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Abstract: Falling snow alters its own microwave signatures when it begins to accumulate on the

ground making retrieval of snowfall challenging. This paper investigates the effects of snow-cover

depth and cloud liquid water content on microwave signatures of terrestrial snowfall using reanalysis

data and multi-annual measurements by the Global Precipitation Measurement (GPM) core satellite

with particular emphasis on the 89 and 166 GHz channels. It is found that over shallow snow

cover (snow water equivalent (SWE) ≤ 100 kgm−2) and low values of cloud liquid water path

(LWP ≤ 100 − 150 gm−2), the scattering of light snowfall (rates ≤ 0.5 mmh−1) is detectable only

at frequency 166 GHz, while for higher snowfall rates the signal can be also detected at 89 GHz.

However, when SWE exceeds ≥ 200 kgm−2and the LWP is greater than 100 − 150 gm−2, the emission

from the increased liquid water content in snowing clouds becomes the only surrogate microwave

signal of snowfall that is stronger at frequency 89 GHz than 166 GHz. The results also reveal that

over high latitudes above 60◦ N where the SWE is greater than 200 kgm−2 and LWP is lower than

100 − 150 gm−2 the microwave snowfall signal could not be detected with GPM. Our results provide

quantitative insights for improving retrieval of snowfall in particular over snow-covered terrain.

Keywords: Snowfall Retrieval, Snow Water Equivalent, Cloud Liquid Water, Emissivity, Brightness

Temperature, Passive Microwave, GPM

1. Introduction

Passive microwave (PMW) retrieval of snowfall is one of the most challenging com-
ponents of precipitation monitoring from space, with the largest error in precipitation
retrieval often related to snowfall [1–6] over snow cover [7]. Snowfall emission is almost
negligible due to the low dielectric constant of ice particles, especially over emissive land
surfaces. Falling snow and ice particles scatter the upwelling surface radiation at high
microwave frequencies and thus decrease the observed brightness temperatures (Tb) at the
top of the atmosphere. This radiometric signal, however, is much weaker than the overland
rainfall scattering [8–10] and can be significantly masked due to the confounding effects of
increased cloud liquid water path (LWP) during snowfall and reduced surface emissivity
as a result of snow accumulation on the ground.

Snow particles have complex and variable nonspherical shapes and bulk densities. The
size distribution of snowfall particles depends on numerous factors including temperature,
pressure, and the level of water vapor path (WVP) supersaturation at different vertical
layers of the atmosphere [11–15]. The nonspherical snow particles usually have lower
densities than raindrops with equal mass, which cause them to exhibit weaker scattering
[9,10,16].

Radiative transfer modeling shows that this weak scattering becomes detectable at
frequencies above 80 GHz and reaches its maximum at frequencies 150 to 166 GHz [17,18].
However, in snowy clouds thermal emission from the presence of supercooled liquid water
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content can mask the already weak snowfall signal even at these high-frequency channels
[19]. The warming effects of the liquid water emission in the mixed-phase clouds may even
exceed the cooling effects of snowfall scattering [20] and completely mask the snowfall
signal [21,22], which adds to the complexity of (light) snowfall retrievals.

The presence of snow cover on the ground is another challenge in detecting the snow-
fall scattering signal. Snow cover is a relatively strong scatterer at microwave frequencies
above 20 GHz [23,24] and this scattering increases monotonically with frequency up to
100 GHz [25]. Increased scattering reduces the surface emissivity depending on physi-
cal and microphysical properties of snowpack such as depth, density, wetness and the
distribution of grain size [24,26,27], which vary in response to the snow metamorphism
[28–31]. A thicker and denser snowpack often scatters the upwelling surface emission
more, especially when snow ages and develops larger and denser particles [23,27,32,33]. In
addition, radiometric properties of snow cover are very sensitive to its liquid water content.
For a very small amount of liquid water content of around 2%, the absorption dominates
scattering and turns the snowpack to almost a blackbody radiator [34]. The combination of
the explained radiometric processes has two important consequences, which add to the
complexity of PMW snowfall retrievals. First, there is a likelihood that the snow cover and
snowfall microwave signatures become very similar [2,35,36]. Second, the low emissivity
of dry snow cover can significantly weaken the already weak snowfall scattering [6,37–39]
or vanish it completely.

Radiative transfer modeling of both snowfall and snow-cover has large complexity
under diverse environmental conditions over land with large variability over temporal and
spatial scales, and requires many input parameters [40]. Most radiative transfer modeling
has been conducted assuming that the snowfall particles are spherical [1,15], and single
scattering theories can approximate their scattering. The discrete-dipole approximation
is also used to account for the non-spherical shape of snowfall ice particles [41,42]. Nev-
ertheless, snowfall radiative transfer models can often account only for a limited number
of snowfall particle shapes [43,44] and lack the ability to properly address bulk scattering
of a snowfall profile throughout the atmospheric column [45]. Additionally, modeling of
the emission signal of the supercooled liquid water content in snowing clouds is still not
well parameterized especially at frequencies above 31 GHz [15,46]. Using the Rayleigh
approximation in the absence of precipitation for water droplets larger than 0.2 mm [47]
calculated the microwave absorption of supercooled liquid water at 21 and 31 GHz and
found that this absorption strongly depends on cloud temperatures. Thus, the resulting ab-
sorption derived from common dielectric models significantly deviates during the snowfall
at temperatures below 270 K mainly due to poor representations of the primary relaxation
frequency of water.

The snow cover scattering below 100 GHz can be explained by the Born approximation
approach [48] that partially accounts for the near-field radiation produced by adjacent
snow grains, using the low-frequency practical media theory [49]. More recently, in order
to extend the range to larger particles and higher-frequencies, Grody [27] proposed the use
of a quasi-crystalline approximation to bridge the gap between small- and large-size snow
grains. However, the radiative transfer modeling of snow cover effects is not conducted
for frequencies above 150 GHz [30] in which the primary snowfall retrieval bands are
located in the PMW spectra. The uncertainty of this high-frequency approximation is often
quite larger than that at lower frequencies because the optical parameters of snow cover
become less frequency-dependent and saturated as the particle diameter approaches the
wavelength.

Clearly, complexities of radiative transfer modeling are amplified when it comes to
modeling snowfall over snow cover, accounting for the presence of cloud liquid water
content, where there is significant heterogeneity in the characterization of the initial and
boundary conditions at a global scale. The Global Precipitation Measurement (GPM)
Mission PMW observations can help to unpack these relatively unknown radiometric
interactions and to provide some important insights into PMW snowfall retrievals. A
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recent empirical study conducted by [38] using coincidental CloudSat and GPM obser-
vations found that cloud liquid water emission increases the brightness temperatures up
to 10 K at 166 GHz, and usually even more at 89 GHz. Besides these interesting find-
ings, previous studies have not considered the synergistic effect of atmospheric LWP and
surface-accumulated Snow Water Equivalent (SWE) on the snowfall signal.

The goal of this paper is to quantify the radiometric effects of snow cover and cloud
liquid water content on the microwave signatures of snowfall at high-frequency channels,
largely focusing on observations from the GPM core satellite. The findings of this paper
push the understanding of the land-atmospheric effects one step further, investigating
the conditions in which the passive radiometric signal of snowfall is affected and thus
cannot be detected without considering a priori data about SWE and LWP. In particular,
the following main questions are addressed:

• What are the scattering contributions of snowfall and snow cover on the observed Tbs
for different snowfall intensities and SWE?

• Why, when, where and to what extent the liquid water content of clouds can mask the
snowfall signals over snow-covered surfaces?

• Under which boundary conditions can the snow cover obscure the snowfall signa-
tures?

• Are there any particular conditions that completely mask the snowfall PMW signal?

To answer the above questions, we extract and isolate the contributions of snowfall
scattering, snow cover scattering, and LWP emission in observed Tbs as a function of
snowfall rate (sr), LWP, and SWE. To that end, we rely on multi-year coincident GMI [7]
and DPR data [50], as well as ancillary information of SWE, LWP, and temperature. As
previously noted, we mostly focus on the high-frequency channels at 89 and 166 GHz that
are critical for snowfall retrieval.

Section 2 describes the products and data used for the analyses. Section 3 discusses
the observed climatology of SWE, LWP, surface, and atmospheric temperature using their
marginal and spatial distributions at different snowfall rates. By removing atmospheric
effects, Section 4 quantifies the clear-sky microwave emissivity of the snow-covered surfaces
as a function of SWE. In Section 5 we add the effects of LWP emissions, and finally in
Section 6 we complete the radiative budget adding the snowfall component. Discussion
and conclusions are presented in Section 7 and 8.

2. Data and Products

The GPM core observatory, launched in 2014, carries the dual-frequency precipitation
radar (DPR) and the GPM GMI allowing for active and passive, colocated in space and time,
observations [51,52]. Snowfall events and their radiometric signatures are extracted using
the level-2 precipitation phase data from the GPM DPR product (2ADPR-V06) at the normal-
sensitivity (NS) scan [53] and the calibrated GPM microwave imager (GMI) Tbs (1C-R GMI
V05) [7]. Total precipitable water (TPW) is also from the GPM active microwave product
(2ADPR-V06). The PMW measurements are from the GMI with 13 channels ranging from
10 to 183 GHz. In the DPR product, both Ka- and Ku-band (35.5 and 13.6 GHz respectively)
radar reflectivity values are used to estimate the precipitation rate to reduce the uncertainty
of single band retrievals. The combination of active and passive observations provides a
unique opportunity to understand unknown radiometric properties of solid precipitation
[54] over snow-covered surfaces at frequencies above 100 GHz. The surface temperature
(Tskin), 2-meter temperature (T2m), the cloud LWP, vapor water paths (VWP), and ice water
path (IWP) are all obtained from the Modern-Era Retrospective analysis for Research and
Applications version 2 (MERRA-2) [55]. The average air temperature, also derived from
the DPR atmospheric state environmental ancillary information (2ADPRENV), comes
originally from the Japan Meteorological Agency (JMA) Global ANALysis (GANAL). This
temperature is the average air temperature from 0 to 20 km at a 250-m resolution and will be
called Tair, hereafter in this paper. The extent of snow-covered surfaces is determined from
the Interactive Multisensor Snow and Ice Mapping System (IMS) at 1-km spatial resolution
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Table 1: Abbreviations, data, and products.

Variable Symbol Unit Source

89 GHz brightness temperature Tb89 K 1C-R GMI V05 satellite observation product
166 GHz brightness temperature Tb166 K 1C-R GMI V05 satellite observation product
1833 GHz brightness temperature Tb1833 K 1C-R GMI V05 satellite observation product
1837 GHz brightness temperature Tb1837 K 1C-R GMI V05 satellite observation product
Snowfall rate sr mmh−1 2ADPR-V06 satellite observation product
Total precipitable water vertically integrated on 0-20 km TPW kgm−2 2ADPR-V06 satellite observation product
Skin temperature Tskin K MERRA-2 reanalysis
2-m temperature T2m K MERRA-2 reanalysis
Snow cover extent IMS Dimensionless United States National Ice Center
Snow water equivalent on the ground SWE kgm−2 MERRA-2 reanalysis
Cloud liquid water path LWP gm−2 MERRA-2 reanalysis
Ice water path IWP gm−2 MERRA-2 reanalysis
Water vapor path WVP gm−2 MERRA-2 reanalysis
Air temperature averaged on 0-20 km Tair K GANAL analysis

Clear sky land emissivity εs dimensionless εs =
Tbs

Tskin

Cloud liquid water emissivity εlwp dimensionless εlwp =
Tbobs − εs Tskin

Tair
Total atmospheric emissivity εa dimensionless εa = εsr + εlwp

[56], while SWE is obtained from the hourly MERRA-2 product [57, M2T1NXLND] at a
0.625◦×0.5◦ spatial resolution. All data and variables used/calculated in this study, their
units, and sources are listed in Table 1.

In this paper, we only focus on events over dry snow cover, where both Tskin and
T2m are below 0 ◦C. Surface is considered as snow-covered when the IMS binary product
indicates snow cover and the SWE from MERRA-2 reanalysis is greater than zero. We
considered data from January 2015 to December 2020 over the Northern Hemisphere (NH)
land surfaces. MERRA-2 data are linearly interpolated onto the scanning time of the GPM
overpasses and re-gridded onto the DPR grid using the nearest neighbor interpolation. In
the explained methodology no information is lost at the expense of some redundancy in the
coincident data. The binary snow-covered/no snow-covered IMS 1-km data is converted
to 4-km binary snow-cover data using nearest neighbour (to find the IMS pixels in each
4-km by 4-km 2ADPR grid) and the majority vote rule (> 50%).

3. North Hemisphere climatology of Snow Cover and Cloud Liquid Water

The radiometric signal of snowfall, snow cover, and cloud LWP are tightly intertwined
at high microwave frequencies (≥ 89 GHz). The snowflakes and snow cover grains both
scatter the upwelling surface emission (cooling effect), while the cloud LWP content adds to
this emission (warming effect). An increase in SWE leads to an increased scattering volume
of the snow cover and thus to a decrease of the surface emissivity and observed Tbs. An
increased scattering of snowing clouds should further decrease the Tbs especially for high
snowfall rates. The snowfall scattering, however, becomes relatively less significant at larger
SWE values because of a reduced background emission, which adds to the complexities of
snowfall retrievals.

3.1. Marginal and Spatial Distribution of Snow Cover in terms of Snow Water Equivalent

To unravel the effects of SWE and LWP on the quality of snowfall retrievals, we
first need to investigate the frequency distribution of these variables. Fig. 1a shows the
positively skewed marginal probability distribution function (PDF) of SWE over the NH.
The median and the mean are 41 kgm−2 and ∼ 74 kgm−2 respectively. The histogram
is color coded to show the mean Tskin for each 25 kgm−2 SWE interval. SWE values
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between 30 − 300 kgm−2 show colder temperatures than the tail segments with the lowest
temperature occurring at about 75–100 kgm−2 . Fig. 1a also shows that these SWE values
with lowest temperature on average occur at latitudes 54-57◦ N. It is calculated by averaging
latitudes associated with the all SWE data fall in each SWE bins. To understand the reasons
for the Tskin behaviour, we look into the maps of the SWE annual probability of occurrence
and the corresponding mean Tskin shown in Fig. 1c–h. It is worth noting that here the mean
refers to the entire NH in the histogram in each SWE bin, while it refers to the single grid
box (1-deg resolution) in the maps.

SWE values between 0–40 kgm−2(Fig. 1c) are consistently displayed over land surfaces
that are likely to receive snowfall (> 30◦ N). The highest probability of occurrence is over
the High Mountain Asia and southern Siberian Plateau, where Tskin is visibly colder than
the surrounding areas (<265 K , Fig. 1f). However, the area with colder Tskin (green area in
Fig. 1f) with high occurrence frequency of 0–40 kgm−2SWE values (red area in Fig. 1c) is
much smaller than the warmer Tskin regions (orange and red areas in Fig. 1f). Therefore,
despite its higher probability of occurrence, the latter dominates the Tskin mean values and
we see a relatively high Tskin in the SWE PDF for low SWE values (0–40 kgm−2) in Fig. 1a.

The intermediate SWE values (40–100 kgm−2, Fig. 1d) are spread mostly over higher
latitudes (> 45◦ N) that are likely to receive higher snowfall amounts throughout the year.
The most frequent values are over cold surfaces (Tskin < 250 K ), clustered over central
Canada in the vicinity of the southwest coasts of the Hudson Bay and eastern of the Central
Siberian Plateau. Cold temperatures of these highly frequent regions in this case dominate
the climatology of the SWE values and explain the observed Tskin depressions for SWE
values of 40 − 100 kgm−2 in the marginal SWE distribution in Fig. 1a.

Finally, SWE values greater than 100 kgm−2 are more frequent over latitudes above
56◦ N (Fig. 1a), especially over the Pacific Coast Ranges of northern British Columbia, North
East Canada, Ural Mountains, Kjolen Mountains of Norway, and Verkhoyansk Range in
Russian Far East (Fig. 1e), where the mean Tskin varies between 250–260 K (Fig. 1h). High
values of SWE usually occur during late winter/early spring due to snow accumulation
when the temperature begins to increase, justifying the slightly higher mean Tskin compared
to the 40–100 kgm−2 SWE interval. This higher mean temperature concurrent with larger
SWE values (> 100 kgm−2) over Pacific Coast Ranges and Ural Mountains can weaken
or mask the expected incremental increase in the scattering signal of snow cover in these
regions.

3.2. Marginal and Spatial Distribution of Cloud Liquid Water

The parameterization of the cloud liquid water content over the snow-covered land
surface requires an accurate characterization of the sub-grid distribution of thermodynamic
variables such as cloud phase, cloud type, cloud vertical structure, precipitation occurrence,
and geolocation. To this end, we investigate the marginal PDF and the spatial distribution
of the multiyear LWP with respect to the snowfall occurrence as well as snowfall rate (sr)
over dry snow covered areas (defined as snow cover where both Tskin and T2m are below
zero). The distribution of LWP as a function of Tair and sr is presented in Fig. 2. Similar to
Fig. 1, here the mean refers to the entire NH in the histograms in each LWP bin, while it
refers to the single grid box in the maps.

Fig. 2a-c shows the histogram of the LWP values corresponding to the orbit-level DPR
observations using nearest-neighbor interpolation to match the 2ADPR-V06 resolution.
The colors in the histograms shown in Fig. 2a and Fig. 2b represent the multi-year average
of Tair for each LWP bin size of 14.2 gm−2. For non-precipitating clouds (sr= 0, Fig. 2a)
and over dry snow cover — when usually the cold weather regime dominates — the PDF
of LWP has a large positive skewness (γ= 1.91). This significantly skewed distribution
indicates a high probability of occurrence of supercooled liquid clouds containing low
LWP values. The mean and standard deviation are 36 gm−2 and 46 gm−2, respectively. In
the snowing atmosphere (sr> 0, Fig. 2b), the PDF skewness decreases to γ = 0.08 and the
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Figure 1. Marginal probability distribution function (PDF) of multi-year Snow Water Equivalent

(SWE in kgm−2) and Tskin (in degree K) dependency (a), NH topographic map (b), SWE spatial

probability of occurrence (p) (c-e), and Tskin (f-h) at 1-deg resolution for three SWE intervals in kgm−2.

Note the color scale in (a) and (b) indicates the average Tskin (K) for each SWE bin and the elevation

(m), respectively. Note that the y-axis in (a) is logarithmic.

mean increases to ∼ 140 gm−2, indicating the existence of a larger amount of supercooled
liquid droplets in clouds.

During snowfall events, the most frequent values of LWP is around 140-160 gm−2,
while the occurrence probability of extremely low LWP values (< 20 gm−2) is below 0.0015
(Fig. 2b). Larger values of LWP occur more frequently at warmer air temperatures as
the moisture holding capacity of the atmosphere is higher and more ice water can turn
into liquid [58]. However, the increasing rate of LWP with temperature is not constant.
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This is because different values of LWP occur at different vertical heights. The database
developed by Kubota et al. [59] using the global cloud system resolving model for the
GPM/DPR algorithm revealed that over land the LWP increases with precipitation. Our
analysis in Fig. 2c confirms the evolution of the LWP probability distribution as a function
of snowfall rate. The PDFs become less skewed and wider as the mean moves from 80 gm−2

(sr = 0 − 0.5 mmh−1, blue curve) to 200 gm−2 (sr = 4 − 8 mmh−1, black curve).Also, we
observe that for sr > 2 mmh−1 the LWP distribution does not change or shift noticeably.

Figure 2. The effects of different overland snowfall rates (sr) on frequency and spatial distribution

of cloud LWP over the NH: probability distribution functions of LWP for sr = 0 (a), sr > 0 (b)

and 0 < sr < 8 mmh−1 (c); spatial distribution of the mean LWP (d–f), and the Tair (g–i) for non-

precipitating (d,g), 0 < sr ≤ 0.5 mmh−1 (e,h) and sr ≥ 1 (f, i). The histograms are color coded to

represent corresponding mean Tair temperatures. Note that the color represents the multi-year

average of Tair for each LWP bin (in the top row), the multi-year gridded average of LWP (second

row), and the multi-year gridded average of Tair (bottom row).
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To understand the spatial variations of LWP from non-snowing to snowing atmo-
spheres we stratified our dataset based on different snowfall intensities. Fig. 2 shows the
spatial pattern of mean LWP (d-f) and Tair (g-i) for three different scenarios: sr = 0 (no
snowfall), 0 < sr ≤ 0.5 mmh−1 (about 40 percentile), and sr ≥ 1 mmh−1 (95 percentile)
— over dry snow cover. The average LWP and its corresponding Tair increase with the
increase of sr. This is because the predominant snowfall-temperature relationship is posi-
tive at mid- to high-latitudinal regions during the cold-weather regime in winter [60]. The
snowfall warming feedback significantly increases the Tair over North America, Siberia,
and East Asia where colder temperatures were observed in absence of precipitation, while
temperatures at lower latitudes remain almost unchanged (Fig. 2g-i). Fig. 2 also shows that
the rate of increase in both LWP and Tair with snowfall rate is not uniform over the entire
NH. The increase of Tair specifically is observed over the Siberian plateau and the northern
Canada. The increase of LWP over these regions concurrently occurs with increase of
atmospheric temperature both of which increase the emissivity and could significantly
mask the Tb response to the increase in snowfall scattering.

3.3. Radiometric Effects of Snow Cover and Cloud Liquid Water on GPM brightness temperature

To understand the effects of the observed complex climatology of snow cover, temper-
ature, LWP, and morphology of snow cover grain on GPM brightness temperatures, the
averages of high-frequency Tbs are calculated as a function of SWE at different LWP values.
Fig. 3 shows the average NH Tbs as a function of SWE and cloud LWP in the absence of
precipitation. For brevity, we focus on the vertical polarization (V-pol) channels as the
response pattern is similar in the horizontally polarized (H-pol) ones (not shown here).
We would expect a monotone decrease in the snow cover emissivity pattern as the SWE
increases for frequencies below 100 GHz [23,24,48]. However, results show that Tb values
do not monotonically decrease and there is a clear inversion in the Tb spectra. As shown
in Fig. 3, Tb values approach a minimum at around 70–100 kgm−2 and begin to increase
for SWE > 120 kgm−2 . This anomalous spectra was previously observed in SSM/I fre-
quency channels at 19, 37, and 85 GHz [30] and explained as a radiometric response of
the snowpack to its crystalline structure changes when the mean grain size increases [27].
Among the GMI channels, both the 89 and 166 GHz ones are almost equally sensitive to
the increase of SWE while the 183 GHz is the least sensitive, because of the atmospheric
water vapor emission. On average, for a 1 kgm−2 increase in SWE, the Tb decreases about
0.5 K at 89 and 166 GHz, 0.2 K at 183 ± 3 GHz, and 0.4 K at 183 ± 7 GHz. It is worth noting
that the observed anomaly follows the climatology of Tskin for different SWE values (Fig.
3f). The snow cover metamorphic changes on grain size and the snow cover temperature
climatology are not independent, therefore the observed scattering signal is a response to
both seasonal and spatial variations of snow cover emissivity and Tskin as shown in Fig. 1.

Since the crystalline structure of the snow pack is a function of its metamorphic
changes, the observed anomaly shows a seasonal dependence. The Tb seasonal dependence
here is calculated by averaging the time stamp of Tb values at each SWE bin. Fig. 3 shows
that the maximum snow cover scattering occurs during the early winter. As the Tskin and
the snow mean grain size increase toward the late spring, the scattering signal begins to
decay even though the SWE continues to increase. It is important to note that this seasonal
pattern impacts the quality of snowfall microwave retrievals. In particular, since strong
snow cover scattering can weaken the snowfall signal, we expect larger uncertainties on
PMW snowfall retrievals on early winter when the snow cover is fresh and the SWE is less
than 100 kgm−2.

The analysis also shows warmer Tbs for increasing frequencies which is in contradic-
tion with the known surface emissivity spectra of snow cover [23]. Within the analyzed
range of SWE (0 - 400 kgm−2), the 166 GHz channel is more than 5 K warmer than the
89 GHz one, while the overall expectation is that the high-frequency channels must be
colder due to stronger snow cover scattering [23,24,48]. This inverted spectrum was ob-
served in lower frequency channels of the SSM/I sensor and is known to be due to the
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formation of a dense layer of snow crust [30]. Hewison and English [61] also argues that
this phenomenon could be due to the mean behavior of the snow cover temperature profile,
that is often colder at the bottom layers.

Finally, an increase of cloud LWP can completely mask scattering effects of snow
cover. This masking effect is shown in Fig. 3 as we see the curves are flatter for higher
LWP (moving from blue to red lines). This is expected because of the climatology of LWP
and Tair observed in Fig. 2, e.g., larger values of LWP occur at warmer Tair, on average.
Fig. 3a–d shows that for LWP > 150 gm−2 , there is almost no response to changes on
SWE. Moreover, the SWE value associated with the maximum scattering (Tb minimum)
increases as the cloud LWP increases. The reason could be while the maximum snow cover
scattering occurs in early winter (Oct-Dec) over dry snow the emission of cloud liquid
water is stronger from mid to late winter (Jan-Mar) [62]. This is attributed to the fact that
the temperature begins to gradually increase from mid to late winter. This masking effect
is also frequency-dependent. In particular, when the scattering signal of snow cover is
maximum, the Tb89 GHz increases about 5 K more than the Tb166 GHz in response to
an increase of 200 gm−2 in cloud LWP. We also observe that the difference between the
channel spectra shrinks for high (200 kgm−2) and low (2.5 kgm−2) values of LWP (Fig. 3e)
— revealing the nonlinear effects of LWP on snow cover high-frequency signatures.

Now that we discussed and showed the complex radiometric effects of SWE and LWP
climatology and snow-cover grain morphology on the GPM brightness temperatures, the
question is how we can isolate these correlated effects on the Tb signal of snowfall in order
to improve snowfall passive retrieval from GPM frequency channels. We approach this by
calculating emissivity in the next sections.
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Figure 3. GMI high-frequency average Tb at channels 89V (a), 166V (b), 183±3 (c), and 183±7 GHz

(d) as well as the comparison between the Tb values at 89 and 166 GHz (e) and average Tskin (f). All

Tbs are for non-precipitating scenes. Also, the time at the top of the TB curves is the average time of

the year corresponding to the average calculated SWE value.

4. The Snow Cover Emissivity Under Clear Sky

The microwave signal reaching the top of the atmosphere is the combination of the
surface signal and the atmospheric contributions. If the atmospheric contribution becomes
small enough to be ignored, we can easily calculate the surface emissivity (εs) as follows as
also used by [63,64] and evaluated by [65]:

εs =
Tbs

Tskin
(1)

where Tbs are the brightness temperature observed at top of the atmosphere in clear-sky
conditions and thus it accounts only for snow-cover land. To minimize the atmospheric
contribution, we only consider clear-sky observations with zero LWP, zero IWP, and zero
precipitation. The atmospheric WVP is still present and thus might affect εs in the 183.3 ± 3
and 183.3 ± 7 GHz channels [41], but can be ignored for other frequencies. Fig. 4 shows the
emissivity of snow-covered surfaces calculated for clear-sky as a function (Equation 1) of
SWE for GMI high-frequency channels (89 V, H, 166 V, H, 183.3 ± 3, and 183.3 ± 7 GHz).
Overall, the clear-sky surface emissivity of H-pol is about 0.01 less than the V-pol one. Also,
the calculated clear-sky emissivity of the low-frequency channels (10.6, 18.7, 23.8 and 36.5
GHz, shown in Fig. A1 (Appendix A), are very similar to what previous emissivity studies
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found [23,66].
Fig. 4a and b shows that for SWE values smaller than ∼ 100 kgm−2 the sensitivity of

the surface emissivity to the SWE increase is larger at 89 GHz compared to 166 GHz. This
trend is reversed for SWE ≥ 100 kgm−2 with the 89 GHz emissivity reaching a plateau
at around 0.83 for H-Pol and 0.86 for V-Pol. This indicates that the emissivity at channel
166 GHz provides a better response to a full dynamic range of SWE with a consistent εs

decrease, while at 89 GHz it saturates at SWE ∼ 100 kgm−2 thus almost getting blind to
any further increase in SWE. We expect that this blindness of channel 89 GHz to SWE
mostly occurs over Pacific Coast Ranges of northern British Columbia, North East Canada,
Ural Mountains, Kjolen Mountains of Norway, and Verkhoyansk range in Russian Far East
(Fig. 1e) during Jan-May (Fig. 3).

ε s
ε s

εsεs

εsεs εsεs
εs

Figure 4. Clear-sky emissivity with snow water equivalent at GPM high-frequency channels (89 H &

166 H (a), 89 V & 166 V (b), 183±3 (d), and 183±7 (e)), the emissivity differences of V-pol and H-pol

at 89 and 166 GHz frequencies (c), and the corresponding WVP (f). Note that the total cloud liquid

water path, integrated total precipitable water, and ice water path in the column of atmosphere, and

the near-surface precipitation are all zeros based on the data from both MERRA-2 model simulations

and DPR ancillary database (2ADPR-ENV).

The variation of εs at water vapor channels (183.3± 3 and 183.3± 7 GHz) is very small
(∼ 0.015) and strongly anti-correlated with the variations of the atmospheric WVP (Fig.
4f). This is obviously due to the effects of the WVP in atmosphere masking the surface
contribution. Therefore, hereafter in this paper, we only focus on the high-frequency
window channels (89 V, H and 166 V, H GHz).

Our key observations on emissivity change rates in response to the increase in snow
depth are summarized over the dry snow-covered surfaces after removing atmospheric
contributions: (1) for SWE less than 10 kgm−2 the decreasing rate of emissivity at 89 GHz
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exceeds that at 166 GHz and on the contrary, (2) for SWE greater than 100 kgm−2 the snow
cover emissivity decays at a much higher rate at 166 GHz compared to 89 GHz. Although
the 89 GHz emissivity of the surface covered with dry snowpack reaches a plateau for
SWE≥ 100 kgm−2 , it remains significantly lower than the non-plateaued emissivity at
166 GHz. This low emissivity can better capture the emission signal of snowfall which we
analyze in the next two Sections.

5. Effects of Cloud Liquid Water Emission on Snow Cover Emissivity

Tb values at high-frequency channels may increase during snowfall events if clouds
contain some liquid or supercooled water, which could completely mute the scattering
contribution of snowfall [6,22,38,67,68]. Therefore, it is crucial to quantify the mixing
effects of SWE scattering and thermal emission of LWP on the snowfall signal. We calculate
the emissivity for different combinations of SWE and LWP in absence of precipitation.
We compute the emissivity due to the LWP emission, assuming that the observed Tb
(Tbobs) is the sum of the clear-sky Tb (Tbs= εs·Tskin from Equation 1) and the Tb due to the
atmospheric LWP (Tblwp) as:

Tbobs = Tbs + Tblwp

Tbobs = εsTskin + εlwpTair

(2)

where εlwp is the emissivity due to the cloud liquid water, εs is the snow-cover emissivity
under clear sky, and Tair is the air temperature. Therefore, the emissivity due to the LWP
emission can be calculated as follow according to Equation 2:

εlwp =
Tbobs − εs Tskin

Tair
(3)

The calculated εlwp by Equation 3 are presented in Fig. 5. Here, εs is calculated for each
SWE value using the regressed relationships shown in Fig. 4 computed from Equation 1.
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Figure 5. The atmosphere emissivity due to the cloud liquid water path (εlwp) against the snow cover

water equivalent (SWE). The lines represent the best fit for each LWP interval shown in the colorbar.
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The increase of LWP (from bottom to top curves) increases the atmospheric emissivity,
and this variation can be significantly better captured at 89 GHz than 166 GHz (Fig. 5).
This is because the 89 GHz clear sky emissivity (Fig. 4a,b) is lower than the 166 GHz one
which allows the 89 GHz channel to have a more pronounced response when adding the
emission contribution of LWP over SWE compared to channel 166 GHz. However, Fig.
5a shows that this contribution progressively decreases and becomes very small (∼ 0.005)
for LWP ≥ 200 gm−2. These large values of LWP as observed in Fig. 2d occur mostly
over Appalachian Mountains, the west coast of British Columbia, Alaska, and Northern
Europe. On the contrary, at channel 166 GHz the LWP emissivity contribution shows a
noticeable increase (∼ 0.03) only for LWP values up to about 100 gm−2, while for higher
values LWP needs to increase significantly to show a similar emissivity response (Fig.
5b). This observation is very critical for snowfall detection since the LWP, as observed in
Fig. 2c, largely increases during snowfall events. Moreover, larger emission contributions
from clouds could mask the variations of surface emissivity caused by different snow
cover scattering, particularly at 166 GHz channel. We see both channels respond better
to the scattering of snow cover for SWE values less than 100 kgm−2. This is obvious in
Fig. 5 as lines are steeper for LWP when SWE is less than ∼ 100 kgm−2. Similar findings
for WVP were also revealed by [18] about the water vapor increase in the column of the
atmosphere that could mask the variations of radiometric response to surface temperature
at frequencies ≥ 89 GHz.

6. The Interactions of Snowfall Scattering with Snow Cover and Cloud Liquid Water

Now that the SWE and LWP emissivities are quantified, the snowfall scattering signal
can be isolated as follow:

Tbobs = Tbs + Tba

Tbobs = εsTskin + εaTair

εa = εsr + εlwp

(4)

where Tba and εa are the atmospheric brightness temperature and atmospheric emis-
sivity, respectively. Also, recall that Tbs from Equation 1 is the Tb at the top of the atmo-
sphere at clear-sky, which only accounts for snow-cover emissivity.

The calculated εa from Equation 4 is shown in Fig. 6 illustrates. It is worth noting that
when sr = 0, εa and εlwp are equal. The difference between emissivities in Fig. 6 for sr = 0
and sr > 0 shows the snowfall scattering contribution reducing the εa as all of the curves
have almost equal amount of liquid water content (150 − 200 gm−2). This LWP interval is
selected based on its high probability of occurrence shown in Fig. 2 to ensure an adequate
sample size in each SWE interval ( 20 kgm−2) and snowfall rate interval of 0 < sr ≤ 0.5, 0.5
< sr ≤ 1, and 1 < sr ≤ 4 mmh−1. The reason we did not go beyond sr = 4 mmh−1 is that
the sample size significantly reduced due to the lack of enough heavy snowfall events in
each LWP and SWE interval.

The results in Fig. 6 show that for SWE values close to zero and the same amount
of LWP, the snowfall signal with intensity 0 − 0.5 mmh−1 reduces the εa at 89 GHz by
about 27% (from 0.11, grey line to 0.08, red line – Fig. 6a) and at 166 GHz by ∼ 38% (from
0.09, grey curve to 0.055, red curve – Fig. 6b). At 89 GHz, this decrease in emissivity due
to snowfall scattering decreases with SWE, with a gap of about 0.015 (∼ 18%) for SWE
∼ 200 kgm−2 and less than 0.005 (∼ 3%) for SWE greater than 400 kgm−2 (Fig. 6a). As
illustrated in Fig. 4, for the clear sky emissivity at 89 GHz channel when the snow depth
increases on the ground, the land surface emissivity becomes relatively small (0.83) and
reaches a plateau. Therefore, the small snowfall scattering cannot reduce the emissivity
any further. However, the snowfall with sr 1 < sr ≤ 4 mmh−1 can further decrease the
emissivity by about 0.018 from 0.078 to 0.06 for SWE values of < 40 kgm−2 and from 0.03
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Figure 6. Atmospheric emissivity, (εa) for different snowfall rate intervals over dry snow cover for

LWP = 150 − 200 gm−2 at 89 GHz (a) and 166 GHz (b). Note that the dark gray curve is associated

with sr = 0 mmh−1, which is the exact same curve (solid dark gray with yellow markers) in Fig. 5. It

is shown here again for making comparisons of εa when sr > 0 and εlwp easier.

to about 0.01 at SWE values larger than 400 kgm−2 (the difference between red and blue
curves, Fig. 6a).

For channel 166 GHz, Fig. 6b shows that the snowfall scattering contribution (refers
to the emissivity decreases due to snowfall scattering) is almost the same as that of 89
GHz when the intensity is small (27% , sr ≤ 0.5 mmh−1). However, channel 166 GHz
responds more strongly to the increase in snowfall rate showing clearly separated curves
for different sr intervals. The snowfall scattering contribution when 1 < sr ≤ 4 mmh−1 can
further decrease the emissivity by about 0.06 (difference between the red and blue curves
∼ 96%) at channel 166 GHz compared with only 0.018 at channel 89 GHz (∼ 23%).

7. Discussion

By integrating the findings from Fig. 5 and Fig. 6, we conclude that for small snowfall
intensities (≤ 0.5 mmh−1) over shallow snow cover (SWE < 100 kgm−2), LWP values
even as small as 0–50 gm−2 could increase the emissivity by 0.02–0.05 and thus, could
completely mask the scattering contribution of snowfall (∼0.05 as a difference between
εlwp and εa) at channel 89 GHz. Larger snowfall rates might be only captured at small
LWP values. The 166 GHz channel could still capture some snowfall scattering at SWE
values less than 100 kgm−2, defeating the emissivity increase of small liquid water content.
However, the snowfall scattering contribution is masked also at this channel when the
LWP becomes larger than 100–150 gm−2, which increases the emissivity by almost more
than about 0.07.

Over deeper snow cover with SWE larger than 100 kgm−2, the snow cover scatter-
ing contribution becomes very significant and thus, alleviates the contribution from the
small intensities of snowfall scattering, making them no longer distinguishable from the
background emissivity at both 89 GHz and 166 GHz channels. Larger snowfall intensi-
ties (1–4 mmh−1 ) still decrease the background surface emissivity even over deep snow
cover with SWE ≥ 100 kgm−2 at 89 GHz channel for LWP values up to 50-100 gm−2, but
are masked for larger LWP values. This is because the decrease in emissivity due to the
increased snowfall rate (Fig. 6a) is lower than the increase in emissivity because of the
increased emission of LWP (Fig. 5a). At 166 GHz, both SWE scattering and LWP emission
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over deep snow-covered surfaces are relatively smaller than those at 89 GHz. Therefore,
the 166 GHz channel is more capable of capturing the snowfall scattering signal with large
intensities (sr>1 mmh−1) for LWP values up to 100–150 gm−2.

For larger LWP values (∼ > 150 gm−2) over regions with SWE ≥ 100 kgm−2, it is
revealed that the snowfall signal could be captured by its emission signature — LWP
increase during snowfall events — instead of its scattering signature at channel 89 GHz.
This is because the surface emissivity at channel 89 GHz reaches a plateau value and
remains unchanged to further increase in SWE. Therefore, over regions with deep snow
cover, the 89 GHz channel could capture this emission signal of the snowy clouds for
snowfall detection. The challenging land-atmospheric situations for snowfall retrieval
particularly occur if there is not any scattering nor emission signal which is when LWP >

100 − 150 gm−2 and SWE < 100 kgm−2.
In the present article, the relations between Tbs, snowfall, cloud liquid water with

emphasis on snow-covered regions were established as multi-year averages from four
years of colocated GPM and MERRA-2 reanalysis data. The immediate goal here was to in-
vestigate the challenging zones of snowfall retrieval over the snow cover at high-frequency
GPM channels regarding the confounding effects of these atmospheric constituents over
the snow-covered regions. However, at the daily or sub-daily time scales, large variability
around these multi-year averages is expected. When seeking to establish relationships at
these finer time scales, the temporal variability needs to be either handled as a stochastic
process or analysed in relation to additional physical parameters which have not been
taken into account in the present study (e.g. snow density and wetness, particles shape and
size distribution, etc). Additionally, at fine time scales, significant variability is expected to
be related to errors and inaccuracies in the measured/estimated variables in both satellite
observations and reanalysis products.

For instantaneous precipitation retrievals, one should consider the use of the dynamic
surface emissivity database developed by [69] and evaluated in GPM retrieval by [70],
which implements the optimal estimation method with a forward model error covariance
matrix. Future research would benefit from using this dynamic land surface emissivity
database for further investigation of the findings of the present paper and for establishing
relationships between LWP, SWE, and snowfall at finer temporal scales.

The fact that GMI and the DPR are flying onboard the same platform allows for a
high number of colocated observations at all latitudes; however, we acknowledge potential
errors and inaccuracies in DPR measurements regarding light precipitation intensities. An
additional investigation, if it does not require high space-time coverage, should consider
measurements from CloudSat Cloud Profiling Radar (CPR), which is known to more
accurately capture low-intensity snowfall [71,72].

In this study we only used total precipitable water to screen the clear-sky Tbs. This can
add some uncertainties regarding the calculated emissivities of LWP and snowfall. Future
research needs to investigate the effects of total precipitable water on the radiometric signal
during the snowfall events [73].

8. Conclusions

We analyzed snow cover effects on the snowfall radiometric signal under different
snow water equivalent and liquid water content of clouds, by considering the effect
of surface temperature variations, as well. To isolate the surface temperature thermal
emissivity, we first calculated the clear-sky emissivity. Then, we computed the contribution
of scattering and emission from the other mentioned land-atmospheric constituents directly
by comparing their emissivity with clear-sky snow cover emissivity. We found that the
channel 166 GHz could better capture the scattering signature of light snowfall events
because it responds less strongly to the increase of the cloud liquid water than the 89
GHz channel. Larger snowfall events could be captured better at 89 GHz when both
LWP and SWE are small, while 166 GHz becomes more advantageous at capturing this
scattering when LWP increases up to about 100–150 gm−2. Over deeper snow-cover regions,
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and particularly larger LWP values (≥ 100 − 150 gm−2), the scattering of snowfall, even
with large intensity, is masked by the comparable scattering contribution from the large
accumulation of snow cover and the emission from liquid water at both 89 and 166 GHz
channels. At this land-atmospheric condition, the snowfall dominant signature becomes its
emission that can be distinguished from the very low plateaued emissivity of the surface
at channel 89 GHz. We believe that a quantitative climatological assessment such as this
presented herein can provide useful information for improving passive microwave retrieval
of snowfall and also serve as diagnostics for interpreting the bias and uncertainty of current
products.
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Figure A1. Clear-sky emissivity with snow water equivalent at GPM low-frequency channels (10.6,

18.7, and 36.5 GHz V, H) and the emissivity differences of V-pol and H-pol. Note that the total

cloud liquid water path, integrated total precipitable water, and ice water path in the column of

atmosphere, and the near-surface precipitation are all zeros based on the data from both MERRA-2

model simulations and DPR ancillary database (2ADPR-ENV).
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