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Abstract: In the previous work, the pure fatigue behavior of AM60 magnesium alloy (PF-AM60) was compared 

with the corrosion fatigue behavior of these specimens (CF-AM60). In this research, in continuation of the 

previous job, the pure fatigue behaviors of AM60 with polylactic acid (PLA) coating (PF-AM60-PLA) and also, 

corrosion fatigue behaviors of magnesium alloy with PLA coating (CF-AM60-PLA) were evaluated. Polymer 

coating was made by fused deposition modeling (FDM) with a 3D printer and attached to standard fatigue test 

specimens with a glue. Then, they were immersed in the simulated body fluid (SBF) for 27 days. In the end, a 

high-cycle bending fatigue test was performed on samples. The fracture surface of the samples was also 

observed using the field emission scanning electron microscopy (FESEM). Due to corrosion, the weight of the 

specimens redcued by an average of 35%. The corrosion rate decreased in the first 7 days and then increased. 

PF samples with coating had an average of 49% increase in fatigue lifetime. Regarding the CF samples, despite 

the use of a 10 times stronger solution, the fatigue lifetime of these samples decreased by only 35%. FESEM 

results also showed cleavage plates and striations. In addition, the separation of the glue from the coating and 

Mg was observed. Corrosion products including microcracks and holes were seen on the fracture surface of CF 

specimens, which caused stress concentration and crack growth. Holes caused by the release of gases were also 

observed in polymer coatings. 

Keywords: high-cycle fatigue; AM60 magnesium alloy; polymer coating; fused deposition 

modeling; additive manufacturing; corrosion; simulated body fluid 

 

1. Introduction 

AM60 magnesium alloys have perfect mechanical properties such as strength and high fracture 

toughness [1,2]. This material has a low density and is biocompatible. For this reason, AM60 were 

used in structures under corrosion and fatigue loads. Magnesium is used in many industries such as 

automotive, aerospace, healthcare and biomedical. Magnesium is also used in implants and stents 

[3–6]. 

Song et al. [7] searched for a comparison of the corrosion performance of AM60 magnesium 

alloys in an atmospheric environment, both with and without the application of self-healing coatings. 

The results indicated that rainwater in scratched areas can acceler-ate corrosion in magnesium. 

Additionally, it was found that self-healing coatings possess better inhibitive properties. Liu et al. [8] 

explored the corrosion characteristics of the AM60 magnesium alloy that incorporate either cerium 

(Ce) or lanthanum (La) when sub-jected to thin electrolyte layers. The smart map analysis confirmed 

the skeletal structure formation from the rare earth (RE) alloying. Finally, the corrosion pattern 

observed in AMRE1 alloy indicates the corrosion area, and the application of thin electrolyte layer 

(TEL) effectively suppresses the development of pitting corrosion. Matsubara et al. [9] found the 

impact of iron impurity on the corrosion behaviors of AM60 and AM50 magne-sium alloys. The 

findings suggested that an increase in the Fe/Mn ratio correlated with higher rates of corrosion. That 

article concluded that these inclusions had a role of initia-tion corrosion points. Xie et al. [10] 

researched enhancing the anti-corrosion and anti-wear characteristics of AM60 magnesium alloys. 
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They improved this through ion im-plantation and a gradient duplex coating. The research revealed 

a significant improving behavior under the corrosion condition in magnesium alloys when it was 

coated. This improvement was evident in the current density of corrosion. Kumar [11] researched the 

effects of incorporating hydroxyapatite (HA) into AZ91D, AJ62, and AM60 alloys. The study found 

that HA, through the formation of complex metal hydroxides, enhances corrosion resistance. As a 

result, AJ62/3HA and AZ91D/3HA alloys were found as promising bio-material candidates due to 

their finer grains, exceptional resistance to corrosion, and strong biocompatibility, making them 

suitable for various applications. Other studies were conducted on the corrosion behavior of the 

AM60 alloy in the NaCl environment. Researchers in these studies attempted to increase the strength 

under the corrosion in the AM60 alloys by adding materials such as rare earth cerium and lanthanum 

metals, organic inhibitors, and mineral inhibitors [12–15]. 

Akbaripanah et al. [16] studied the impact of the equal channel angular pressing (ECAP) 

technique besides extrusion on the fatigue characteristics of the AM60 magnesium alloys. In the 

second pass of ECAP, researchers found that fatigue lifetime increased. This result was important 

because the improvement was seen in both low cycling and high cycling. Khan et al. [17] investigated 

the fatigue behavior of anodized AM60 magnesium alloys when exposed to a humid environment. 

The researchers found that anodized samples under high humidity conditions (80% RH) slightly 

improved fatigue strength. Hiromoto et al. [18] performed a work on the fatigue properties of bio-

absorbable magnesium alloys with hydroxyapatite coatings, formed through the chemical solution 

deposition method. In the final phase of the research, the investigators discovered that the 

hydroxyapatite (HAp) coatings on the sample remained intact without developing cracks even after 

107 fatigue cycles considering the fatigue limit. This suggested that the HAp coating offered 

approximately 3% cyclic elongation, showcasing its potential to increase the durability of AZ31 

magnesium alloy components in specific applications. Considering the wide range of applications for 

magnesium alloys, numerous studies were carried out on these materials. As a result, a substantial 

body of research was dedicated to exploring the corrosion fa-tigue behaviors in the magnesium alloy. 

Through these investigations, researchers sought to enhance the alloy resistance to corrosion fatigue 

by altering their composition and micro-structure [19–26].  

Shi et al. [27] investigated a novel MAO-PLA coating applied to zinc alloys with the potential 

for use as an orthopedic implant material. In the research, the Zn-0.5Mn-0.5Mg alloys were subjected 

to surface modification by micro-arc oxidation (MAO) besides sol-gel PLA techniques. This treatment 

enhanced osteogenesis and reduced the material toxicity for potential medical applications. 

Ultimately, based on the results obtained, researchers concluded that the surface modification of the 

MAO-PLA on the Zn-0.5Mn-0.5Mg alloys appeared to be suitable for improving biocompatibility. 

Anand et al. [28] assessed biode-gradable composites, Zn-Mg-Mn-(HA), coated with a polymer-

ceramics composite (PLA/HA/TiO2) for orthopedic applications. They observed higher corrosion 

rates in the as-cast sample, 1Mg-1Mn-1HA, than 1Mg-1Mn. However, after applying the polymer-

ceramic nanofiber composite coating, the corrosion rates significantly decreased in electrochemical 

tests. Wang et al. [29] investigated the corrosion resistance of biode-gradable iron and zinc materials 

by applying a poly(lactic) acid (PLA) coating to use these materials for temporary medical implant 

applications. The study found that PLA enhances iron (Fe) corrosion rate more effectively than zinc 

(Zn). This observation is likely attributed to the non-passivating nature of iron in an acidic 

environment. Beyzavi et al. [30] explored bio-polymer coatings, generating these coatings on the 

AM60 magnesium alloy with 3D printing by fused deposition modeling (FDM) in their study. These 

coatings were applied to explore the electrochemical behavior of the treated magnesium alloys. Their 

data on testing of electrochemical impedance spectroscopy revealed that the transparent 

Polycaprolactone (PCL) and PLA coatings exhibited the highest impedance. However, all the 

biodegradable coatings exhibited a significant increase in impedance, approximately 63.1-99.7%, 

compared to the magnesium alloy. 

Based on the conducted studies, it was determined that many researchers had worked in the 

field of AM60 corrosion, and their goal was to improve corrosion using various methods [7–15], 

Moreover, studies have shown that the use of biodegradable polymer coatings such as PLA can have 
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a positive impact on corrosion [27–30], Furthermore, it was disclosed that several studies were carried 

out in the field of fatigue of AM60 [16–26]. 

The innovation of this research is to compare the fatigue lifetime of coated Mg after corrosion in 

SBF with pure Mg. 

2. Materials and Methods 

2.1. Materials and Manufacturing Method 

The primary material used in the present research is a magnesium alloy. Then, the chemical 

composition of this alloy was determined using a quantometric test, where its results are shown in 

Table 1. From the comparison of the obtained results with the ASTM B94 standard, it was concluded 

that the alloy used is AM60. Its field-emission scanning electron microscopy (FESEM) images and 

energy-dispersive X-ray spectroscopy (EDX) were used for the microscopic evaluations. The related 

data illustrated that the magnesium matrix is based on Al12Mg17, Al6Mn, and MgO [31,32]. More 

details are provided in the study [33].  Standard fatigue test samples were made from this alloy by 

casting method. 

Table 1. The quantometry result for AM60 (wt.%). 

Mg Mn Zn Si Al Ni Cu 

Bulk 0.3 0.07 0.04 5.5 0.004 0.01 

After the production of standard fatigue test samples, polymer coatings were made separately 

and using the fused deposition modeling (FDM) technique. The coating used in this research is 

polylactic acid (PLA). This polymer is biocompatible. Its melting temperature is 180-230°C and its 

density is 1240 kg/m3 [34,35].  The 3D printing parameters of these coatings are presented in Table 2. 

These parameters were chosen according to the literature [36,37]. 

Table 2. The 3D printing parameters. 

Nozzle 

diameter 

(mm) 

Layer 

High 

(µm)  

Infill in 

inner 

layer 

(%) 

Infill in 

first and 

last layer 

(%) 

Bed 

temperature 

(°C) 

Nozzle 

temperature 

(°C) 

Speed 

(mm/s) 
Parameters 

0.4  50  50 100  60 245  50  Value  

The polymer coatings were attached to magnesium fatigue standard samples using glue. In this 

research epoxy glue with Megapox 300 Ghafari brand was used. It was shown in research [38] that 

epoxy adhesives are not harmful to humans. These adhesives are two components and are mixed 

together in equal proportions.  For bonding, the fatigue standard sample was first degreased with 

dishwashing liquid. Then the adhesive was used between the surface of the base metal and the 

coating layers. Based on the instructions by the glue manufacturer, the samples were kept in room 

air for 24 hours. Then the tests were performed. Figure 1 depicts the standard sample of fatigue 

testing, with and without coating. 

 

Figure 1. The fatigue standard sample with and without coating before corrosion 
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According to ASTM D4541, adhesion testing was done by the pull-off experiment. An adhesion 

device made by Defelsko company was used to perform this test. An adhesion test was performed 

from each sample at three different points. The average of the obtained results, which shows the 

amount of adhesion between the base metal and the coating, was measured 4.29±0.71. In another 

research  [39], the amount of adhesion between PLA and Mg, which were connected to each other by 

electrolytic plasma oxidation method, was measured. 

2-2. Corrosion Test 

Standard fatigue test samples with coating were subjected to corrosion. For this purpose, the 

specimens were completely immersed in the 1X simulated body fluid (SBF). But with time, no 

corrosion occurred. Figure 2 shows a corrosion fatigue standard sample with 1X SBF after 30 days. 

Therefore, 10X SBF was used. The composition table of the SBF solution is depicted in Table 3. Based 

on this table, the main ions of the SBF solution are Na+ and Cl. However, due to the presence of other 

ions, the corrosion effects with NaCl solution will be completely different. For example, the hydrogen 

element can lead to the production of Mg(OH)2, which does not occur in NaCl solution. The 

differences between these two solutions have been fully investigated in research [40].  

The samples were weighed every day for the first 7 days. Then, on days 13, 20, and 27, the weight 

of the specimens was recorded.  It must be noted that before each weighing, the samples were 

completely cleaned with a napkin and left in the open air for a few hours to dry completely. Figure 3 

shows the fatigue standard sample with coatings after the immersion in SBF environment on different 

days. In addition, Figure 4 illustrates the specimen after corrosion testing, with and without corrosion 

products. 

 
Figure 2. The corrosion fatigue standard sample with 1X SBF after 30 days. 

Table 3. The constituent elements of SBF used [41]. 

Ions Concentration (mM) Ions Concentration (mM) 
2+Mg 15.0 -24HPO 10.0 

+K 50.0 -3HCO 42.0 
+Na 1420.0 -Cl 1478.0 
+2Ca 25.0 -24SO 5.0 
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Figure 3. Image of standard samples during corrosion test. 

 
Figure 4. Samples after the corrosion test without corrosion products. 

Based on the ASTM-G31-72 standard [42], the rate of corrosion can be calculated in mils per year 

(MPY) according to Equation 1, as follows, 
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 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 ൌ ௄ௐ஺௧஽ (1) 

In this equation, A is the sample area (cm2), which is exposed to the environment, W is the weight 

loss (gr), D is the density of the material (gr/cm3), t is the exposure time (hr), and K = 3.45×106 [43]. 

2.3. Fatigue Test 

The high-cycle rotary bending fatigue test (R=-1) was performed based on the ISO-1143 and DIN-

EN-50113 standards  [44,45]. To perform this test, SFT-600 device made by Santam Company was 

used.  All experiments were conducted at room temperature and under a loading frequency of 100 

Hz. The map of standard specimens is decpited in Figure 5. 

 
Figure 5. The map of the Fatigue standard specimen. 

Fatigue tests were performed for samples under 4 stress levels of 80, 100, 120, and 140 MPa and 

with a repeatability of 3 tests for each sample. The fatigue limit of magnesium was considered at 60 

MPa besides 1 million cycles [44]. 

2.4. Fracture Surface Analyze 

The fracture surfaces of the samples were seen by the field-emission scanning electron 

microscopy (FESEM), the Sigma 300 model, made in Zeiss, Germany. Before imaging, a gold coating 

layer was also applied on the specimen surfaces. 

3. Results 

The samples with the coating were placed in the SBF solution for 27 days. Then, the weight of 

the specimens was recorded during this period. Figure 6 depicts the change in weight according to 

the days that the samples were in the solution. According to this figure, the weight of the samples 

did not change in the first days. However, on some days it decreased, then on the last days the weight 

of the sample increased. This is due to water absorption by the polymer coating [46].  Hasanpour et 

al. [47] investigated water absorption and corrosion of pure magnesium and magnesium with PLA. 

The specimens were immersed in the SBF solution for 30 days. It was concluded that the corrosion 

rate in samples with PLA is increased due to more water absorption. Balogova et al. [48] for PLA 

samples showed that the mass of samples increases with increasing water absorption. Redondo et al. 

[49] also reported water absorption in corrosion tests for PLA samples. Alksne et al. [50] reported 

swelling and water absorption over time  for Composite samples made of PLA+hydroxyapatite (HA) 

and PLA+bioglass (BG). 
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Figure 6. The changes in weight of the corroded specimens. 

Figure 7 shows the corrosion rate and the average rate of corrosion. Based on this figure, the 

corrosion rates decreased over the time. Chor et al. [51] also reported a decrease in the corrosion rate 

for a sample made of PLA materials over the time.  Voicu et al. [52] combined MgZ31 with PLA 

nanofibers and the corrosion of samples in SBF solution was investigated. The results illustrated that 

the rate of corrosion decreased with the help of PLA coating. Shi et al. [53] fabricated a PLA layer on 

the sample by placing AZ31 in the PLA-chloroform solution. The corrosion results demonstrated that 

the coating layers decreased the corrosion rate. 

 
(a) 
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(b) 

Figure 7. (a) The corrosion rate and (b) the averaged corrosion rate for coated samples. 

Figure 8 shows the stress-lifetime curve for all samples and the average of samples PF-AM60-

PLA and CF-AM60-PLA compared to samples PF-AM60 and CF-AM60. Basquin equation is shown 

in Equation 2 [54]. In this regard, (𝜎௙̓) is the coefficient of fatigue strength, (b) is the exponent of fatigue 

strength, and 𝑁௙ is the fatigue lifetime. These coefficients are reported in Table 4.  𝜎௔ ൌ 𝜎௙̓൫2𝑁௙൯௕
 (2) 

According to Table 4, R2 for all samples is within the acceptable range. Only in CF-AM60-PLA 

samples, the value of R2 has decreased. Some of these samples were highly corroded compared to 

their similar samples. These samples are shown in Figure 8 (a). Because of that, their corrosion fatigue 

lifetime has been greatly reduced. 

 
(a) 
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(b) 

Figure 8. The stress-lifetime curves of AM60 and AM60+PLA for (a) averaged data and (b) all data. 

Compared to the PF-AM60 sample, the PF-AM60-PLA sample on average had a 49% increase in 

fatigue lifetime. This is exactly as expected. PLA coating has increased the cross-sectional area of the 

sample. Therefore, fatigue resistance has increased. However, at the higher stress levels, the fatigue 

lifetime increased up to 67%. 
The fatigue lifetime of CF-AM60-PLA specimens has decreased compared to CF-AM60 samples. 

However, it should be considered that 10XSBF solution was used for CF-AM60-PLA samples. In fact, 

despite using a 10 times stronger solution, the fatigue lifetime has decreased by only 35%. 

Figure 9 shows the FESEM images of the fracture surfaces of the PF-AM60-PLA at 80 MPa of the 

stress level. In these figures, PLA coating and glue were seen separately. In addition, striations caused 

by fatigue loading were seen. Cleavage was also observed on the fracture surfaces of this specimen, 

which indicated the brittleness of the material  [23]. 

In general, there are three stages containing the crack initiation, the crack growth, and the final 

failure due to fatigue loading. Due to bending fatigue loading, the highest stress occurs on the surface 

of the samples. Therefore, cracks start and grow in these areas. In the last stage, the sudden and final 

failure of the specimen occurs [55,56]. 

Figure 10 depicts the fracture surfaces of the PF-AM60-PLA at 120 MPa of the stress level. In this 

sample, the separation of glue and AM60 and also the separation of glue and PLA coating were 

observed. Similarly, striations and micro-cracks were also seen. Then, on the fracture surfaces of PLA 

coatings, the defects were also observed. These defects are spherical and their diameter is about 0.01 

mm. One of the causes of these defects was the temperature of the nozzle during 3D printing. The 

temperature of 180 °C for PLA causes the material to vaporize. These vapors create bubbles in the 

sample. After bursting, these bubbles cause the formation of defects in the sample [57–59]. 

Figure 11 depicts the fracture surfaces of the CF-AM60-PLA sample at 80 MPa of the stress level. 

The separation of glue and sample is shown as a failure mechanism. In addition, one of the effects of 

corrosion is cavities and holes which were shown in research to reduce the fatigue lifetime of the 

specimen due to stress concentration. these products were seen in FESEM images  [55,60,61]. 

Moreover, micro  cracks were observed. These microcracks enhance the crack initiation stage in 

fatigue loading [56]. In research, it was shown that these cracks appear under CF conditions [62]. In 

another research, it was shown that the micro-cracks in the sample due to corrosion caused stress 

concentration and decreased the fatigue lifetime of the sample [63]. 
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Shrinkage holes are also shown. Magnesium alloy is produced by the casting method, which is 

the cause of this type of shrinkage cavities. Moreover, angular cleavage plates were seen on the 

fracture surfaces, which indicated the brittle fracture behavior of the part. 

Figure 12 illustrates the results of the EDS analysis. In this Figure, according to Table 3, the 

constituent elements of the SBF are shown. 

Table 4. The obtained fatigue properties of AM60 magnesium alloy. 

Test Conditions 
All Data Average Data 𝝈𝒇҆  (MPa) b R2 𝝈𝒇҆  (MPa) b R2 

PF-AM60 506.92 -0.137 0.9407 589.97 -0.151 0.9534 

CF-AM60 419.50 -0.133 0.9144 494.11 -0.148 0.9999 

PF-AM60-PLA 1444.60 -0.208 0.9849 1502.30 -0.211 0.9999 

CF-AM60-PLA 429.96 -0.146 0.6109 618.86 -0.180 0.6785 
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Figure 9. Fracture surface of PF-AM60-PLA at 80 MPa. 
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Figure 10. Fracture surface of PF-AM60-PLA at 120 MPa. 
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Figure 11. Fracture surface of CF-AM60-PLA at 80 MPa. 

 
Figure 12. EDS analysis for CF-AM60-PLA at 80 MPa. 

Figure 13 depicts the fracture surfaces of the CF-AM60-PLA sample at 120 MPa. In this figure, 

the separation of glue and sample, and also other effects such as cracks between the coating and the 

glue were shown. In addition, shrinkage cavities were seen, indicating improper manufacturing 

methods. The cleavage plates and striations were also seen. In research, it was shown that in Mg 

alloys at higher stress levels due to the presence of Al and Zn, the size of the holes caused by corrosion 

is larger, which leads to the initiation of cracks. This is while smaller holes were created at the level 

of less stress. These holes are connected and a crack is formed [64]. 

Figure 14 shows the results of the EDS analysis on the outer surface of the coating. Corrosion 

holes were seen on this surface. Moreover, soluble SBF elements were seen. 
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In general, signs of corrosion were seen only on the outer surfaces of the coating layers, and the 

magnesium alloy did not suffer corrosion, which is one of the advantages of using the coating. 

 

 

 
Figure 13. Fracture surface of CF-AM60-PLA at 120 MPa. 
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Figure 14. EDS analysis for CF-AM60-PLA at 120 MPa. 

4. Conclusions 

In the present research, the pure fatigue behaviors of magnesium alloy with polylactic acid 

(PLA) coating (PF-AM60-PLA) and the corrosion fatigue behaviors of magnesium alloy with PLA 

coating (CF-AM60-PLA) were investigated. The polymer coating was made of PLA and was made 

by additive manufacturing method (3D-printing). These covers were attached to the standard sample 

with a glue. Then, the specimens were immersed in the 10X SBF for 27 days. After that, the rotary 

bending fatigue testing device was used to evaluate the high-cycle fatigue behaviors. Finally, the 

fracture surfaces of the specimens were checked with FESEM images. The obtained experimental 

results show,  
• Due to corrosion, the weight of the sample decreased by 35%. 

• The corrosion rate decreased in the first 7 days and then increased. 

• Compared to the PF-AM60 sample, the PF-AM60-PLA sample on average had a 49% increase in 

fatigue lifetime. 

• Despite using a 10 times stronger solution, the fatigue lifetime of CF-AM60-PLA samples is 

reduced by only 35% compared to CF-AM60 samples. 

• Separation of coating from glue and glue from Mg was observed. 

• Cleavage plates caused by brittle fracture and striations caused by fatigue load were seen on the 

failure surface. 

• Corrosion products including microcracks and holes were seen on the fracture surfaces of CF 

samples, which caused stress concentration and crack growth. 

• Holes caused by the release of gases were observed in the coating. 
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