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Abstract: The dynamics and optimal control for an SIS epidemic model with demographics
and heterogeneous control strategies (immunization and quarantine) on complex networks are
investigated. We derive the epidemic threshold, and study the global stability of disease-free and
endemic equilibria based on different methods. Furthermore, the optimal control study about the
system is also considered. We obtain the existence and uniqueness of the optimal control strategy.
Some numerical simulations were conducted to illustrate and supplement the theoretical results.
Meanwhile, the effects of the combination of various immunization and quarantine schemes are
studied and also compared with the optimal control strategies.
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1. Introduction

The prevalence and outbreak of infectious diseases is always an important issue affecting
the national economy and people’s livelihood [1]. Researches on the transmission mechanism
and dynamics of infectious diseases have attracted the attention of many scholars. Specifically,
mathematical models have been a potent tool for forecasting the trajectory of infectious diseases and
evaluating different prevention and control measures [2,3]. Through the application of optimal control
theory and qualitative assessment of mathematical models, the effective management, reduction, and
potential eradication of an infectious disease can be achieved. [4-8]. Based on different mechanisms of
disease transmission, Kermack and McKendrick introduced the SIS and SIR epidemic models [9-11].
Subsequent to their work, a variety of epidemic models have emerged to shed light on the progression
of various diseases and to offer insightful control measures.

Any research progress on the dynamics and control of epidemic transmission may have a
significant impact on the prevention and control of infectious diseases, which has attracted widespread
attention from scientific research [12,13]. During the transmission of infectious diseases, the infected
transmission mainly occurs through the contact between susceptible and infected individuals, then
quarantine has become a commonly employed strategy for controlling disease. For example, Hethcote
et al. studied SIQS and SIQR epidemiology models with different incidence [14]. The Refs. [15-17] have
also conducted qualitative analysis of mathematical models with infected isolation on the assumption
of uniformly mixing population. Compared with the classics propagation models, heterogeneous
networks own a better reflection with the statistical properties of real social networks. Li et al.
introduced an SIQRS epidemic model based on scale-free networks, and their theoretical results
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indicate that the epidemic threshold is closely linked to the network’s structural characteristics [18].
Kang et al. explored how the quarantine based on node degree, as well as constant rates of
birth and death, affect disease dynamics on scale-free networks by utilizing a novel deterministic
model [19]. Chen et al. formulated SVIQR and SVIQS models with heterogeneous quarantine rate and
immunity rate to investigate the effects of intervention methods on the behavior of infectious diseases
within heterogeneous networks [12]. Cheng et al. considered a network-based SIQS model with
non-monotone incidence rate and studied the global stability of equilibria [20]. Zhao et al. developed
a stochastic SIQS epidemic model on scale-free networks, taking into account random fluctuations
in infection rates [21]. However, those models either ignored the demographics or assumed that the
recruitment of population is constant.

Consistently implementing control measures can effectively reduce the scale of infection, however,
if considering the economic factors, relying solely on continuous control measures may not be
sufficient to achieve optimal control goals when the disease prevalence is substantial. Therefore,
A viable approach is to employ time-varying control within certain bounds to strike a balance
between control objectives and the associated costs via optimal control theory. Optimal control
applications in epidemic dynamics primarily concentrated on homogeneous contact networks [22-27].
Recently, many intriguing works on the optimal control of epidemics on heterogeneous networks have
emerged [18,28-35]. Li et al. presented a nonlinear SIQS epidemic model on networks and explored
the issue of optimal quarantine control to minimize the cost of control measures [32]. Zhang et al.
examined the optimal control of an SIQRS model that includes vaccination on a network, and studied
the effects of different control strategies [34]. Yang et al. investigated the stability and optimal control
on treatment for SIS epidemic systems combining in directed networks [35]. However, the above
results only considered the optimal control strategy for isolation and did not compare it with other
forms of heterogeneous isolation strategies.

The above works provide strong theoretical supports for the prevention of infectious diseases
through isolation measures. However, appropriate vaccination for susceptible individuals is also
crucial for preventing and controlling infection. On the basis of above consideration, we study an
SIS epidemic model with heterogeneous immune for susceptible individuals and quarantine for
infected one, which also consider the demographics of individuals on heterogeneous networks. The
organization of this paper is as follows. In Sect.2, we introduce an SIQS model with heterogeneous
control strategies! of individuals on complex networks and provide some description and assumptions.
In Sect.3, we obtain the equilibria and basic reproduction number. The main results are showed in
Sect.4, we establish uniform persistence and analyze the global stability of the disease-free and endemic
equilibria of system by different mathematical methods. The optimal time-varying quarantine control
for the model is considered in Sect.5. In Sect.6, some numerical simulations are conducted to illustrate
and supplement the analysis results. Finally, a brief conclusion is given in Sect.7.

2. Description and formation of epidemic models

Consider a population situated on a complex network N, in which each node of N represents
either an individual or an unoccupied state. Every node has three optional states: susceptible state(S),
quarantined state(Q), infected state(I) [21]. We divided the population into n groups, let Si(t), Ix(f),
Qx(t) denote the densities of susceptible, infected and quarantine nodes (individuals) with connectivity
(degree) k at time ¢, respectively. The mechanism of our model mainly involves three factors. The
schematic diagram of the model is shown in Figure 1, the meaning of parameters is listed in Table 1.

The heterogeneous control strategies refer that the quarantine rate of infected node is not the constant, but related to the
degree of node, and the immunize rates of susceptible nodes also are related to degree of node, the nodes with the same
degree have the same control strategy. In other words, in the contact network, the control strategy for the nodes in the
network is not uniform, but different control strategies are formulated based on the degree of the nodes.
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(1) Birth and Death: Each vacant node i in the network randomly selects a neighbor. If the
neighbor is a vacant node, the state of i remains unchanged. If the neighbor is a non-vacant node, the
vacant node i will be activated to generate a new susceptible nodes at the birth rate b. All non-vacant
nodes become vacant nodes at a natural death rate d per unit time. We assume that each non-vacant
node has the same birth contact ability A (where A = 1) due to physiological constraints.

(2) Immunization and Quarantine (I — Q): At each time step, susceptible individuals with
degree k are immunized with the immune rate ;. The infected nodes with degree k will be quarantined
with rate By. The quarantined individuals will recover to susceptible node with rate 7. Nodes with the
same degree have identical quarantine (immunization) strategies, while those with different degrees
have different strategies.

(3) SIS epidemic framework: Infection S — I: At the initial moment, randomly select some
nodes as infected nodes. At each time step, the possibility that each infected node i connect to its

neighboring nodes is %, where ¢(k) represents the infectivity of infected nodes with degree k,

and @(k)= k [36-38], p(k)=A [39], p(k)=k"™ [40], ¢(k)=% [41]. If an infected node i interacts with
a susceptible node j along a connecting edge, node j has a possibility of being infected by i at a
transmission rate A;;. For the node with degree k, the overall transmission rate is A (k).

Recovery I — S: Each infected node reverts to being susceptible at recovery rate 7.

n

l A B ‘
Q
d Y o d d l

Figure 1. Flow chart of the SIQS model. Here S, I, Q represent susceptible, infected and quarantined state.

Table 1. Symbols Employed in Models.

Symbols  Description

p(k) Proportion of nodes with degree k.
(k) Average degree ((k) = Y kp(k)).
n The max degree.
b Birth rate.
d Natural death rate.
¥ (t) The fertile contact probability between a node with degree k and its neighbors.
A(k) Transmission rate of infected nodes with degree k.
Ok Vaccination rate of susceptible nodes with degree k.
Bk Quarantine rate of infected nodes with degree k.
¥ Recovery rate of infected nodes.
7 Recovery rate of quarantined nodes.

According to above assumption, the model is as follows,

B0 — k[T — Ne(£)]¥x — dSk(£) — A(k) (1 = 5)S(H)O(F) + 7T (£) + 7Qx(b),
AL — A (k)(1 = 6)S(HO(F) — (Be + 1 + d) (1), 1)
) — BT (#) — (7 +d) Q(8).

—
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with initial conditions 0 < S(0), It(0), Qx(0) <1, k = 1,2,...,1n, where O(t) = Y1 , p(i|k)$-i)li(t)
stands for the probability that the infected contact through a link which originates from a node with
degree k and points to the infected node. The ¥y (f) = Y/’ ; p(i|k) ?Ni (t) denotes the probability that a
node of degree k has a reproductive contact with an individual neighbor, the % denotes the probability
that an individual neighbor of vacant node with degree i. On uncorrelated networks, the likelihood is
deemed to be independent of the connectedness of the originating node of the link. Thus, we note
ot) = % TLe(@)p()(t), Yi(t) = k Y1 p(i)Ni(t). The average density of susceptible, infected
and quarantined nodes is S(t) = Y} ; Sk( Jp(k), I(t) = ik Ie(t)p(k), Q(t) = Lf_1 Qk(t)p(k).

Let Ni(t) denotes the density of individuals of degree k at time ¢, and Ny = Sy + I + Qi. We
develop the equation for Nj as,

dNi(t)
dt

= b(1 — Ni)¥i(t) — dNk(t). )

According to Ref. [42], we get lim; o Ni(t) = 0 when b < d, no other dynamic patterns are present;
when b > d, lim;, ;o Ni(t) = Ni(t)*, where N} = %, Y = <117> " 5_&_2}?;:

Given that the original system and the limiting system exhibit identical long-term dynamic
characteristics. In order to better analyze the stability of the model, we can only consider the limit
system of (1) under the condition of b > d and N} = Si(t) + I(t) + Qk(t) based on the analysis of

Ni(t). The corresponding limiting systems of model (1) are formulated as follows:

%5 “—bk[ — N{T¥* — dSe(t) — AK) (1 = 8)Se(DO(E) + YI(1) + 1 Qk(E),
””k = A(k)(1 — &)Sk(HO(t) — (B + 1+ d) Ik(t), 3)
"Qk = Bili(t) — (7 +d) Qx(t).

with initial conditions 0 < Si(0), I(0), Qx(0) < Nf <1,k =1,2,...,n
The following proposition shows that the state space of the solutions of system (3) is positively
invariant.

Proposition 1. If (Sk(t), It (t), Qk(t) ) represents a solution to the system (3) that meets the initial conditions,
then 0 < Sp(t) + Le(t) + Qk(t) < N < 1,k € N, forany t > 0, i.e., I is positively invariant.

Proof. V xy € T. Thus, V t > 0, we have Ny > 0,¥(0) > 0.

a¥(t) T(t)
o =({b—-d)Y(t) - f;

We obtain that ¥ (t) = ‘-I’(O)eb_d_mz’lp(l)N’(t) > 0. By Ni(t) = Sk(t) + Ik(t) + Qx () and system (2),
the evolution of N (t) is derived by the following equation:
AN (¢
;t( ) _ k{1~ Nu(B)JY — dNG(F) > —[BRY + d]Ni (1),

We have Ni(t) > Nk(O)e’(ble”)t > 0. Then, from system (2), we also acquire

d(1— N() _

. —(BKY + d)[1 — Np(£)] +d.

Obviously, N(t) < 1,and 0 < Si(t) + L (t) + Qx(f) = Ni(t) < 1.
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Then, we verify Iy > 0 for any k = 1,2,...,n. If not, because [;(0) > 0, there is exist a
je {1,2,...,n} and typ > 0 satisfy

dl(t)
. () — o L
to = inf{t|I;(t) =0, g < 0}.

It is evident that I;(tp) = 0, I]f(to) < 0forany t € [0,to], I[;(t) > 0, we have

dl’;:()) = A(j)(1 = 8;)S(to)®(to) — (B + 7 +d)Li(ty) = A(j) (1 — 6;)S;(t0)O(to) < O.

Because of O(ty) = 21 19()p(i)li(ts) > 0, we obtain S;(tp) < 0. On the other hand, for any
t €10, 0], Qj(0) >0, we attain

di() = BiLi(t) — (n+d)Q;(t) > — (1 +d)Q;(t).

That is to say Q;(t) > Qj(O)e’(’Hd)t > 0. When t € [0, to],

dséft) = bj[1 — Nj(1)]¥; — dS;(t) — A(j)(1 — &;)S;(1)O(t) + I;(t) + nQ;(t)

—dS;(t) — A() (1 = 5)S;(H)O(#).

v

t
Then, we acquire S;(tp) > S;(0)e” J" d+21=5)0(MdT 0 1t g contradictory, hence, Ii(t) > 0, for
any kand t > 0. We also can get S;(f), Qx(t) > 0, and S (t), I (t), Qr(t) < 1. That completes the
y g p
proof. O

3. Equilibria and Basic reproduction number

In this section, the basic reproduction number Ry is determined, which is the average number
of new infections generated by a single newly infected individual throughout the entire infection
period [20]. Considering the equivalent system,

{ = A =GN = (1) = Ql)O() — (B + 7+ (), W

WU — g1 () — (7 + d)Qi(t).

Denote X is the space of functions, x = (I1(t), Q1(t),..., I.(t), Qu(t)) € X is the state space for system
(4).
T={xeX:0 <L(),Qt) < Lk=1,2,...,n}. (5)

The Proposition 1 can show that I' is the positive invariant for system (4). All viable steady states of
system (4) are satisfied the following equation,

Ie(t) = Qu(£))O(t) — (Bx + v + d) k() = 0,

{ A(k) (1 — 8;) (Ng (¢ N (6)

) —
BrIi(t) — (7 +d)Qx(t)

In particular, there exists disease-free equilibrium of (4) E0 = (0,0,...,0)), and the positive equilibrium
E* = (I}, Qf )k, where E* satisfies that,

—_

Ak)(1 — &) N; ©*
AR)(1=8)(1+ B0 + B+ v +d

*7,87(* *7771 _
Qk—glkf © —kZ Dp()I7, I =

The basic reproduction number Rj can be determined according to the following theorem.
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Theorem 1. Define the basic reproduction number

1 (1)A(D)(1 = 0;) N/
077; /31+'Y+d

There always exists a disease-free equilibrium E°. If and only if Ry > 1, the system (4) has unique positive
equilibrium point E* which satisfy that

o Brpo e o LN e e A(k) (1 — 6)N; ©
O e O = g O s B 1y i

@)

Proof. Eq. (6) implies that

I — A(k)(1 — &) Ny ©® ®)
k— A . & 7
(k) (1= 6)(1+ B)@ + By + 7 +4

Substituting (8) into ®. Then we get,

" POAD(—6INO

; 5)(1+ﬁ’)®+ﬁ1+7+d ©F(®), ©
where L& elpAD—&)N;

7T12/\ —5) 1+ E)@ gty +d (1

Because of f/(®) < 0 and ®lim f(®) =0, it is clear that Eq. (9) has the positive solution if and only if
— 400

f(0) = <1T> " W > 1. That is to say, when Ry > 1, Eq. (6) has unique positive solution

®*, namely, a unique positive equilibrium point E* of system (4) exists described by equation (7) if
and only if Ry > 1. The proof is completed. [J

4. Stability analysis for SIQS model

4.1. Stability analysis of disease-free equilibrium

Firstly, it is proved that the disease-free equilibrium (DFE) E is locally asymptotically stable by
the same method in [43] by the following theorem.

Theorem 2. If Ry < 1, then the DFE of system (4) is locally asymptotically stable and unstable if Rg > 1.

Proof. The Jacobian matrix of system (4) at E is:

Al A
A= ,
<A21 Ay

where Aj; is the zero matrix with n order, Ay; = BrEn, Axp = — (17 +d)E,, Ey, is identity matrix, and
G1p1p1 — (v + B1) C192p2 E1Qupn
S2o1m Gopap2 — (v +B2) ... Cz(pnpn
A = . . : ,
CnP1p1 CnPap2 cor Cn@npn — ('Y‘f',Bn)

where §; = % gipi = @()p(i). Lety = {y1, Y2, -+ Yn, Yni1, -+ Yo} € T.
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Subsequently, the system (4) can be reformulated in a vector format as:

d
== Ay+N(y). (1)
Let N(y) represent a column vector and N(y) <0,

A1 =6)(h+Q1)O
AQ2)(1=8)(2+Q2)0

N(y) — _ )\(1’1)(1 - 5n())(1n + Qn)®

0

0

We consider the eigenvalues of matrix A are determined by |pE, — A11||pEn — Az| = 0. It is obvious
that the characteristic equation has n multiple roots — (7 + d) from |pE, — Apy| = 0. Other eigenvalues
of matrix A is determined by |pE, — A11| = 0. Through some elementary transformations, |pE, —
Aq1| = 0 changes to

p—Gipip1+ (Br+ v +4d) —C192p2 . —C19nPn
Lo+prtrtd)  p+(patr+d) .. 0 .
So+pr+r+d) 0 o Bty +d)
Case11Ifp # —(B; + v + d), then we get
n ' N*
(p+B1+7+d) Z ONTPPE) | _ (12)

i:1 P+ﬁz+7+d

Note G(p) = <17> " A(i)(;;ifi)fiig)p @, Obviously, the solutions of equation (12) are determined by

G(p) = 1. Since G'(p) < 0, G(0) = Ry, PETmG(p) = 0, lim,_,_(g,4,+a) G(p) = oo, hence, when

Ry < 1, the solutions of equation G(p) = 1 are negative. Therefore, the equation (12) only has negative
solutions.
Case 2If [T\, (0o + Bi + v +d) = 0, since the sum of all eigenvalues is equal to the trace of the matrix.
Therefore, when Ry < 1, p1 = &1¢9(i)p(i) — (B1 +7+d) <0,and p; = —(B; +7+d) <O0.
Furthermore, because N(y) < 0, thus d—z < Ay. Since all the eigenvalues of matrix A are negative,
the equilibrium point E° of system (4) is locally asymptotically stable when Ry < 1. [
Then, we get the global asymptotic stability of E°.

Theorem 3. When Ry < 1, the disease-free equilibrium E° of system (4) is global asymptotic stability.
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Proof. From system (3), we get

F =W kz PP (DA K) (1~ 6) (N} — I(t) — Qe(1)@(t) — (e + 7+ A)O(t)
=1
< <,1<> ki oK) p(R)A(K) (1 — )N;O(t) — (B + v +d)O(t)
=1
= (Bx+7+4d) <<1k>knzl (’)(k)p(gj‘i"ii;fsk)f\’f _1> o)

= (Br+7r+d)(Ro—1)O(H).
We obtain @(t) < ©(0)e(Prtr+d)(Ro—1)t wwhile @(t) > 0 from the Proposition 1. Therefore, if Ry < 1,
we can acquire thT O(t) =0, and tliT It (t) = 0. From the second equation of system (4), we get
— 00 — 00

thT Qi (t) = 0. This demonstrates that E? of system (4) is globally stable when Ry < 1. The proof is
— 400
finished. O

4.2. Global stability of endemic equilibrium

In this section, we seek to study the conditions for the uniform persistence of the disease which is
important in proving global stability of endemic equilibrium E*. The result of uniform persistence is
showed in the following Lemma.

Lemma 1. When R > 1, the system (4) is permanent, i.e., there exists € > 0, such that

. . noos
t11>1+noo 1nf{1k(t), Qk(t) }k:l Z&

where (I;(t), Qk(t)) is any solution of system (4) satisfying (5).

Proof. Based on the Theorem 4.2 of [42], we need to verify that all hypotheses for system (4) are
satisfied. By setting C = I', Condition (1) is fulfilled. Condition (2) is evidently met. For condition (3),
notice that AlT1 is irreducible and ajj > 0, whenever i # j, hence there exists an positive eigenvector
h = (hy, hy, ..., hy) of AT, and its corresponding eigenvalue is s(A17)(s(A) = Re;A;), when Ry > 1,
s(A11) > 0. Lethyy 1 = hyao = ... = hyy, = 0, then, we note h = (hy, ho, ..., hyy,), and it satisfies

n n
ATh = Ah. Letr = ming<;<,(h;), foranyy € I,onehash-y >r Y y; >r, [ ¥ yf. Thus, condition (3)
i=1 i=1

is verified. Since every part of N(y) is negative and & > 0, hence, condition (4) is satisfied. To confirm
condition (5), weset G = {y € T|h- N(y) = 0}. If y € G, then

1=

hi(Yi + Yni)AMi)(1 = 6,)® = 0.

1

I
—

Given that every term in above sum is non-negative, one has y; = 0 for all i = 1,2,...n. Therefore, the
only invariant set corresponding to (11) that is contained within G is y = 0. Condition (5) is satisfied.
Hereby, all conditions are satisfied, the proof of uniform persistence is completed. [J

From Lemma 1, it is clear that if Ry > 1, the infection will always exists. The following theorem is
showed that the global stability of endemic equilibrium.

Theorem 4. Suppose that (Ii(t), Qx(t)) is a solution of (4) satisfying initial condition. If Ry > 1, then

lim L(t) =1I, li t) = Qj, thatis t , the endemi librium E* is global attractivity.
Am K(t) = I t:}rilooQk() Qg that is to say , the endemic equilibrium E* is global attractivity.

doi:10.20944/preprints202311.0245.v1
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Proof. Firstly, from Lemma 1 and k € {1,2,...,n}, we get there exist 0 < € < 1, such that, as t is
sufficiently large , Iy > e and Qj > ¢ is satisfied. Hence, when t > 0, we get <<(>)> <0O(t) < <42§£)>.

Then, from (4), we get

dI.(t)
dt

< A (1 )N — 0~ (Bt 7+ (), 10,

Ak (1=6) L (1-Np) + Bty
) (1=6¢) T+ By +d

For any given constant 0 < &1 < min{e, }, there exists a t; > 0, when

t > t1, such that
A) (1 — &) LERINy
I(f) < Al = o w £ be, t>h
A(k)(l—&k) +Br+v+d

Then, from the second equation of (4), it implies that

dQ;t(t) = Br(Ng = Sk(t) = Qk(t)) — (1 +d)Qx(t) < Br(Ny — Qi(t)) — (1 +d)Qx(t), t>0.

1+d+Br—BeN{
11+Px

BiN;
77+d+,3k,

Hence, for any given constant0 < e, < min{ %, €1, }, there exists a f; > t1, such that

Qr(h) < B; = t> 1.

On the other hand, from the first equation of (4), it can be inferred that

dI(t)
dt

e(p(k N
> A1 0N — 1) — B — B+ + D)
A@@ﬂﬂﬁww B})
k) (1=0¢) G+ Bty +d

Hence, for any given constant 0 < &3 < min{%, €, }, there exists a t3 > tp, such

that,

Ak)(1 sk> Ao (Ng — BY)

A(k) (1 — o) etk k by Bty +d

I (t) > a,l( = —e3, t>t3.

Next, following from the second equation of system (4), we also get

dQ;t(t) = Brlk(t) — (7 +d)Qi(t) = Brap — (1 +d)Q(t).

Similarly, for any given constant 0 < &4 < min{3, 83, T d} there exists a t4 > t3, such that

Qi(t) > b} =
Since ¢; is a small constant, it follows that
0<a} <L) <AL <1, 0<b <Q(t) <B} <1, t>1ty

and, we also get 0 < %Zl 1e(p(i)ap < O(t) < Lie(p()A; < %, t > t4. Again, by

1
= ®
system (4), one has
dIi(t) 1

S < MR =8 (N~ 1(8) — ) 7

p()p(i)Af — (B + v+ d)I(t), >ty

™=

Il
—_
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(1=Nf+b)AK) (1-0¢) gy Ty 9()p() Ap+B+7-+d
Ak)(1=8) gy Tiy @(D)p(i) Af+Br+y-+d

Wity < a2 = _NEZDAGL =817 KLy p(0p ()4} .
=TT A - a0 oAt Bt d T

Hence, 0 < ¢5 < min{%,&;, }, there exists a t5 > t4, such

that,

Thus,

dQ;t(t) = Bili(t) — (7 +d)Qi(t) < BrAF — (1 +d)Qk(t), t> 15

. . d
for any given constant 0 < g4 < mm{%, €5, Hﬂifdkk} there exists a tg > t5, such that,

A2
Q(t) < B} = min{Bj}, 5’;’6‘1 +e6}, >t

Consequently, one obtains that

D > A1 - 8 (N ~ 1) — BY) -

< > q)(l)P(Z)a}% - (ﬁk T+ d)lk(t)/ £ > tg.

gk

Il
—_

(N{=BR)A(K) (1-8) gy iy 9(i)p(i)a
A(k)(1=8¢) 75 Ty fp(z) (i)aj+p+r+d

Hence, for any given constant 0 < &7 < min{%,%, } there exists a

t7 > tg, such that,
(N; = BOAR) (1~ 5) s iy 9(i)p(i)al

L(t) > a? = me el
K(t) = ai /\(k)(l—5k)<,17> f’:l(p(i)p(i)ﬂi‘f'ﬁk""Y-f—d 7 7

Again, one has

dekt(t) = Bili(t) — (7 +d)Qx(t) > Brag — (1 +d)Qu(t), t > t7.

2
for any given constant 0 < eg < min{%, g7, %}, there exists a tg > t7, such that

Qk(t) > bf = max{bt, ’fkkeg} > tg.

It is clear that
O<ap<al<L(t)<AZ<AL<1, 0<bl <b}<Q(t) <Bf<Bi<1, t>ts

Similarly, the calculation’s step m can be executed, resulting in four sequences. {A}'}, {B}'}, {a]'}, {b}'}
are obtained:

(N = B DAK) (1 = &) gy Ty @(0)p(1) AF

L(t) < A'= + gz, > tay_3,
S A 00— 80 & T g AT T+ (B ) | o s
Qk(t) < Bk :mm{Bm 1 i—I—d t >ty o,

(Ng = BPAK) (1 5)5@ L g(pi)ay !
I t > m: m—1s t>tm—/
K T =00 Ty pp DA T+ (B rd) Sl 7
Qk(f) > bk = max{bm 1 'Bkak — 84m}, >ty

"n+d
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It is clear that
0<al <L(t) <Al <1, 0<b' <Q(t) <BI'<1, t>tay. (13)

We get {a'},{b]'} are monotone increasing sequences and {A]'},{B}'} are strictly monotone
decreasing sequences. It is clear that

B — BrAY
n+d

Bray!
mo_
+€4H’l72/ bk - 77+d

— &4m- (14)
Since all of them are bounded monotonic sequences, the sequential limits exist. Let

; (m) (1) — ; (m) 4y — M) — M () —
lim A7 (t) = Ay, tginoo B, (t) = By, tgrfoo a,(t) = ag, tgrfoo by (t) = by. (15)

t—+o0

Since {¢, } satisfies that 0 < ¢, < %, one has ¢, — 0 as m — oo. Therefore, from (14), as m — oo, we

get
4 (NE=bgAR(A—0)A o Ak
CTAR A=A T Bty d) KT prd
o= (N{ = B)A(k) (1 —6)a _ Bk

A1 =6)a+ Br+v+d) * n+d

where A = é Yiqe()p(i)A;, a= é Yiq @(i)p(i)a; Then, we get

_ NgoeAQ +d)[age(n +d — Br) + (1 +d) (B + v + d)]
Hy ’
_ Nigra(n +d)[Ack(p +d — Bi) + (1 +d) (B + v + d)]

aj Hk .

Ay
(16)

where ¢; = A(k) (1 — &) Hy = (17 +d)*(xA + (B + v +d)) (gxa + (Bx + 7 +d)) — ¢z prAa. For any k,
if y +d = By, itis clear that A = a. If  +d # By, Substituting (16) into A:

1 & NiGA( +d)agi(n +d—Bi) + (n+d)(Bi + 7 +4d)]
A= ; 9(i)p(0) 5 ,

1y Nicia(n+d)[Agi(y +d — Bi) + (n +d)(Bi + v + d)] 17
7= L opi) = o .

Il
-

We get% Y q)(i)p(i)% [(7+d)*(Bi +7+d)(A—a)] = 0. Therefore, A = a. Above all, from

A = a, which is equivalent to A; = a; forany i = 1,2,...,n. Then, from (13) and (14), it follows that

. L (Nf =AM (1 - 50
=l (0) = A== 3500+ (Ber 1 4 )

. o B
Qi = lim Q(t) = By = by = —

which is consistent with Theorem 2. This completes the proof. O

5. The optimal control for SIQS model

In this section, we study the optimal control for system (1). To meet the control objective and
minimize control expenses at the same time, a viable approach to target epidemic outbreaks is by
implementing time-varying control using optimal control theory for various infectious diseases, for
example, the results in Culshaw et al. [44], Chen et al. [45] and Abboubakar et al. [46]. The aim of this
section is to identify the optimal quarantine measure for controlling the transmission of diseases.
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First, we introduce an time-varying control rate uy(t) represents the percentage of infected
individuals with degree k being quarantined. Hence, system (3) can be written as

dS (t) = bk[1 — NfJ¥* — dSi(t) — A(k) (1 — 0k) Sk (£)O(t) + v Ik () + nQk (1),
10 _ ) (8)(1 88, (11010) — (1x(6)+ 7 + D14 () 19
dQ;t“ = () Ie(£) = (7 +d) Q(t).

We note the quarantine function u(t) = (uy(t), uz(t), ...un(t)) are bounded, Lebesgue integrable
functions. Since our aim is to reduce both the scale of infection and control strengths, we
consider the following objective functional J(uy) associated with model in the control set QO =
{(uy(t), uz(t),..un(t)) | 0 < u; < 0.9}, By denotes a positive weight parameter. The objective (cost)
functional given by

T n 1 ’
J) = [ V10 + B (0]t (19)

The Lagrange function for optimal control problems (18) and (19) is defined as

In order to solve the optimal control problem, the existence of an optimal control must be assured.
We firstly establish the existence of a solution for the control system (18) by applying the method in
Refs. [45,46].

Theorem 5. For the objective functional J(uy) associated with model (18) defined in ), there exists an optimal
quarantine strategy u* = (yy, ..., jin) minimizing J(u).

Proof. (i) Clearly, for any 0 < t < T, the () is an nonempty set of Lebesgue integrable functions. (ii) It
is obviously that the solutions are bounded ensuring the boundedness and convexity of admissible
control set. (iii) Model (18) can be written as

0]

Frat F(t,®,ux(t)) (20)

where F(t,®,uy) = (F, F, ..., Fy) is the right side of system (18), and ® = ($1, Py, ... , 0,7, & =
(Sk(t), I (t), Qx(t))T. Tt follows that

|F(t, @y, ui(t)) = F(t, @, (1) < Y |Fi(t, @y ue(t)) — Fit, Do, up(1)).

For any k € N, since |@;(t) — Oy(t)| = <1T> 1 e()pi)|In(t) — Iin(t)] and the boundedness of
solution, there exists a constant M; satisfied that |@1(t) — @ (t)| < My|I}1(t) — I;»(t)|. Then, There
exists a positive constant M to guarantee the inequality |Fx(®1) — F(D2)| < M| D — Py | is satisfied.
(iv) Let 0 < ¢ < 1 and my(t), vk (t) € Q, we get L(¢, ®, (1 — &)m(t) + Cv(t)) — (1 —&)L(t, P, m(t)) —
CL(t,®,0(t) = X1, %C(C 1)(v; — ml)2 < 0. (v) There exist c1 > 0, p > 1, c2 > 0 such that
L(t, @, ug () = Tiy [l + Fud ()] = Ty Sud (1) > B T ud(8) > Coful® —

By utilizing the results of Refs. [45,46], we get that there exists a optimal Control w = (ur, -, pn)
minimizing J (). The proof is completed. [

The solution to the optimal control problem will be determined through Pontryagin’s minimum
principle [47]. We note the Hamiltonian H as

n 3 n
H=)Y [L(t)+ = Bk”k Hldt+ Y Y wiiFei(t, @, u(t)). (21)
i=1 i=1k=1
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If (®*, u;) is an optimal solution of the optimal control problem, then there exists a non-trivial vector
function wy = (wyy, Wiz, wi3), k = 1,2,. .., n satisfying the following equalities:

do(t) _ OH(LP™ (1) up,w(t))

af1(10* (1 o

( 815 )t) w(t)) —0, (22)
dw(t) _ OH(®*(t)ui,w(t))

at = 0D .

It follows from the derivation above

* oH
w* =0, a”kg % <0,
0 < w* <09, %Lf_kl( y = 0, (23)
w* =10.9, 8uk(t) > 0.

Now the necessary conditions are implemented on the Hamiltonian H in (21) and we obtain the
following results.

Theorem 6. For a given optimal control solution y(t) and the corresponding system solution S;(t), Qi (t),
I (t), there is an adjacency function wi (t), wiy(t), wis(t) that satisfies the following conditions

dwa (t)

Al _ M1~ 600" (O (8) ~ wialt)) + dea (1) ~ 1,

toglt) _ AOC=ROUOP (01 (6) - walt) ~ 2 (1) o
+ (e + 7 + d)wia () — upwrs(t) — 1,

0 _ g () + (1 + deaa (1)

with conditions wy (T)=wio(T)=wy3(T)=0. Furthermore, the optimal control u; = (u3,u3, ..., uy,) is given
by

I (t) (wr2 — wks)]

u; =min{max|0, X B, ,09} (25)

Proof. We apply for the necessary conditions in the Pontryagin maximum principle with Hamiltonian
function (21) to derive the adjoint variables is determined by the following equations.

dw(];ilt(t) = A(k)(l - 5]()@*(1’)[(4)](1(1’) - wkz(t)] + d(dkl(t) - 1,

dezt(t) _ AR - 5k)<i;§(t)qv<k)p(k) (Wt () — i (t)) — v (£)
+ (e + 7 + d)wia (t) — wpewrs (£) — 1,

d“’zi’i(t) = —nwg(t) + (7 +d)ws(t).

By the optimal conditions, we have

oH


https://doi.org/10.20944/preprints202311.0245.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 November 2023 doi:10.20944/preprints202311.0245.v1

14 of 21

It follows that py = %. Using the property of the control space, we obtain
Wt =0, (wkz;;:ks)llf <0,
0<w <09, Wl g
Wi =09, gl

Then, we have the optimal control u;; in compact notation,

(w2 — wis) I

g 109)

uy = min{max|0,

That completes the proof. [

6. Simulations

In this section, we conducted some numerical simulations to validate and supplement our
theoretical results, and to study the impact of parameters on the dynamics of disease, in order to find
better control strategies. The numerical simulations include three parts, the first part is to verify the
main theoretical results including the epidemic threshold and global stability. We will discuss and
make some simulations to show the effectiveness of different immunity and quarantine strategies in
second part. The numerical simulation in the third part demonstrates the effectiveness of the optimal
control method that has been proved in Section 5. We constructed a BA (Barabd si-Albert) scale-free
network [48], which satisfies a power-law degree distribution P(k) ~ Ck~3, the network size N is set
as 1000, 11 = kyj;;4x=80. This network evolved from the initial network with size of my = 3 and during
each time step, new nodes with m = 3 edges are added to the network. Without loss of generality, we
note A(k) = Ak.

(I) Firstly, we perform some simulations in Fig.2 to verify the important results of global stability
of equilibria. We denote

k, k< 30;

k — 7 i 7

o (k) { 30, k> 30.
Figure 2(a) shows the relationship between I(#) and infectious rate A on some different networks.
Based on the basic reproduction number Rj, we can acquire the epidemic threshold of the disease is

Ae = (K)\ T, W where b = 02, d = 0.16, B = 0.17, j = 0.3, & = 0.2, 7 = 0.36. One
can see that the epidemic threshold is consistent with our theoretical results very well. Figure 2(b)
depicts that the disease-free equilibrium cannot undergo a Hopf bifurcation, i.e., if Ry < 1, the disease
free equilibrium is global stability, and if Ry > 1, then the endemic equilibrium is persist and global
stability, where b = 0.2,d = 0.1, By = 0.2, 7 = 0.3, §; = 0.2, A=0.01, 0.038, 0.055, 0.21, 0.28, 0.35 and

v=0.36, 0.36, 0.36, 0.18, 0.18, 0.18.
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-0 R, =0.6590
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—--R,=5.3671
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0.25 01e % --Ry=7.1561
R,=8.9451
0.2 0.08
S =
=1 =
015 0.06
- i
01k ——m=5,m =7, =0.1351 0.04
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A Time
(€Y (b)

Figure 2. (a) The I(t) with respect to A and the structure of network with different parameters m and myg. A, denotes
the theoretical epidemic threshold. Other parameter settings are as follows: b = 0.2,d = 0.16, B = 0.17, 7 = 0.3,
8 = 0.2y = 0.36 ; (b) The average infected density I(t) under different parameters: A =0.01,0.038,0.055,0.21,0.28,0.3,
7=0.36,0.36,0.36,0.18,0.18,0.18, b = 0.2,d = 0.1, B = 0.2, 7 = 0.3, §; = 0.2, which are corresponding to Ry=0.1734,
0.6590, 0.9538<1; Ry=5.3671,7.1561,8.9451> 1.

(IT) Secondly, we depicts the effectiveness of the immune and quarantining control strategies in
Figure 3 to Figure 4. In this part, we also discuss the SIQS model (1) on the network with various
immunization (proportional immune strategy 4, target immune strategy 6}, acquaintance immune
strategy J;°) schemes based on [49] and define quarantine schemes of infected individual (proportional
quarantine strategy By, target quarantine strategy ﬁi, acquaintance quarantining strategy f;°) according
to various immunization schemes. Then, we define the heterogeneous quarantine rate B as follows,

Proportional quarantine strategy: Denote the average quarantine rate of proportional quarantine
B,0 < B < 1. Randomly selecting one infected node for isolation, the quarantine rate is independent
of the degree of node, which is also a situation discussed in many papers.

Target quarantine strategy: we can devise a quarantine strategy for the infected nodes according
to the definition of immunization [49]. Introduce an upper threshold «, such that all infected nodes
with connectivity k > x are prioritize quarantined, i.e., we defined the quarantine rate | by

1, k> x;
,ch: ¢, k=x;
0, k<«

where 0 < ¢ <1, and Y LP(k) = IB~§(, where ,Bi is the average quarantine rate of target quarantine.

Acquaintance quarantining strategy : Select a random portion p from the N nodes. The
likelihood of quarantining a infected node with degree k is given by ];Ip—gkl?, therefore Bi° = pkP(k)/ (k).
We note that g% denote the average quarantine rate of acquaintance quarantine, where ¢ =
Xy BEP(K).

Figure 3(a) shows the I(t) under different quarantining control strategies, the target quarantine
strategy is the most effective in controlling disease. Figure 3(b) compares the effectiveness of
different quarantine strategies. We get that the target quarantine strategy has better effectiveness than
others. Figure 3(c) shows the effectiveness of different immunity strategies, it shows that all three
immunization schemes are effective compared to the case without any immunization; the targeted
immunization scheme is more efficient than the proportional scheme discussed.
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(a) (b) (©)
Figure 3. (@The I(t) under different quarantining control strategies, no-quarantine(cyan line),

acquaintance-quarantine(prune line), proportional-quarantine(blue line), target-quarantine(green line): b =0.2,d =
0.08,17=03,A =028, 6 =02,7=0.18,c =08,x = 15, p = 0.386, i = pi = ﬁNf( = B = 0.0499. (b) The epidemic
threshold A. under different quarantine control strategies, no-quarantine(green line); target-quarantine(prune
line); acquaintance-quarantine(blue line); proportional-quarantine(red line): b = 0.2, d = 0.18, 6, = 0.2, ¥y = 0.5,
n =035 ¢ =08« =10, p = 0.8946, B = 5;? = ﬁfc = ﬁ = 0.1150. (c) The epidemic threshold A, under
different immunize strategies, no-immunity(blue line); target-immunity(green line); proportional-immunity(cyan
line); acquaintance-immunity(red line):b = 0.2, d = 0.18, ¥ = 0.5,7 = 0.35, B = 0.21,c =1, x =7, p = 0.9836,
& =8¢ = 6t = 3§ = 0.218.

0.4 0.8
-6 0 &
target-immunity k ﬂ:‘
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(a) (b)

Figure 4. The effectiveness of combination immune and quarantining control strategies: b = 0.2, d = 0.18,

c=1x=7p = 0986 5 = 5 = (5;’2 = 0 = 0.218. (a) Different immunity strategies with respect to
quarantine rate: A = 0.2, v = 0.38, y = 0.3, acquaintance-immunity (prune line), proportional-immunity (blue
line), target-immunity(cyan line). (b) Comparison of different combination control strategies: v = 0.5, 7 = 0.35,
c =08,k =10, p = 0.8946, fic(sic) = Ef((sz() = B(3) = 0.1150, target-immunity and target-quarantine(red line),
target-immunity and acquaintance-quarantine(prune line), acquaintance-immunity and target-quarantine(cyan
line), acquaintance-immunity and acquaintance-quarantine(blue line).

Figure 4(a) depicts the average infectious density with respect to quarantine rate under different
immunity strategies. It also shows that the target strategy is better than proportional and acquaintance.
We further show the average infectious density with respect to infected rate for the immunization
schemes and quarantine strategies targeted, and acquaintance in Figure 4(b). We get that the targeted
immunity and the target quarantine strategy have better effectiveness than others.

(III) Thirdly, we analyze and illustrate the optimal control and various quarantine schemes by
numerical simulations in Figure 5 to Figure 6. In Figure 5, we depict I(t) under different control
strategies. In order to provide a clearer representation of the findings in Figure 5(a), we additionally
computed the objective function J(u) values for diverse control approaches, as shown in Table 2. In
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the absence of any control strategy (i.e., u; = 0), the infection ultimately breaks out and reaches a
stable level of infection. We also set a fixed control strategy compared with the optimal control strategy,
which can find that if we want to obtain better results than the optimal control strategy, it will usually
lead to a significant increase in control costs (i.e., u}'™ = 0.9). In Figure 5(b), we demonstrate the
comparative effects of optimal control, without control, and acquaintance immunity combining with
multiple quarantine strategies on infectious disease control. Compared with other strategies, the
optimal control strategy has the best control effect.

Table 2. The values of J(y) under different control strategies.

Optimal control Max control No control

J =~ 1.7817¢ + 03 ] ~ 6.5164¢ + 04 J =~ 5.1127¢ 4+ 03

Figure 6(a) illustrates the I(t) under optimal control under three cases: Low-cost at By = 0.01,
moderate-cost at By = 1, and high-cost at By = 100. Even under high costs, as seen in the third
scenario, the scale of infection can be notably curtailed through optimal control. Figure 6(b) displays
the fluctuation of yy across varying degrees under optimal regulation. It is evident that y; tends to
escalate as the degree rises. This indicates a higher level of infection, resulting in a higher value of .

0.45 - 04r
e 3P:")“;‘| contrel -—=--optimal control
i y 0' 0.35 --=--without control
— uk: ’ P ac C
% &ﬁi
] 03} &y
- §RCR P
0.3 O &By
0.25
s =
= -
0.2
0.15 I
0.1 é
0.05 i 5
i
0 L
0

50 100
Time

(a)

150

150

(b)

Figure 5. (a) The average density I(t) under different control strategies, the lines with different colors
corresponding to different optimal control: uy(f) =optimal control(purple line); ux(t) = 0.9 (cyan line);
ug(t) = O(green line). Other parameter settings are as follows: b = 0.09, d = 0.012, A = 0.3,y = 0.01, y = 0.03,
or = 0.1; (b) Comparison of optimal control and combined heterogeneous control strategies, without control

(green line); acquaintance immunization and acquaintance quarantine(blue line); acquaintance immunization and

proportional quarantine(prune line); acquaintance immunization and target quarantine(cyan line); optimal control

(purple line):b = 0.09,d = 0.012, A = 0.3,y =0.01,6 =0.218,c =1,k =7, p = 0.9836, By = ;“f = ‘Bf( =p=0218.
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Figure 6. (a) The I(t) under optimal control with varying weights. Low costs: By = 0.01(red line); Moderate
costs: By = 1(blue line); High costs: B, = 100(cyan line). Other parameters are fixed as b = 0.09, d = 0.012,
A = 0.3,y = 0.008, 7 = 0.03, & = 0.1. (b) The quarantine rates u(t) for any degree. Other parameters are fixed as
b=0.09,d=0.02A=03,y=0.01,5 =0.03, 6 =0.1.

7. Conclusion

We propose an SIQS epidemic model with heterogeneous immune and quarantine measures on
heterogeneous networks. We have performed a detailed mathematical analysis of our system, which
deduces that the basic reproduction number R, is collectively determined by the infection rate and the
effectiveness of disease control measures. Specifically, when Ry < 1, the disease-free equilibrium E°
exhibits global asymptotic stability. When Ry > 1, the endemic equilibrium E* demonstrates both local
and global asymptotic stability. At the same time, we conducted an in-depth theoretical examination on
system (1) to tackle the optimal quarantine control issue, confirming the presence of optimal solutions.
We define different forms of quarantine measures and numerically simulated the effectiveness of
a combination of different quarantine strategies and immune schemes in controlling diseases. Our
findings indicate that the implementation of any control strategy can have a favorable impact on the
magnitude of an epidemic outbreak, with the optimal control being particularly effective. Among them,
the effect of target quarantine scheme can be comparable to the effect of optimal control. However,
target isolation requires knowing the degree of all nodes in the network, which is a significant cost and
workload.

A variety of control strategies, such as quarantine and immune schemes, can be employed for
the effective management, mitigation, and potential eradication of infectious diseases. We expect that
this paper can contributes to a understanding of the dynamics of infectious disease with the control
measures. However, our paper is not based on a specific infectious disease, so there are still certain
limitations in providing a specific basis for public health prevention measures. Studying the control
measures for a specific disease based on infectious disease data will be a very meaningful work.
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