrated in
Figure 11-(a). In this process, hotspots are considered as letters, and the full trajectory represents a

"n_n

word. The first event occurs after reaching the letter "g" starting from "o". The second event occurs
after reaching "f" from "g", and so on for the third and subsequent events. The final event occurs when
the UAV returns to the initial location, represented by the letter "o", starting from "a". Therefore, the
word describing the mission is defined as "w=0,g,f,e,d,c,b,a,0". In contrast, if we cluster the trajectory
data (which includes positions and velocities), we can see the resulting clusters in Figure 11-(b). Each
event that was previously detected will be linked to the set of clusters that form the path from one
letter to another, as illustrated in Figure 11-(b). A token is created for each event, and all the tokens
are combined to form the resulting word, which represents the path followed during the mission.
Throughout the training process, the same procedure is done for M examples in order to create the
words that indicate the sequence of targeted hotspots and the words that describe the movement from
one hotspot to the next. These two sets of words are coupled statistically to create a world model that
the UAV will use during the active inference (testing) process to plan a suitable trajectory based on
encountered situations (realizations).

Let’s take a look at how a UAYV, using active inference, completes a mission. For instance, suppose
there are 10 hotspots in a given testing scenario. The UAV will rely on the world model, made up of two
sub-dictionaries, that it learned during training to successfully navigate the testing scenario. Firstly,
the UAV examines the current letters and matches them against the words listed in sub-dictionary 1.
This process helps to establish how closely they resemble each other in the current testing scenario.
After that, the UAV chooses the closest word from the dictionary and uses it as a starting point to
create the initial graph. The goal is to expand the graph by adding new letters to form a word that
enables an efficient trajectory to reach all hotspots (letters) and serve their users as quickly as possible.
To achieve this, one letter is added during each iteration, with the number of iterations depending on
the size of the reference graph and the number of new letters required to include all available letters in
the current configuration. To update the graph and make it directed, one link must be removed from
the reference graph, and two links must be added to the newly added letter or node at every iteration.
The transition matrix, which encodes the probabilistic relationships among the letters, is crucial at each
step and can be found in Figure 12. This matrix determines whether it is possible to transition from a
letter already present in the reference graph to the newly added letter. The transition matrix is learned
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after solving M examples during training and allows for the generation of words based on probability

entries.
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Figure 10. An example of one realization: (a) Seven hotspots scattered randomly across the geographical

area labeled with different letters, and each has a varying number of active users requesting service. (b)
The trajectory provided by the TSPWP.
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Figure 11. The process of forming the dictionary: (a) The events that have been occurred during the
flight and the generated word consisting of the letters visited by the UAV. Event 1 occur after reaching
letter g starting from letter o. Event 2 occur after reaching letter f from g. Event 3 occur after reaching
letter e from f. Event 4 occur after reaching letter d from e. Event 5 occur after reaching letter ¢ from d.
Event 6 occur after reaching letter b from c. Event 7 occur after reaching letter a from b. Event 8 occur
after returing to the origin from a. (b) The clusters obtained after clustering the trajectory. Clusters
are labeled as letters. The generated tokens each consisting of several letters corresponds to a specific
event and so explaining the path to follow between two adjacent letters.
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Figure 12. The transition matrix encoding the probabilities of passing from one letter to another based
on the examples solved during training.

Figure 13 displays all the available pathways from the 11 hotspots to other letters. Depending on
the current letter, you can determine which letters are reachable. For instance, if you start at letter 1
(the initial location), you cannot transition to letter 6, but you can transition to the other 9 letters with
varying probabilities. Similarly, if you reach letter 2, you cannot go towards letters 3, 4, 8, and 10, and
so on. It’s worth noting that the probability values provided by the world model prevent unnecessary
transitions that won’t help the UAV reach its desired goal.
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Figure 13. The transition probabilities suggested by the world model to generate a word that might
solve the current realization: (a) Possible letters to target starting from letter 1. (b) Possible letters to
target starting from letter 2. (c) Possible letters to target starting from letter 3. (d) Possible letters to
target starting from letter 4. (e) Possible letters to target starting from letter 5. (f) Possible letters to
target starting from letter 6. (g) Possible letters to target starting from letter 7. (h) Possible letters to
target starting from letter 8. (i) Possible letters to target starting from letter 9. (j) Possible letters to
target starting from letter 10. (k) Possible letters to target starting from letter 11.

The example shown in Figure 14-(a) expresses a word generated by the UAV through the proposed
method but before it fully converged. The generated word is not optimal as it contains hotspots in
the wrong order, which causes the mission to take longer and increases the time needed to return to
the initial location. Furthermore, Figure 14-(b) shows that the UAV detected abnormalities during
most of the operation events. When the UAV detects abnormalities in its position, it is usually because
it is not close enough to its goal. The UAV aims for a specific letter that represents its target. It is
drawn towards that goal and then assesses its distance from the goal after each continuous action that
represents its velocity. If there are any abnormalities, the UAV can use prediction errors to correct
its actions and adjust its path to reach the targeted letter. For instance, during event 1, the UAV
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perceived high abnormalities and prediction errors while it was still far from the intended letter, with
the starting letter being 1 and the targeted being 10. However, utilizing the prediction error, the
UAV was able to adjust its actions and reach the destination faster. This resulted in the abnormality
signals gradually decreasing until they reached zero, indicating that the UAV had indeed arrived at
the targeted destination.
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Figure 14. A word generated using active inference before convergence: (a) The trajectory followed by
the UAV based on active inference before the convergence. (e) The abnormalities occured during the
fligth mission.

Figure 15-(a) presents another example of a word created by the UAV after convergence. The
proposed approach enabled the UAV to design a trajectory that is comparable to the one generated by
the TSPWP, with a similar completion time. It is noticeable that the UAV was successful in reducing
high abnormalities in various events, as depicted in Figure 15-(b), compared to the example shown
before convergence. This reduction is due to the UAV’s ability to differentiate between similar events
encountered before and deduce the optimal path immediately.
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Figure 15. A word generated using active inference after convergence: (a) The trajectory followed by
the UAV based on active inference before the convergence. (e) The abnormalities occured during the
fligth mission.

Figure 16 displays the updated transition matrix for 11 letters, which includes corrected probability
entries detailing the possible transitions between the available letters. This updated transition matrix
was rectified using the one exhibited in Figure 12.
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Figure 16. The updated transition matrix encoding the probabilities of passing from one letter to
another after convergence.
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The process of creating new words is shown in Figure 17. The first step is to select a reference
word from the dictionary by comparing the available letters in the current realization with the encoded
words in the dictionary. The UAV selects the word with the highest probability of being a match based
on the similarity of its letters to the available ones. The matching letters from the most similar word
are then used as a reference for creating new words. This reference word is represented graphically as
a closed loop, as demonstrated in Figure 17-(a). The initial graph is expanded by adding one letter
at a time, as illustrated in the figure. This insertion approach dramatically reduces the likelihood of
the UAV needing to determine the optimal visiting order. For instance, if there are 11 nodes to visit,
and each node must be visited only once, there are approximately 11! (~ 39 million) possible word
combinations to find the correct order, which is a time-consuming and challenging task, particularly
when using a trial-and-error method. However, the proposed word formation mechanism decreases
the number of possible combinations from 11! to just 40. In Figure 17-(a), there are 6 potential ways to
create a new word by adding the first letter to the reference graph. Figure 17-(b) has 7 possible words,
while the other graphs feature 8, 9, and 10 options. The total number of combinations is 40, which is
calculated by adding the number of edges in each graph.

(d) (e) (f)
Figure 17. This is a graphic explanation of the process for creating new words from a base word found
in the dictionary: (a) The reference word represented graphically, and the new letters encountered in
the new situation should be added to the reference graph. (b) The updated graph (word) after adding
letter 7. (c) The updated graph (word) after adding letter 3. (d) The updated graph (word) after adding
letter 6. (e) The updated graph (word) after adding letter 4. (f) The updated graph (word) after adding
letter 5.

In Figure 18, you can see different examples with different numbers of hotspot areas. The
trajectories generated by the proposed method (AlIn) and the TSPWP using 2-OPT are also shown, along
with their respective completion times. It is evident that the proposed approach produces alternative
solutions when compared to the TSPWP. In some cases, it also results in a quicker completion time as
shown in Figure 18-(c)-(d)-(f). This highlights the adaptability of the proposed method in deriving
reasonable solutions that surpass those of the TSPWP.
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Figure 18. The figure displays various examples with varying numbers of hotspot areas, along with
the solutions produced by the proposed method (AIn) and the TSPWP utilizing 2-OPT.
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In Figure 19, we tested the scalability of the proposed method (AIn) and compared the cumulative
sum-rate convergence for various hotspots. We observed that as the number of hotspots increased,
the cumulative sum-rate also increased. However, it took longer to find the best solution and reach
convergence with more hotspots. This is because there were more possible generated words to test,
which takes longer. In contrast, Figure 20 shows the cumulative abnormality for various numbers of
hotspots. The trend of the cumulative abnormality is contrary to the cumulative sum-rate. It begins
with high values and gradually decreases until reaching quasi-zero at convergence. As the number of
hotspots increases, the time taken to reach quasi-zero abnormality also increases.

Figure 19. Convergence
hotspots.
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Figure 20. Cumulative abnormality convergence of the proposed approach (Aln) for different number

of hotspots.

In Figure 21, we can see the average sum-rate of the proposed method at convergence for various
numbers of hotspots, compared to the analytical sum-rate. It’s clear that the proposed approach
achieves the expected analytical sum-rate after convergence, regardless of the number of hotspots.
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Figure 21. The average sum-rate of the proposed approach (AIn) compared to the analytical value for
various number of hotspots.

5.1. Comparison with modified Q-learning

In this section, we are comparing the performance of the proposed approach (Aln) with a modified
version of the conventional Q-learning (QL) [60]. To ensure a fair comparison, the modified-QL follows
the same logic as the proposed approach. Thus, the modified version uses two probabilistic g-tables -
one for mapping discrete states (hotspots) to discrete actions (targeted letters) and another for mapping
discrete environmental regions to continuous actions (velocity). Unlike traditional QL, the g-values in
these tables are represented as probability entries that range between 0 and 1.

As in the proposed method, we can see that the discrete states stand for the letters, and the
discrete environmental regions stand for the clusters. In addition, the available letters during a specific
realization make up the discrete action space, while four continuous actions representing different
directions (Up, Down, Left, Right) make up the continuous action space. The reward function in
modified-QL was designed using the TSPWP instances. If the modified-QL behaves similarly to the
TSPWP, it will receive a positive reward (+1). Otherwise, the reward is zero.

In Figure 22, an example similar to the one in Figure 10-(a) is shown to illustrate how the
modified-QL algorithm solved the mission both before and after convergence. Prior to convergence
(Figure 22-(a)), the modified-QL selected the wrong order of letters to visit, leading to a longer
completion time. However, after convergence (Figure 22-(b)), the algorithm discovered the correct
order of letters, resulting in a reduced completion time, although it still fell short of the completion
time achieved by the TSPWP due to a slight deviation from the correct path. It's important to note
that the agent’s movement was limited to travelling between two boundaries to simplify the process,
which reduced the environmental states it could discover. Consequently, the modified-QL agent’s
movements were guided by the TSPWP through positive and zero rewards.
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Figure 22. An example of the realization shown in Figure 10-(a): (a) The trajectory followed by the
UAV using the modified-QL before convergence. (b) The trajectory followed by the UAV using the
modified-QL after convergence.

Figure 23 displays the gathered sum-rate in relation to the number of iterations, providing insight
into the modified-QL’s overall performance and scalability with varying numbers of hotspots. It is
clear that as the number of hotspots increases, both the collected sum-rate and the time to converge
will also increase with the modified-QL. Despite requiring more iterations, the modified-QL achieves
the same sum-rate at convergence as the proposed method.
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Figure 23. Convergence of the modified-QL in terms of sum-rate for different number of hotspots.

In Figure 24, we compared the convergence time of the proposed method (AlIn) to that of the
modified-QL, as we varied the number of hotspots. The results showed that the proposed method
requires less time to converge than the modified-QL. This difference is more noticeable as we increase
the number of hotspots, with the gap between the two trends increasing. The modified-QL takes
longer to converge as we increase the number of hotspots, and it does so at a faster rate than Aln due
to its random nature, which leads to a higher number of possible words to try compared to Aln.
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Figure 24. The convergence time of the proposed approach (AIn) compared to the convergence time of
the modified-QL for different number of hotspots.

Figure 25 compares the completion time of our proposed method, Aln, to that of modified-QL
and TSPWP as the number of hotspots varies. The results show that modified-QL takes longer to
complete the missions due to slight deviations from the reference trajectories designed by TSPWP.
These deviations are caused by the random actions performed before the convergence. On the other
hand, Aln is able to complete missions faster than modified-QL thanks to its ability to deduce certain
paths based on the world model and calculate prediction errors to correct continuous actions. This
allows Aln to reach the target destination more quickly.
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Figure 25. The performance of the proposed approach (Aln) in terms of completion time after
convergence compared with TSPWP for different number of hotspots.

6. Conclusions and Future Directions

This paper studied the trajectory design problem in UAV-assisted wireless networks. In the
considered system, a single UAV provides on-demand uplink communication service to ground users
by flying around the environment. To solve this problem, we have proposed a goal-directed method
based on active inference, consisting of two computation units. The first unit builds a world model to
understand the surrounding environment, while the second unit makes decisions to minimize a cost
function and achieve preferred outcomes. The world model represents a global dictionary that has
been learned from instances generated by the TSPWP using a 2-OPT algorithm to solve various offline
examples. The dictionary includes letters for hotspots, tokens for local paths, and words for complete
trajectories and order of hotspots. By analyzing the dictionary, we can understand the decision-maker’s
grammar, specifically the TSPWP strategy, and how it utilizes the available letters to form tokens
and words. To accurately represent the properties of TSPWP graphs at different levels of abstraction
and time scales, we developed a novel hierarchical representation called the coupled multi-scale
generalized dynamic Bayesian network (C-MGDBN) that structures the gathered knowledge (i.e., the
global dictionary). The simulation results indicate that the proposed method performs better than
the traditional Q-learning algorithm. It provides quick, stable, and alternative solutions with good
generalization capabilities. Additionally, the results demonstrate that our approach can be scaled up
to larger instances, despite being trained on smaller ones, proving its effectiveness in generalization.
Furthermore, we have proven that our method can solve a complex problem (known as NP-hard) by
significantly reducing the number of actions the UAV needs to take to solve a specific example.

In future work, we plan to tackle the challenge of determining the optimal solution when there
are more hotspot areas but a fixed flight duration. We will also address the challenge of new hotspots
appearing and old ones disappearing while the UAV is completing its current mission. Lastly, we will
investigate coupling at the word scale in future studies.
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Abbreviations

Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned aerial vehicle

LoS Line of sight

NOMA Non-orthogonal multiple access

GPS Global positioning system

IoT Internet of things

Al Artificial intelligence

ML Machine learning

RL Reinforcement learning

TSPWP Travel salesman problem with profits
GDBN Generalized dynamic Bayesian network
C-MGDBN  Coupled multi-scale generalized dynamic Bayesian network
DpP Dynamic programming

WSN Wireless sensor node

MILP Mixed integer linear programming

TSP Travel salesman problem

GA Genetic algorithm

PSO Particle swarm optimization

ACO Ant colony optimization

QoE Quality of experience

QL Q-learning

DQL Deep Q-learning

FBS Flying base station

GU Ground users

RB Resource block

OFDMA Orthogonal frequency division multiple access
NLoS Non line of sight

AWGN Additive White Gaussian Noise

C-GDBN Coupled Generalized dynamic Bayesian network
M-GDBN Multi-scale generalized dynamic Bayesian network

GNG Growing neural gas

POMDP Partially observable Markov decision process
KF Kalman filter

PF Particle filter
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